1.1 Euclidean space and vectors

Def: 1) The set of all ordered n-tuples of real numbers is called n-dimensional. Euclidean space and is denoted by R^{n}.we will denote such n-tuples either by writing out the component or by single boldface letters
$X=\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots x_{n}\right)$
2) The n-tuple whose components are all zero is denoted 0
$0=(0,0,0,0,0,0$,0)
When $\mathrm{n}=2$ or 3 , we shall often write (x, y) or (x, y, z) unstead of $\left(x_{1}, x_{2}\right.$, or $\left(x_{1}, x_{2}, x_{3}\right)$ but we use X as a single symbol to denote the ordered pair or triple
3) Addition $X+Y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots \ldots \ldots \ldots \ldots \ldots x_{n}+y_{n}\right)$

Scalar multiplication $c X=\left(c x_{1}, c x_{2}, \ldots \ldots, c x_{n}\right)$

4) If $x \in R^{n}$, then the norm of X is defined to be $X \mid=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots \ldots+x_{n}^{2}}=\sqrt{X \cdot X}$
1.1 (Cauchy's Inequality). For any $a, b R^{n} \quad|. b| \leq|d||b|$

Proof: If $\mathrm{b}=0$, then both sides are 0 ot rerwise Let $t \in R$ and consider the function $f(t)=|a-t b|^{2}=(a-t b) .(a-t b)=|a|^{2}-2\left(a . b-t^{2}|b|^{2} \gamma\right.$.
$f^{\prime}(t)=0-2 a b+2 t|b|^{2}$
f has its minimum valu whei $f^{\prime}(t)=g$
$f^{\prime}(t)=0=-2 a \cdot b+2 t\left|b_{1}\right|^{2} \Rightarrow$ so , has rit min value at $t=\frac{a \cdot b}{|b|^{2}}$
And the min. alt 1. $f\left(\frac{a . b}{|b|^{2}}\right)=|a|^{2}-\frac{(a . b)^{2}}{|b|^{2}}$
On the the hat $1, f(t) \geq 0$, for all t , so $|a|^{2}-\frac{(a . b)^{2}}{|b|^{2}} \geq 0$
$\Rightarrow(a b)^{2} \leq|a \underset{1}{2} b|^{2} \Rightarrow|a b| \leq|a||b|$

1.2 The Triangle Inequality

For any $a, b \in R^{n},|a+b| \leq|a|+|b|$
Proof: we have $|a+b|^{2}=(a+b) .(a+b)=|a|^{2}+2 a \cdot b+|b|^{2}$
By Cauchy inequality, this last sum is at most
$|a|^{2}+2|a||b|+|b|^{2}=(|a|+|b|)^{2}$, so the result follows by taking square roots $|a+b|^{2} \leq(|a|+|b|)^{2} \Rightarrow|a+b| \leq|a|+|b|$

Advanced Calculus

Def : The distance between two points X and Y in 3-space is given by $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}}=|X-Y|$
We shall take this as definition of distance in n -space for any n .
Distance from X and $\mathrm{Y}=|X-Y|$
By taking $a=X-Y$ and $b=Y-Z$ in the triangle inequality we see that $|X-Z| \leq|X-Y|+|Y-Z|$ For all $x, y, z \in R^{n}$

Def: The angle θ between two vectors X and Y is

$$
\theta=\cos ^{-1}\left(\frac{X . Y}{|X||Y|}\right) \text { where } \theta \in[0, \pi]
$$

Def: If $X . Y=0$, then X and Y are said to be orthogonal to each other.
Remark: Let $X=\left(x_{1}, x_{2}\right.$, x_{n})
Let M be the largest of the numbers $\left|x_{1}\right|,\left|x_{2}\right|, \ldots$
Then $M^{2} \leq x_{1}^{2}+x_{2}^{2}+$ \qquad $+x_{n}^{2}$ because M^{2} ne of the 1$)^{\prime} m b e r s$ in the righte and $x_{1}^{2}+x_{2}^{2}+$ \qquad $+x_{n}^{2} \leq n M^{2}$ because each an ar on theleft is at most M^{2}

In other words,

Cross product

$$
\begin{aligned}
& \text { Let } \begin{array}{l}
a=\left(a_{1}, a_{2}, a_{3}\right)=a_{1} j+a_{2} j+1=R^{3} \\
\qquad b=\left(b_{1}, b_{2}, b_{3}\right)=a^{2}+\rho_{2} j+b_{3} k \in R^{3}
\end{array}, ~
\end{aligned}
$$

The cross proun is lefined by

$$
a \times b=\left(\begin{array}{ccc}
i & & \\
& i_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

Remark: 1) $\left(c_{1} a_{1}+c_{2} a_{2}\right) \times b=c_{1}\left(a_{1} \times b\right)+c_{2}\left(a_{2} \times b\right)$

$$
a \times\left(c_{1} b_{1}+c_{2} b_{2}\right)=c_{1}\left(a \times b_{1}\right)+c_{2}\left(a \times b_{2}\right)
$$

2) $a \times b=-b \times a$ not commutitve $a \times(b \times c) \neq(a \times b) \times c \quad$ in General
3) $a \times(b \times c)+b \times(c \times a)+c \times(a \times b)=0 \quad$ Jacobi identity
4) $|a \times b|^{2}=|a|^{2}|b|^{2}-(a . b)^{2}$

Advanced Calculus

If θ is the angle between a and b where $(0 \leq \theta \leq \pi)$, then $a \cdot b=|a||b| \cos \theta$
So, $|a \times b|^{2}=|a|^{2}|b|^{2}\left(1-\cos ^{2} \theta\right)$ or $|a \times b|=|a||b| \sin \theta$
5) $|a \times b|=$ the area of the parallelogram generated by a and b .
6) $a .(a \times b)=b .(a \times b)=0$
7) $a \times b$ is orthogonal to both a and b .

EX. Page (8)

1) Let $x=(3,-1,-1,1), y=(-2,2,1,0)$ compute the norm of x and y ard ine angle between them
$\theta=\cos ^{-1}\left(\frac{x \cdot y}{|x||y|}\right)=\cos ^{-1}\left(\frac{-6-2-1+0}{\sqrt{12} \sqrt{9}}\right)=\cos ^{-1}\left(\frac{-9}{3.2 \sqrt{3}}\right)=\operatorname{co} \quad\left(\frac{-3}{\sqrt{3}}\right)=\frac{5 \pi}{6}$
2) Show that $\| a|-|b|| \leq|a-b|$ for every $a, b \in R^{n}$

Solution : $|a|=|a-b+b| \leq|a-b|+|b|$

$$
|b|=|b-a+a| \leq|a-b|+|a|
$$

from (1) $|a|-|b| \leq|a-b|$
from (2) $|b|-|a| \leq|a-b|$
$\Rightarrow\left\|a\left|-\left|b \| \leq|a-b|\right.\right.\right.$ for eve $y a, b \in R^{n}$

7) Suppose that $a, \in R^{3}$

a) Show that if $a . b$ and $a \times b=\mathrm{c}$, then either $\mathrm{a}=0$ or $\mathrm{b}=0$

Solution: If $r \cdot b=0 \rightarrow$ either $\theta=\frac{\pi}{2}$ between a and b or either oor b is zero
If $\theta=\frac{\pi}{2} \Rightarrow|\times b|=|a||b| \sin \theta \neq 0$ contradiction So, $\mathrm{a}=0$ or $\mathrm{b}=0$
b) $a . c=b . c \Rightarrow(a-b) . c=0$
$c \neq 0 \Rightarrow a-b=0 \Rightarrow a=b$
$a \times c=b \times c \Rightarrow(a-b) \times c=0$
$c \neq 0 \Rightarrow a-b=0 \Rightarrow a=b$
c) $(a \times a) \times b=a \times(a \times b)$ iff a and b are proportional

Let $b=r a$
$(a \times a) \times b=(a \times a) \times(r a)=r(a \times a) \times a=a \times(a \times r a)=r a \times(a \times a)=0$

1.2 Subsets of Euclidean space R^{n}

Def: The set of all points whose distance from a fixed point a is equal to some number r is called the sphere of radius r about a and the set of points whose distance from a is less than r is called the (open) ball of radius r about a. We use the notation $B(r, a)$ for the ball of radius r about a. $B(r, a)=\left\{x \in R^{n}:|x-a|<r\right\}$
In a space R^{1} of one dimensional a ball is an open interval , and in dime sion 2 , the words " disc" and circle used in place of ball and sphere .

A set $S \subset R^{n}$ is called bounded if it is contained in some ba ${ }^{\prime}$ al ut the origin, that is, if there is a constant C such that $|x|<C$ for every $x \in S$
Where $|X|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots \ldots \ldots . .+x_{n}^{2}}=\sqrt{X \cdot X}$
Def: Let S be a subset of R^{n}

1) The complement of S is the set of all points in R^{n} that are not in S, we denote it by R^{n} / S or by $S^{c}, S^{c}=R^{n} / S=\left\{x \in R^{n}\right.$
2) A point $x \in R^{n}$ is called an interior po int of S ifgh points sufficiently close to x (including x itself) are also in S , the tis if S Contains some ball centered at X .
3) The set of all interior points or S. called the interior of S and is denoted by $S^{\text {int }}, S^{\mathrm{ith}}=\{x \in S: B(r, x) \subset$ fo come $r \geqslant 0$.
4) A point $x \in R^{n}$ is caned a bundary point of S if every ball centered at x contains both poin in S and points in S^{c} (Note that if x is a boundary point of S, x may bel ong to ermer S on S^{c}). The set of all boundary points of S is called the boundar o S and is dentoted by
$\partial S=\left\{x \not R^{n} . \cap(r, v) \cap S \neq \varphi\right.$ and $B(r, x) \cap S^{c} \neq \varphi$ for every $\left.r>0\right\}$
5) S is car d op en if it contains none of its boundary points.
6) S s ct lea-1osed if it contains all of its boundary points.
7) The losure of S is the union of S and all its boundary points. It is denoted by $\bar{s}: \bar{S}=S \cup \partial S$
8) Finally, a neighborhood of a point $x \in R^{n}$ is a set of which x is an interior point. That is, S is neighborhood of x iff x is an interior point of S.

Remark :

1) The boundary points of S are the same as the boundary points of S^{c}
2) If x is neither an interior point of S nor an interior point of S^{c}, then x must be a boundary point of S.
3) Given $S \subset R^{n}$ and $x \in R^{n}$, there are exactly three possibilities: x is an interior point of S or x is an interior point of S^{c}, or x is a boundary point.

1.3 Proposition : Suppose $S \subset R^{n}$

a) S is open \Leftrightarrow every point of S is an interior point .
b) S is closed $\Leftrightarrow S^{c}$ is open

Proof : Every point of S is either an interior point or boundary point, thus S is open \Leftrightarrow every point of S is an interior point and S is closed \Leftrightarrow it contan's all of ∂S, which is the same as $\partial\left(S^{c}\right)$; this happens when S^{c} contains none of is surdary points, that is S^{c} is open.

Example 1) : Let S be $B(\rho, 0)$, the ball of radius ρ about tho origin. First given $x \in S$.Let $r=\rho-|x|$, If $|y-x|<r$, then by the triangl \quad nequality we have $|y| \leq|y-x|+|x|<\rho$, So that $B(r, x) \subset S$
Therefore, every $x \in S$ is an interior point of S so S is open
Second a similar calculation shows that if $|x|-\rho$ then $B(x) \in C S^{c}$ where $r=|x|-\rho$ So every point with $|x|>\rho$ is an interior noin $+5 \mathrm{f} s^{c}$.
On the other hand, if $|x|=\rho$, then $c x \in S$ for $0<c<1$ And $c x \in S^{c}$ for $c \geq 1$, and $|c x-x|=|c-1| \rho$ can be as small as we $\rho 1$ a; \mathcal{A}, soxis a boundary point. In the other words, the boundary of S is the s h $h e$ of radias ρ about the origin, and the closure of S is the closed ball $\{x:|x|<\rho\}$

Example 2) : Let S be the ball of ractius ρ about the origin together with the upper hemisphere ,of its oovadary: $S=\mathcal{B}(\rho, 0) \cup\left\{x \in R^{n}:|x|=\rho\right.$ and $\left.x_{n}>0\right\}$
$S^{\text {int }}=B(\rho, 0), \gamma \quad\{x, 4 x \mid=\rho\}$
And $\bar{S}=\{x+x-\rho\}$
The set \leqslant is neither open nor closed .
Example3) : In the real line ($\mathrm{n}=1$), let S be the of all rational numbers ,since every ball in R -that is every interval contains both rational and irrational numbers , every point of R is a boundary point of S. The set S is neither open nor closed, its interior is empty, and its closure is R .

Advanced Calculus

1.3 Limits and continuity

Def: A function $f(x)$ of one variable is said to approach a limit $L \in R$ as X approach a if and only if for any positive real no.
$\varepsilon>0, \exists \delta>0$, э whenever $0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$
In symbols we write $\lim _{x \rightarrow a} f(x)=L$

Example:

$\lim _{x \rightarrow 1} \sqrt{x}=1$
Let $\varepsilon>0$, we will find $\delta>0$ such that whenever
$0<|x-1|<\delta \Rightarrow|\sqrt{x}-1|<\varepsilon$
$-\varepsilon<\sqrt{x}-1<\varepsilon$
$1-\varepsilon<\sqrt{x}<1+\varepsilon$
$(1-\varepsilon)^{2}<x<(1+\varepsilon)^{2}$
$(1-\varepsilon)^{2}-1<x-1<(1+\varepsilon)^{2}-1$
$\delta=\min .\left\{1-(1-\varepsilon)^{2},(1+\varepsilon)^{2}-1\right\}=\left\{2 \varepsilon-\varepsilon^{2}, \varepsilon^{2}+2 \varepsilon\right\}$

Another solution :

Let $\varepsilon>0$, let $\delta=\varepsilon$
We have $|\sqrt{x}-1|=\frac{|x-1|}{|\sqrt{x}+1|}$
If $0<|x-1|<\delta=\varepsilon$ we 0 , tain $|\sqrt{x}-1|<\frac{\delta}{\sqrt{x}+1 \mid}<\varepsilon$

Example: Show nat $f(x)=\sin \frac{1}{x}$ has no limit as $x \rightarrow 0$
Solution: : upp se that $f(x)=\sin \frac{1}{x}$ has a limit as $x \rightarrow 0$, then choose $\varepsilon=\frac{1}{2}$, we can find a.>0 such that $\left|\sin \frac{1}{x}-L\right|<\frac{1}{2}$ whenever $0<|x|<\delta$
Let n be any integer whose absolute value is so large that bothe points

$$
x_{1}=\frac{1}{\left(2 n+\frac{1}{2}\right) \pi}, \text { and } \mathrm{x}_{2}=\frac{1}{\left(2 n-\frac{1}{2}\right) \pi}
$$

belong to the neighborhood $0<|x|<\delta$, then
$\sin \frac{1}{x_{1}}=\sin \left(2 n+\frac{1}{2}\right) \pi=\sin \frac{1}{2} \pi=1$
while $\sin \frac{1}{x_{2}}=\sin \left(2 n-\frac{1}{2}\right) \pi=\sin -\frac{1}{2} \pi=-1$
It follows that $\left|\sin \frac{1}{x_{1}}-L\right|=|1-L|<\frac{1}{2}$ and $\left|\sin \frac{1}{x_{2}}-L\right|=|-1-L|<\frac{1}{2} \Rightarrow|1+L|<\frac{1}{2}$

Then $|1-L|<\frac{1}{2} \Rightarrow-\frac{1}{2}<1-L<\frac{1}{2} \Rightarrow-\frac{3}{2}<-L<-\frac{1}{2} \Rightarrow \frac{1}{2}<L<\frac{3}{2} \Rightarrow L>\frac{1}{2}$
and $|1+L|<\frac{1}{2} \Rightarrow-\frac{1}{2}<1+L<\frac{1}{2} \Rightarrow-\frac{3}{2}<L<-\frac{1}{2} \Rightarrow L<-\frac{1}{2}$
Contradiction, Thus the assumption that $\sin \frac{1}{x}$ has a limit at $\mathrm{x}=0$ lea is .0 a contradiction, therefore $\sin \frac{1}{x}$ does not have a limit at $x=$

Def: $f(x)$ is said to a approach $L \in R$ as $x \rightarrow a$ from the right and denoted by $\lim _{x \rightarrow a^{+}} f(x)=L$ provided that for each $\varepsilon>0, \exists \delta>0 \gtrdot 0<x-a_{1}<\delta \Rightarrow|f(x)-L|<\varepsilon$ and is said to approach $L \in R$ as $x \rightarrow a$ from left, denoted $h_{V} \lim _{x \rightarrow a} f(x)=A$ provided that for each $\varepsilon>0, \exists \delta>0, \ni 0<a-x<\delta \Rightarrow|f(x)-L|<\varepsilon$

Example: Let $f(x)= \begin{cases}x+1 & \text { for }|x| \leq \mid \\ 0 & \text { fo } 1 / 1\end{cases}$

Then $\lim _{x \rightarrow 1^{-}} f(x)=2$
$\lim _{x \rightarrow \rightarrow^{+}} f(x)=0$
$\Rightarrow \lim _{x \rightarrow 1} f(x)$ does no e.Ist.

Remark \sim fu ction $f(x)$, we can define the one sided limits as $x \rightarrow a$ from right and left ©s $\operatorname{lm}_{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a \\ x>a}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a \\ x<a}} f(x)$.

Remark : The ordinary limit as $x \rightarrow a$ for $f(x)$ is called the two sided limit and $\lim _{x \rightarrow a} f(x)$ exists whenever $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$

Def of Continuity : A function $f(x)$ is called cont. at $\mathrm{x}=$ a provided that $\lim _{x \rightarrow a} f(x)=f(a)$, and we write $f(x) \in C$.

Advanced Calculus

The function $f(x)$ belongs to the class of cont. function or we can write for $\varepsilon>0, \exists \delta>0, \ni|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon$

Def: $f(x)$ is called cont. from right at $\mathrm{x}=$ a provided that $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
And $f(x)$ is called cont. from left at $\mathrm{x}=$ a provided that $\lim _{x \rightarrow a^{-}} f(x)=f(a)$
If $f(x)$ is cont. at $\mathrm{x}=\mathrm{a}$, we say that $f(x) \in C$ at $\mathrm{x}=\mathrm{a}$.
If $f(x)$ is cont. at each x of the interval (a, b) we say that $f(x) \in C$ for
$\mathrm{a}<\mathrm{x}<\mathrm{b}$ or $f(x) \in C(a, b)$.
If $f(x) \in C, \mathrm{a}<\mathrm{x}<\mathrm{b}$ and $f(x)$ is cont. at a from the right and cont as from the left we say that $f(x) \in C, a \leq x \leq b$ or $f(x) \in C[a, b]$

Theorem : $\lim _{x \rightarrow a} f(x)$ exists iff $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$
Proof: Let $\lim _{x \rightarrow a} f(x)=L \in R$
$\forall \varepsilon>0, \exists \delta>0, \ni 0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$
So ,if $0<x-a<\delta \Rightarrow 0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$
So, $\lim _{x \rightarrow a^{+}} f(x)=L$
Also, if $0<a-x<\delta \Rightarrow 0<|x-a|<\delta \Rightarrow \mid,(x)-b<\varepsilon$
So, $\lim _{x \rightarrow a^{-}} f(x)=L$
\Leftarrow suppose that $\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{\rightarrow a}} f(x)=L$
$\forall \varepsilon>0, \exists \delta_{1}>0, \ni 0<x-a<\Rightarrow \mid f$ 个 $)-L \mid-1$
Also, $\exists \delta_{2}>0, \ni 0<a-<\delta_{2} \Rightarrow(a)-L+\underbrace{}_{\varepsilon}$
Let $\delta=\min .\left(\delta_{1}, \delta_{2}\right)$
If $0<|x-a|<\delta \rightarrow 0 \quad x-a<\delta$ or $0<a-x<\delta$
If $0<x-a-\delta=0<-a<\delta_{1} \Rightarrow|f(x)-L|<\varepsilon$
$0<a-x<\delta=0<\mathfrak{W}-x<\delta_{2} \Rightarrow|f(x)-L|<\varepsilon$
So , $\lim _{x \rightarrow a} f(x)=L$

Functions of several variables :

Def: A function $f(x, y)$ approaches a limit $L \in R$ as x approaches a and y approaches b, denoted by $\lim _{\substack{x \rightarrow a \\ y \rightarrow b}} f(x, y)=L$ provided that
$\forall \varepsilon>0, \exists \delta>0, \ni|x-a|<\delta,|y-b|<\delta$ and $(x-a)^{2}+(y-b)^{2}>0 \Rightarrow|f(x, y)-L|<\varepsilon$
Example: $f(x, y)=x^{2}+y^{2}$

Advanced Calculus

Show that $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)=0$
Proof: Let $\varepsilon>0$, choose $\delta=\sqrt{\frac{\varepsilon}{2}}$
Let $|x-0|<\delta=\sqrt{\frac{\varepsilon}{2}},|y-0|<\delta=\sqrt{\frac{\varepsilon}{2}}$
$\Rightarrow x^{2}+y^{2}<\varepsilon$
$\Rightarrow|f(x, y)-0|=\left|x^{2}+y^{2}-0\right| \leq x^{2}+y^{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
$\Rightarrow \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)=0$

Remark : It is not true in general that $\left.\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right)=\lim _{\substack{\rightarrow a}}\left(\lim _{y \rightarrow b} f, y\right)\right)$

Example : Let $f(x, y)= \begin{cases}\frac{x-y}{x+y} & x \neq-y \\ 1 & x=-y\end{cases}$
$\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} \frac{x-y}{x+y}\right)=\lim _{x \rightarrow 0} \frac{x}{x}=1$ but $\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} \frac{x-y}{x}, \lim _{y \rightarrow 0}-\frac{y}{y}-1\right.$
The limit $\left(\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x-y}{x+y}\right)$ does orex ts .
Let $y=m x$
$\lim _{x \rightarrow 0} \frac{x-y}{x+y}=\lim _{x \rightarrow 0} \frac{x-m}{x-m x}=\min _{x \rightarrow 0} \frac{x(1-m)}{x(1+m)}=\frac{(1-m)}{(1+m)}$ along the line $y=m x$
So, the limit a (x, y) approaches $(0,0)$ along the line $y=m x$ is $\frac{(1-m)}{(1+m)}$ which changes $\sim \mathrm{m}$ change .So , the limit does not exist.

Note : $\lim _{\substack{x \rightarrow a \\ y \rightarrow b}} f(x, y)$ exists when the limit along any path passes through the point (a, b) is a unique .

Example: Let $f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$

Advanced Calculus

Show that $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)$ does not exist .
Solution : Let $\mathrm{y}=\mathrm{cx}$
$\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{x . c x}{x^{2}+(c x)^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}} \frac{c}{1+(c)^{2}}=\frac{c}{1+(c)^{2}}$
The limit changes as c changes, so the limit does not exist .
Example : Let $g(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
Solution : Let $y=c x^{2}$
$\lim _{x \rightarrow 0} g\left(x, c x^{2}\right)=\lim _{x \rightarrow 0} \frac{c x^{4}}{x^{4}+c^{2} x^{4}}=\frac{c}{1+c^{2}}$
The limit changes as changes, so the limit dees not exist.
Def: we say that $f(x, y) \in C$ at (a, b) iff $\operatorname{lin}_{x},(x, y)=C(a, b)$

Example: $\phi(x, y)=\frac{\sin (3 x+2 \cdots}{x^{2}-y}$ is ont. eveY̌ where except along the parabola $y=x^{2}$
TH : The sum, product, or diffeterice of two cont. function is cont., the quotient of two cont. function c cont. on the set where the denominator is nonzero .

Exampr $\sim(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
$\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}=0 \sin \operatorname{ce}|h(x, y)| \leq \frac{\left|x y \| x^{2}-y^{2}\right|}{\left|x^{2}+y^{2}\right|} \leq|x y|$
So, $h(x, y)$ is cont. at $(\mathrm{x}, \mathrm{y})=(0,0)$ as the limit approaches 0 .
The limit of $h(x, y)$ exists on any path and equal to zero, so it is cont. at $(0,0)$ and at any point.

Advanced Calculus

Ex. 1.3 page 19

1) For the following functions f,show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
a) $f(x, y)=\frac{x^{2}+y}{\sqrt{x^{2}+y^{2}}}$

Let $y=m x$
$\lim _{x \rightarrow 0} \frac{x^{2}+m x}{\sqrt{x^{2}+m^{2} x^{2}}}=\lim _{x \rightarrow 0} \frac{x(x+m)}{x \sqrt{1+m^{2}}}=\frac{m}{\sqrt{1+m^{2}}}$
The limit changes as m change so , the limit does not exist .
2) For the following function f, show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=9$
a) $f(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}}$

Let $y=m x$
$\lim _{x \rightarrow 0} \frac{x^{2} m^{2} x^{2}}{x^{2}+m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{m^{2} x^{2}}{1+m^{2}}=0$
Let $y=m x^{2}$
$\lim _{x \rightarrow 0} \frac{x^{2} m^{2} x^{4}}{x^{2}+m^{2} x^{4}}=\lim _{x \rightarrow 0} \frac{m^{2} x^{4}}{1+m^{2} x^{2}}=0$
For $(x, y) \neq(0,0)$, we have $0 \leq f(x, y)=y^{2} \frac{y^{2}}{x^{2}+y^{2}} \frac{\left(y^{2}+x^{2}\right)}{\left(x^{2}+y^{2}\right)}=x^{2}$
since $\lim _{x \rightarrow 0} x^{2}=0$, so $\lim _{(x, y) \rightarrow(0,0)}(x, y)=0$.
b) $\lim _{x \rightarrow 0} \frac{3 x^{5}-x y^{4}}{x^{4}+y^{4}} \quad \lim _{x \rightarrow}-\frac{\left.3 x^{4}-y^{4}\right)}{x^{4}+y^{4}}$

Let $y=m$
$\lim _{x \rightarrow 0} \frac{x\left(3 x-n-x^{4}\right)}{x^{4}+m}=\lim _{x \rightarrow 0} \frac{x\left(3-m^{4}\right)}{1+m^{4}}=0$
A long $y=m x^{2}$
$\lim _{x \rightarrow 0} \frac{\left.3 x^{5}-x \cdot m^{4} x^{8}\right)}{x^{4}+m^{4} x^{8}}=\lim _{x \rightarrow 0} \frac{3 x-m^{4} x^{5}}{1+m^{4} x^{4}}=0$
$\forall \varepsilon>0, \exists \delta>0, \exists|x|<\delta,|y|<\delta$ and $x^{2}+y^{2}>0$
$\left.\Rightarrow\left|\frac{3 x^{5}-x y^{4}}{x^{4}+y^{4}}<3 \frac{|x| x^{4}}{x^{4}+y^{4}}+|x| \frac{y^{4}}{x^{4}+y^{4}} \leq 3\right| x|+|x|=4| x \right\rvert\,$.

Advanced Calculus

As $\lim _{x \rightarrow 0} 4|x|=0$, so, the limit exist by sandwich theorem for any path and equals to zero.
3) Let $f(x, y)=x^{-1} \sin (x y)$ for $x \neq 0$.How should you define $f(0, y)$ for $y \in R$ So as to make f a cont. function on all of R^{2} ?
Solution : $f(0, y)$ is a cont. if $\lim _{x \rightarrow 0} f(x, y)=f(0, y)$

$$
\lim _{x \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \frac{\sin x y}{x}=\lim _{x \rightarrow 0} y \frac{\sin x y}{x y}=y
$$

So, $f(0, y)=y$
4) Let $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ as in Example 1. Show that, althoy f is discont. At $(0,0)$ $f(x, a)$ and $f(a, y)$ are cont. functions of x and y , resp for any $a \in R$ (including $\mathrm{a}=0$). we say that f is separately continuous in x and
$f(x, y)=\frac{x y}{x^{2}+y^{2}}$
$f(x, a)=\frac{x a}{x^{2}+a^{2}}$
$\lim _{x \rightarrow 0} f(x, a)=\lim _{x \rightarrow 0} \frac{x a}{x^{2}+a^{2}}=\frac{0}{a^{2}}$
If $a=0 \Rightarrow f(x, a)=\frac{0}{x^{2}+0}=0 \Rightarrow f(, a)=f(x, 0)$
So, $f(x, a)$ is cont. $\forall r \in R$ Similary $f(a, y)$
5) Let $f(\Omega)=\frac{y\left(y-x^{2}\right)}{x^{4}}$ if $0<y<x^{2}, f(x, y)=0$

Otherwisc At which points is f discont.?
Solution : along $\mathrm{y}=\mathrm{mx}$
$\lim _{x \rightarrow 0} \frac{m x\left(m x-x^{2}\right)}{x^{4}}=\lim _{x \rightarrow 0} \frac{m x^{2}(m-x)}{x^{4}}=\lim _{x \rightarrow 0} \frac{m(m-x)}{x^{2}}$ does not exist .
Along $y=m x^{2}$

$$
\lim _{x \rightarrow 0} \frac{m x^{2}\left(m x^{2}-x^{2}\right)}{x^{4}}=\lim _{x \rightarrow 0} \frac{m x^{4}(m-1)}{x^{4}}=m(m-1)
$$

The limit changes as m change so the limit does not exist .

Advanced Calculus

So, $f(x, y)$ not cont. at $(0,0)$
For any other point $f(x, y)$ is cont.
6) Let $f(x)=x$ if x is rational,$f(x)=0$ if x is irrational

Show that f is cont. at $\mathrm{x}=0$ and nowhere else.
Solution:
Note that $f(0)=0$. Let $\varepsilon>0$ be arbitrary. Take $\delta=\varepsilon$.
Let $\mathrm{x} \in \mathrm{R}$ such that $|\mathrm{x}|<\delta$.
If x is rational then $|\mathrm{f}(\mathrm{x})-\mathrm{f}(0)|=|\mathrm{x}-0|=|\mathrm{x}|<\delta=\varepsilon$.
If x is irratinal then $|\mathrm{f}(\mathrm{x})-\mathrm{f}(0)|=0<\varepsilon$.
In both cases, we have $|\mathrm{f}(\mathrm{x})-\mathrm{f}(0)|<\varepsilon$ whenever $|\mathrm{x}|<\delta$.
Therfore, f is continuous at 0 .
To show that f is discontinuous at any point $\mathrm{a} \neq 0$.
let $\mathrm{a} \neq 0$.
Case 1: If a is rational, then $\mathrm{f}(\mathrm{a})=\mathrm{a}$. Take $\varepsilon_{0}=|a| / 2>0$. Lo $\delta>0$ be arbitray.
Choose x_{δ} to be an irrational number in the interval $(a,+\delta)$ then rogave $\left|\mathrm{x}_{\delta}-a\right|<\delta$ and $\left|\mathrm{f}\left(\mathrm{x}_{\delta}\right)-f(a)\right|=|0-a|=|a| \geq \varepsilon_{0}$.
therfore f is not continuous at a.
Case 2: If a is irrational, then $\mathrm{f}(\mathrm{a})=0$. Take $\varepsilon=1 / 1 / \sim 0$.
Let $\delta>0$ be arbitrary. choose x_{δ} to be a r ti 1 na number inthe intervbal
$(\mathrm{a}-\delta, \mathrm{a}+\delta) \cap\left(\mathrm{a}-\varepsilon_{0}, a+\varepsilon_{0}\right)$, then wohâ $\mathrm{e}\left|\mathrm{x}_{\delta}-a\right|<\delta \subset \operatorname{An}_{n}\left|\mathrm{x}_{\delta}-a\right|<\varepsilon_{0}$,
we obtain
$\left|\mathrm{f}\left(\mathrm{x}_{\delta}\right)-f(a)\right|=\left|x_{\delta}\right| \geq|a|-\left|x_{\delta}-,\left|>|\quad|-\varepsilon_{0}-|a| 12=\varepsilon_{0}\right.\right.$.
therfore f is not cont uou at a.

CH 2 Differential alculus

2.1 Differer abil y in one variable

Def: 1) $(a)=\lim _{h \rightarrow 0}, \frac{f(a+h)-f(a)}{h}$ is the derivative of $f(x)$ at a.
2) $f_{+}^{\prime}(\mathrm{a})=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}$ is the derivative of $f(x)$ at $\mathrm{x}=$ a from right.
3) $f_{-}^{\prime}(a)=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h}$ is the derivative of $f(x)$ at $\mathrm{x}=\mathrm{a}$ from left.

Def: $f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} f^{\prime}(x)$.
Example: Let $f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Advanced Calculus

Find $f_{+}^{\prime}(0)$ and $f^{\prime}\left(0^{+}\right)$

Solution : $f_{+}^{\prime}(0)=\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0^{+}} h \sin \frac{1}{h}=0$ (by sandwich theorem) $f^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$
$f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} 2 x \sin \frac{1}{x}-\cos \frac{1}{x}=0-\lim _{x \rightarrow 0^{+}} \cos \frac{1}{x}$ does not exist.

Def: $f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)$
$f^{n}(x)=\left(f^{n-1}(x)\right)^{\prime}$ for $n \geq 0$
Def: we say that $f(x) \in C^{n}$ provided that $f^{n}(x) \in C^{n}$
1,2,3,......

The mean value theorem :

Proposition: Suppose f is defined on an open interval I and $a \in I$. If f has a local maximum or minimum at the point $a \in I$ anc id differeniable at a , then $f^{\prime}(a)=0$

Proof: Let f has a local min. value ar $?=$ $f(a+h)-f(a) \geq 0$ for all h nearze,
Since $f(a+h) \geq f(a) \Rightarrow$
For $h>0 \Rightarrow f_{+}^{\prime}(a)=\lim _{h \rightarrow} \frac{f(a-h)-}{n},(a)$
For $h<0 \Rightarrow f_{-}^{\prime}(a)=\lim _{\rightarrow 0} \frac{f^{2}(a+h)-f(a)}{h} \leq 0$
$\Rightarrow f_{+}^{\prime}(a) \geq 0, J_{-}(a) \leq 0$, since $f^{\prime}(a)=f_{+}^{\prime}(a)=f_{-}^{\prime}(a) \Rightarrow f^{\prime}(a)=0$
The sam - re ult ${ }^{\prime}$ stained if f has local max. at $\mathrm{x}=\mathrm{a}$.

Lemma : (holl's theorem) Suppose f is cont. on [a,b] and differentiable on (a,b).
If $f(a)=f(b)$, then there is at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$
Proof: Since f is cont. at $[\mathrm{a}, \mathrm{b}]$, then f assumes a maximum value and a minimum value on [a,b]
Case 1) If the max. and min. values occurs at an end point, then f is constant on [a,b], because $f(a)=f(b)$ so $f^{\prime}(x)=0 \quad \forall x \in(a, b)$

Advanced Calculus

Case 2) Otherwise at least one of them occurs at some interior point $c \in(a, b)$ and $f^{\prime}(c)=0$, by previous proposition.

Theorem : (Mean value theorem I) Suppose f is cont. on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b). There is at least one point $c \in(a, b)$ such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Proof: Let $L(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$
Let $g(x)=f(x)-L(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$

1) $g(a)=0, g(b)=0$
2) $g(x)$ is cont. on $[a, b]$ and diff. on (a, b) so, $g(x)$ s tisfies the conditions of Roll's theorem so , $\exists c \in(a, b) \ni g^{\prime}(c)=0$

$$
g^{\prime}(c)=0=f^{\prime}(c)-0-\frac{f(b)-f(a)}{b-a}(1-0)
$$

$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Def: We say that a function f is i. re ising (res. Strictly increasing) on an interval I. If $f(a) \leq f(b)($ resp. $f(a)<f(D))$ whenever $a, b \in I$ and $\mathrm{a}<\mathrm{b}$. Similarly for decreasing and strictly decreasing.

Theore 1: upp se f is differentiable on the open interval I
a) If $|\lambda(x)| \leq C$ for all $x \in I$, then $|f(b)-f(a)| \leq C|b-a|$ for all $a, b \in I$
b) If $f^{\prime}(x)=0$ for all $x \in I$, then f is constant on I .
c) If $f^{\prime}(x) \geq 0$, (resp. $f^{\prime}(x)>0, f^{\prime}(x) \leq 0$, or $f^{\prime}(x)<0$, for all $x \in I$, then f is increasing (resp. strictly increasing, decreasing, or strictly decresing) on I .

Proof:

Advanced Calculus

a) Let $a, b \in I \Rightarrow \exists C \in(a, b) \ni f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$f(b)-f(a)=f^{\prime}(c)(b-a)$
$\Rightarrow|f(b)-f(a)|=\left|f^{\prime}(c)\right||(b-a)|<C|b-a|$
Since $\left|f f^{\prime}(x)\right|<C$ for all $x \in I$.
If $f^{\prime}(c)=0$
b) If $f^{\prime}(c)=0 \Rightarrow|f(b)-f(a)|=0 \Rightarrow f(b)=f(a) \forall a, b \in Z \quad$, then f is cont.
c) If $f^{\prime}(c) \geq 0 \Rightarrow f(b)-f(a) \geq 0$ for $b>a$
$\Rightarrow f$ is increasing and similarly for the other cases .

TH: (Mean value theorem II): Suppose that f and s are continuous on [a,b] and diff. on (a,b), and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$.Thט n there exist $\subset \in(a, b)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

Proof: Let $h(x)=[f(b)-f(a)][g(x)-g(a)-1 \varepsilon(3)-g(a n 11 f(x)-f(a)]$
Then h is cont. on $[a, b]$ and diff. or $(a, 0)$, angh $(a)=h(b)=0$, So h satisfies Roll's theorem. There is a point $c \in(a, b)$ sun that
$0=h^{\prime}(c)=[f(b)-f(a)] g^{\prime}(c)-[g(b)-\Delta(a)] f^{\prime}(c)$.
Since $g^{\prime} \neq 0$ on (a, b), we 1 ave $g^{\prime}(c)$ 北 and $g(b)-g(a) \neq 0$ (by mean value theorem)
Since $g(b)-g(a)=\sigma(\bar{c}, b-a)$ for sene $\bar{c} \in(a, b)$. Hence we can divide by both these quantities to goin the desired result.
$\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-}{g\left(a^{\prime}\right.}-\frac{f\left(a_{n}\right.}{g(a)}$
Theorem : (L’Hopital Rule I).Suppose f and g are diff. functions on (a,b) and $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=0$
If $g^{\prime}(x) \neq 0$ on (a, b) and the limit $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ exists, then g never vanishes on (a, b) and $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$ exists
The same result holds for the left hand limit $\lim _{x \rightarrow a^{-}}$, if f and g are diff on (d, a)

Advanced Calculus

The two sided limit $\lim _{x \rightarrow a}$, if f and g are diff on (d, a) and (a, b)
The limit $\lim _{x \rightarrow \infty}$ or $\lim _{x \rightarrow-\infty}$, if f and g are diff on an interval (b, ∞) or $(-\infty, b)$

Proof: If $f(a)$ and $g(a)=0$, then f and g are cont. on the interval [a, x] for $\mathrm{x}<\mathrm{b}$, by preivious th. $\forall x \in(a, b), \exists c \in(a, x) \quad$ (depending on x) э $\frac{f(x)-0}{g(x)-0}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

Since $c \in(a, x)$, c approaches a^{+}, as x does, so $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{c} \frac{f^{\prime}(c)}{g^{+}} \frac{L}{g^{\prime}(c)}, L$
The proof for left -hand limit is similar, and the casf of two-ided-limits is obtained, by combining right - hand and left -hanu lii nits .

Finally, for the case $a= \pm \infty$, we set $y=\frac{1}{x}$ and consider the finction $F(y)=f\left(\frac{1}{y}\right)$ and $G(y)=g\left(\frac{1}{y}\right)$. Since $F^{\prime}(y) \frac{y}{y^{2}} \operatorname{m} \dot{b}^{\prime}(y)=-\frac{g^{\prime}\left(\frac{1}{y}\right)}{y^{2}}$
We have $\frac{F^{\prime}(y)}{G^{\prime}(y)}=\frac{f^{\prime}\left(\frac{1}{y}\right)}{g^{\prime}\left(\frac{1}{y}\right)}$
So $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\lim ^{\prime}(y)=\lim _{y \rightarrow \pm 0} \frac{F^{\prime}(y)=}{G^{\prime}(y)} \lim _{y \rightarrow \pm 0} \frac{f^{\prime}\left(\frac{1}{y}\right)}{g^{\prime}\left(\frac{1}{y}\right)}=\lim _{x \rightarrow \pm \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$.

Remarh • . may well happen that $f^{\prime}(x)$ and $g^{\prime}(x)$ tend to zero also, so that the limit of $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ can not be evaluated immediately
In this case we apply the previous theorem again to evaluate the limit by examining $\frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$.
More generally, if the functions f, f \qquad f^{k-1}, g, g^{\prime} \qquad g^{k-1} all tend to zero as x tend to a^{+}or a^{-}or $\pm \infty$, but $\frac{f^{k}(x)}{g^{k}(x)} \rightarrow L$, then $\lim _{x \rightarrow} \frac{f(x)}{g(x)}=L$

Example: Let $f(x)=2 x-\sin 2 x, g(x)=x^{2} \sin x, \mathrm{a}=0$, then f, g and their first two derivatives vanishes at $\mathrm{x}=\mathrm{a}$, but the third derivative do not, so

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2 x-\sin 2 x}{x^{2} \sin x}=\lim _{x \rightarrow 0} \frac{2-2 \cos 2 x}{2 x \sin x+x^{2} \cos x}=\lim _{x \rightarrow 0} \frac{4 \sin 2 x}{\left(2-x^{2}\right) \sin x+4 x \cos x} \\
& \lim _{x \rightarrow 0} \frac{8 \cos 2 x}{\left(6-x^{2}\right) \cos x-6 x \sin x}=\frac{4}{3}
\end{aligned}
$$

TH: (L'Hopital's Rule II) Previous theorem remains valid when th. hypothesis that, $\lim \mathrm{f}(\mathrm{x})=\lim \mathrm{g}(\mathrm{x})=0\left(\right.$ as $x \rightarrow a^{+}, x \rightarrow a^{-}$, etc.) is replaced by the vothesis $\lim |f(x)|=\lim |g(x)|=\infty$.

Proof : we consider the case of left -hand limits as $\rightarrow a^{-}$
Given $\varepsilon>0$, we must show that $\left|\frac{f(x)}{g(x)}-L\right|<\varepsilon$ provided hat x sufficiently close to a on the left. Since $\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow L$ and $|g(x)| \rightarrow \infty$, we san choose $x_{0}<a$
So that $\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\frac{\varepsilon}{2}$ and $g(x) \neq 0 \quad$ for If $x_{0}<x<a$ we have, by previous ${ }^{\text {th }}$, m , $\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \quad$ for some $c-\left(x_{0}, x\right.$, and hence , since $x_{0}<c<a$, $\left|\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}-L\right|<\varepsilon \quad$ for $x_{0}<x<g$.
Next, divisic 1 Of top and bottom by $g(x)$ yields

$$
\frac{f(x)-f\left(x_{0}\right)}{g(x)-g(x)}=\frac{\frac{f(x)}{g(x)} \frac{f\left(x_{0}\right)}{g(x)}}{1-\frac{g\left(x_{0}\right)}{g(x)}}
$$

Since $|g(x)| \rightarrow \infty$ as $x \rightarrow a$, then the quotients $\frac{f\left(x_{0}\right)}{g(x)}$ and $\frac{g\left(x_{0}\right)}{g(x)}$ can be made as close to zero a we please by taking x sufficiently close to a . It follows that for x sufficiently close to a, we have

$$
\begin{equation*}
\left|\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}-\frac{f(x)}{g(x)}\right|<\frac{\varepsilon}{2} \tag{2}
\end{equation*}
$$

$\left|\frac{f(x)}{g(x)}-L\right|=\left|\frac{f(x)}{g(x)}-\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}+\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}-L\right|$
$\leq\left|\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}-\frac{f(x)}{g(x)}\right|+\left|\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
And hence by the proceeding estimates $(1,2), \Rightarrow\left|\frac{f(x)}{g(x)}-L\right|<\varepsilon$ which is what we needed to show

Corollary : For Any a > 0 , we have
$\lim _{x \rightarrow \infty} \frac{x^{a}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\log x}{x^{a}}=\lim _{x \rightarrow 0^{+}} \frac{\log x}{x^{-a}}=0$.
That is, the exponential function e^{x} grows more rapidly n an power of x as $x \rightarrow \infty$, where as $|\log x|$ grows more slowly than any positive p ,wer of x as $x \rightarrow \infty$ and more slowly than any negative power of x as,$\rightarrow 0^{+}$

Proof: Let k be the smallest integer that is $\geq \mathrm{c}$. If we aprin the previous theorem for k -times, we have,
$\lim _{x \rightarrow \infty} \frac{x^{a}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{a(a-1) \ldots . .(a-k+1) x^{a-k}}{e^{x}}$ since $a-1,0 \rightarrow$ the later limit is zero .
$\lim _{x \rightarrow \infty} \frac{\log x}{x^{a}}=\lim _{x \rightarrow \infty} \frac{1}{a x^{a}}=0 \quad, \lim _{x \rightarrow 0^{+}} \frac{\log x}{x^{-a}}=-\frac{x}{a}=0$.
Remark : By raising the ruant ties previous corollary to a positive power b and replacing a by $\frac{a}{b}$ we obtain the more general formula,
$\lim _{x \rightarrow \infty} \frac{x^{a}}{e^{b x}}, \lim _{x \rightarrow \infty} \frac{(1) g x^{b}}{x^{a}}=\operatorname{lin}_{x \rightarrow 0^{+}} \frac{|\log x|^{b}}{x^{-a}}=0(a, b>0)$

Vector - lued functions :

If $f=\left(f_{1}, f_{2}, \ldots \ldots \ldots ., f_{n}\right) \in R^{n}$ is a vector valued function then its derivative at the point a is defined to be $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
The jth component of the diff. quotient on the right is

$$
f_{j}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f_{j}(a+h)-f_{j}(a)}{h}
$$

Advanced Calculus

* f is diff. iff each of its component functions f_{j} is diff. and that diff. is simply performed componentwise : $f^{\prime}(a)=\left(f_{1}^{\prime}(a), f_{2}^{\prime}(a), \ldots, f_{n}^{\prime}(a)\right)$.

If ϕ is a scalar function and f is a vector valued function f, then $(\phi f)^{\prime}=\phi^{\prime} f+\phi f^{\prime}$
If f and g are two vector valued functions, then
$(f . g)^{\prime}=f^{\prime} . g+f . g^{\prime}$.
$(f \times g)^{\prime}=f^{\prime} \times g+f \times g^{\prime}$.

Remark 1): The mean value theorem is not valid for a vector alut functions .

Example :

1) $f(t)=(\cos t, \sin t)$ satisfies $f(0)=f(2 \pi)$ but $f^{\prime}(t)=(-\sin t, \cos t)$, so there is no point t where $f^{\prime}(t)=0$
2) If $\left|f^{\prime}(t)\right| \leq M$ for all $t \in[a, b]$, then $\mid f(b)$ ($\left.f^{\prime}\right)|\leq M| b$-a \mid

Remark 2): If $f^{\prime}(a)=0$, then the curn may not hasle tangent line at $f(a)$

Example:

$f(t)=\left(t^{3},\left|t^{3}\right|\right), f^{\prime}(0)=(0,0) \quad b^{\omega+}$ tha curve is y $\xlongequal[1]{\prime}$, does not have a tangent line at $\mathrm{x}=0$.

Ex. Sec.2.1 1,2,3 ,4.5,6,7,

2.2 Differentiability in several variables :

Def: The partial derivative of a function $f\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots . . . x_{n}\right)$ with respect to the variable x_{j} is

Provided that the limit exists .

Advanced Calculus

It may be denoted by $f_{x_{j}}$ or f_{j} or $\partial_{x_{j}} f$ or $\partial_{j} f$
Example : Let $f(x, y, z)=\frac{e^{3 x} \sin x y}{1+5 y-7 z}$
$\frac{\partial f}{\partial x}=f_{x}=\partial_{1} f=\frac{3 e^{3 x} \sin x y+e^{3 x} y \cos y x}{1+5 y-7 z}$
$\frac{\partial f}{\partial y}=f_{y}=\partial_{2} f=\frac{(1+5 y-7 z) e^{3 x} x \cos x y-5 e^{3 x} \sin y x}{(1+5 y-7 z)^{2}}$
$\frac{\partial f}{\partial z}=f_{z}=\partial_{3} f=\frac{7 e^{3 x} \sin y x}{(1+5 y-7 z)^{2}}$.

Example : Let $f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
f is discont. at $(0,0)$, it approaches different in mits as (x,y)approaches the origin a long different straight lines.
$f_{x}=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$
$f_{y}=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$
$\Rightarrow f_{x}=f_{y}=0$ exists but $f(x, y)$ is dicor t. at (e, (0).
Def : A function $f(X),\left(\lambda^{n} \in R^{n}\right)$ is differentiable at a point $X=a=\left(a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}\right) \in R^{n}$ if there is a linear unction $L(X)$ shat that $L(a)=f(a)$ and the difference $f(X)-L(X)$ approaches to zero ${ }^{f}$ ster than $(x-a)$ as x approaches a .

Or if $\left.L(X) \sim^{b}+x_{1}\right) c_{2} x_{2}+\ldots \ldots \ldots . . c_{n} x_{n}=b+C . X$

$$
=\hat{h}+\left(c_{1}, c_{2}, \ldots \ldots \ldots ., c_{n}\right) \cdot\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots, x_{n}\right),
$$

is a general linear function of n variables such that,

$$
L(a)=f(a) \Rightarrow b=f(a)-C . a
$$

Then $L(X)=f(a)-C . a+C . x=f(a)+C .(x-a)$,
And $f(X)-L(X)=f(X)-f(a)-C .(x-a)$ tends to zero faster that $(X-a)$ as $X \rightarrow a$.

Def: A function f defined on an open set $S \subset R^{n}$ is called differentiable at a point $a \in S \subset R^{n}$,

Advanced Calculus

if there is a vector $C \in R^{n}$ such that
$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-C . h}{|h|}=0$,
where $C=\nabla f(a)=\nabla f_{\mid x=a}=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots \ldots \ldots, \frac{\partial f}{\partial x_{j}}\right)_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)}$.
If $E(h)=f(a+h)-f(a)-\nabla f(a) . h$, then $f(a+h)=f(a)+\nabla f(a) . h+E(h)$
where $\lim _{h \rightarrow 0} \frac{E(h)}{|h|}=0$.
$f(a+h)$ is the linearization of f at $\mathrm{x}=$ a which equal $\left.f(a+h)=f(a)+V_{l}, a\right)$ near $h=0,(h=x-a)$.

If $\mathrm{n}=2$, then $Z=f(X)$ with $X=(x, y)$ represents a surface 1n 3-space, and the graph of the eq. $z=f(a)+\nabla f(a) \cdot(x-a)$ (x is variable, a is fiyed $)$, represents a plane. These two objects both pass through the point $(a, f(a))$
and nearby the points $x=a+h$, we have
$z_{\text {sulface }}-z_{\text {plane }}=f(X)-f(a)-\nabla f(a) . h=E(h)$ and $\xrightarrow{E(h)} \rightarrow 0$ as h
and the surface $z=f(a)+\nabla f(a)(x-a)$ is the tan plane to the surface $z=f(X)$ at x $=\mathrm{a}$.

Theorem : If f is diff. at a, then the artial deivatives $\partial_{j} f(a)$ all exists, and they are components of the verop $C-\nabla f(a)$

Proof: Suppose f is diff. an $=\left(a_{1}, \ldots \ldots \ldots, a_{n}\right)$, if $h=(h, 0,0, \ldots \ldots \ldots . . ., 0), h \in R$, we have,
$C . h=\nabla f(a) . h<c_{1} h=\frac{\partial_{j}(a)}{\partial x}-h=\partial_{1} f(a) h \quad$ and $|h|= \pm h$.
Thus $\lim _{h \rightarrow 0} \frac{\left.f(a)+\ldots a_{2}, \ldots \ldots \ldots \ldots ., a_{n}\right)-f\left(a_{1}, \ldots \ldots \ldots . ., a_{n}\right)-c_{1} h}{|h|}=0$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f\left(a_{1}+h, a_{2}, \ldots \ldots \ldots \ldots \ldots, a_{n}\right)-f\left(a_{1}, \ldots \ldots \ldots \ldots, a_{n}\right)}{h}-c_{1}=0$
$c_{1}=\partial_{1} f(a)=\left.\frac{\partial f}{\partial x}\right|_{x=a}=\lim _{h \rightarrow 0} \frac{f\left(a_{1}+h, a_{2}, \ldots \ldots \ldots \ldots . . ., a_{n}\right)-f\left(a_{1}, \ldots \ldots \ldots \ldots, a_{n}\right)}{h}$ exists .
Similarly,$c_{j}=\partial_{j} f(a)=\frac{\partial f(a)}{\partial x_{j}}$ for $j=2,3$, \qquad

Advanced Calculus

TH: If f is diff. at $\mathrm{a} \Rightarrow f$ is cont. at a .
Proof: f is diff. at $\mathrm{a} \Rightarrow \exists C \in R^{n} \ni \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-C . h}{|h|}=0$,
Multiply by $|\mathrm{h}|$, we have $\lim _{h \rightarrow 0} f(a+h)-f(a)-C \cdot h=0$
But $\lim _{h \rightarrow 0} C . h=0$
$\therefore \lim _{h \rightarrow 0} f(a+h)-f(a)=0 \Rightarrow \lim _{h \rightarrow 0} f(a+h)=f(a)$
f is cont. at $\mathrm{x}=\mathrm{a}$
The converse need not true .

Example : $f(x)=|x|$ is cont. at $\mathrm{x}=0$ but not diff at $x \neq 0$

Example : Let $f(x, y)=x^{2}+y^{2}$ show that f is diff. at e very point (a, b) in plane
Solution : $\left.\frac{\partial f}{\partial x}\right|_{(a, b)}=2 a \quad,\left.\frac{\partial f}{\partial y}\right|_{(a, b)}=2 b$
$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-\nabla f(a) \cdot h}{|h|}=\lim _{h \rightarrow 0} \frac{f\left((a, b)+\left(h . h_{2}\right)-\left(a-b^{2}\left(\left.\frac{a}{\partial x}\right|_{(a, b)} h_{1}+\left.\frac{\partial f}{\partial y}\right|_{(a, b)} h_{2}\right)\right.\right.}{(h \mid}$
$\lim _{h \rightarrow 0} \frac{\left(a+h_{1}\right)^{2}+\left(b+h_{2}\right)^{2}-\left(a^{2}+b^{2}\right)-2 a h_{1} \cdot 2 h_{2}}{|h|}$
$\lim _{h \rightarrow 0} \frac{2 a h_{1}+h_{1}^{2}+2 b h_{2}+h_{2}^{2}-2 a h_{1}}{\mid h^{\prime}} \quad 2 b h, \lim _{h \rightarrow \infty} \frac{\sqrt{h_{1}+h_{2}^{2}}}{\sqrt{h_{1}^{2}+h_{2}^{2}}}=\lim _{h \rightarrow 0} \sqrt{h_{1}^{2}+h_{2}^{2}}=0$
So , $f(x, y)=x^{2} \quad{ }^{2}$ diff. at every point (a,b).

Remark :

1) diff \Rightarrow cont.
2) The existence of partial derivative of f does not imply the differentiability of f.

Advanced Calculus

Example : $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$,
has partial derivatives at $(0,0)$.
$f_{1}(0,0)=f_{2}(0,0)=0$,
but it is not cont. at origin so it can not be diff. at the origin .

TH : Let f be a function defined on an open set in R^{n} that contains the oint $a \in R^{n}$. Suppose that the partial derivatives $\partial_{j} f$ all exists on some neighbormo $0 \rightarrow$ a and that they are cont. at a .Then f is diff. at a .

Proof: Let $\mathrm{n}=2$
We will show that $\Rightarrow \exists C=\nabla f(a) \in R^{n} \lim _{h \rightarrow 0} \frac{f(a+h)-f(\rho \mid \nabla f(a) \cdot h}{|h|}=0$,
$f(a+h)-f(a)=f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)$
$=\left[f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}+h_{2}\right)\right]+\left[f\left(a_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)\right]$
Since the partial derivatives $\partial_{j} f$ exist when v $-\mathrm{r} x-a \mid=14$, so by the mean value theorem of one variable and if we set $\alpha(t)=f\left(t, a_{2}+10\right.$ we have
$f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}+h_{2}\right)=g\left(a_{1}+h_{1}\right) \quad g\left(a_{1}\right)$
$=g^{\prime}\left(a_{1}+c_{1}\right) h_{1}=\partial_{1} f\left(a_{1}+c_{1}, a_{2}+h_{2}\right) h_{1}$ for so $c_{1} c_{1} \in(0$, , (D)
and $f\left(a_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)=\partial_{f} f\left(a_{1} a_{2}+c_{2}, r_{2}\right.$ for some $c_{2} \in\left(0, h_{2}\right)$
Substituting these results into eq. 1) we get
$=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-\nabla f(a) \text {. }}{|h|}$
$=\lim _{h \rightarrow 0} \frac{\partial_{1} f\left(a_{1}+c_{1}, a_{2}+\rho\right.}{\rho h_{1}+\partial_{2} f\left(a_{1}, c_{2}+c_{2}\right) h_{2}-\partial_{1} f\left(a_{1}, a_{2}\right) h_{1}-\partial_{2} f\left(a_{1}, a_{2}\right) h_{2}} \underset{|h|}{h \mid}$
$=\lim _{h \rightarrow 0}\left[\partial_{1} f\left(1^{+}+a_{1}, a_{2}+h_{2}\right)-\partial_{1} f\left(a_{1}, a_{2}\right)\right] \frac{h_{1}}{|h|}+\lim _{h \rightarrow 0}\left[\partial_{2} f\left(a_{1}, a_{2}+c_{2}\right)-\partial_{2} f\left(a_{1}, a_{2}\right)\right] \frac{h_{2}}{|h|}=0$ because $\partial_{j} f$ are cont. at a .nd $\frac{h_{1}}{|h|}, \frac{h_{2}}{|h|}$ are bounded by 1
$\Rightarrow f$ is diff at a.
Def: If f has partial derivatives $\partial_{j} f$ all exists and are cont. on an open set S there is said to be of class C^{1} on S.
i.e. $f \in C^{1}$ on S or $f \in C^{1}(S)$.

If $f \in C^{1} \Rightarrow f$ is diff.\Rightarrow partial derivatives exist.

Advanced Calculus

The converse need not true .
Example : $f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
Is diff. at $\mathrm{x}=\mathrm{a}$,but $\mathrm{f} f \notin C^{1}$ because $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist.

Differential

Suppose f is diff. at a, so $f(a+h)-f(a)=\nabla f(a) . h+$ error. Where the error $\rightarrow 0$ s $h \rightarrow 0$.
$\nabla f(a) . h=f(a+h)-f(a)$ is called the differentail of f at a and is den $5 t-\mathrm{a}$ by
$d f(a, h)$ or $d f_{a}(h)$.
And $d f_{a}(h)=\nabla f(a) . h=\partial_{1} f(a) h_{1}+\partial_{2} f(a) h_{2}+$ \qquad $+\partial_{n} f(a) h_{n}$
If $u=f(X), h=d X=\left(d x_{1}, d x_{2}\right.$ \qquad $d x_{n}$).
Then $d u=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\ldots \ldots \ldots \ldots .+\frac{\partial f}{\partial x_{n}} d x_{n}$,
$d(f+g)=d f+d g$
$d(f . g)=f d g+g d f$
and $d(f / g)=\frac{g d f-f d g}{g^{2}}$
Example : A right Circular cone has neig a 5 ana dyase radius 3.
a) About how much doe the volumejricrease if the height is increased to (5.02) and the radies is creased to (3.01)?
b) If the height s increased $\operatorname{tg}(5,02)$, by about how much should the radius be decreased to ker p the rome constant?
Solution : a) $V=\frac{1}{3} \pi r^{2} \Rightarrow d V=\frac{2}{3} \pi \sqrt{h} d r+\frac{1}{3} \pi r^{2} d h$
If $r=3, h=5=d r=0.0, d h=0.02$
$\left.\left.\Rightarrow d V=\frac{2}{2} \pi\right)^{(}\right)(0.0)+\frac{1}{3} \pi(3)^{2}(0.02)=0.16 \pi \approx 0.5$
b) If $r=3 \quad 1=5 \Rightarrow d r=$?,$d h=0.02$
$\Rightarrow d V=\frac{2}{3} \pi r h d r+\frac{1}{3} \pi r^{2} d h$
If $d V=0=\frac{2}{3} \pi(3)(5) d r+\frac{1}{3} \pi(3)^{2}(0.02) \Rightarrow d r=-0.006$

Directional derivatives:

If a is a point in R^{n}, and u is a unit vector in the direction of a line passing through the point a , then the parametric eqs. Of the line are given by $g(t)=a+t(u)$.
Then the directional derivative of f at a in the direction u is defined to be
$\partial_{u} f(a)=\frac{d}{d t} f(a+t u)_{t=0}=\lim _{t \rightarrow 0} \frac{f(a+t u)-f(a)}{t}$ provided that the limit exists .
If $u=(0,0,0,1, \ldots \ldots, 0)$ is a unit vector in the positive jth coordinate, then $\partial_{u} f(a)=\partial_{j} f(a)$.
TH: If f is differentiable at a , then the directional derivative of f at a all exists, and they are given by $\partial_{u} f(a)=\nabla f(a) . u$.

Proof: Since f is diff. at a,
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-\nabla f(a) \cdot h}{|h|}=0$.
Let $h=t u$, if $t>0 \Rightarrow|h|=t$ and $\Rightarrow \lim _{h \rightarrow 0} \frac{f(a+t u)-f(a)}{t}-\nabla f(a) . u$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(a+t u)-f(a)}{t}=\nabla f(a) u$
If $h=t u$, if $t<0 \Rightarrow|h|=-t$ and $\Rightarrow-\lim _{h \rightarrow 0} \frac{f(a+t u)-f(a)}{t}, \nabla f(a) \cdot u=\sigma$
then $\lim _{h \rightarrow 0} \frac{f(a+t u)-f(a)}{t}=\nabla f(a) \cdot u=\partial_{u} f(a)$
So , $\partial_{u} f(a)$ exists and equal $\nabla f(a) . u$.

If $\nabla f(a) \neq 0$, then $\left|\partial_{u} f(a)\right|=|\nabla f(a) .1 d \nabla f(a) u=|\nabla f(a) \| u| \cos \theta$ where θ is the angle between the vectors $\nabla f(a$ and
$\Rightarrow\left|\partial_{u} f(a)\right| \leq|\nabla f(a)||\cos \theta| \leq, \nabla f(a)$ for erery unit vector u .

1) $\partial_{u} f(a)=|\nabla f(a)|$ nen \mathbf{u} in the direction of $\nabla f(a)$ and $\partial_{u} f(a)$ has the largest directional d rivat ye of f at a.
2) $\partial_{u} f\left(a=-|\nabla f(a)|\right.$ when u in the opposite direction of $\nabla f(a)$ and $\partial_{u} f(a)$ has the smallest diructional derivative of f at a.
3) $\partial_{u} f(a)=0$ where $u \perp \nabla f$

Example: Let $f(x, y)=x^{2}+5 x y^{2}, a=(-2,1)$
a) Find the directional derivative of f at a direction of $v=(12,5)$
b) What is the largest of the directional derivative of f at a and in what direction does it occur?

Advanced Calculus

Solution :a) $\nabla f=\left(2 x+5 y^{2}, 10 x y\right)$ so, $\nabla f(-2,1)=(1,-20)$
The unit vector in the direction of v is $u=\left(\frac{12}{13}, \frac{5}{13}\right)$, so the directional derivative in this direction is $\nabla f(a) \cdot u=(1,-20) .\left(\frac{12}{13}, \frac{5}{13}\right)=\frac{-88}{13}$.
b) $|\nabla f(a)|=\sqrt{401}$ is the largest directional derivatives at a and occurs in the direction of $u=\frac{1}{\sqrt{401}}(1,-20)$.

Ex. 1,2,3(a),5,7

2.3 The chair K. Ie

Let $f\left(x_{1}, x_{2} \ldots \ldots, x\right)$ be a function of variables $x_{1}, x_{2}, \ldots \ldots \ldots . ., x_{n}$ and $x_{j}=g_{j}(t)$ for $\mathrm{j}=$ $1,2,3, \ldots \ldots . ., \mathrm{n}$ and let $X=g(t)=\left(g_{1}(t), g_{2}(t), \ldots \ldots \ldots \ldots \ldots ., g_{n}(t)\right)=\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots ., x_{n}\right)$, then $\phi(t)=f\left(g(t)=f\left(g_{1}(t), g_{2}(t), \ldots \ldots \ldots \ldots \ldots ., g_{n}(t)\right)\right.$ $g^{\prime}(t)=\left(g_{1}^{\prime}(t), g_{2}^{\prime}(t), \ldots \ldots \ldots \ldots \ldots ., g_{n}^{\prime}(t)\right)$ $\nabla f=\left(\frac{\partial f}{\partial g_{1}}, \frac{\partial f}{\partial g_{2}}, \ldots \ldots \ldots \ldots, \frac{\partial f}{\partial g_{n}}\right)$ $\phi^{\prime}(t)=\nabla f(t) \cdot g^{\prime}(t)=\frac{\partial f}{\partial g_{1}} \cdot \frac{d g_{1}}{d t}+\frac{\partial f}{\partial g_{2}} \cdot \frac{d g_{2}}{d t}+\ldots \ldots \ldots .+\frac{\partial f}{\partial g_{n}} \cdot \frac{d g_{n}}{d t}$.

TH: Chain Rule I . Suppose that $\mathrm{g}(\mathrm{t})$ is diff . at $\mathrm{t}=\mathrm{a}$,

Advanced Calculus

$f(X)=f\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots, x_{n}\right)$ is diff. at $\quad X=b=g(a)=\left(g_{1}(a), g_{2}(a)\right.$, \qquad $\left.g_{n}(a)\right)$ then the composite function $\phi(t)=f(g(t))$ is diff. at $\mathrm{t}=\mathrm{a}$, and its derivative is given by $\phi^{\prime}(a)=\nabla f(b) \cdot g^{\prime}(a)$ or on Leibniz notation, with $w=f(X)$
$\frac{d w}{d t}=\frac{\partial w}{\partial x_{1}} \cdot \frac{d x_{1}}{d t}+\frac{\partial w}{\partial x_{2}} \cdot \frac{d x_{2}}{d t}+\ldots \ldots \ldots \ldots . .+\frac{\partial w}{\partial x_{n}} \cdot \frac{d x_{n}}{d t}$.

Proof: Since f and g are diff. at the points b and a resp. then
$f(b+h)=f(b)+\nabla f(b) \cdot h+E_{1}(h)$
...........(1) where $\frac{E_{1}(h)}{|h|} \rightarrow 0$ as $h \rightarrow 0$
$g(a+u)=g(a)+u g^{\prime}(a)+E_{2}(u)$ \qquad .(2) where $\frac{E_{2}(u)}{|u|} \rightarrow 0$ as u
Let $h=g(a+u)-g(a)$ int the first eq.(1)
Then from (2) $h=u g^{\prime}(a)+E_{2}(u)$, since $b=g(a)$ so, $\phi(a+u)=f(g(a+u))=f(b+h)=f(b)+\nabla f(b) \cdot h+E_{1}(h)$
$=f(g(a))+\nabla f(b) .\left[u g^{\prime}(a)+E_{2}(u)\right]+E_{1}(h)$
$=\phi(a)+u \nabla f(b) \cdot g^{\prime}(a)+E_{3}(u)$

Where $E_{3}=\nabla f(b) \cdot E_{2}(u)+E_{1}(h)$
We claim that $E_{3}(u)$ satisfies $\frac{E_{3}(u)}{u}$ Now by using the triangle inequality, we have
$\left|\frac{E_{3}(u)}{u}\right|=\left|\frac{\nabla f(b) \cdot E_{2}(u)+E_{1}(h}{u}-|\leq| \nabla_{j} b\right)\left|\frac{\left|E_{2}(u)\right|}{\left|{ }^{\prime}\right| \mid}\right|+\frac{\left|E_{1}(h)\right|}{|u|} \rightarrow 0$ as $u \rightarrow 0$, since
$\frac{E_{2}(u)}{u} \rightarrow 0$ as $u \rightarrow 0$ so $\mathrm{E}_{2}(u) \leq u$, then
$|h|=\left|u g^{\prime}(a)+F_{2}(u)\right| \leq_{1},(g(x)+1)| | u \left\lvert\, \Rightarrow \frac{1}{|u|} \leq \frac{\left|g^{\prime}(a)+1\right|}{|h|} \Rightarrow\right.$
$\frac{E_{1}(h)}{|u|}=\frac{F_{1}(h)}{\stackrel{1}{2}} \cdot(|(g(a)+1)| \rightarrow 0$ as $h \rightarrow 0$
From (3) $\frac{\phi(u+u)-\phi(a)}{u}=\nabla f(b) \cdot g^{\prime}(a)+\frac{E_{3}(u)}{u} \rightarrow \nabla f(b) \cdot g^{\prime}(a)$ as $u \rightarrow 0$
So,$\phi^{\prime}(a)=\nabla f(b) \cdot g^{\prime}(a)$

Example : $w=f(x, y, z)$ is diff. function of (x, y, z) and $x=t^{4}-t, y=\sin 3 t$ and $z=e^{-2 t}$ $\frac{d w}{d t}=\frac{d}{d t} f\left(t^{4}-t, \sin 3 t, e^{-2 t}\right)=\left(\partial_{1} f\right) \cdot\left(4 t^{3}-1\right)+\left(\partial_{2} f\right) \cdot(3 \cos 3 t)+\left(\partial_{3} f\right) \cdot\left(-2 e^{-2 t}\right)$

Advanced Calculus

* If $x_{1}, x_{2}, \ldots \ldots \ldots, x_{n}$ are function of a family of variables $t=\left(t_{1}, t_{2}, \ldots \ldots \ldots, t_{m}\right)$ say
$x_{j}=g_{j}\left(t_{1}, t_{2}, \ldots \ldots \ldots \ldots . ., t_{m}\right)$ or $X=g(t)$
If f is diff. function of x , we have $\phi(t)=f(g(t))$, and to find partial derivative of ϕ with respect to t_{k}, we fix all but one of those variables and apply the Chain Rule $\left.\frac{\partial \phi(a)}{\partial t_{k}}\right|_{a=\left(t_{1}, t_{2}, \ldots \ldots, t_{m}\right)}=\nabla f(b) \cdot \frac{\partial g(a)}{\partial t_{k}} \quad(b=g(a))$

Or $w=f(X)$
$\frac{\partial w}{\partial t_{k}}=\frac{\partial w}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial t_{k}}+\frac{\partial w}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial t_{k}}+$ $+\frac{\partial w}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial t_{k}}$

Th: chain Rule II .Suppose that $g_{1}, g_{2}, \ldots \ldots \ldots, g_{n}$ are function of $t=\left(t_{1}, t_{2}, \ldots \ldots, t_{m}\right)$ and f is a function of $X=\left(x_{1}, x_{2}\right.$ \qquad x_{n})
Let $b=g(a)$ and $\phi=f \circ g$. If $g_{1}, g_{2}, \ldots \ldots \ldots \ldots . ., g_{n}$ are diff. at (resp. of class C^{1} near a) and f is differentiable at b (resp. of class C^{1} near b), hen φ is diti. at a (res. of class C^{1} near a), and its partial derivatives are giver by
$\frac{\partial \phi}{\partial t_{k}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{k}}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{k}}+\ldots \ldots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{k}}$ whe the derijatives $\frac{\partial f}{\partial x_{j}}$ are evaluated at b and the derivatives $\frac{\partial \phi}{\partial t_{k}}$ and $\frac{\partial x_{j}}{\partial t_{1}}=\frac{\partial r_{i}}{r_{k}}$ are evadated at a .

Example : Suppose that f is a diff. furction of x and y and that $x=s \log \left(1+t^{2}\right)$ and $y=\cos \left(s^{3}+5 t\right)$, ther the parian derimatives of the composite function $\left.z=f\left(s \log \left(1+t^{2}\right), \cos s^{3} / 5 t\right)\right)$ are giton by
$\frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial} \quad \frac{\partial j}{\partial} \frac{\partial y}{\partial s}={ }_{x} \log \left(1+t^{2}\right)+f_{y}\left(-3 s^{2}\right) \sin \left(s^{3}+5 t\right)$
$\frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}=f_{x} \frac{2 s t}{1+t^{2}}+f_{y}(-5) \sin \left(s^{3}+5 t\right)$

Let $w=f(X), X=\left(x_{x}, x_{2}, \ldots \ldots \ldots, x_{n}\right)$, then the differential of w is
$d w=\frac{\partial w}{\partial x_{1}} d x_{1}+\frac{\partial w}{\partial x_{2}} d x_{2}+\ldots \ldots \ldots . .+\frac{\partial w}{\partial x_{n}} d x_{n}$
If each of $x_{x}, x_{2}, \ldots \ldots \ldots \ldots ., x_{n}$ are functions of $t_{x}, t_{2}, \ldots \ldots \ldots t_{m}$ and $w=f(x)$,
$t=\left(t_{x}, t_{2}, \ldots \ldots \ldots, t_{m}\right)$, then
$d x_{j}=\frac{\partial x_{j}}{\partial t_{1}} d t_{1}+\frac{\partial x_{j}}{\partial t_{2}} d t_{2}+\ldots \ldots \ldots . .+\frac{\partial x_{j}}{\partial t_{n}} d t_{n}$
And $d w=\frac{\partial w}{\partial t_{1}} d t_{1}+\frac{\partial w}{\partial t_{2}} d t_{2}+\ldots \ldots \ldots \ldots+\frac{\partial w}{\partial t_{m}} d t_{m}$
If we substitute the expression (2) for $d x_{j}$ into (1), and regroup the terms, we obtain $d w=\frac{\partial w}{\partial x_{1}}\left[\frac{\partial x_{1}}{\partial t_{1}} d t_{1}+\ldots \ldots \ldots \ldots . .+\frac{\partial x_{1}}{\partial t_{m}} d t_{m}\right]+\ldots \ldots .+\frac{\partial w}{\partial x_{n}}\left[\frac{\partial x_{n}}{\partial t_{1}} d t_{1}+\ldots \ldots \ldots \ldots .+\frac{\partial x_{n}}{\partial t_{m}} d t_{m}\right]$
$d w=\left[\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{1}}+\right.$. $\left.+\frac{\partial w}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{1}}\right] d t_{1}+$ $+\ldots \ldots .+\left[\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{m}}+\right.$ \qquad $+\frac{\partial w}{\partial n_{n}} \frac{\partial x_{r}}{\partial t_{m}} d d t_{m}$

If $w=f(x, y, z, t)$, where (x, y, z) are functions of t , then
$w=f(x(t), y(t), z(t), t)$
$\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t}+\frac{\partial w}{\partial t}$
If $w=f(x, y, t, s)$ where x, y are themselve, are runction of t, s
$\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial t}+\frac{\partial w}{\partial t}$
$\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial s}+\frac{\partial w}{\partial s}$
If $w=f(x, y, t, s), x=\phi(t, s), \quad \psi(t, s)$ then
$\frac{\partial w}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial t}+\frac{\partial f}{\partial \cdot} \cdot \frac{\partial}{\partial t} \cdot \frac{\partial f}{\partial t}=f_{1} \phi_{1}+f_{2} \frac{f_{1}}{2}+f_{3}$.
Def : A func ion f on R^{n} is called (positively) homogeneus of degree a $(a \in R)$ if $f(t X)=t^{\prime} f(X)$ to \cdot all $\mathrm{t}>0$ and $x \neq 0$.

Example : Let $f(x, y)=x^{2}+y^{2}$, show that f is homog.
Solution : $f(t x, t y)=t^{2} x^{2}+t^{2} y^{2}=t^{2}\left(x^{2}+y^{2}\right)=t^{2} f(x)$
Then f is homog. of degree 2 .
TH : Euler's theorem. If f is homog. of degree a, then at any point X where f is diff. we have
$x_{1} \partial_{1} f(X)+x_{2} \partial_{2} f(X)+\ldots \ldots \ldots \ldots . .+x_{n} \partial_{n} f(X)=a f(X)$.

Proof : Let $\phi(t)=f(t X)=t^{a} f(X)$. Now differentiate with respect to, we get

Advanced Calculus

$\phi^{\prime}(t)=a t^{a-1} f(X)=a t^{a} t^{-1} f(X)=a t^{-1} f(t X)$.

We have from definition, $\phi^{\prime}(t)=\nabla f(t X) \cdot \frac{d}{d t}(t X)=X . \nabla f(t X)$.
Let $\mathrm{t}=1$, then
$\phi^{\prime}(1)=X . \nabla f(X)$.
$x_{1} \partial_{1} f(X)+x_{2} \partial_{2} f(X)+$ \qquad $+x_{n} \partial_{n} f(X)=a f(X)$

Def: The differentiable function $F(x, y, z)=0$ is called smooth surfac, the set $S \subseteq R^{3}$, if $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ and $\frac{\partial F}{\partial z}$ exist, and all are not zero.
Let $g(t)=(x, y, z)$ is aparametric representation of a smoon arve $\mathrm{S} \Rightarrow F(g(t))=0$, and

$$
\frac{d F(g(t))}{d t}=\nabla f(g(t)) \cdot g^{\prime}(t)=0 .
$$

Then ∇f is orthogonal to the tangent vector of any curve on \mathbb{N} at each point on the curve.
i.e. At any point a, the ∇f is orthogonal ${ }^{t}+\mathrm{t}_{1} \leqslant \mathrm{t}$ ngent vector $g^{\prime}(t)$ of any curve $g(t)$ on S.

Th: Suppose that F is a diff. func 8 in some pen set $u \subset R^{3}$, and suppose that the set $S=\{(x, y, z) \in u, F(x, y, z)=0\}$ s a smooth sorface. If $a \in S$ and $\nabla F(a) \neq 0$, then the vecto $\nabla f(a)$ perpendicular, or normal to the surface S at a.

Corollary : Unde the conditions the theorem the eq. of the tangent plane to S at a is $\nabla F(a) .(x-\infty=0$.

Ex.(6) Fin the rar gent plane to the surface in R^{3} described by the given eq. at the given poin $a \in R^{3}$.
a) $z=x^{2}-y \quad a=(2,-1,5)$

$$
\begin{aligned}
& F(x, y, z)=x^{2}-y^{3}-z=0 \\
& \left.\nabla F\right|_{a}=\left.\left(2 x,-3 y^{2},-1\right)\right|_{a}=(4,-3,-1) .
\end{aligned}
$$

The tangent plane is

Advanced Calculus

$\nabla F(a) .(x-a)=0$
$(4,-3,-1)((x-2),(y+1),(z-5))=0$
$4(x-2)-3(y+1)-1(z-5)=0$
$z=4 x-3 y-6$.

Ex.sec.2.3: 1,2,3,5,6.

$\mathbf{E x}(3) \mathbf{c})$ Show that $u=f(x z, y z)$ satisfies $x \partial_{x} u+y \partial_{y} u=z \partial_{z} u$

Solution : $\partial_{x} u=\frac{\partial u}{\partial x}=f_{1} \cdot z+f_{2} \cdot 0=f_{1} \cdot z$
$\partial_{y} u=\frac{\partial u}{\partial y}=f_{2} \cdot z+f_{1} \cdot 0=f_{2} \cdot z$
$\partial_{z} u=\frac{\partial u}{\partial z}=x f_{1}+y f_{2}$
$\Rightarrow x \partial_{x} u+y \partial_{y} u=x f_{1} \cdot z+y f_{2} \cdot z=z\left(x f_{1}+y f_{2}\right)=z \partial$

2.5 Functional Relations and implicit functions. A first look

Let $F\left(x_{1}, x_{2}\right.$ $\left.x_{n}, y\right)=0$ where $y=g\left(x_{1}, x_{2}\right.$, x_{n})
If we differentiate with respect to x_{j} we have
$\frac{\partial F}{\partial x_{j}}+\frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x_{j}}=0 \Rightarrow \frac{\partial F}{\partial x_{j}}=-\frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x_{j}}$
$\frac{\partial y}{\partial x_{j}}=-\frac{\frac{\partial F}{\partial x_{j}}}{\frac{\partial F}{\partial y}}$
$\frac{\partial g}{\partial x_{j}}=-\frac{\partial F}{\partial x_{j}} / \frac{\partial F}{\partial g}$

Example : Let $F(x, y)=x-y-y^{5}=0$ where y functioncix
Find $\frac{d y}{d x}$
Solution : $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \cdot \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\frac{\partial F}{\partial x} / \frac{\partial F}{\partial y} \quad, \quad F_{x}=1$
$\frac{d y}{d x}=\frac{-1}{-\left(1+5 y^{4}\right.},(1+5 y)$
2) Let,$(x, z, z)=x^{2}+y^{2}+z^{2}-1=0$ where z is a function in x and y Find $\frac{\partial z}{\partial x}$
$F_{x}+F_{z} \frac{\partial z}{\partial x}=0 \Rightarrow \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 x}{2 z}=-\frac{x}{z}$
Let $w=\phi\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots . . x_{n}, y\right)$ where $x_{1}, x_{2}, \ldots \ldots \ldots \ldots . ., x_{n}, y$
satisfy the relation $F\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots x_{n}, y\right)=0$

Advanced Calculus

If the eq. $F\left(x_{1}, x_{2}, \ldots \ldots \ldots, x_{n}, y\right)=0$ can be solved for y , say

$\frac{\partial w}{\partial x_{j}}=\partial_{j} \phi+\frac{\partial \phi}{\partial g} \cdot \frac{\partial g}{\partial x_{j}}$
$\frac{\partial g}{\partial x_{j}}$ evaluated by the eq. $\frac{\partial F}{\partial x_{j}}+\frac{\partial F}{\partial g} \cdot \frac{\partial g}{\partial x_{j}}=0$
$\frac{\partial g}{\partial x_{j}}=-\frac{\frac{\partial F}{\partial x_{j}}}{\frac{\partial F}{\partial g}}$
Now, Suppose $w=\phi(x, y, z)$ where x, y, z are constrained os tisfy $F(x, y, z)=0$, and suppose we can solve the letter eq. for any one of the three variables in terms of the other two .

If we take x as independent variable, the mean ing of $\frac{\partial}{\partial x}$ denends on whether we take y or z as the other independent variable

Example 2) : Let $w=x^{2}+y^{2}+z$ and $F(y, z x+y-(3)=0$
If we take x, y as independent variables th-n $z \mathrm{f}^{-}(x+y)$ is dependent variable So, $w=x^{2}+y^{2}-x-y$ and $\frac{\partial w}{\partial x}=2$

If we take x, z as indepen dent ariabies then $y=-(x+z)$ is dependent variable So, $w=x^{2}+(x+z)^{2}-z=2 x^{2}+2 x z+y+z$ and $\frac{\partial w}{\partial x}=4 x+2 z$
$\left.\frac{\partial w}{\partial x}\right|_{y}=$ deriv ave of with respect to x when y is fixed, then from the pervious exampl w. have $\left.\frac{\partial w}{\partial x}\right|_{y}=2 x-1,\left.\frac{\partial w}{\partial x}\right|_{z}=4 x+2 z$
Let $F(x, y, u, v)=0$
$G(x, y, u, v)=0$
If u, v is a dep. Variables with respect to the independent variables x, y then to find $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$, we diff. both of F, G with respect to x by helding y fixed, we have $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \frac{\partial v}{\partial x}=0$
$\frac{\partial G}{\partial x}+\frac{\partial G}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial G}{\partial v} \frac{\partial v}{\partial x}=0$

Advanced Calculus

From (1)
$\frac{\partial u}{\partial x} \frac{\partial F}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial F}{\partial v}=-\frac{\partial F}{\partial x}$
$\frac{\partial u}{\partial x} \frac{\partial G}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial G}{\partial v}=-\frac{\partial G}{\partial x}$
$\frac{\partial u}{\partial x}=\frac{\left|\begin{array}{cc}-\frac{\partial F}{\partial x} & \frac{\partial F}{\partial v} \\ -\frac{\partial G}{\partial x} & \frac{\partial G}{\partial v}\end{array}\right|}{\left\lvert\, \frac{\partial F}{\frac{\partial F}{\partial u}}\right.} \begin{array}{ll}\frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v}\end{array}\left|\quad, \quad \frac{\partial v}{\partial x}=\frac{\left|\begin{array}{cc}\frac{\partial F}{\partial u} & -\frac{\partial F}{\partial x} \\ \left\lvert\, \frac{\partial F}{\partial u}\right. & -\frac{\partial G}{\partial x}\end{array}\right|}{\left\lvert\, \frac{\partial F}{\partial v}\right.}\right|$

Example3) : Suppose the quantities x, y and z are initially oqual to 1,0 , and 2 resp. , and are constrained to satisfy the eq. $x^{5}+x(1+1) z-2 y z^{5}-3$ and $y z=\sin (2 x+y-z)$. By about how much do y and z change ith is canged 1.02?

Solution : Let $F(x, y, z)=x^{5}+x\left(y^{3}+-w^{2}-3\right.$
$G(x, y, z)=y z-\sin (2 x+y-z)=0$.
We will find $\frac{d y}{d x}$ and $\frac{d z}{d x}$
In the two eq. y, z are dep n de it variavles and x is the only indep. variable.
By differentiating the two eqs. Witr respect to, treating y, z are dept. variable We have
$5 x^{4}+\left(y^{3}+1\right) z+3 x y^{4} \cdot y^{\prime}+x\left(y^{3}+1\right) z^{\prime}-2 z^{5} y^{\prime}-10 y z^{4} z^{\prime}=0$
$\left.z y^{\prime}+y z^{\prime}-\cos 2 x+y-z\right) \cdot\left(2+y^{\prime}-z^{\prime}\right)=0$
At $(x, y, z=1,0,2)$ we have
$5+(1) 2+1 . z \quad 2 .(32) y^{\prime}-0=0$
$64 . y^{\prime}-z^{\prime}=7$
$2 y^{\prime}-1 .\left(2+y^{\prime}-z^{\prime}\right)=0$
$y^{\prime}+z^{\prime}=2$

Advanced Calculus

Summation (1) with (2)

$$
\begin{aligned}
& 65 y^{\prime}=9 \Rightarrow y^{\prime}=\frac{9}{65} \\
& z^{\prime}=\frac{121}{65}
\end{aligned}
$$

$d y=\frac{9}{65} d x \quad, d z=\frac{121}{65} d x$
If $d x=0.02$
$d y=\frac{9}{65}(0.02)=\frac{9}{3250} \quad, d z=\frac{121}{65}(0.02)=\frac{121}{3250}$
Ex. 1,2,3,4,5,6

2.6 Higher -order Partial Derivatives :

Let f be a diff. function on an open set $S \subset R^{n}$.The first partial derivative of f with respect to x_{j} is denoted by $\frac{\partial f}{\partial x_{j}}=\partial_{j} f$
The partial derivative of $\frac{\partial f}{\partial x_{j}}$ with respect to x_{i} is the second order derivative $\frac{\partial}{\partial x_{i}}\left[\frac{\partial f}{\partial x_{j}}\right]$
Or can be written as
$\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, f_{x_{j} x_{i}}, f_{j i}, \partial x_{i} \partial x_{j} f, \partial_{i} \partial_{j}$
And $\frac{\partial^{2} f}{\partial x_{j}^{2}}, f_{x_{j} x_{j}}, f_{j j}, \partial^{2} x_{j} f, \partial^{2}{ }_{j} f$
Def: If the function f and all its partial curivaives of order $\leq k$ exist and cont. on an open set u , then $f \in C^{k}$ (The class C^{h} at it is of class C^{∞} if and all its partial derivatives of all order cont. on u.

Def: for $i \neq j \partial_{i} \partial_{j} f$ is cal dix mid secont order, partial derivative of f
Remark: It is not true in enera, $\partial_{i} \partial d=\partial_{j} \partial_{i} f$
Example : if $g\left(x, y, x \sin \left(x^{3}+e^{2}\right)\right.$, we have
$\partial_{x} g=\sin \left(x^{3}+{ }^{2 y}\right)+x^{2} \cos \left(x^{3}+e^{2 y}\right)$
$\partial_{y} g=2 x e^{2}$ as $s(x)$
Differen ang $\partial_{x} g$ with respect to y and $\partial_{y} g$ with respect to x yields
$\partial_{y} \partial_{x} g(x, y)=2 e^{2 y} \cos \left(x^{3}+e^{2 y}\right)-6 x^{3} e^{2 y} \sin \left(x^{3}+e^{2 y}\right)=\partial_{x} \partial_{y} g(x, y)$
$\partial_{y} \partial_{x} g(x, y)=\partial_{x} \partial_{y} g(x, y)$

Example : Let $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} \quad$ if $(x, y) \neq(0,0) \quad f(0,0)=0$
$f(x, 0)=f(0, y)=0 \quad \forall x, y$
$\partial_{x} f(0,0)=\partial_{y} f(0,0)=0$

Advanced Calculus

$\partial_{x} f(x, y)=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}$
$\partial_{y} f(x, y)=\frac{x^{5}-4 x^{3} y^{2}-x y}{\left(x^{2}+y^{2}\right)^{2}}$
$\partial_{x} f(0, y)=-y$, and $\partial_{y} f(x, 0)=x$ for all x, y.
So, $\partial_{y} \partial_{x} f(0,0)=\lim _{h \rightarrow 0} \frac{\partial_{x} f(0, h)-\partial_{x} f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=-1$
$\partial_{x} \partial_{y} f(0,0)=\lim _{h \rightarrow 0} \frac{\partial_{y} f(h, 0)-\partial_{y} f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1$
$\partial_{y} \partial_{x} f(0,0) \neq \partial_{x} \partial_{y} f(0,0)$ but $\partial_{y} \partial_{x} f(x, y)=\partial_{x} \partial_{y} f(x, y) \quad \forall(x, y) \neq(0,0)$.

Th : Let f be a function defined in an open set $S \subset R^{n}$ and s. npose $a \in S$ and $i, j \in\{1,2, \ldots \ldots . . ., n\}$.If the derivative $\partial_{i} f, \partial_{j} f, \partial_{i} \partial_{j} f$ and $\partial_{j} \partial_{i} f$ exist in S , and if $\partial_{i} \partial_{j} f$ and $\partial_{j} \partial_{i} f$ are cont. at a, then $\partial_{i} \partial_{j} f(a)=\partial_{j} \partial_{i} f(a)$
Proof : see the book .
Corollary : If f is of class C^{2} on an open Se^{+}, then $\partial_{i} \partial_{\mathrm{i}} f(a)=\partial_{j} \partial_{i} f(a)$ on S , for all i and j

Th: If f is of class C^{k} on an ope1sct then $\partial_{1} y_{i 2} \ldots \ldots . . . \partial_{i k} f(a)=\partial_{j 1} \partial_{j 2} \ldots \ldots \partial_{j k} f(a)$ on S, whenever the seq. $\left\{j_{1}, 2, \ldots \ldots . j_{k}\right\}$ is a reordering of the seq. $\left\{i_{1}, i_{2}, \ldots \ldots \ldots ., i_{k}\right\}$

If $w=f(x, y), x, y$ ar y function of
Assume that all the fy actions beirogs to C^{2} by chain Rule
$\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial s}$
$\frac{\partial^{2} w}{\partial s^{2}}=\frac{\partial}{\partial s}+\frac{\partial w}{2}, \frac{\partial x}{\partial s}+\frac{w}{\partial x} \frac{\partial^{2} x}{\partial s^{2}}+\frac{\partial}{\partial s}\left[\frac{\partial w}{\partial y}\right] \frac{\partial y}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial^{2} y}{\partial s^{2}}$
$\frac{\partial}{\partial s}\left[\frac{\partial w}{\partial x}\right]=\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial x}{\partial s}+\frac{\partial^{2} w}{\partial x \partial y} \frac{\partial y}{\partial s}$.
$\frac{\partial}{\partial s}\left[\frac{\partial w}{\partial y}\right]=\frac{\partial^{2} w}{\partial x \partial y} \frac{\partial x}{\partial s}+\frac{\partial^{2} w}{\partial y^{2}} \frac{\partial y}{\partial s}$.
Now, we substitute eq.2) and eq.3) in eq.1) to obtain $\frac{\partial^{2} w}{\partial s^{2}}$

Example : Let $u=f(x, y), x=s^{2}-t^{2}, y=2 s t$
Assume f is of class C^{2}, find $\frac{\partial^{2} u}{\partial s \partial t}$ in terms of derivative of f
Solution : $\frac{\partial u}{\partial t}=f_{x} \frac{\partial x}{\partial t}+f_{y} \frac{\partial y}{\partial t}=-2 t f_{x}+2 s f_{y}$
So, $\frac{\partial^{2} u}{\partial s \partial t}=-2 t\left[2 s f_{x x}+2 t f_{x y}\right]+2 s\left[2 s f_{x y}+2 t f_{y y}\right]+2 f_{y}$

$$
=-4 s t f_{x x}+4\left(s^{2}-t^{2}\right) f_{x y}+4 s t f_{y y}+2 f_{y}
$$

Example: Let $u=f(x, y), \quad f \in C^{2}$
Let $x=r \cos \theta, y=r \sin \theta$
Then, $\frac{\partial u}{\partial r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}=(\cos \theta) f_{x}+(\sin \theta) f_{y}$
$\frac{\partial u}{\partial \theta}=f_{x} \frac{\partial x}{\partial \theta}+f_{y} \frac{\partial y}{\partial \theta}=-(r \sin \theta) f_{x}+(r \cos \theta) f_{y}$

Proceeding to the second derivatives :

$\frac{\partial^{2} u}{\partial r^{2}}=(\cos \theta) \frac{\partial f_{x}}{\partial r}+(\sin \theta) \frac{\partial f_{y}}{\partial r}=\left(\cos ^{2} \theta\right) f_{x x}+(2 ; s \theta \operatorname{n} \theta) f_{x y}+\left((\mathrm{in})^{2} \theta\right) f_{y y}$
$\frac{\partial^{2} u}{\partial \theta^{2}}=-(r \cos \theta) f_{x}-(r \sin \theta) \frac{\partial f_{x}}{\partial \theta}-(r \sin \theta) f_{y}-r(\cos \theta) \frac{\partial f_{v}}{\partial \theta}$
$\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=f_{x x}+f$
The expression is called aplac ian of

Propostion: supp se \mathfrak{a} is a C^{2} firction of $f(x, y)$ in some open set in R^{2} If (x, y) is related to $(r, f$, by $x=r \cos \theta, y=r \sin \theta$, we have

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y}=-\frac{\partial^{2} u}{\partial} \frac{1}{2}+\frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Multi index Notation :

Def : A multi index is an n-tuple of nonnegative integers multi - indices are generally denoted by the Greek letters α or β
$\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots \ldots ., \alpha_{n}\right) \quad, \beta=\left(\beta_{1}, \beta_{2}, \ldots \ldots \ldots \ldots . . \beta_{n}\right) \alpha_{j}, \beta_{j} \in\{0,1, \ldots \ldots \ldots \ldots \ldots . .$.
If α is a multi index, we define
$|\alpha|=\alpha_{1}+\alpha_{2}+$ \qquad $+\alpha_{n} \quad, \alpha!=\alpha_{1}!\alpha_{2}!$ $\alpha_{n}!$
$x^{\alpha}=x_{1}{ }_{1} x_{2}{ }^{\alpha_{2}}$ \qquad $x_{n}{ }^{\alpha_{n}}$ where $X=\left(x_{1}, x_{2}, \ldots \ldots \ldots ., x_{n}\right) \in R^{n}$

Advanced Calculus

$\partial^{\alpha} f=\partial_{1}{ }_{1} \partial_{2}^{\alpha_{2}} \ldots \ldots \ldots \ldots . \partial_{n}^{\alpha_{n}} f=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \ldots \ldots . \partial x_{n}^{\alpha_{n}}}$

Def : $|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ is called the order or degree of α.
If $f \in C^{k} \Rightarrow$ then the k -th order partial derivative $\partial^{\alpha} f$ with $|\alpha|=k$ exists.

Example : If $\mathrm{n}=3$, and $X=(x, y, z)$, we have
$\partial^{(0,3,0) f}=\frac{\partial^{3} f}{\partial y^{3}}, X^{(2,1,5)}=x^{2} y z^{5}$

Th: The (multinomial theorem) For any $X=\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right.$, and any positive integer k,
$\left(x_{1}+x_{2}+\ldots \ldots . .+x_{n}\right)^{k}=\sum_{|\alpha|=k} \frac{k!}{\alpha!} X^{\alpha}$ where
$\alpha!=\alpha_{1}!\alpha_{2}!\ldots \ldots \ldots . . \alpha_{n}!\quad, \quad x^{\alpha}=x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}}$.

Proof:

For $n=2$
$\left.\left(x_{1}+x_{2}\right)^{k}=\sum_{j=0}^{k} \frac{k!}{j!(k-j)!} x_{1}^{j} x_{2}^{k-j}=\sum_{\alpha_{1}+c_{-k}} \alpha_{1}!\alpha_{2}!x^{\alpha_{1}} x^{2}\right)=\sum_{|\alpha|=k} \frac{k!}{\alpha!} X^{\alpha}$
Where $\alpha_{1}=j, \alpha_{2}=k-j \quad \alpha=\left(\alpha, \alpha_{2}\right)$
By induction suppese the result is thue for $\mathrm{n}<\mathrm{N}$ and $X=\left(x_{1}, x_{2}, \ldots \ldots, x_{N}\right)$
By using the resur. for $\mathrm{n}=2$ and fre result fro $\mathrm{n}=\mathrm{N}-1$, we obtain

$$
\left(x_{x}+x_{2}+. \ldots .+r_{N}\right)^{k}=\left[\left(x_{x}+x_{2}+\ldots \ldots . .+x_{N-1}\right)+x_{N}\right]^{k}
$$

$$
\begin{aligned}
& =\sum_{i+j=k} \frac{k!}{i!j!}\left(x_{1}+x_{2}+\ldots \ldots \ldots \ldots+x_{N-1}\right)^{i} x_{N}^{j} \\
& =\sum_{i+j=k} \frac{k!}{i!j!} \sum_{|\beta|=i} \frac{i!}{\beta!} \breve{x}^{\beta} x_{N}^{j}
\end{aligned}
$$

Where $\beta=\left(\beta_{1}, \beta_{2}, \ldots \ldots \ldots \ldots \beta_{N-1}\right)$ and $\breve{X}=\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots ., x_{N-1}\right)$
If $\alpha=\left(\beta_{1}, \beta_{2}, \ldots \ldots \ldots \ldots \ldots ., \beta_{N-1}, j\right)$ so, $\beta!j!=\alpha!$ and $\breve{X}^{\beta} x_{N}^{j}=X^{\alpha}$

Advanced Calculus

Observing that α runs over all multi-index of order k when β runs over all multiindices of order $\mathrm{i}=\mathrm{k}-\mathrm{j}$ and j runs from 0 to k , we obtain $\sum_{||| | k k} \frac{k!}{\alpha!} X^{\alpha}$

EX. 1,2,3,4,5,6,7,9,11

Advanced Calculus

2.7 Taylor's Theorems:

Def : The Taylor polynomial of order k for f at a is defined by $P=P_{a, k}(h)=\sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} h^{j}$.
Def : The Taylor remainder of order k is defined as
$R_{a, k}(h)=f(a+h)-P_{a, k}(h)=f(a+h)-\sum_{j=0}^{k} \frac{f^{j}(a) h^{j}}{j!}$

TH: (Taylor's theorem with integral Remainder I)

Suppose that f is of class $C^{k+1}(k \geq 0)$ on an interval $I \subset R$, and $a \in I$. T/ル n the remainder $R_{a, k}(h)$ is defined above in eq.(1) given by
$R_{a, k}(h)=f(a+h)-\sum_{j=0}^{k} \frac{f^{(j)}(a) h^{j}}{j!}=\frac{h^{k+1}}{k!} \int_{0}^{1}(1-t)^{k} f^{(k+1)}(a+t h) d t$

Proof: For k = 0
$R_{a, 0}=f(a+h)-f(a)=h \int_{0}^{1} f^{\prime}(a+t h) d t$
If $u=a+t h \Rightarrow d u=h d t \Rightarrow \frac{d u}{h}=d t$
$h \int_{0}^{1} f^{\prime}(a+t h) d t=\int_{a}^{a+h} f^{\prime}(u) d u=f(a+h)-,(h)$

The result holds
Let $I=h \int_{0}^{1} f^{\prime}(a+t h)$, , If we integate by parts choosing
$u=f^{\prime}(a+t h) \quad d v=d t$
$d u=f "(a+m,\langle a, v=t-1=-(1-t)$.
Then $I=h{\underset{0}{1}}_{1}(a+t h) d t=\left.h(t-1) f^{\prime}(a+t h)\right|_{0} ^{1}-h \int_{0}^{1}(t-1) f^{\prime \prime}(a+t h) h d t$
$=f^{\prime}(a) h+h^{2} \int_{0}^{1}(1-t) f^{\prime \prime}(a+t h) d t$
$\Rightarrow f(a+h)-f(a)=f^{\prime}(a) h+h^{2} \int_{0}^{1}(1-t) f^{\prime \prime}(a+t h) d t$
For $\mathrm{k}=1$
$f(a+h)-f(a)-f^{\prime}(a) h=h^{2} \int_{0}^{1}(1-t) f^{\prime \prime}(a+t h) d t$
$R_{a, 1}(h)=f(a+h)-P_{a, 1}(h)=h^{2} \int_{0}^{1}(1-t) f^{\prime \prime}(a+t h) d t$
So we obtain the result for $\mathrm{k}=1$.
If we integrate again by parts

$$
\begin{aligned}
h^{2} \int_{0}^{1}(1-t) f^{\prime \prime}(a+t h) d t & =\left.h^{2}\left(\frac{-(1-t)^{2}}{2}\right) f^{\prime \prime}(a+t h)\right|_{0} ^{1}+h^{2} \int_{0}^{1} \frac{(1-t)^{2}}{2} f^{\prime \prime \prime}(a+t h) h d t \\
& =\frac{f^{\prime \prime}(a) h^{2}}{2}+\frac{h^{3}}{2} \int_{0}^{1}(1-t)^{2} f^{\prime \prime \prime}(a+t h) d t
\end{aligned}
$$

We obtain the threorem for $\mathrm{k}=2$. The result holds if we integrate pu parts k - time .

TH : (Taylor's theorem with integral Remainder II).

Suppose that f is of class $C^{k}(k \geq 1)$ on an interval व R, and $a \in I$, Then the remainder $R_{a, k}$ defined above in eq.(1) is given by
$R_{a, k}(h)=\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1}\left[f^{(k)}(a+t h)-f^{(k)}(a)\right] d t$
Proof: By previous theorem .If we replay k vit 1 (k-1 Cwe get $\left.\left.R_{a, k-1}(h)=f(a+h)-\sum_{j=0}^{k-1} \frac{f^{(j)}(a)}{j!} h^{j}=\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1)\right)^{k}-y^{(k)}(a)={ }^{\prime} h\right) d t$
Sustracting $\frac{f^{k}(a)}{k!} h^{k}$ from both ia sclves
$\left.\left.f(a+h)-\sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} h^{j}=\frac{h}{\left(k-\int_{1}^{1}\right.} \int_{0}^{1} t\right)^{k-1} f(i) d a^{+}+t h\right) d t-\frac{f^{(k)}(a)}{k!} h^{k}$
Since $\int_{0}^{1}(1-t)^{k-1} d t=\left.\frac{(1-t)^{k}}{k}\right|_{0} ^{1}=0+\frac{1}{k} \frac{1}{k}$

$W e$ have $R_{a, k}(h)=\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1}\left[f^{(k)}(a+t h)-f^{(k)}(a)\right] d t$.

Advanced Calculus

Corollary : If f is of class C^{k} on I , then $\frac{R_{a, k}(h)}{h^{k}} \rightarrow 0 \quad$ as $\quad h \rightarrow 0$
Proof: $f^{(k)}$ is cont. at a , so for $\varepsilon>0, \exists \delta>0$, э| $f^{(k)}(y)-f^{(k)}(a)|<\varepsilon w h e n| y-a \mid<\delta$ $\Rightarrow\left|f^{k}(a+t h)-f^{k}(a)\right|<\varepsilon$ for $0 \leq t \leq 1$ when $|h|<\delta$.

Since, $\left|R_{a, k}(h)\right|=\left|\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1}\left[f^{(k)}(a+t h)-f^{(k)}(a)\right] d t\right|$

$$
\leq \frac{|h|^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} \varepsilon d t=\frac{\varepsilon}{k!}|h|^{k} \text { for }|h|<\delta,
$$

and $\frac{h^{k}}{k!}=\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} d t \quad$ whenever $|h|<\delta$.
$\Rightarrow\left|\frac{R_{a, k}(h)}{h^{k}}\right|<\frac{\varepsilon}{k!} \rightarrow 0 \quad$ as $\quad h \rightarrow 0$

Corollary : If f is of class C^{k+1} on I and $\left|f^{(k+1)(x)}\right|<M$ for $I \in I$, then $\left|R_{a, k}(h)\right| \leq \frac{M}{(k+1)!}|h|^{k+1},(a+h \in I)$
Proof: since $\left|R_{a, k}(h)\right|=\left|\frac{h^{k+1}}{k!} \int_{0}^{1}(1-t)^{k} f^{(k+1)}(c+t, r) d t\right|$
$\left.\left|R_{a, k}(h)\right| \leq \frac{|h|^{k+1}}{k!} \int_{0}^{1}(1-t)^{k} M d t \right\rvert\,$
Since,$\frac{h^{k+1}}{(k+1)!}=\left.\frac{h^{k+1}}{k!} \int_{0}^{1}(1-t)^{k} \cdot \frac{l^{k+1}}{(k)!} \cdot \frac{(1-1)^{+1}}{k+1}\right|_{0} ^{1}=\frac{h^{k+1}}{(k+1)!}$
Then , $\left|R_{a, k}(h) \frac{|h|}{k_{0}^{\prime}} \int_{0}^{1}(1-t)^{k} M d t\right|=\frac{M}{(k+1)!}|h|^{k+1}$.

Lemma. S ppose g is $\mathrm{k}+1$ differentiable on $[\mathrm{a}, \mathrm{b}]$. If $\mathrm{g}(\mathrm{a})=\mathrm{g}(\mathrm{b})$ and $g^{j}(a)=0$ for $1 \leq j \leq k$, thᄂ n there is a point $c \in(a, b)$ such that $g^{k+1}(c)=0$.

Proof: g satisfies Roll's theorem, there is a point $c_{1} \in(a, b)$ such that $g^{\prime}\left(c_{1}\right)=0$. Since g^{\prime} is cont. on $\left[a, c_{1}\right]$ and diff. on $\left(a, c_{1}\right)$ and $g^{\prime}(a)=g^{\prime}\left(c_{1}\right)=0$, there is a point $c_{2} \in\left(a, c_{1}\right)$ such that $g^{\prime \prime}\left(c_{2}\right)=0$. Proceeding induction, we find that for $1 \leq j \leq k+1$ that is a point $c_{j} \in\left(a, c_{j-1}\right)$ such that $g^{j}\left(c_{j}\right)=0$, and the final case $\mathrm{j}=\mathrm{k}+1$ is the desired result.

TH: (Taylor's theorem with Lagrange Remainder)

Suppose f is k+1 times diff. on an interval $I \subset R$, and $a \in I$, For each $h \in R$ such that $a+h \in I$, there is a point c between 0 and h such that $R_{a, k}(h)=f^{(k+1)}(a+c) \frac{h^{k+1}}{(k+1)!}$

Proof: Fix a particular h , and suppose for now that $\mathrm{h}>0$.
Let $g(t)=R_{a, k}(t)-\frac{R_{a, k}(h)}{h^{k+1}} t^{k+1}$

$$
=f(a+t)-f(a)-f^{\prime}(a) t-\cdots \cdots \cdots-\frac{f^{k}(a) t^{k}}{k!}-\frac{R_{a, k}(h) t^{k+1}}{h^{k+1}}
$$

$g(h)=0$, and $g(0)=0$, Somilarly for $j \leq k$ we have
$g^{j}(t)=f^{j}(a+t)-f^{j}(a)-\cdots \cdots-\frac{f^{(k)}(a) t^{k-j}}{(k-j)!}-\frac{R_{a, k}(h)(k+1) t^{k}}{h^{k+1}}-\cdots \cdots-(k+2-j) t^{k+1-j}$,
So , $g^{j}(0)=0$, Therefore by preivious lemma, there is a point $c \in(0, h)$ such that $0=g^{k+1}(c)=f^{(k+1)}(a+c)-\frac{R_{a, k}(h)(k+1)!}{h^{k+1}}$
$R_{a, k}(h)=\frac{f^{(k+1)}(a+c) h^{k+1}}{(k+1)!}$
The case $\mathrm{h}<0$ is handeled similarly hy or sidering the function $\breve{g}(t)=g(-t)$ on the interval $[0,|h|]$

Propostion : The Taylor polyn mials of degree k a bout $\mathrm{a}=0$ of the functions . $e^{x}, \cos x, \sin x,(1-)^{-1}$ ar ro ρ.
$e^{x}=\sum_{j=0}^{k} \frac{x^{j}}{j!}, \cos x=\sum_{i=0}^{1 / 2} \frac{(1)^{j} x^{2 j}}{(2 j)!}, \quad$ in $x=\sum_{j=0}^{(k-1) / 2} \frac{(-1)^{j} x^{2 j+1}}{(2 j+1)!} \quad, \quad(1-x)^{-1}=\sum_{j=0}^{k} x^{j}$.
Examp e : se raylor expansion to evaluate $\lim _{x \rightarrow 0} \frac{x^{2}-\sin x^{2}}{x^{4}(1-\cos x)}$
$x^{2}-\sin x^{2}=x^{2}-\left(x^{2}-\frac{1}{6} x^{6}+\ldots \ldots \ldots ..\right)=\frac{1}{6} x^{6}+$ \qquad
$x^{4}(1-\cos x)=x^{4}\left(1-\left(1-\frac{1}{2} x^{2}+\right.\right.$ \qquad ..)) $=\frac{1}{2} x^{6}+$ \qquad
Where the dots denote error terms that vanish faster than x^{6} as $x \rightarrow 0$, therefore
$\lim _{x \rightarrow 0} \frac{x^{2}-\sin x^{2}}{x^{4}(1-\cos x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{6} x^{6}+\ldots \ldots \ldots . .}{\frac{1}{2} x^{6}+\ldots \ldots \ldots .}=\frac{1}{3}$ (by L' Hopital rule)

Agenerlaization of function on R^{n} :

Def: A set $s \in R^{n}$ is called convex if wherever $a, b \in S$, the line segment from a to b also lies in S .

Suppose $f: R^{n} \rightarrow R$ is of class C^{k} on a convex open set S . we will der ve a Taylor expansion for $f(X)$ about a point $a \in S$ by looking at the rectric ion f f to the line joining a and x . That is we set $\mathrm{h}=\mathrm{x}-\mathrm{a}$ and $g(t)=f(a+t x-\mathrm{a})=,f(a+$ th $)$ By he chain Rule
$g^{\prime}(t)=h . \nabla f(a+t h)=h_{1} \frac{\partial f(a+t h)}{\partial x_{1}}+h_{2} \frac{\partial f(a+t h)}{\partial x_{2}}+$
$+\ldots+h_{n} \frac{\partial f(a+t h)}{\partial x_{n}}$
$g^{j}(t)=(h . \nabla)^{j} f(a+t h)$ where $(h . \nabla)^{j}$ denote the resut of applying the operation
$h . \nabla=h_{1} \frac{\partial}{\partial x_{1}}+h_{2} \frac{\partial}{\partial x_{2}}+\ldots \ldots \ldots \ldots .+h_{n} \frac{\partial}{\partial x_{n}} \mathrm{n}$ times o
The Taylor formula for g with $\mathrm{a}=0$ ard $\mathrm{h}=1$
$g(1)=\sum_{j=0}^{k} \frac{g^{j}(0)}{j!} 1^{j}+$ remainder
$f(a+h)=\sum_{j=0}^{k} \frac{(h . \nabla)^{j} f(a)}{j!}+R$
Where formula for $R_{a, k}(h)$ an e obtained from previous formulas and theorems.
By appling the m Itir mial theortm of $(h . \nabla)^{j}$ we get
$(h . \nabla)^{j}=\sum_{|\alpha|=j} \frac{j!}{\alpha!}$,
Substitu ing thi (1) we obtain the following theorem.

TH: (Taylo:'s theorem in several variables)

Suppose $f: R^{n} \rightarrow R$ is of class C^{k} on an open convex set S. If $a \in S$ and $a+h \in S$, then $f(a+h)=\sum_{|\alpha| \leq k} \frac{\partial^{\alpha} f(a)}{\alpha!} h^{\alpha}+R_{a, k}(h)$
Where $R_{a, k}(h)=k \sum_{|\alpha|=k} \frac{h^{\alpha}}{\alpha!} \int_{0}^{1}(1-t)^{k-1}\left[\partial^{\alpha} f(a+t h)-\partial^{\alpha} f(a)\right] d t$

If f is of class C^{k+1} on S, we also have

Advanced Calculus

$R_{a, k}(h)=(k+1) \sum_{|\alpha|=k+1} \frac{h^{\alpha}}{\alpha!} \int_{0}^{1}(1-t)^{k} \partial^{\alpha} f(a+t h) d t$
And
$R_{a, k}(h)=\sum_{|\alpha| \mid=k+1} \partial^{\alpha} f(a+c h) \frac{h^{\alpha}}{\alpha!}$ for some $c \in(0,1)$
The Taylor polynomial of second order of f at $\mathrm{x}=\mathrm{a}$ is given by $P_{a, 2}(h)=f(a)+\sum_{j=1}^{n} \partial_{j} f(a) h_{j}+\frac{1}{2} \sum_{j, k=1}^{n} \partial_{j} \partial_{k} f(a) h_{j} h_{k}$
$P_{a, 2}(h)=f(a)+\sum_{j=1}^{n} \partial_{j} f(a) h_{j}+\frac{1}{2} \sum_{j=1}^{n} \partial_{j}^{2} f(a) h_{j}^{2}+\sum_{1 \leq j \leq n} \partial_{j} \partial_{k} \zeta\left(a, h_{j} h_{k}\right.$
Example : If $f(x, y) \in C^{n+1}, x-a=h_{1}, y-b=h_{2}, h=\left(h_{1}, h_{2}\right) \quad \mathbf{a}=(a, b)$
$f(\mathbf{a}+h)=f\left(a+h_{1}, b+h_{2}\right)=\sum \frac{1}{j!}\left(h_{1} \frac{\partial}{\partial x}+h_{2} \frac{\partial}{\partial y}\right)^{j} f(,, b)+R_{a, k}(h)$
The Taylor poly. Of second order

$$
P_{a, 2}(h)=f(a, b)+\frac{1}{1!}\left(h_{1} \frac{\partial}{\partial x} f(a, b)+h_{2} \frac{\partial}{\partial!} f(a, l)-\frac{1}{2!}\left(h_{1} \frac{\partial}{\partial x} f(a, b)+h_{2} \frac{\partial}{\partial y} f(a, b)\right)^{2}\right.
$$

$$
\begin{aligned}
& \left.P_{a, 2}(h)=f(a, b)+(x-a) \frac{\partial}{\partial x} f(a, b)+y-b\right) \frac{\partial}{}(a, b)+\frac{1}{2}(x-a)^{2} \frac{\partial^{2}}{\partial x^{2}} f(a, b) \\
& \left.+\frac{1}{2}(y-b)^{2} \frac{\partial^{2}}{\partial y^{2}} f(a, a)+x-a\right)(y-b) \frac{\partial x \partial y}{\partial x y} f(a, b)
\end{aligned}
$$

Examp ${ }^{1}=: 1$ inc ${ }^{+1}$ e $3^{\text {rd }}$ order Taylor polynomial of $f(x, y)=e^{x^{2}+y}$ about $(x, y)=(0, \mathrm{c}=a,(a=0, b=0)$

Solution :

$$
P_{a, 3}\left(h_{1}, h_{2}\right)=f(0,0)+\frac{1}{1!}\left(h_{1} \frac{\partial}{\partial x} f(0,0)+h_{2} \frac{\partial}{\partial y} f(0,0)\right)+\frac{1}{2!}\left(h_{1} \frac{\partial}{\partial x} f(0,0)+h_{2} \frac{\partial}{\partial y} f(0,0)\right)^{2}
$$

$$
+\frac{1}{3!}\left(h_{1} \frac{\partial}{\partial x} f(0,0)+h_{2} \frac{\partial}{\partial y} f(0,0)\right)^{3}
$$

Advanced Calculus

$$
\begin{aligned}
& P_{a, 2}(h)=f(0,0)+(x-0) \frac{\partial}{\partial x} f(0,0)+(y-0) \frac{\partial}{\partial y} f(0,0)+\frac{1}{2}(x-0)^{2} \frac{\partial^{2}}{\partial x^{2}} f(0,0) \\
& +\frac{1}{2}(y-0)^{2} \frac{\partial^{2}}{\partial y^{2}} f(0,0)+(x-0)(y-0) \frac{\partial^{2}}{\partial x \partial y} f(0,0)+\frac{1}{3!}\left(x^{3} \frac{\partial^{3}}{\partial x^{3}} f(0,0)\right. \\
& \left.+3 x^{2} y \frac{\partial^{3}}{\partial x^{2} \partial y} f(0,0)+3 y^{2} x \frac{\partial^{3}}{\partial x \partial y^{2}} f(0,0)+y^{3} \frac{\partial^{3}}{\partial y^{3}} f(0,0)\right)
\end{aligned}
$$

$$
\begin{aligned}
e^{x^{2}+y} & =1+\left(x^{2}+y\right)+\frac{1}{2}\left(x^{2}+y\right)^{2}+\frac{1}{6}\left(x^{2}+y\right)^{3}+(\text { order }>3) \\
& =1+x^{2}+y+\frac{1}{2}\left(x^{4}+2 x^{2} y+y^{2}\right)+\frac{1}{6}\left(x^{6}+3 x^{4} y+3 x^{2} y^{2}+y^{3}\right)+(\text { order }>3)
\end{aligned}
$$

$$
=1+y+x^{2}+\frac{1}{2} y^{2}+x^{2} y+\frac{1}{6} y^{3}+(\text { order }>3)
$$

If we have thrown the terms $x^{4}, x^{6}, x^{4} y$ and $x^{2} y^{2}$ sin a re themselves of order >3 Thus the answer $P_{a, 3}(x, y)=1+y+x^{2}+\frac{1}{2} y^{2}+x^{2} y \frac{1}{4} y^{3}$.

Ex . 1,2,4,5,6,7

Advanced Calculus

2.8 Critical points:

Def: Suppose f is a diff. function on some open set $S \subset R^{n}$. The poii $t, t \in S$ is called a critical point for f if $\nabla f(a)=0$.

To find the critical points of f we solve the n.eqs. \qquad $\partial_{n} f(x)=0$ Simultaneously for the n quantities \qquad
Def: we say that f has a local max (or local min, at a if $f(x) \leq f(a)($ or $f(x) \geq f(a))$ for all x in some neighborhood of a

Proposition: If f has a local max. O mata and f iff. at a, then $\nabla f(a)=0$ Proof: If f has a local max. Or m at a, thentor any unit vector u , the function $g(t)=f(a+t u)$ has a local max. Or m in at $\mathrm{t}=0$. So, $g^{\prime}(0)=\partial_{u} f(a)=0$ In partic ilar $\partial_{\nu} f(a)=0$ fọz all j , so $\nabla f(a)=0$.

Def: we say that f on an open setili R^{n} has a saddle point at if f has neither a max. nor min., and itc gra h goes up in one direction and down in some other direction.

Th: Supros ${ }^{\prime}$ is flass C^{2} on an open set in R^{2} containing the point a, and suppose $\nabla f(a)=0$, Let $\alpha=\partial_{1}^{2} f(a), \beta=\partial_{1} \partial_{2} f(a), \gamma=\partial_{2}^{2} f(a)$. Then
a) If $\alpha \gamma-\beta \leqslant 0, f$ has a saddle point at a .
b) If $\alpha \gamma-\beta^{2}>0$, and $\alpha>0, f$ has a local min. at a .
c) If $\alpha \gamma-\beta^{2}>0$, and $\alpha<0, f$ has a local max. at a .
d) If $\alpha \gamma-\beta^{2}=0$, no conclusion can be drawn .

Example: Find and classify the critical point of the function $f(x, y)=x y(12-3 x-4 y)$
Solution: we have

Advanced Calculus

$\partial_{x} f=12 y-6 x y-4 y^{2}=y(12-6 x-4 y)$,
$\partial_{y} f=12 x-3 x^{2}-8 x y=x(12-3 x-8 y)$.
Thus if $\partial_{x} f=0$, then $y=0$ or $12-6 x-4 y=0$ and $\partial_{y} f=0$, then $x=0$ or $12-3 x-8 y=0$, so there are four possibilities

$$
x=y=0, y=12-3 x-8 y=0 \quad(y=0 \Rightarrow x=4)
$$

$x=y=0, x=12-6 x-4 y=0 \quad(x=0 \Rightarrow y=3)$, and $12-6 x-4 y=0,12-3 x-8 y=0 \Rightarrow x=\frac{4}{3}, y=1$.
Solving these given the critical points
$(0,0),(4,0),(0,3),(4 / 3,1)$
Since $\alpha=\partial_{1}^{2} f(a)=-6 y \quad, \quad \gamma=\partial_{2}^{2} f(a)=-8 x \quad, \quad \beta=\partial_{1} \partial_{2} f(c)=12-6 x$
By pervious Theorem
At $(0,0)$ we have $\alpha \gamma-\beta^{2}=0-(12)^{2}<0$
$(0,0)$ is a saddle point
At $(4,0)$ we have $\alpha \gamma-\beta^{2}=32-(12-6(4 .))^{2}<{ }^{2}$
$(4,0)$ is a saddle point
At $(0,3)$ is a saddle poin
But $(4 / 3,1)$ is a local ma bec use $\beta^{2}=48>0, \alpha<0$.

Example: Find an - -assify the critical points of the function $f(x, y)=y^{3}-3 x^{2} y$
Solution ${ }^{f}=-6 x, \partial_{y} f=3 y^{2}-3 x^{2}$
If $\partial_{x} f=\Delta x=0$ or $y=0$
And $\partial_{y} f=0 \Rightarrow x^{2}=y^{2} \Rightarrow x=y=0$

So $(0,0)$ is the only critical point
$\alpha=\partial_{1}^{2} f(a)=-6 y, \beta=\partial_{1} \partial_{2} f(a)=-6 x \quad \gamma=\partial_{2}^{2} f(a)=6 y$ all are vanishes at $(0,0)$, so by the previous test is failure.
Since $f(x, y)=y(y-\sqrt{3} x)(y+\sqrt{3} x)$

Advanced Calculus

and the lines $y=0, y=\sqrt{3} x, y=-\sqrt{3} x$ separate the plane into six region on which f is alternatively positive and negative, and these region all meet at the origin. Thus f has neither a max. or a min. at the origin, So f has a saddle point called " monkey saddle".

Ex 1) a,b,c,d,e

2.9 Extreme value problems :

Th: Let f be continuous function on an unbounded cosed set $S \subset R^{n}$.
a) If $f(x) \rightarrow \infty$ as $|x| \rightarrow \infty(x \in S)$, then f has as absolvte minimum but no absolute maximum on S .
b) If $f(x) \rightarrow 0$ as $|x| \rightarrow \infty(x \in S)$ and there sapoint $\frac{\sim}{0}$ where $f\left(x_{0}\right)>0$ (resp. $f\left(x_{0}\right)<0$), then f has absolute max mum (resp. minimum) on S .

Example : Find the absolute max ar dimn. values of the function
$f(x, y)=\frac{x}{x^{2}+(y-1)^{2}+4}$ on the Crt quadrant $=\{(x, y): x, y \geq 0\}$
Solution : for $x, y \geq 0, f(\cdot y) \geq$ and $N(y)=0$,
so the minimum is Lero . acmevedtall points on the y -axis.
$f(x, y)=\frac{x}{x^{2}+(-1)^{2}+2} \leq \frac{x}{x^{2}}=\frac{1}{x} \leq \frac{1}{x}+\frac{1}{(y-1)^{2}}$
So, $f(x, y)-\frac{1}{x}$ a.d $(x, y) \leq \frac{1}{(y-1)^{2}} \quad f(x, y) \rightarrow 0 \quad$ as $|(x, y)| \rightarrow \infty$
So by pre ous theorem f has a maximum value on S which must occur either in the interior of S or on the positive x - axis

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\left(x^{2}+(y-1)^{2}+4\right)-(2 x)(x)}{\left(x^{2}+(y-1)^{2}+4\right)^{2}}=0 \\
& \left(x^{2}+(y-1)^{2}+4\right)-(2 x)(x)=0 \\
& (y-1)^{2}-x^{2}+4=0
\end{aligned}
$$

$\frac{\partial f}{\partial y}=\frac{-x(2(y-1))}{\left(x^{2}+(y-1)^{2}+4\right)^{2}}=0$
$x=0, y-1=0 \Rightarrow y=1$
If $y=1 \Rightarrow x^{2}=4 \Rightarrow x=2$
So at $(2,1)$ there is a critical point and $f(2,1)=\frac{1}{4}$
Also, $f(x, 0)=\frac{x}{x^{2}+5}$
$\frac{\partial f}{\partial x}=\frac{\left(x^{2}+5\right)-2 x^{2}}{\left(x^{2}+5\right)^{2}}=0$
$x^{2}+5-2 x^{2}=0 \Rightarrow x^{2}=5 \Rightarrow x=\sqrt{5}$ is a critical point and $f(\sqrt{5}, 0)=\frac{\sqrt{5}}{10}, \frac{1}{1}$,
So the max value of f on S is $\frac{1}{4}$.

Lagrange multiplier method:

Let f and g have a continuous first partial den vatives on an open set containing the surface or the curve S which is the graph of th eq $\quad g(X)-G$, Let $\nabla g(X) \neq 0$ on S and suppose that $f(X)$ has a constrained locel ex en a at the point a of S, then there is a number λ such that
$\nabla f(a)=\lambda \nabla g(a)$, that is the gradients or and gareparallel at a

Example : what is the maxime n arva of a rectangle with perimeter P
Solution : Let $f(x, y)=x y$
and $g(x, y)=2 x+?-p=0$
$\nabla f=(y, x)$
$\nabla g=(2,2)$
$\nabla f=\lambda \nabla_{s} \Rightarrow y=2 \lambda, x=2 \lambda, 2 x+2 y=p$
Solving the first two equations give $y=x$, substituting into the third eq. given that $2 x+2 x=p \Rightarrow x=\frac{1}{4} p=y$
So the max of f is $f(x, y)=\frac{1}{16} p^{2}$
The min. on this set namely 0 , is achieved when $x=0, y=\frac{1}{2} p$ or vise versa

Advanced Calculus

Example: Find the absolute max. and min. of $f(x, y)=x^{2}+y^{2}+y$ on the disc $x^{2}+y^{2} \leq 1$
Solution : $f_{x}=2 x=0, f_{y}=2 y+1=0$, thus the only critical points is at $\left(0,-\frac{1}{2}\right)$ lies on the disc , at which $f\left(0,-\frac{1}{2}\right)=-\frac{1}{4}$
On the boundary we use Lagrange multiplier method with $g(x, y)=x^{2}+y^{2}-1$.
$\nabla g=(2 x, 2 y)$
$\nabla f=\lambda \nabla g$ we solve the eqs.
$2 x=2 x \lambda$ and $2 y+1=2 y \lambda, x^{2}+y^{2}=1$
The first eq. implies
$x(1-\lambda)=0 \Rightarrow x=0$ or $\lambda=1$
If $\lambda=1 \Rightarrow$ the sec ond eq. $2 y+1=2 y$ has no solution, So $=1$ is in possible ,So $x=0$, Then from the third eq. $y= \pm 1$
$\Rightarrow f(0,1)=2 \quad, f(0,-1)=0, \quad$ so the abs. max is 2 a $(0,1)$ and the abs. min. is $-\frac{1}{4}$ at $\left(0,-\frac{1}{2}\right)$.
We can analyze f on the boundary by pravetring be latter as $x=\cos \theta \quad, y=\sin \theta$ (because $x^{2}+y^{2}=1 \quad$ Th $n \quad(\cos \theta(\sin \theta)=1+\cos \theta$ which has a max. value of 2 at $\theta=0$ an min. value 0 es at $\theta=\pi$

Ex. 1,2,3,6,7,11,12,14

Advanced Calculus

2.10 Vector -valued functions and their deri atives

The vector valued function from R^{n} to R wh andm are any positive integers is defined by bold face f : $R^{n} \rightarrow R^{m}$ $\mathrm{f}(X)=\left(f_{1}(X), f_{2}(X), f_{3}(X)\right.$ \qquad f_{m}
f is called linear mapping from $K^{-t o} k^{m}$, if it atisfy
$\mathrm{f}(a X+b Y)=a \mathrm{f}(X)+b \mathrm{f}_{(Y)} \quad\left(a, b \in \mathcal{R}^{\mathcal{R}}, X, Y \in \mathfrak{R}^{\prime}\right)$. And these maps can be represented by an mx n matrix.
$A=\left(A_{j k}\right)$ with m ro/s and incolumas
If the elements of, to R^{m} are rep. as column vectors, $\mathrm{f}_{(X)}$ is just the matrix product AX, and $f_{i}(0)=\sum_{k=1}^{n} 1_{j k} x_{k}$

Differe tiz jility of vector valued function :

A mapping f from an open set $S \subset R^{n}$ into R^{m} is said to be differentiable at $a \in S$. If there is an mxn matrix L such that
$\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-L h|}{|h|}=0$
The matrix L is a unique matrix defined as $D \mathrm{f}(a), \mathrm{f}^{\prime}(a)$ and $d \mathrm{f}_{a}$ its called the Frechet derivative of f at a.

We define this matrix in the following proposition

Advanced Calculus

Proposition: An R^{m} - valued function f is differentiable at a precisely when each of its components f_{1} \qquad f_{n} is differentiable at a . In this cases $D f(a)$ is the matrix whose j th row is the row vector $\nabla f_{j}(a)$. In other words

$$
D f=\left(\begin{array}{lllc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & & & \vdots \\
\vdots & & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

Example : Let $f(x, y, z)=(u, v)=\left(x y z^{2}-4 y^{2}, 3 x y^{2}\right.$ vz) Compule $D f(x, y, z)$

TH: (Chain Rule) Suppose $\delta R^{k}=R^{n}$ is difif. at $a \in R^{k}$ and $f: R^{n} \rightarrow R^{m}$ is diff. at $g(a) \in R^{n}$. Then $H=f \circ g: R^{k} \rightarrow R$ is diff. at a and $D H(a)=D f(g(a)) D g(a)$ where the expression on the right is he \mathfrak{r} oduct of the matrices $D f(g(a))$ and $D g(a)$

Example : Define, $\cdot R^{2} \rightarrow R^{3}$ by $f(u, v)=\left(u^{2}-5 v, v e^{2 u}, 2 u-\log \left(1+v^{2}\right)\right)$
a) Comp, te $D f(1, v)$, what is $D f(0,0)$

Solution . I et $s=i^{2}-5 v, r=\mathrm{ve}^{2 \mathrm{u}}, \mathrm{t}=2 \mathrm{u}-\log \left(1+\mathrm{r}^{2}\right)$,
$D f(u, v)=\left(\begin{array}{ll}\frac{\partial}{\partial u} & \frac{\partial s}{\partial v} \\ \frac{\partial r}{\partial u} & \frac{\partial r}{\partial v} \\ \frac{\partial t}{\partial u} & \frac{\partial t}{\partial v}\end{array}\right)=\left(\begin{array}{lc}2 u & -5 \\ 2 v e^{2 u} & e^{2 u} \\ 2 & \frac{-2 v}{1+v^{2}}\end{array}\right)$

Advanced Calculus
$D f(0,0)=\left(\begin{array}{rr}0 & -5 \\ 0 & 1 \\ 2 & 0\end{array}\right)$
b) Suppose $g: R^{2} \rightarrow R^{2}$ is of class $C^{1}, g(1,2)=(0,0)$
and $D g(1,2)=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
Compute $D(f \circ g)(1,2)$
Solution : $D(f \circ g)(1,2)=D f(g(1,2)) \cdot D g(1,2)$

$$
\begin{aligned}
& =D f(0,0) \cdot D g(1,2) \\
& =\left(\begin{array}{rr}
0 & -5 \\
0 & 1 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
-15 & -20 \\
3 & 4 \\
2 & 4
\end{array}\right)
$$

Jacobians : If $\mathrm{m}=\mathrm{n}$, then the Frechet de ermitant $D f$ of a function $f: R^{n} \rightarrow R^{n}$ is an nxn matrix of functions, defined orthe set S Nere f is diff., so we can form its determinant on S is called the, acoblan ontie mapping f, it is denoting by J_{f} or if

Det $D f=\partial x_{1}$
$\frac{\partial y_{1}}{\partial x_{n}}$
\vdots
\vdots
$\frac{\partial y_{n}}{\partial x_{n}}$

And if $Y=f(X)$ and $X=g(t),\left(t, X, Y \in R^{n}\right)$, then $J_{f \circ g}(t)=J_{f(g(t))} J_{g}(t)$ or

$$
\frac{\partial\left(y_{1}, y_{2}, \ldots \ldots \ldots \ldots \ldots \ldots, y_{n}\right)}{\partial\left(t_{1}, t_{2}, \ldots \ldots \ldots \ldots \ldots ., t_{n}\right)}=\frac{\partial\left(y_{1}, y_{2}, \ldots \ldots \ldots \ldots \ldots \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots ., x_{n}\right)} \cdot \frac{\partial\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots \ldots ., x_{n}\right)}{\partial\left(t_{1}, t_{2}, \ldots \ldots \ldots \ldots \ldots ., t_{n}\right)}
$$

Advanced Calculus

Example1) : Let $(u, v)=f(x, y, z)=\left(x y z^{2}-4 y^{2}, 3 x y^{2}-y z\right)$
Compute $\frac{\partial(u, v)}{\partial(x, y)}, \frac{\partial(u, v)}{\partial(y, z)} \quad, \frac{\partial(u, v)}{\partial(x, z)}$
$\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right|=\left|\begin{array}{ll}y z^{2} & x z^{2}-8 y \\ 3 y^{2} & 6 x y-z\end{array}\right|=y z^{2}(6 x y-z)-3 y^{2}\left(x z^{2}-8 y\right)$
Ex : 1,2,3,4,8

Ex. 8) $w=f(x, y, t, s), x(t, s), y(t, s), g(t, s)=((t),, y(t, s), t,(\varsigma)$
$w=f(g(t, s))=(f \circ g)(t, s)$ $D(f \circ g(t, s))=D f(g(t, s)) \cdot D g(t, s)$

$$
=\left(\begin{array}{llll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial t} & \frac{\partial f}{\partial s}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial y}{\partial t} & \frac{\partial y}{\partial s} \\
1 & 0 \\
- & 1
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial t} & \frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial s}
\end{array}\right)
$$

CH3 : The implicit Function theorem and its application :

3.1 The implicit function theorem: in this section we consider the problem of solving an eq. $F\left(x_{1}, x_{2}, x_{3}, \ldots \ldots \ldots, x_{n}\right)=0$ for one of the variables x_{j} as a function of the remaining ($\mathrm{n}-1$) variables or more generally of solving a system of k such eqs for k of the variables as a functions of the remaining $(\mathrm{n}-\mathrm{k})$ variables .
For the case $\mathrm{n}=2$, we are given an eq. $F(x, y)=0$ relating the variables x and y , and we ask when we can solve for y as a function of x or vice versa .
If $S=\{(x, y): F(x, y)=0\}$ then our equations is when can S be represented ss the graph of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ or $\mathrm{x}=\mathrm{g}(\mathrm{y})$?
For the case $\mathrm{n}=3$, the set where $F(x, y, z)=0$ will usually be a surfa e, and we ask when this surface can be represented as the graph of a fur tion
$z=f(x, y), y=g(x, z)$ or $x=h(y, z)$
Example: Consider $F(x, y)=x^{2}+y^{2}+1$

$$
\begin{gather*}
F(x, y)=x^{2}+y^{2} \tag{2}\\
F(x, y)=x^{2}+y^{2}-1
\end{gather*}
$$

In the first eq.(1), $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$ did not satisfied for iny peint.
In the second eq.(2), $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$ satisfied fo. $\mathrm{x}=\mathrm{y}=0$ so $\quad \exists y=f(x)$ at $x=0$. In the third eq.(3), $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$ satisfied $\mathrm{ff} i \ll x<$ and eq(3) does define two functions $y=\sqrt{1-x^{2}}$ and $y=-\sqrt{1-{ }^{2}}$ yut these fonctions are not defined in a two sided neighborhood of $\mathrm{x}=1$ or $\mathrm{f} \mathrm{x}-1$ because in this case $F_{2}(1,0)=0, F_{2}(-1,0)=0$ Now If the number of va iable ave $n+1$ and if we denote the last variable by y , we have the problem.
Given a function $F_{(x, y)}$ of class G and a point (a, b) satisfying $F(\mathbf{a}, \mathrm{~b})=0$, when is there

1) A fun ion 1 X), defined in some open set in R^{n} containing $a \in R^{n}$, and
2) An $\mathcal{O}_{\mathrm{p}} \mathrm{n}$ et $i \subset R^{n+1}$ containing (a, b) such that for $(X, y) \in u$, $F(X)=,0 \Leftrightarrow y=f(X)$?

TH 3.1 The implicit Function theorem for a single equations. Let $F(X, y)$ be a function of class C^{1} on some neighborhood of a point $(a, b) \in R^{n+1}$
Suppose that $\mathrm{F}(\mathbf{a}, \mathbf{b})=0$ and $\partial_{v} F(\mathbf{a}, b) \neq 0$ then there exist very small positive numbers r_{0}, r_{1} such that the following conclusion are valid.
a) For each X in the ball $|X-a|<r_{0}$ ther is a unique y such that $|y-b|<r_{1}$ and $F(X, y)=0$, we denote this y by $f(X)$, in particular $f(\mathbf{a})=b$.
b) The function f thus defined for $|X-a|<r_{0}$ is of class C^{1}, and its partial derivatives are given by $\partial_{j} f(X)=\frac{-\partial_{j} F(X, f(x))}{\partial_{y} F(X, f(x))}$
Summary of the theorem
If 1) $F(X, y) \in C^{1}$
2) $F(a, b)=0$
3) $F_{y}(a, b) \neq 0$
$\Rightarrow \exists!$ (aunique function) $y=f(X)$ and $\exists r_{0}, r_{1}>0$ э for all $\mathrm{X},|\mathrm{X}-\mathrm{a}|<r_{0},|y-b|$
A) $y(\mathbf{a})=f(\mathbf{a})=b$
B) $\mathrm{F}(\mathrm{X}, \mathrm{f}(\mathrm{X}))=0$, where $|\mathrm{X}-\mathbf{a}|<r_{0}$.
C) $\mathrm{f}(\mathrm{x}) \in C^{1}$, on $|\mathrm{X}-\mathbf{a}|<r_{0}$ and $\partial_{j} f(X)=\frac{-\partial_{j} F(X, f(X))}{\partial_{y} F(X, f(X))}$.
proof: see the book.
Example (1) : let $F(X, y)=x-y^{2}-1$ for any point $(a, b) \in R^{2}$ for which $F(\mathbf{a}, b)=0$,

1) $F(x, y) \in C^{1}$
2) $F(a, b)=a-b^{2}-1$
3) $F_{x}(a, b)=1, F_{y}(a, b)=-2 b$

First $F_{x}(a, b)=1 \neq 0$, so the implici Tb acion thoorem guarantees that the eq. $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$ can be solved for X locally ner aty point (a, b) for which $F(a, b)=0$, So
$F(x, y)=x-y^{2}-1=0$, can ${ }^{1}$ e solve explicity as x a function of y namely $x=y^{2}+1$ and this solution is valid for a y po nt (ab)
Next, $F_{y}(a, b)=0$ nen $\mathrm{b}=0$, so thewmplicit function theorem quarantees that $\mathrm{F}(\mathrm{x}, \mathrm{y})$ $=0$ can be solyed u qualy for y near any point (a, b) such that $F(a, b)=0$ and $b \neq 0$ In fact the p ssible sorutions are $y=\sqrt{x-1}$ and $y=-\sqrt{x-1}$.
For x ver \boldsymbol{f}_{f} os tr a only one of these solutions will be very close to b namely $\sqrt{x-1}$ if $b>0$ and $-\sqrt{x-1}$ if $b<0$ and these solutions are defined only for $x \geq 1$, so $r_{0}=a-1$ (in the therorem)
Finally, we have $\mathrm{F}(1,0)=0$, but the eq. $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$ can not be solved uniqualy for y as a function of x in any neighborhood of $(1,0)$, if $x>1$ there are two solution s, both equally close to 0 , and if $x<1$ there are none.

Example 2 : let $G(x, y)=x-e^{1-x}-y^{3}$
$\partial_{x} G(a, b)=1+e^{1-a}>1$ for all (a,b)

Advanced Calculus

So the implicit function theorem guarantees that the eq. $\mathrm{G}(\mathrm{x}, \mathrm{y})=0$ can be solved for x locally near any point (a, b) such that $G(a, b)=0$.

Next, $\partial_{y} G(\mathbf{a}, b)=-3 b^{2}$, so the implicit function theorem guarantees that the eq. $\mathrm{G}(\mathrm{x}, \mathrm{y})$ $=0$ can be solved for y as a C^{\prime} function of x locally near any point (a, b) such that $\mathrm{G}(\mathrm{a}, \mathrm{b})=0$ and $\mathrm{b} \neq 0$. In fact the solution is $y=\sqrt[3]{x-e^{1-x}}$ which is globally uniquely defined but fails to be diff at the point when $\mathrm{y}=0, \mathrm{x}=1$.

Ex3.1

$\mathbf{E x}(1)$: Investigate the possibility of solving the eq. $x^{2}-4 x+2 y^{2}-1=1$ for each of its variables in terms of the other two near the point $(2,-1,3)$ o this both by checking the hypotheses of the implicit function theorem and by explit itly computing the solution :

Sol: let $F(x, y, z)=x^{2}-4 x+2 y^{2}-y z-1=0$.

1) $F(x, y, z) \in C^{1}$
2) $F(2,-1,3)=4-8+2+3-1=0$
3) $F_{x}(x, y, z)=2 x-\left.4\right|_{(2,-1,3)}=0$ $F_{y}(x, y, z)=4 y-\left.z\right|_{(2,-1,3,3}=-4-3=-y=0$ $F_{z}(x, y, z)=-\left.y\right|_{(2,-1,3)}=1 \neq 0$

So, $F(x, y, z)$ can be solved for y and z the point $(2,-1,3)$ but not for x . Ex. 3) Can the eq. $\left.y^{2}+y^{2}+\right)^{0.5}=0$ be solved uniquely for y in terms of x and z near $(0,1,0)$? For ir terms of yand y ?

Solution : le, $F(x, y z)=\left(x^{2}+y^{2}+2 z^{2}\right)^{0.5}-\cos z=0$.
Then

$$
F(x, y, z) \in C
$$

2) $F(0,1,0)=0$
3) $F_{y}=\left.0.5\left(x^{2}+y^{2}+2 z^{2}\right)^{-0.5}(2 y)\right|_{(0,1,0)}=0.5(0+1)^{-0.5}(2)=1 \neq 0$
4) $F_{z}=0.5\left(x^{2}+y^{2}+2 z^{2}\right)^{-0.5}(4 z)+\left.\sin z\right|_{(0,1,0)}=0$.

F can be solved for y in terms of x and z near $(0,1,0)$ but not for z in terms of x and y .

The implicit theorem for a system of equations.

If we have k functions F_{1}, F_{2} \qquad F_{k} of $\mathrm{n}+\mathrm{k}$ variables x_{1}, x_{2} \qquad x_{n}, y_{1} \qquad y_{k} and ask when we can solve the equations
$F_{1}\left(x_{1}, \ldots \ldots \ldots, x_{n}, y_{1}, \ldots \ldots \ldots ., y_{k}\right)=0$
$F_{2}\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots \ldots \ldots ., y_{k}\right)=0$
\vdots
\vdots
$F_{k}\left(x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots \ldots \ldots \ldots, y_{k}\right)=0$

For the y's in terms of the x's
We shall use the vector notation to abbreviate as $F(X, Y)$ wo assume $F \in C^{1}$ near the point (a,b) and $F(a, b)=0$, and we ask when $F(X, Y)=0$ at termines Y as a C^{1} function of X in some neighborhood of (\mathbf{a}, \mathbf{b}).
Let the matrix $B=\left(\begin{array}{lll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \ldots \ldots ~ & \frac{\partial F_{1}}{\partial y_{k}} \\ \vdots & \\ \vdots & \\ \frac{\partial F_{k}}{\partial y_{1}} & \frac{\partial F_{k}}{\partial y_{2}} \ldots \ldots ~ & \frac{\partial F_{k}}{\partial y_{k}}\end{array}\right.$
be the partial Frech et derivative of with respect to the variables Y evaluated at (a,b).
We have the ollo ing theorem.

Th : The i-pp. cit unction theorem for a system of equations:

Let $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ je arr R^{k} - valued function of class C^{1} on some neighborhood of a point $(\mathrm{a}, \mathrm{b}) \in R^{n+1}$ and let the matrix B is the parial Frenchet deriavative of F with respect to the variables Y , evaluated at (a, b). Suppose $\mathrm{F}(\mathrm{a}, \mathrm{b})=0$ and let $\operatorname{det} B \neq 0$. Then there exist positive numbers r_{0}, r_{1} such that the following conclusions are valid
a) For each X in the ball $|X-a|<r_{0}$ there is a unique y such that $|Y-b|<r_{1}$ and $\mathrm{F}(\mathrm{X}, \mathrm{Y})=0$, we denote this Y by $\mathrm{f}(\mathbf{X})$ in particular, $\mathrm{f}(\mathbf{a})=\mathbf{b}$.
b) The function f thus defined for $|X-\mathrm{a}|<r_{0}$ is of class C^{\prime}, and its partial derivative ∂_{x}, f can be computed by differentiating the equations $\mathrm{F}(\mathrm{X}, \mathrm{f}(\mathrm{X}))=$

Advanced Calculus

0 with respect to x_{j} and solving the resulting linear system of equations for $\partial_{x}, f_{1}, \ldots \ldots \ldots \ldots ., \partial_{x}, f_{k}$.

Example 3: Consider the problem of solving the eqs $x-y u^{2}=0, x y+u v=0 \ldots$.(1) for u and v as functions of x and y setting $F=x-y u^{2}$ and $G=x y+u v$ we see that $\frac{\partial(F, G)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}-2 y u & 0 \\ v & u\end{array}\right)=-2 y u^{2}$.
So the implicit function theorem quarantees a local solution near an pols $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)$ at which eqs.(1) holds provided that $-2 y_{0} u_{0}^{2} \neq 0$, that is,,$\neq 0$ and $u_{0} \neq 0$. Notice that under this condition, the first eq. in (1) implies fat $x_{0} \neq 1$ and that x_{0} and y_{0} have he same sign .
The second eq. then implies that $v_{0} \neq 0$ and that u_{0} a v_{0} have opposite signs .It's not hard to find explicitly $u= \pm \sqrt{\frac{x}{y}} \quad, v= \pm \sqrt{x y^{3}}$
The sign of u and v being the same as the sions of u_{0} and ν_{0} resp. This solution is valid for all (x, y) in the same quadrants as $\left(. y_{0}\right)$

EX. 5) Suppose $F(x, y) \in C^{1}$ is a fi ncion sucinthat $\mathrm{F}(0,0)=0$.
What conditions on F will guar intewnat the eq. $F(F(x, y), y)=0$ can be solved for y as a C^{1} function of x nea $(0,0)$

Solution : 1) $\mathrm{F}(\mathrm{F}(\rho, 0), 0)=0$
2) $F(F(x, y) \in C$
3) $\frac{\partial(F(x, y), y)}{\partial y}=F_{1} F_{2}+F_{2}=F_{2}\left(F_{1}+1\right)$ at $(0,0)$

$$
F_{2}\left(F_{1}+1\right) \neq 0 \text { iff } \quad F_{2}(0,0) \neq 0, F_{1}(0,0) \neq-1 .
$$

EX. 6) Investigate the possibility of solving the eqs, $x y+2 y z-3 x z=0, x y z+x-y=1$ for two of the variables as a function of the third near the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,1,1)$.

Solution : Let

$$
\begin{aligned}
& F(x, y, z)=x y+2 y z-3 x z=0 \\
& G(x, y, z)=x y z+x-y-1=0
\end{aligned}
$$

Advanced Calculus

$$
\begin{gathered}
\text { 1) } F(1,1,1)=0 \\
\text { 2) } G(1,1,1)=0 \\
\frac{\partial(F, G)}{\partial(y, z)}=\left.\operatorname{det}\left(\begin{array}{ll}
x+2 z & 2 y-3 x \\
x z-1 & x y
\end{array}\right)\right|_{(1,1,1)}=\operatorname{det}\left(\begin{array}{ll}
3 & -1 \\
0 & 1
\end{array}\right)=3 \neq 0 .
\end{gathered}
$$

Then F and G can be solved for y and z interms of x .

$$
\frac{\partial(F, G)}{\partial(x, y)}=\left.\operatorname{det}\left(\begin{array}{ll}
y-3 z & x+2 z \\
y z+1 & x z-1
\end{array}\right)\right|_{(1,1,1)}=\operatorname{det}\left(\begin{array}{ll}
-2 & 3 \\
2 & 0
\end{array}\right)=-6 \neq 0
$$

F and G can be solved for x and y interms of z

$$
\frac{\partial(F, G)}{\partial(x, z)}=\left.\operatorname{det}\left(\begin{array}{ll}
y-3 z & 2 y-3 x \\
y z+1 & x y
\end{array}\right)\right|_{(1,1,1)}=\operatorname{det}\left(\begin{array}{rr}
-2 & -1 \\
2 & 1
\end{array}\right)=
$$

F and G can not be solved for x and z interms or X

Sec 3.1) $2,3,7,8,9$.

Advanced Calculus

CH4 sec 4.6 Improper integrals

The two most basic Types of improper integrals are as foll ws
I) $\int_{a}^{\infty} f(x) d x$ where f is integrable over every finite subinterva. $\lceil\mathrm{a}, \mathrm{b}]$
II) $\int_{a}^{b} f(x) d x$ where f is integrable over [c,b] for every $\mathrm{c}>\mathrm{a}$, but is unbounded near x $=\mathrm{a}$

Improper integral of Type I

If f is defined on $[a, \infty]$ and integrab $e, n[a, b], f o f$ very $b>a$
Then $\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$
If the limit exist the integ arconv. If thelimit does not exist the integral div
Example : 1) $\int_{0}^{\infty} e^{-x} x=\lim _{b \rightarrow \infty} \int_{0} e^{-x} d x=\lim _{b \rightarrow \infty}-\left.e^{-x}\right|_{0} ^{b}=\lim _{b \rightarrow \infty}-e^{-b}+1=0+1=1$

$$
\text { 2) } \cos x \leq \lim _{b \rightarrow \infty} \int_{0}^{b} \cos x d x=\left.\lim _{b \rightarrow \infty} \sin x\right|_{0} ^{b}=\lim _{b \rightarrow \infty} \sin b-0=\text { doesnot exist }
$$

TH: Suppose that $0 \leq f(x) \leq g(x)$ for all suffeicently large x . If $\int_{a}^{\infty} g(x) d x$ conv. So does $\int_{a}^{\infty} f(x) d x$. If $\int_{a}^{\infty} f(x) d x \operatorname{div}$ so does $\int_{a}^{\infty} g(x) d x$.
Proof : Assume that $0 \leq f(x) \leq g(x)$ for all $x \geq a$

Advanced Calculus

If $\int_{a}^{\infty} g(x) d x$ conv., then there exists $\mathrm{B}>0$ such that $\int_{a}^{\infty} g(x) d x=B$. It implies that $\phi(b)=\int_{a}^{b} f(x) d x$ has an upper bound as $b \rightarrow \infty$, because
$\phi(b)=\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x \leq \int_{a}^{\infty} g(x) d x=$ B. Also $\phi^{\prime}(b)=f(b) \geq 0$, so
$\phi(b)$ is increasing on $[b, \infty] \Rightarrow \int_{a}^{\infty} f(x) d x$ conv. And $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x \leq B$.

Corollary : Suppose $\mathrm{f}>0, \mathrm{~g}>0$ and $\frac{f(x)}{g(x)} \rightarrow l$ as $x \rightarrow \infty$ f $0<1<\infty$, then $\int_{a}^{\infty} f(x) d x$ and $\int_{a}^{\infty} g(x) d x$ are both conv. or both div.
If $l=0$, the convergence of $\int_{a}^{\infty} g(x) d x$ implies the convergence of $\int_{a}^{\infty} f(x) d x$. If $l=\infty$, the divergence of $\int_{a}^{\infty} g(x) d x$ implies ted vergence of $\int_{a}^{\infty} f(x) d x$.
Proof : If $0<l<\infty$ and $\frac{f(x)}{g(x)} \rightarrow l \Rightarrow \frac{f(x)}{\sigma(x)} \leq 2 l \rightarrow f(y) \leq 2 l g(x)$
And $f(x) \geq 0.5 \lg (x)$ for sufficiertly ar, x
If $\int_{a}^{\infty} g(x) d x \operatorname{conv} \Rightarrow 2 l \int_{a}^{\infty} g\left(x d x \quad c \sigma^{p} v . \Rightarrow \int^{\infty} f(x) d x \quad \operatorname{conv}\right.$.
Also , If $\int_{a}^{\infty} g(x) d x$ div. then $\left.0.5 l \int_{a}^{\infty} g d\right) d x$ div. $\Rightarrow \int_{a}^{\infty} f(x) d x \quad d i v$.
If $l=0 \Rightarrow f\left(x \leq g\left(\lambda, a_{n}\right.\right.$ if $l=\infty \quad g(x) \leq f(x)$ for suffeicently large x
If $\int_{a}^{\infty} g(x) \sim h^{h} n v=\int_{a}^{\infty} f(x) d x$ conv when $l=0$
If $\int_{a}^{\infty} g(x) d x d i v . \Rightarrow \int_{a}^{\infty} f(x) d x d i v$ when $l=\infty$
Example: If $\int_{1}^{\infty} \frac{d x}{x^{p}}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{p}}=\lim _{b \rightarrow \infty} \frac{b^{1-p}-1}{1-p}= \begin{cases}\infty & \text { if } p<1 \text {, so the integration div. } \\ (p-1)^{-1} & \text { if } p>1 \text {, so the integration conv. }\end{cases}$
If $p=1 \Rightarrow \int_{1}^{\infty} \frac{d x}{x}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x}=\lim _{b \rightarrow \infty} \ln b=\infty$, so the integration div.

Advanced Calculus

Corollary : If $0 \leq f(x) \leq C x^{-p}$ for all sufficiently large x where $\mathrm{P}>1$, then for $\mathrm{a}>0$, $\int_{a}^{\infty} f(x) d x$ conv. . If $f(x) \geq C x^{-1}(C>0)$ for all sufficiently large x , then $\int_{a}^{\infty} f(x) d x$ divergese.

Example 2:

Determine whether the integral conv. or div.
$\int_{0}^{\infty} \frac{2 x+14}{x^{3}+1} d x$
Solution: $\int_{0}^{\infty} \frac{2 x+14}{x^{3}+1} d x=\int_{0}^{1} \frac{2 x+14}{x^{3}+1} d x+\int_{1}^{\infty} \frac{2 x+1}{x^{3}+1} d$
$f(x)=\frac{2 x+14}{x^{3}+1}$ behaves like $\frac{2 x}{x^{3}}=\frac{2}{x}$
Let $g(x)=\frac{1}{x^{2}} \Rightarrow \int_{1}^{\infty} \frac{d x}{x^{2}}$ conv.
$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{2 x+14}{x^{3}+1} \frac{1}{x}=\lim _{x \rightarrow \infty} \frac{2 x^{3}+1+x^{2}}{x^{3}+1}=2$, so by the limit comparison test,
the integ, ion $\int_{1} f(x) d x$ conv., so
$\int_{0}^{\infty} \frac{2 x+14}{x^{3}+1} d x=\int_{0}^{1} \frac{2 x+14}{x^{3}+1} d x+\int_{1}^{\infty} \frac{2 x+14}{x^{3}+1} d x$ conv., because $\int_{0}^{1} \frac{2 x+14}{x^{3}+1} d x$ is proper integration which converges and $\int_{1}^{\infty} \frac{2 x+14}{x^{3}+1} d x$, conv.

Advanced Calculus

TH: If $\int_{a}^{\infty}|f(x)| d x$ conv., then $\int_{a}^{\infty} f(x) d x$ conv.
Proof : If f is a real valued function
Let $f^{+}(x)=\max [f(x), 0]$ and $f^{-}(x)=\max [-f(x), 0]$
Then $0 \leq f^{+}(x) \leq|f(x)|$ and $0 \leq f^{-}(x) \leq|f(x)|$ so $\int_{a}^{\infty} f^{+}(x) d x$ and $\int_{a}^{\infty} f^{-}(x) d x$ conv.. but $f=f^{+}-f^{-} \quad$ so $\int_{a}^{\infty} f(x) d x$ conv.

If f is complex valued function $\Rightarrow|\operatorname{Re} f(x)| \leq|f(x)|$ and $|\operatorname{Im} f(x) \leq|f(x)|$ So the convergence of $\int_{a}^{\infty}|f(x)| d x$ Implies the conv. of $\int_{a}^{\infty}|\operatorname{Re} f(x)| d x \cdot v d \int_{a}|\operatorname{Im} f(x)| d x$, and hence the conv. of the real and imaginary parts of $\int^{\infty} f(x) d x$

Def: The integral $\int_{a}^{\infty} f(x) d x$ is called abs.converrent if $\int_{a}^{\infty}|f(x)| d x$ conv
Example: $\int_{1}^{\infty} \frac{\sin x}{x} d x$ is conv. but not asc. gonv.
Solution : $\int_{1}^{\infty} \frac{\sin x}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\sin x}{x^{-}} d$
By integrating by parts $l^{+} u=x_{x} d v=\sin x d x$

$$
d u=\frac{-1}{x^{2}} d x \quad v=-\cos x
$$

$\int_{1}^{\infty} \frac{\sin x}{x} d x=\left.\lim _{b \rightarrow \infty} \frac{-\cos x}{x}\right|_{1} ^{b}-\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\cos x}{x^{2}} d x$
$\int_{1}^{\infty} \frac{\cos x}{x^{2}} d x$ conv. Since $\left|\frac{\cos x}{x^{2}}\right| \leq \frac{1}{x^{2}}$ conv. and $\left.\lim _{b \rightarrow \infty} \frac{-\cos x}{x}\right|_{1} ^{b}=0+\cos 1$

Advanced Calculus

$\int_{1}^{\infty} \frac{\sin x}{x} d x=0+\cos 1-\int_{1}^{\infty} \frac{\cos x}{x^{2}} d x=$ conv., to show $\int_{1}^{\infty}\left|\frac{\sin x}{x}\right| d x$, div., by ex (8)
\exists a constant positive number $c>0, \ni \frac{c}{x} \leq\left|\frac{\sin x}{x}\right|$ for $\mathrm{x} \in(\mathrm{n} \pi,(\mathrm{n}+1) \pi)$ and for all $\mathrm{n} \geq 1$. Let $\mathrm{m} \pi>\mathrm{n} \pi>1$, then $\int_{1}^{m \pi}\left|\frac{\sin x}{x}\right| d x=\int_{1}^{n \pi}\left|\frac{\sin x}{x}\right| d x+\int_{n \pi}^{(n+1) \pi}\left|\frac{\sin x}{x}\right| d x+\cdots \cdots+\int_{(m-1) \pi}^{m \pi}\left|\frac{\sin x}{x}\right| d x \geq$
$c \int_{1}^{n \pi} \frac{1}{x} d x+c \int_{n \pi}^{(n+1) \pi} \frac{1}{x} d x+\cdots \cdots+c \int_{(m-1) \pi}^{m \pi} \frac{1}{x} d x=c \int_{1}^{m \pi} \frac{1}{x} d x$.
$\Rightarrow \lim _{m \rightarrow \infty} \int_{1}^{m \pi}\left|\frac{\sin x}{x}\right| d x \geq c \lim _{m \rightarrow \infty} \int_{1}^{m \pi} \frac{1}{x} d x=\lim _{m \rightarrow \infty} \ln m \pi=\infty$. So the integration diverges.
$\int_{1}^{\infty}\left|\frac{\sin x}{x}\right| d x d i v . \Rightarrow \int_{1}^{\infty} \frac{\sin x}{x} d x$ is conv. but not abs.conv.

Improper Integral Type II

If f is defined on (a, b] and integrable over $[\mathrm{c}, \mathrm{b}$ fonevery $\mathrm{c} \geqslant \mathrm{a}$ the improper integral $\int_{a}^{b} f(x) d x=\lim _{\substack{c \rightarrow a^{+} \\ c>a}} \int_{c}^{b} f(x) d x$
If the limit exist then the imprope ines cons and if the limit deos not exist the improper integral div.

TH: suppose that $0 \leq f(x)=o(x)$ for a N : sufficiently close to a . If $\int_{a}^{b} g(x) d x$ conv. .so does $\int_{a}^{b} f(x) d x \quad \int_{a}$ r) $d x$ div., so does $\int_{a}^{b} g(x) d x$

Exampl. et $f(x)=\frac{1}{(x-a)^{p}}$
$\int_{a}^{b}(x-a)^{-p} d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b}(x-a)^{-p}=\left.\lim _{c \rightarrow a^{+}} \frac{(x-a)^{1-p}}{1-p}\right|_{c} ^{b}= \begin{cases}(1-p)^{-1}(b-a)^{1-p} & \text { if } p<1, \text { so the integration conv. } \\ \infty & \text { if } p>1, \text { so the integration div. }\end{cases}$

For $\mathrm{p}=1 \int_{a}^{b}(x-a)^{-1} d x=\left.\lim _{c \rightarrow a^{+}} \log (x-a)\right|_{c} ^{b} \rightarrow \infty$ as $c \rightarrow a^{+}$, so the integration div.

Advanced Calculus

Corollary: If $0 \leq f(x) \leq C(x-a)^{-p}$ for all x near a , where $\mathrm{p}<1$, then $\int_{a}^{b} f(x) d x$ conv. .If $f(x)>C(x-a)^{-1}(C>0)$ for all x near a, then $\int_{a}^{b} f(x) d x$ divergese.
Example : Show that $\int_{0}^{1} x^{-2} \sin 3 x d x$ divergese.

Solution : $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3$, so $\frac{\sin 3 x}{x^{2}}=\frac{1}{x} \frac{\sin 3 x}{x}>\frac{2}{x}$ for all x near 0 $\int_{0}^{1} x^{-2} \sin 3 x d x>\int_{0}^{1} 2 x^{-1} d x=\left.2 \lim _{c \rightarrow 0^{+}} \ln x\right|_{c} ^{1} \rightarrow \infty$
So the integration diverges.
Example : Show $\int_{0}^{1} x^{-0.5} \sin \left(x^{-1}\right) d x$ that is abs. conv.
Solution : $\left|\frac{\sin \left(x^{-1}\right)}{x^{0.5}}\right| \leq \frac{1}{x^{0.5}}$
$\int_{0}^{1} x^{-0.5} d x=\left.\lim _{c \rightarrow 0^{+}} 2 x^{0.5}\right|_{c} ^{1}=2$ conv.
$\int_{0}^{1} \frac{\left|\sin \left(x^{-1}\right)\right|}{x^{0.5}} d x$ conv.
So, $\int_{0}^{1} x^{-0.5} \sin \left(x^{-1}\right) d x$ gonv. aboviately

Other Type of In proper integrals:

Various arrins of improper integrals can be built up out of those of types I and II.

For example : $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x$.
If both integrals on the right conv. Then the original integral $\int_{-\infty}^{\infty} f(x) d x$ conv. Otherwise it div.

Advanced Calculus

Example :

$\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\lim _{b \rightarrow-\infty} \int_{b}^{0} \frac{d x}{1+x^{2}}+\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{d x}{1+x^{2}}=\left.\lim _{b \rightarrow-\infty} \tan ^{-1} x\right|_{b} ^{0}+\left.\lim _{a \rightarrow \infty} \tan ^{-1} x\right|_{0} ^{a}=0-\left(-\frac{\pi}{2}\right)+\frac{\pi}{2}-0=\pi$
Another way: the function in the integration above is even function so,
$\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=2 \lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{1+x^{2}}=\left.2 \lim _{b \rightarrow \infty} \tan ^{-1} x\right|_{0} ^{b}=\pi$

Example: $\int_{0}^{\infty} x^{-p} d x$ is divergent for every p
Solution : $\int_{0}^{\infty} x^{-p} d x=\int_{0}^{1} x^{-p} d x+\int_{1}^{\infty} x^{-p} d x$
For $\mathrm{p}<1, \int_{0}^{1} x^{-p} d x$ conv. but $\int_{1}^{\infty} x^{-p} d x \operatorname{div}$.
For $\mathrm{p}>1 \int_{0}^{1} x^{-p} d x$ div. but $\int_{1}^{\infty} x^{-p} d x$ conv.
For $\mathrm{p}=1$, both $\int_{0}^{1} x^{-p} d x$ and $\int_{1}^{\infty} x^{-p} d x \operatorname{div}$.
So in all cases above $\int_{0}^{\infty} x^{-p} d x \operatorname{div}$.
Example : $\int_{0}^{\infty} \frac{d x}{x^{0.5}+x^{1.5}}$ determin whener the integral conv. or div.
Solution : $\int_{0}^{\infty} \frac{d x}{x^{0.5}+x^{1.5}}=\int_{0}^{1} \frac{d x}{x^{0.5}+x^{5}}+\int_{0}^{\infty} \frac{d x}{x^{2}+x^{1.5}}$
$0<\frac{1}{x^{0.5}+x^{1.5}}<x^{-0 .} \Rightarrow \int_{0}^{1} \frac{d x}{0.5}+x^{1.5}$ conv.
$\left.\frac{1}{x^{0.5}+x^{1 .}}<x\right)^{5}=\int_{1}^{\infty} \frac{d x}{x^{0.5}+x^{1.5}}$ conv., because $\int_{0}^{1} x^{-0.5} d x$ conv.
$\Rightarrow \int_{0}^{\infty} \frac{d x}{x^{0.5}+x^{1.5}}$ conv , because $\int_{0}^{\infty} x^{-1.5} d x$ conv.
Improper integration where $\int_{a}^{b} f(x) d x$ where f is unbounded near one or more interior points of $[a, b]$.

Advanced Calculus

Example: Consider $\mathrm{I}=\int_{0}^{9}\left(x^{3}-8 x^{2}\right)^{\frac{-1}{3}} d x, \int_{0}^{\infty}\left(x^{3}-8 x^{2}\right)^{\frac{-1}{3}} d x$.
$f(x)=\left(x^{3}-8 x^{2}\right)^{\frac{-1}{3}}$ is not defined at 0 and at $\mathrm{x}=8$.
$\mathrm{I}=\int_{0}^{c} f(x) d x+\int_{c}^{8} f(x) d x+\int_{8}^{9} f(x) d x$, where $(0<\mathrm{c}<8)$.
$|f(x)|=\left|x^{3}-8 x^{2}\right|^{\frac{-1}{3}}=x^{\frac{-2}{3}}|x-8|^{\frac{-1}{3}} \leq \frac{1}{2} x^{\frac{-2}{3}}$ for x near 0 .
$|f(x)|=\left|\left(x^{3}-8 x^{2}\right)^{\frac{-1}{3}}\right|=|x|^{\frac{-2}{3}}|x-8| \leq \frac{1}{4}|x-8|^{\frac{-1}{3}}$ for x near 8.
and $\int_{0}^{c} \frac{1}{2} x^{\frac{-2}{3}} d x=\left.\frac{1}{2} 3 x^{\frac{1}{3}}\right|_{0} ^{c}=\frac{3}{2} c^{\frac{1}{3}}$ conv.
$\int_{c}^{8} \frac{1}{4}|x-8|^{\frac{-1}{3}} d x=\left.\frac{1}{4} \frac{3}{2}(x-8)^{\frac{2}{3}}\right|_{c} ^{8}=-\frac{3}{8}(c-8)^{\frac{2}{3}}$ conv. And $\int_{8}^{9} \frac{1}{4}|x-8|^{\frac{-1}{3}} d x=\left.\frac{1}{4} \cdot \frac{3}{2}(x-8)^{\frac{2}{3}}\right|_{8} ^{9}=\frac{3}{8}$ conv.
So, $\int_{8}^{9}|f(x)| d x$ conv. so, $\int_{8}^{9} f(x) d x$ conv. abs.
On the other hand $f(x)>0$ for $x>8$ and $-(x)=(1-8 x)^{\frac{1-3}{-3}} \rightarrow 1$ as $x \rightarrow \infty$
So , $\int_{9}^{\infty}\left(x^{3}-8 x^{2}\right)^{\frac{-1}{3}} d x$ div. by limit cemvon tagn if $g(x)=\frac{1}{x} \Rightarrow \int_{9}^{\infty} \frac{1}{x} d x$ div.
So $\int_{0}^{\infty} f(x) d x=\int_{0}^{9} f(x) d x+\int_{9}^{\infty} f(x) d x$, di

Examp. : : $\int_{-1} \frac{1}{x} d x$ Improper Integral does not exist
$\int_{-1}^{1} \frac{1}{x} d x=\int_{-1}^{0} \frac{1}{x} d x+\int_{0}^{1} \frac{1}{x} d x=\lim _{c \rightarrow 0^{-}} \ln \left|x\left\|_{-1}^{c}+\lim _{a \rightarrow 0^{+}} \ln \left|x \|_{a}^{1}=\lim _{c \rightarrow 0^{-}} \log \right| c \mid-\lim _{a \rightarrow 0^{+}} \log a=-\infty+\infty\right.\right.$ indeterminate value, in this case the improper integral does not exists.
(if $a=c \Rightarrow \log |c|-\log |a|=\log \frac{c}{a}=0$).

Advanced Calculus

Since $f(x)=\frac{1}{x}$ is odd function, then the Cauchy principal value of $\int_{-1}^{1} \frac{1}{x} d x$, p.v. $\int_{-1}^{1} \frac{1}{x} d x=0$.

Def: Suppose $\mathrm{a}<\mathrm{c}<\mathrm{b}$ and suppose f is integrable on $[a, c-\varepsilon]$ and on $[c+\varepsilon, b]$ for all $\varepsilon>0$. The Cauchy principal value of the integral $\int_{a}^{b} f(x) d x$ is p.v. $\int_{a}^{b} f(x) d x=\lim _{\varepsilon \rightarrow 0}\left[\int_{a}^{c-\varepsilon} f(x) d x+\int_{c+\varepsilon}^{b} f(x) d x\right]$.

Provided that the limit exists of course if $\int_{a}^{b} f(x) d x$ conv. ana its Cauchy principles value is its ordinary value, (i,e p.v. $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) a x$.

Proposition : Suppose $\mathrm{a}<0<\mathrm{b}$. If ϕ is on on [a,brid differentiable at 0 then p.v. $\int_{a}^{b} x^{-1} \phi(x) d x$ exists.

Proof : Let $\phi=1$
p.v. $\int_{a}^{b} \frac{1}{x} d x=\lim _{\varepsilon \rightarrow 0}\left[\int_{a}^{-c} \frac{d x}{x}+\int_{\varepsilon \varepsilon}^{b} \frac{d x}{x}=\lim _{\varepsilon \rightarrow 0} \log _{|c|} x\left\|_{a}^{-\varepsilon}+\log \mid x\right\|_{\varepsilon}^{b}=\log \frac{b}{|a|}\right.$

For general case, ys write $\psi(x)=\phi(0)+[\phi(x)-\phi(0)]$, obtaining p.v $\int_{a}^{b} \frac{\psi(x)}{x} d x=\phi(0) p . v \int_{a} \int_{a}^{x}+\int_{a}^{b} \frac{\phi(x)-\phi(0)}{x} d x$
The first ouar ity g_{1} the right exists and the second one is a proper integral If $\frac{\phi(x)}{x} \phi(0)=\phi^{\prime}(0)$, then

$$
\int_{a}^{b} \phi^{\prime}(0) d x=\phi^{\prime}(0)(b-a) \text { exists }
$$

$\Rightarrow p . v . \int_{a}^{b} \frac{\phi(x)}{x} d x$ exists.
** The p.v. $\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x$.
Example : $\int_{-\infty}^{\infty} \frac{x}{\left(1+x^{2}\right)} d x$

Advanced Calculus

As improper integral, $\int_{-\infty}^{\infty} \frac{x}{\left(1+x^{2}\right)} d x=\int_{-\infty}^{1} \frac{x}{\left(1+x^{2}\right)} d x+\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)} d x$
$\mathrm{f}(\mathrm{x})=\frac{x}{\left(1+x^{2}\right)}$ behaves like $\frac{1}{x}$, so if $g(x)=\frac{1}{x}$, then by limit comparison test, $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$, and
$\int_{1}^{\infty} \frac{1}{x} d x d i v . \Rightarrow \int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)} d x d i v$.
But p.v. $\int_{-\infty}^{\infty} \frac{x}{\left(1+x^{2}\right)} d x=0$ because f is odd function .

Ex. 1,2,3,4,5,10,11

CH5 5.4 Vector derivatives

Let ∇ denote the n-tuples partial diff. operator $\partial_{j}=\frac{\partial}{\partial x_{j}}$
$\nabla=\left(\partial_{1}, \partial_{2}\right.$ ∂_{n})
If f is a scalar function on $R^{n}, f \in C^{1}$, then $\operatorname{grad} f=\nabla f=\left(\partial_{1} f, \partial_{2} f\right.$, \qquad $\left.\partial_{n} f\right)$
If F is a C^{1} vector valued function on an open subset of R^{n}, then the divergence of F is the function defined by
$\operatorname{div} F=\nabla . F=\partial_{1} F+\partial_{2} F+$ \qquad $+\partial_{n} F$
$\nabla \cdot F=\left(\partial_{1}, \partial_{2}\right.$ $\left.\partial_{n}\right) .\left(F_{1}, F_{2}\right.$ \qquad $\left.F_{n}\right)=\partial_{1} F+\partial_{2} F+$ \qquad $+\partial_{n} F$
Let $\mathrm{n}=3$. If F is $a C^{1}$ vector valued function on an open ubse of R^{3}, the curl of F is the vector defined
Curl $f=\nabla \times F=\left|\begin{array}{lll}i & j & k \\ \partial_{1} & \partial_{2} & \partial_{3} \\ F_{1} & F_{2} & F_{3}\end{array}\right|=\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right) i-\left(\partial_{1} F_{3}-\partial_{3} F_{1}\right) i+\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right) k$
Properties : 1) $\operatorname{grad}(f g)=f \operatorname{grad}(g)+g \operatorname{gr} d(f$

$$
\nabla(f g)=f \nabla g+g \nabla f
$$

Where f, g are scalar real valued functi on
2) If F, G are vector valued fun tion, hen
$\operatorname{grad}(F . G)=(F . \nabla) G+F \times(c l r l G)+(0 \nabla) F+G \times(c u r l F)$

$$
=(F . \nabla) G+F \times(\nabla \times G)+G . \nabla) F+G \times(\nabla \times F)
$$

3) If f is a scalar 11 valued function and G is a vector valued function, then $\operatorname{Curl}(f G)=f(u r l G+\operatorname{grad} f) \times G$.

$$
\nabla \times J 0)=,(\nabla \times G)+(\nabla f) \times G .
$$

4) If F, G ans vector valued functions ,then
$\operatorname{Curl}(F \times G)=(G . \nabla) F+(\operatorname{div} G) F-(F . \nabla) G-(\operatorname{div} F) G$
$\nabla \times(F \times G)=(G . \nabla) F+(\nabla . G) F-(F . \nabla) G-(\nabla . F) G$
5) If f is a real function, then
$\operatorname{div}(f G)=f \operatorname{div} G+(g r a d f) \cdot G$
$\nabla \cdot(f G)=f(\nabla \cdot G)+(\nabla f) . G$

Advanced Calculus

6) If F, G are vector valued functions, then
$\operatorname{div}(F \times G)=G .(C u r l F)-F .(\operatorname{curl} G)$
$\nabla .(F \times G)=G .(\nabla \times F)-F .(\nabla \times G)$

Note 1): $F . \nabla=\sum_{j=1}^{n} F_{j} \partial_{j}=F_{1} \frac{\partial}{\partial x_{1}}+F_{2} \frac{\partial}{\partial x_{2}}+$. \qquad $+F_{n} \frac{\partial}{\partial x_{n}}$
And $(F . \nabla) G=F_{1} \frac{\partial G}{\partial x_{1}}+F_{2} \frac{\partial G}{\partial x_{2}}+$ \qquad $+F_{n} \frac{\partial G}{\partial x_{n}}$

Note 2): Properties 1, 5 are valid in R^{n} for any n, and p^{r} spe ties 2, 3, 4, 6 which involve cross products and Curls are valid in R^{3}

Proof of property 1) : $\nabla(f g)=f \nabla g+g \nabla f$
Proof: $\nabla(f g)=\left(\frac{\partial f g}{\partial x_{1}}, \frac{\partial f g}{\partial x_{2}}, \ldots \ldots \ldots, \frac{\partial f g}{\partial x_{n}}\right)$

$$
\begin{aligned}
& \nabla(f g)=\left(f \frac{\partial g}{\partial x_{1}}+g \frac{\partial f}{\partial x_{1}}, f \frac{\partial g}{\partial x_{2}}+g \frac{\partial}{\partial x_{2}} \cdots \cdots, f\left(\frac{\partial g}{\partial x_{n}}+g \frac{\partial f}{\partial x_{n}}\right)\right. \\
& \nabla(f g)=\left(f \frac{\partial g}{\partial x_{1}}, f \frac{\partial g}{\partial \sigma_{2}, \ldots \ldots \ldots}\left(f \frac{\partial g}{\partial x}\right)+g \frac{\partial f}{\partial x_{1}}, g \frac{\partial f}{\partial x_{2}}, \ldots \ldots \ldots \ldots, g \frac{\partial f}{\partial x_{n}}\right) \\
& \nabla(f g)=f\left(\frac{g}{\partial}, \frac{\partial g}{\partial x_{2}}, \ldots \ldots \ldots . . \frac{\partial}{\partial x_{n}}\right)+g\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots \ldots \ldots \ldots, \frac{\partial f}{\partial x_{n}}\right) \\
& \nabla\left(f_{\mathrm{c}}\right)=f \mathrm{~b}+g \nabla f
\end{aligned}
$$

Proof oin operty 6) : $\nabla .(F \times G)=G .(\nabla \times F)-F .(\nabla \times G)$
Proof : $F, \mathrm{C} \in R^{3}$

$$
\begin{aligned}
& F \times G=\left|\begin{array}{lll}
i & j & k \\
F_{1} & F_{2} & F_{3} \\
G_{1} & G_{2} & G_{3}
\end{array}\right|=\left(F_{2} G_{3}-F_{3} G_{2}\right) i-\left(F_{1} G_{3}-F_{3} G_{1}\right) j+\left(F_{1} G_{2}-F_{2} G_{1}\right) k \\
& \nabla=\left(\partial_{1}, \partial_{2}, \ldots \ldots \ldots \ldots ., \partial_{n}\right)
\end{aligned}
$$

Advanced Calculus

$$
\begin{aligned}
& \text { Left side }=\nabla \cdot(F \times G)=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right) \cdot\left(F_{2} G_{3}-F_{3} G_{2}, F_{3} G_{1}-F_{1} G_{3}, F_{1} G_{2}-F_{2} G_{1}\right) \\
& =\frac{\partial\left(F_{2} G_{3}-F_{3} G_{2}\right)}{\partial x_{1}}+\frac{\partial\left(F_{3} G_{1}-F_{1} G_{3}\right)}{\partial x_{2}}+\frac{\partial\left(F_{1} G_{2}-F_{2} G_{1}\right)}{\partial x_{3}} \\
& \left.=\frac{\partial F_{2}}{\partial x_{1}} G_{3}+F_{2} \frac{\partial G_{3}}{\partial x_{1}}-\frac{\partial F_{3}}{\partial x_{1}} G_{2}-F_{3} \frac{\partial G_{2}}{\partial x_{1}}+\frac{\partial F_{3}}{\partial x_{2}} G_{1}+F_{3} \frac{\partial G_{1}}{\partial x_{2}}-\frac{\partial F_{1}}{\partial x_{2}} G_{3}-F\right) \\
& +\frac{\partial F_{1}}{\partial x_{3}} G_{2}+F_{1} \frac{\partial G_{2}}{\partial x_{3}}-\frac{\partial F_{2}}{\partial x_{3}} G_{1}-F_{2} \frac{\partial G_{1}}{\partial x_{3}} \\
& \quad=\text { G.Curl } F-F(\text { Curl } G)
\end{aligned}
$$

Right side $=\left(G_{1} i+G_{2} j+G_{3} k\right) .\left[\left(\frac{\partial}{\partial x_{2}} F_{3}-\frac{\partial}{\partial x_{3}} F_{2}\right) i+\left(\frac{\partial}{\partial x_{3}} F_{1}-\frac{\partial}{\partial x_{1}}, F_{3}\right) j+\left(\frac{\partial}{\partial x_{1}} F_{2}-\frac{\partial}{\partial x_{2}} F_{1}\right) k\right]$

If $f \in C^{2}$ is a scalar real valued function in R^{3}, and F is vector valued function on R^{3},then
$\operatorname{Curl}(\operatorname{grad} f)=\nabla \times \nabla f)=\left|\begin{array}{ccc}\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}}\end{array}\right|=$

$$
\left(\frac{\partial^{2} f}{\partial x_{2} \partial x_{3}}-\frac{\partial^{2} f}{\partial x_{3} \partial x_{2}}\right) i-\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{3}}-\frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}\right) j+\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\right) k=0,
$$

because the mixed partial derivatives are equal ($f \in C^{2}$) also,

Advanced Calculus

$\operatorname{div}($ Curl $F)=\nabla .(\nabla \times F)=\left(\frac{\partial}{\partial x_{1}} i+\frac{\partial}{\partial x_{2}} j+\frac{\partial}{\partial x_{j}} k\right) \cdot\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\ F_{1} & F_{2} & F_{3}\end{array}\right|=$ $\frac{\partial}{\partial x_{1}}\left[\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}\right]+\frac{\partial}{\partial x_{2}}\left[\frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}\right]+\frac{\partial}{\partial x_{3}}\left[\frac{\partial F_{3}}{\partial x_{1}}-\frac{\partial F_{2}}{\partial x_{2}}\right]=0$

Scalar function $\xrightarrow{\text { grad }}$ vector function $\xrightarrow{\text { Curl }}$ vector function $\xrightarrow{\text { div }}$ scalar function

If f is a scalar real valued function on R^{n}, then The Lap ian of f is denoted by $\nabla^{2} f$ or Δf
$\nabla^{2} f=\operatorname{div}(\operatorname{grad} f)=\nabla \cdot(\nabla f)$
$=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots \ldots \ldots \ldots ., \frac{\partial}{\partial x_{n}}\right) .\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots \ldots \ldots . . ., \frac{\partial f}{\partial x_{n}}\right)$
$=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+$ \qquad $+\frac{\partial^{2} f}{\partial x_{n}^{2}}$

The Laplacian for a vecter function F where $F \in R^{3}$

$$
\begin{aligned}
\nabla^{2} F= & \operatorname{grad}(\operatorname{div} F)-C \operatorname{cirl}(\operatorname{Curl} F) \\
& =\nabla(\nabla \cdot F)-\nabla \cdot \nabla\langle F) \\
& =\nabla^{2} F_{1} i-\nabla^{2} F_{2} i+\nabla^{2} F_{3} k
\end{aligned}
$$

Proof : gre (civ $v)=\mathcal{J}(\nabla . F)=\nabla\left(\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\frac{\partial F_{3}}{\partial x_{3}}\right)$
$=\left(\frac{\partial^{2} F_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} F_{2}}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} F_{3}}{\partial x_{1} \partial x_{3}}\right) i+\left(\frac{\partial^{2} F_{1}}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} F_{2}}{\partial x_{2}^{2}}+\frac{\partial^{2} F_{3}}{\partial x_{2} \partial x_{3}}\right) j+\left(\frac{\partial^{2} F_{1}}{\partial x_{1} \partial x_{3}}+\frac{\partial^{2} F_{2}}{\partial x_{2} \partial x_{3}}+\frac{\partial^{2} F_{3}}{\partial x_{3}^{2}}\right) k$
$\operatorname{Curl}(\operatorname{Curl} F)=\frac{\partial}{\partial x_{1}} \quad \frac{\partial}{\partial x_{2}} \quad \frac{\partial}{\partial x_{3}}$

$$
\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}} \frac{\partial F_{3}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}} \quad \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}
$$

Advanced Calculus

و بعد التجميع ينتج أن

$\nabla^{2} F=\nabla(\nabla . F)-\nabla \times(\nabla \times F)=\nabla^{2} F_{1} i+\nabla^{2} F_{2} j+\nabla^{2} F_{3} k$.

Ex. 1,2,3, ...,9

CH6 infinite series

6.1 Definitions and examples

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+\ldots \ldots \ldots \quad \text { (infinite series) }
$$

Where a_{n} can be real no., complex no. ,vectors $s_{0}=a_{0}, s_{1}=a_{0}+a_{1}$ \qquad $s_{k}=a_{0}+a_{1}+$ \qquad $+n$ are called partial sums
The seq. $\left\{S_{n}\right\}$ is called a seq. of partial sans
The series $\sum_{n=0}^{\infty} a_{n}$
 If $\lim _{n \rightarrow \infty} S_{n}=s \Rightarrow \sum_{n=0}^{\infty} a_{n}$
TH: a) If the series $\sum_{n}^{\infty} a_{n}$ and $\sum_{n}^{\infty} t_{n}$ are conv. with sums S and T, then $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)$ iscons ith sums $\mathrm{S}+\mathrm{T}$
b) If the s, ries $\sum_{n=0}^{\infty} a_{n}$ is convergent, with sum S , then for any $c \in R$ the series $\sum_{n=0}^{\infty} c a_{n}$ is conv. with sum cS.
c) If the series $\sum_{n=0}^{\infty} a_{n}$ is conv. then $\lim _{n \rightarrow \infty} a_{n}=0$ equivalenty, if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=0}^{\infty} a_{n}$ divergent.

Proof: let $\left\{s_{k}\right\}$ and $\left\{t_{k}\right\}$ be the seq. of partial sums of the series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ resp. if $\lim _{k \rightarrow \infty} s_{k}=S$ and $\lim _{k \rightarrow \infty} t_{k}=T$ then $\lim _{k \rightarrow \infty} s_{k}+t_{k}=S+T$ and $\lim _{k \rightarrow \infty} c s_{k}=c S$ \Rightarrow a and bare follows
From c) we observe that $a_{n}=S_{n}-S_{n-1}$. If the series converges to the sum S,it follows that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=S-S=0$

Geometric series $\sum_{n=0}^{\infty} a x^{n}=a+a x+a x^{2}+$. \qquad is called G.S w th irt term a and x is the base or the ratio of the series.
The k-th partial sums of $\sum_{n=0}^{\infty} a x^{n}$
$S_{k}=a+a x+a x^{2}+$ \qquad $+a x^{k}$
$x S_{k}=a x+a x^{2}+a x^{3}+$. \qquad $+a x^{k+1}$
$(1-x) S_{k}=a-a x^{k+1}=a\left(1-x^{k+1}\right)$
$S_{k}=\frac{a\left(1-x^{k+1}\right)}{(1-x)} \quad x \neq 1$
If $|x|<1$, then $\lim _{k \rightarrow \infty} x^{k+1}=0$
$\lim _{k \rightarrow \infty} S^{k}=\frac{a}{1-x}$ it follows that the eric $\sum_{n=0} a x^{n}$ conv. to $\frac{a}{1-x}$
If $|x| \geq 1$, the series div.

TH: The geomet : series $\sum_{n=0}^{\infty} a{ }_{n}^{n}$ conv. iff $|x|<1$ in which case its sum is $\frac{a}{1-x}$
Taylor serie : If $j \in C^{\infty}$ on $(-C, C)$
$f(x)=f(0)+'^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\ldots \ldots \ldots \ldots \ldots+\frac{f^{(k)}(0) x^{k}}{k!}+R_{k}(x)$
If $R_{k}(x) \rightarrow 0$ us $k \rightarrow \infty,|\mathrm{x}|<\mathrm{c}$.
The Taylor series of $f(x)$ at $\mathrm{X}=0$ is
$f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(0) x^{n}}{n!}$
$R_{k}(x) \rightarrow 0$ as $k \rightarrow \infty$ follows from the estimate for the taylor remainder $\left|R_{k}(x)\right| \leq \sup _{|k||x|}\left|f^{k+1}(t)\right| \frac{|x|^{k+1}}{(k+1)!}$

Advanced Calculus

$\mathbf{T H}$: Let f be a function of class C^{∞} on the interval (-c,c), where $0<c<\infty$
a) If there exist constants $\mathrm{a}, \mathrm{b}>0$ such that $\left|f^{k}(x)\right| \leq a b^{k} k$! for all $|\mathrm{x}|<\mathrm{c}$ and $k \geq 0$, then $f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(0) x^{n}}{n!}$ holds for $|x|<\min \left(c, \frac{1}{b}\right)$
b) If there exist constants $\mathrm{A}, \mathrm{B}>0$ such that $\left|f^{k}(x)\right| \leq A B^{k}$ for $\mathrm{a}_{1}|\mathrm{x}|<\mathrm{c}$ and $k \geq 0$, then $f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(0) x^{n}}{n!}$ holds for $|\mathrm{x}|<\mathrm{c}$

Proof :a) If $\left|f^{k}(x)\right| \leq a b^{k} k!\Rightarrow\left|R_{k}(x)\right| \leq \frac{a b^{k+1}(l)+1,\left.x\right|^{+1}}{n k+1)!}<a|D x|^{k+1}$
For $|\mathrm{X}|<\mathrm{c}$, If $|x|<b^{-1} \Rightarrow|x b|<1 \Rightarrow|x b|^{k+1}-0$
$\Rightarrow \lim _{k \rightarrow \infty} R_{k}(x)=0$
$\Rightarrow f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(0) x^{n}}{n!}$
b) $\frac{C^{k}}{k!} \rightarrow 0$ as $k \rightarrow$ So ,for any positive A, B and b ,the seq. $\frac{A(B / b)^{k}}{k!} \rightarrow 0$ as $k \rightarrow \infty$

Let a be the 1 . rgest term of the set
$\left.\Rightarrow A B^{k}=\frac{A(t, b)^{k}}{k!}\right] b^{k} k!\leq a b^{k} k$!
So the estimate $\left|f^{k}(x)\right| \leq A B^{k}$, for a given A and B implies the estimate $\left|f^{k}(x)\right| \leq a b^{k} k$! for every $b>0$ (with a depending on b). Hence (b) follows from (a).

Example 1: $f(x)=\cos x$
$f^{k}(x)= \pm \cos x \quad$ or $\quad \pm \sin x$
$t \in(0, x)$ so $\left|f^{k}(x)\right| \leq 1$ for all X

Advanced Calculus

$R_{0, k}(x)=\frac{f^{k+1}(t) x^{2 k+1}}{(2 k+1)!} \Rightarrow\left|R_{0, k}(x)\right| \leq \frac{x^{2 k+1}}{(2 k+1)!} \Rightarrow R_{0, k}(x) \rightarrow 0$
And $\cos \mathrm{x}$ conv. to its taylor series $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
Similarly for $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

Example 2: $f(x)=e^{x}$

$$
\begin{gathered}
f^{k}(x)=e^{x} \text { for all } k \\
\text { for }|x|<c \Rightarrow\left|f^{k}(x)\right|<e^{c} \\
R_{k}(x)=\frac{f^{k+1}(t) x^{k+1}}{(k+1)!} \leq \frac{e^{c} x^{k+1}}{(k+1)!} \Rightarrow R_{k}(x) \rightarrow 0 \text { as } k \rightarrow \infty
\end{gathered}
$$

$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad$ for $|x|<c \quad$ but c is arbitrary for all

Ex. 1,2,3

EX:1d) Find the values of x for ni h each of the following series converges and compute its sum
$\log x+(\log x)^{2}+(\log x)^{3}+$
Solution : $|\log x|<\Rightarrow 1<\log x<1+P^{-1}<x<e^{1}$
2) Tell wheth eac of the following series converges if it does, Find its sum
a) $1+\frac{3}{4}+\frac{3}{8}, \frac{9}{15}+\frac{17}{32} \ldots \ldots \ldots . .=\sum_{n-0}^{\infty} \frac{2^{n}+1}{2.2^{n}}$ $a_{n}=\frac{2^{n}+1}{2.2^{n}} \rightarrow \frac{1}{2} \neq 0$ so the series div.
c) $(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})$

$$
S_{n}=\sqrt{n+1}-\sqrt{1} \rightarrow \infty \quad \text { so the series div. }
$$

Advanced Calculus

3) Let $f(x)=\log (1+x)$ show that the Taylor Lagrange remainder $R_{0, k}(x)$ tends to zero as $k \rightarrow \infty$ for $-1<x \leq 1$, and conclude that $\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$ for $-1<x \leq 1$
Solution : we use the lagrange Remainder formula for $R_{0, k}(x)$
$R_{0, k}(x)=\frac{f^{k+1}(c) x^{k+1}}{(k+1)!} c \in(0, x)$ when $-0.5<x \leq 1$
$f(x)=\log (1+x), f^{\prime}(x)=\frac{1}{1+x}, f^{\prime}(0)=1$
$f^{\prime \prime}(x)=-(x+1)^{-2} \Rightarrow f^{\prime \prime}(0)=-1$
$f^{\prime \prime \prime}(x)=2(x+1)^{-3} \Rightarrow f^{\prime \prime \prime}(0)=2$
$f^{(4)}(x)=(-1)^{3} 3!(x+1)^{-4} \Rightarrow f^{(4)}(0)=6$
$f^{(n+1)}(x)=(-1)^{n} n!(x+1)^{-(n+1)} \Rightarrow f^{(k+1)}(c)=(-1)^{k} k!(c+1)^{-(k+1)}$
$\left|R_{0, k}(x)\right| \leq \frac{k!|x|^{k+1}}{(c+1)^{k+1}(k+1)!},\left|\frac{x}{c+1}\right|<1 \quad$ for -0 ., $x \leq 1-\left\lvert\, \frac{x}{c+1)^{k+1} \rightarrow 0}{ }^{k+1} \rightarrow 0\right.$
$\left|R_{0, k}(x)\right| \rightarrow 0$
for $-1<x \leq-0.5$ we use the for hul
$R_{0, k}(h)=\frac{h^{k+1}}{k!} \int_{0}^{1}(1-t)^{k} f^{(k+1)}(t \cdot) d t$
Let $\mathrm{u}=$ th, $0<t \leq$

$$
\int_{0}^{1}(1-t)^{k} f^{(k+1)}(t) d t=\int_{0}^{h}\left(1-\frac{u}{h}\right)^{k} f^{(k+1)}(u) \frac{d u}{h}
$$

Advanced Calculus

By the mean value theorem of integration \exists a number
$u^{\prime} \in(u, 0) \ni \int_{0}^{h}\left(1-\frac{u}{h}\right)^{k} f^{(k+1)}(u) \frac{d u}{h}=h .\left(1-\frac{u^{\prime}}{h}\right)^{k} \frac{(-1)^{k} k!\left(u^{\prime}+1\right)^{-k-1}}{h}=\frac{\left(h-u^{\prime}\right)^{k}(-1)^{k} k!\left(u^{\prime}+1\right)^{-k-1}}{h^{k}}$
$\left|R_{0, k}(x)\right| \leq \frac{x^{k+1}\left(x-x^{\prime}\right)^{k}\left(x^{\prime}+1\right)^{-k-1}}{x^{k}}=|x|\left|x-x^{\prime}\right|\left|x^{\prime}+1\right|^{-k-1}=\frac{|x|\left|x-x^{\prime}\right|^{k}}{\left|x^{\prime}+1\right|^{k+1}}$
$\leq \frac{|x|\left|x-x^{\prime}\right|^{k}}{\left|x^{\prime}+1\right|\left|x^{\prime}+1\right|^{k}},|x|<1 \Rightarrow \frac{\left|x-x^{\prime}\right|}{\left|x^{\prime}+1\right|}<|x| \Rightarrow \frac{\left|x-x^{\prime}\right|}{|x+x|} \leq|x|^{k} \Rightarrow$
$\left|R_{0, k}(x)\right| \leq \frac{|x|^{k}|x|}{\left|x^{\prime}+1\right|}$ for $(x, 0), x^{\prime} \in(x, 0), x<x^{\prime} \Rightarrow x+1<x^{\prime}+1 \Rightarrow\left|\frac{1}{x^{\prime}+1}\right|<\left|\frac{1}{1+x^{\prime}}\right|$
$\left|R_{0, k}(x)\right| \leq \frac{|x|^{k+1}}{\left|x^{\prime}+1\right|} \leq \frac{|x|^{k+1}}{|1+x|} \rightarrow 0$ as $k \rightarrow \infty$.

6.2 Series with Non negative terms

The integral test
If $a_{n}=f(n)$ where f is a function of dral variable, a sum $\sum_{j}^{k} a_{n}$ can be compared to an integral $\int_{j}^{k} f(x) d x$
Theorem : Suppor f is a positivedecreasing function on the half - line $[a, \infty)$, Then for any integ $r, \mathrm{j}, \mathrm{k}$ with $\mathfrak{a} \leq \mathrm{j} \leq k$,

$$
\sum_{n=j}^{k-1} f(n) \geq \int_{j}^{k} f(x) d x \geq \sum_{n=j+1}^{k} f(n)
$$

Proof: Sine f is decreasing, for $n \leq x \leq n+1$ we have $f(n) \geq f(x) \geq f(n+1)$ And hence $f(n)=\int_{n}^{n+1} f(n) d x \geq \int_{n}^{n+1} f(x) d x \geq \int_{n}^{n+1} f(n+1) d x=f(n+1)$ adding up these inequalities from
$\mathrm{n}=\mathrm{j}$ to $\mathrm{n}=\mathrm{k}-1$ we obtain the asserted $\sum_{n=j}^{k-1} f(n) \geq \int_{j}^{k} f(x) d x \geq \sum_{n=j+1}^{k} f(n)$

Advanced Calculus

$$
\begin{aligned}
& f(j) \geq \int_{j}^{j+1} f(x) d x \geq f(j+1) \\
& f(j+1) \geq \int_{j+1}^{j+2} f(x) d x \geq f(j+2) \\
& f(j+2) \geq \int_{j+2}^{j+3} f(x) d x \geq f(j+3) \\
& \vdots \\
& \sum_{n=j}^{k-1} f(n) \geq \int_{j}^{k} f(x) d x \geq \sum_{n=j+1}^{k} f(n) \\
& \Rightarrow \sum_{n=2}^{k+1} f(n) \leq \int_{1}^{k+1} f(x) d x \leq \sum_{n=1}^{k} f(n)
\end{aligned}
$$

Corollary : (The integraitart) Suhpose f is a positive decreasing function on the half -line $[1, \infty)$, Thon ae series $\sum_{n=1}^{n} Y(n)$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ conve ges

Proof : Let $S_{k}=\sum_{n=1}^{k} f(n)$. If $\int_{1}^{\infty} f(x) d x<\infty$ we have
$S_{k}=f(1)+\sum_{n=2}^{k} f(n) \leq f(1)+\int_{1}^{k} f(x) d x \leq f(1)+\int_{1}^{\infty} f(x) d x$.
So the partial sums are bounded above and hence the series converges. On the other hand if $\int_{1}^{\infty} f(x) d x=\infty$ we have $S_{k}=\sum_{n=1}^{k-1} f(n)+f(k) \geq \int_{1}^{k} f(x) d x+f(k) \rightarrow \infty$ as $\quad k \rightarrow \infty$
So the series div.

Advanced Calculus

Theorem : The series $\sum_{n=1}^{\infty} n^{-p}$ converges if $p>1$ and div. if $p \leq 1$ $\int_{1}^{\infty} x^{-p} d x=\lim _{k \rightarrow \infty} \frac{x^{1-p}}{1-p}= \begin{cases}(p-1)^{-1} & \text { if } p>1 \\ \infty & \text { if } p<1\end{cases}$
And $\int_{1}^{\infty} x^{-1} d x=\left.\lim _{k \rightarrow \infty} \log x\right|_{1} ^{k}=\infty$

General Comparasion tests

Theorem : Suppose $0 \leq a_{n} \leq b_{n}$ for $n \geq 0$
If $\sum_{n=0}^{\infty} b_{n}$ conv., then so does $\sum_{n=0}^{\infty} a_{n}$
If $\sum_{n=0}^{\infty} a_{n}$ div., then so does $\sum_{n=0}^{\infty} b_{n}$
Proof: Let $S_{k}=\sum_{n=0}^{k} a_{n}$ and $t_{k}=\sum_{n=0}^{k} b_{n}$ thus $0 \leq \leq t$ for $2\left(\mathbb{1 1} \mathrm{~K}\right.$. If $\sum_{n=0}^{\infty} b_{n}$ conv. Then the seq. $\left\{t_{k}\right\}$ is bounded set, hence so the $\left.S t \in S_{k}\right\}$ ent seq $\cdot\left\{S_{k}\right\}$ conv..
By monotone seq. theorem this pros is firgtassertion, to which the second one is logically equivalence .

Example : The series $\sum_{n=1}^{\infty} \frac{1}{2 n}$ div.
Because $\frac{1}{2 n-1} \geq \frac{1}{2 n}$ sr $n>1$ bectuse $\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ div.
Th. (Th Ill it onparison test) : suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are seq of positive numbers a d that $\frac{a_{n}}{b_{n}}$ approaches a positive, finite limit as $n \rightarrow \infty$, then the series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n} \quad$ are either both convergent or both divergent.

Proof: If $\frac{a_{n}}{b_{n}} \rightarrow l$ as $n \rightarrow \infty$, where $0<l<\infty$, we have $\frac{1}{2} l<\frac{a_{n}}{b_{n}}<2 l$ when n is large.
That is $a_{n}<2 l b_{n}$ and $b_{n}<(2 / l) a_{n}$
The result therefore follows from previous Th. and the remark s following it .

Advanced Calculus

Example 2) $\sum_{n=1}^{\infty}\left(n^{2}-6 n+10\right)^{-1}$
$a_{n}=\frac{1}{n^{2}-6 n+10}$ behave like $\frac{1}{n^{2}}$
$b_{n}=\frac{1}{n^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ conv. and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$
The series $\sum_{n=1}^{\infty} a_{n}$ conv. by limit comparison test.

Extension of previous theorem :

If $\frac{a_{n}}{b_{n}} \rightarrow 0$ as $n \rightarrow \infty$ then $a_{n}<b_{n}$ for large n , so the convergence of $\sum_{n=0}^{\infty} b_{n} \quad$ will imply the conv. of $\sum_{n=0}^{\infty} a_{n}$, also if $\frac{a_{n}}{b_{n}} \rightarrow \infty$ as $n \rightarrow \infty$ then $>b_{n}$ for arge n , so the divergence of $\sum_{n=0}^{\infty} a_{n}$ will imply the div.

Th: (The ratio ter $\}$ Suppose $\{a, 1$ is a sequence of positive numbers
a) If $\frac{a_{n+1}}{a_{n}}<f_{\text {or }} 11$ sufficiently large n , where $\mathrm{r}<1$, then the series $\sum_{n=-}^{\infty} n_{n}$ on er ges. On the other hand, if $\frac{a_{n+1}}{a_{n}} \geq 1$, for all sufficiently large n , then the se ies $\sum_{n=0}^{\infty} a_{n}$ diverges
b) Suppose that $l=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ exists. Then the series $\sum_{n=0}^{\infty} a_{n}$ converges if $l<1$ and diverges if $l>1$, No conclusion can be drawn if $l=1$

Advanced Calculus

Proof: Suppose $\frac{a_{n+1}}{a_{n}}<r<1$ for all $n \geq N$, Then $a_{N+1}<r a_{N}, a_{N+2}<r a_{N+1}<r^{2} a_{N}, a_{N+3}<r a_{N+2}<r^{2} a_{N+1}<r^{3} a_{N}$.

So $a_{N+m}<r^{m} a_{N}$ for all $m \geq 0$, The series $\sum_{n=0}^{\infty} a_{n}$ therefore converges by comparison to the Geometric series $\sum_{n=0}^{\infty} r^{m}$
$\sum_{n=0}^{\infty} a_{n}<a_{0}+\ldots \ldots \ldots \ldots \ldots+a_{N-1}+a_{N}\left(1+r+r^{2}+\right.$ \qquad .) $<\infty$

On the other hand, if $\frac{a_{n+1}}{a_{n}} \geq 1$ then $a_{n+1} \geq a_{n}$ if this is, So fo all $n \geq N$ then $\lim _{n \rightarrow \infty} a_{n} \neq 0$. So $\sum_{n=0}^{\infty} a_{n}$ can not converges, This prove (a).
 $\sum_{n=0}^{\infty} a_{n}$ converges by part (a) If $l>1$, then $\frac{a_{n+1}}{n}$ for 1 arge n , so $\sum_{n=0}^{\infty} a_{n}$ div.

Finally, if we take $a_{n}=n^{-p}$, we $k n-w$ hat \sum^{∞} converges if $p>1$ and diverges if $p \leq 1$ but $\frac{a_{n+1}}{a_{n}}=\left[\frac{n}{n+1}\right]^{p} \rightarrow 1$, no natter vhat p is Hence the test is j conclusive if $l=1$.

TH: (The r ot te t) Nuppose $\left\{a_{n}\right\}$ is a seq. of positive numbers
a) If $a_{n}^{n}<r{ }^{c}$ or all sufficiently large n , where $r<1$, then the series $\sum_{n=0}^{\infty} a_{n}$ converges. On the other hand if $a_{n}^{1 / n} \geq 1$ for all sufficiently large n , then the series $\sum_{n=0}^{\infty} a_{n}$ diverges.
b) Suppose that $l=\lim _{n \rightarrow \infty} a_{n}^{1 / n}$ exists. Then the series $\sum_{n=0}^{\infty} a_{n}$ conv. if $l<1$ and diverges if $l>1$. No conclusion can be drawn if $l=1$

Advanced Calculus

Proof : If $a_{n}^{1 / n}<r$, we have $a_{n}<r^{n}$, So we have an immediate comp to G.S $\sum_{n=0}^{\infty} r^{m}$ that given the convergence of $\sum_{n=0}^{\infty} a_{n}$ where $r<1$.

If $a_{n}^{1 / n} \geq 1$, then $a_{n} \geq 1$ So, $\lim _{n \rightarrow \infty} a_{n} \neq 0$ and $\sum_{n=0}^{\infty} a_{n}$ div. (This prove (a)).
Part(b) follows as in the proof of the ratio test
If $a_{n}^{1 / n} \rightarrow l<1$, let $r \in(l, 1)$ So for large $\mathrm{n}, a_{n}^{1 / n}<r<1$, so $\sum_{n=0}^{\infty} a_{n}$ con \cdot
If $a_{n}^{1 / n} \rightarrow l>1$, then $a_{n}^{1 / n} \geq 1$ for large n and $\sum_{n=0}^{\infty} a_{n} \operatorname{div}$.
Finally . for $a_{n}=n^{-p}$ we have $a_{n}^{1 / n}=n^{\frac{-p}{n}} \rightarrow 1$ for any 1 as $n \rightarrow \infty$, so the test is in conclusive when $l=1$

Ex 7) : $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$ Determine whether the series \sim nv or dia

$$
l=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{10^{n+1}} \cdot \frac{10^{n}}{n!}=\lim _{n \rightarrow \infty} \frac{n+1}{10}=
$$

So the series div. by ratio test

Ex.12) $\left.\sum_{i=1}^{\infty} \frac{1}{1}\right)^{n^{2}}$
By root t
$l=\lim _{n \rightarrow \infty}\left(\left(\frac{n}{n+1} n^{n^{2}}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{n+1}{n}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}<1\right.$
So the series conv. by root test.
TH: (Raabe's Test) Let $\left\{a_{n}\right\}$ be a seq. of positive numbers suppose that $\frac{a_{n+1}}{a_{n}} \rightarrow 1 \quad$ and $\quad n\left[1-\frac{a_{n+1}}{a_{n}}\right] \rightarrow L$ as $n \rightarrow \infty$

Advanced Calculus

If $l>1$, then the series $\sum_{n=0}^{\infty} a_{n}$ conv. and if $l<1$, then the series $\sum_{n=0}^{\infty} a_{n}$ diverges (If $L=1$, no Conclusion can be drawn)

Proof : If $l>1$, choose a number p with $1<p<L$, then when n is large, we have $n\left[1-\frac{a_{n+1}}{a_{n}}\right]>p$, that is $\frac{a_{n+1}}{a_{n}}<1-\frac{p}{n}$.
Since, $\frac{(n+1)^{-p}}{n^{-p}}=\left[1+\frac{1}{n}\right]^{-p}=1-\frac{p}{n}+E_{n} \quad$, where $0<E_{n}<\frac{p(p+1)}{2 n^{2}} \ldots .$. (1)
Then $\frac{a_{n+1}}{a_{n}}<1-\frac{p}{n}<\frac{(n+1)^{-p}}{n^{-p}}$ or $\frac{a_{n+1}}{(n+1)^{-p}}<\frac{a_{n}}{n^{-p}}$.
Thus the seq. $\left\{\frac{a_{n}}{n^{-p}}\right\}$ is dec., so it is bounded above by a corn $\operatorname{tant} \mathrm{C}$. In other words, $a_{n} \leq C n^{-p}$, So Since p>1, $\sum_{n=0}^{\infty} a_{n}$ converges by comp rison to $\sum_{n=0}^{\infty} n^{-p}$
On the other hand, if $l<1$, choose numbers p an d with $\mathrm{I}<\mathrm{q}<\mathrm{p}<1$.
Then, when n is large, we have $n\left[1-\frac{a_{n+1}}{n}\right](a)$ hat is $\frac{a_{0}}{a_{n}}>1-\frac{q}{n}$
If also $n>\frac{p(p+1)}{2(p-q)}$, we have $\frac{p(p+1)}{2 n^{2}}-\frac{q}{n}$
So by (1) $\frac{a_{n+1}}{a_{n}}>1-\frac{q}{n}=1-\frac{q}{n}+\frac{p}{n}-\frac{p}{1}=1<\frac{p}{n}+\frac{p-q}{n} a^{-}-\frac{p}{n}+E_{n}=\frac{(n+1)^{-p}}{n^{-p}}$, since $\frac{p-q}{n}>\frac{p(p+1)}{2 n^{2}}>E_{n}$.
Thus $\frac{n+1)^{-p}}{a_{n+1}}<\frac{n^{-p}}{a_{n}} \cdot$ So the seq. $\left\{\frac{n-1}{a_{n}}\right\}$ is dec.
As before, iis g1 es $n^{-p} \leq C a_{n}$ and $\mathrm{p}<1$ in this case, so $\sum_{n=0}^{\infty} a_{n}$ diverges by comparior to $\sum_{n=0} n^{-p}$.

Ex.17) $\sum_{n=1}^{\infty} \frac{1.3 \ldots \ldots \ldots \ldots . .(2 n-1)}{4.6 \ldots \ldots2 n+2)}$

Advanced Calculus

$$
=\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+4}=1
$$

and $n\left[1-\frac{a_{n+1}}{a_{n}}\right]=n\left[1-\frac{2 n+1}{2 n+4}\right]=n\left[\frac{2 n+4-2 n-1}{2 n+4}\right]=\frac{n[3]}{2 n+4} \rightarrow \frac{3}{2}>1$
By raabe's test, the S . conv.
Ex.19) Suppose $a_{n}>0$ Show that if $\sum_{n=0}^{\infty} a_{n}$ conv. ,then so does $\sum_{0}^{\infty} a_{n}^{n}$ any $\mathrm{p}>1$
Let $b_{n}=a_{n}^{p}$
$\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n}^{p}}{a_{n}}=\lim _{n \rightarrow \infty} a_{n}^{p-1} \rightarrow 0$
So by limit comp. test The S .conv.

6.3 Absolute and Conditional convergence

Def: A series $\sum_{n=0}^{\infty} a_{n}$ is called abs. conv. if the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ conv.
Theorem : Every absolutely convergent series is convergent .
Proof: Let $s_{k}=\sum_{n=0}^{k} a_{n}$, and $S_{k}^{\prime}=\sum_{n=0}^{k}\left|a_{n}\right|$, The seq. $\left\{S_{k}^{\prime}\right\}$ is conv. and hence Cauchy.

Advanced Calculus

So given $\varepsilon>0$, there exist an integer K such that $\left|a_{j+1}\right|+\ldots$ \qquad $+\left|a_{k}\right|=S_{k}^{\prime}-S_{j}^{\prime}<\varepsilon$ whenever $\mathrm{k}>\mathrm{j}>\mathrm{K}$.
But then
$\left|s_{k}-s_{j}\right|=\mid a_{j+1}+$. \qquad $+a_{k}\left|\leq\left|a_{j+1}\right|+\right.$. \qquad $+\left|a_{k}\right|<\varepsilon \quad$ whenever $k>j \geq K$

So the seq. $\left\{s_{k}\right\}$ is cuachy seq., so conv. and hence the series $\sum_{n=0}^{\infty} a_{n}$ is conv.

Remark : The converse of the above theorem is false
Def: A series that conv. but does not conv. absolutely is said to be convergent conditionally

Example : $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

This series is conditionally conv. because $\sum_{n=1}^{\infty} \frac{1}{n}$ div
Example: Let
$f(x)=\log (1+x)$, for $\left.\mathrm{n}>0, f^{(n)}(x)=(-1)^{n}(n-1) 1^{1}+x\right)^{n}$ and
$f^{(n+1)}(x)=(-1)^{(n+1)} n!(1+x)^{-n-1}$, so $f^{(n)}\left(\rho^{\prime}\right)-(-1)^{n}(n-1)!$ and the Taylor series of $f(x)$ is given by,

$$
\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!} n^{n}+R_{k}(x), \text { where }
$$

$\left|R_{k}(x)\right| \leq \frac{1}{(k+1)!} \sup _{0 \leq t \leq 1}\left|\frac{(-1)^{k} k!}{(1+l)^{k+1}}\right|=\frac{1}{1+k}-0$ as $k \rightarrow \infty \quad$ for $-1<t \leq 1$, so
$\log (1+x)=\sum_{n=1}^{\infty} \frac{(1)}{n}$
$\log (2)=$

It follows that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ conv. to $\log (2)$

Ex. $\sum_{n=1}^{\infty} \frac{\sin n t}{n^{2}}$ show the series conv absolutely
Sol: $\left|\frac{\sin n t}{n^{2}}\right| \leq \frac{1}{n^{2}}$ and the series $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{2}}$ conv., so $\sum_{\mathrm{n}=1}^{\infty} \frac{\sin \mathrm{nt}}{\mathrm{n}^{2}}$ abs. conv.

Advanced Calculus

Let $a_{n}^{+}=\max \left(a_{n}, 0\right), a_{n}^{-}=\min \left(-a_{n}, 0\right)$
That is $a_{n}^{+}=a_{n}$ if a_{n} is positive, and $a_{n}^{+}=0$ otherwise and $a_{n}^{-}=\left|a_{n}\right|$ if a_{n} is negative and $a_{n}^{-}=0$ otherwise, the nonzero a_{n}^{+}'s are the positive terms of $\sum_{n=0}^{\infty} a_{n}$ and the non zero a_{n}^{-}are the absolute values of the negative terms. So $a_{n}^{+}-a_{n}^{-}=a_{n}$ and $a_{n}^{+}+a_{n}^{-}=\left|a_{n}\right|$

TH: If $\sum_{n=0}^{\infty} a_{n}$ is abs. conv., the series $\sum_{n=0}^{\infty} a_{n}^{+}$and $\sum_{n=0}^{\infty} a_{n}^{-}$are both conv. If $\sum_{n=0}^{\infty} a_{n}$ is conditionally conv. then the series $\sum_{n=0}^{\infty} a_{n}^{+}$and $\sum_{n=0}^{\infty} a_{n}^{-}$are both diverger t

Proof: The theorem follows from the followeing three facts

1) The conv. of $\sum_{n=0}^{\infty}\left|a_{n}\right| \Rightarrow$ The conv. of $\sum_{n=0}^{\infty} a_{n}^{+} a^{2} \sum_{=0}^{\infty} a_{n}^{-}$
2) The div. of $\sum_{n=0}^{\infty}\left|a_{n}\right| \Rightarrow$ The div. of at least ine of $\sum_{n=0} a_{n}^{+}$and $\sum_{n=0}^{\infty} a_{n}^{-}$
3) If $\sum_{n=0}^{\infty} a_{n}$ conv. conditionally it can not bap en thatone of $\sum_{n=0}^{\infty} a_{n}^{+}$and $\sum_{n=0}^{\infty} a_{n}^{-}$ conv. while the other one div.

Proof : 1) Since $0 \leq a_{n}^{+} \leq\left|a_{n}\right|$ and $\left(<a_{n}^{-} \leq\left|a_{n}\right|\right.$
If $\sum_{n=0}^{\infty}\left|a_{n}\right|$ Conv. \Rightarrow both $\sum_{n=}^{\infty} a_{n}^{+}$anc. $\sum_{n=0}^{\infty} a_{n}^{-}$conv.
Proof : 2) since $a_{n}+{ }_{n}=\left|a_{n}\right|$ if $\sum_{n=0}^{\infty}\left|a_{n}\right|$ div. \Rightarrow at least one of $\sum_{n=0}^{\infty} a_{n}^{+}$and $\sum_{n=0}^{\infty} a_{n}^{-} \operatorname{div}$.
Proof:3) $\left.\boldsymbol{O}_{k}\right\rangle \sum_{n=1}^{k} a_{n}, S_{k}^{ \pm}=\sum_{n=1}^{k} a_{n}^{ \pm} \quad$ be the kth partial sums $\Rightarrow S_{k}^{+}-S_{k}^{-}=S_{k}$. Suppose th.t $\sum_{n=1}^{\infty} a_{n}^{+}=\infty$ while $\sum_{n=1}^{\infty} a_{n}^{-}=S<\infty$, then for any $\mathrm{C}>0$ for large k we have $S_{k}^{+}>C+S$ while $S_{k}^{-} \leq S$, so that $S_{k}>C+s-s=C \Rightarrow S_{k} \rightarrow \infty$ So $\sum_{n=0}^{\infty} a_{n}$ div.
Rearrangement of $\sum_{n=0}^{\infty} a_{n}$:

If $\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+\ldots \ldots$. then if we forming a new series by writing the terms in a different order such as $a_{0}, a_{2}, a_{1}, a_{4}, a_{6}, a_{3}, a_{8}, a_{10}, a_{5}$, this is called a rearrangement of $\sum_{n=0}^{\infty} a_{n}$.
In general if σ is any one to one mapping from the set of nonnegative integers onto it self, we can form the series $\sum_{n=0}^{\infty} a_{\sigma(n)}$, which we call a rearrangemern of $\sum_{n=0}^{\infty} a_{n}$.

TH: If $\sum_{n=0}^{\infty} a_{n}$ is abs. conv. with sum S, then every rearrangement $\sum_{n=0}^{\infty} a_{\sigma(n)}$ is also abs. conv. with sum S .

TH : Suppose $\sum_{n=0}^{\infty} a_{n}$ is conditionally conv. Given any real numbers S, there is a rearrangement $\sum_{n=0}^{\infty} a_{\sigma(n)}$ that conv. to S.

Ex. 1,2,3,4

Ex 3) Consider the rearrangement of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ obtained by taking two positive terms, one negative term ,two positive terms, one negative term and so forth

Advanced Calculus

$1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+$

Show that the sum of this series is $\frac{3}{2} \log (2)$
(Hint: Deduce from Example 2 that $0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+\ldots \ldots \ldots . .=\frac{1}{2} \log (2)$
Solution : $\left(0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+\ldots \ldots \ldots ..\right)=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots \ldots.\right)=\frac{1}{2} \log (2)$

Since $\log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10} \ldots \ldots .$.
$\frac{1}{2} \log (2)=0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8}+\frac{1}{10}-$
$\log (2)+\frac{1}{2} \log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots \ldots \ldots . .=\frac{3}{2} \log (2)$.

Advanced Calculus

6.4 More convergence Tests

TH : a) If $\left|a_{n}\right| \leq C n^{-1-\varepsilon}$ for some $C, \varepsilon>0$, then $\sum_{n=0}^{\infty} a_{n}$ conv. abs.
If $\left|a_{n}\right| \geq C n^{-1}$ for some $C>0$, then $\sum_{n=0}^{\infty} a_{n}$ either converges conditionally or div.
b) (The ratio test) if $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow l$ as $n \rightarrow \infty$ then $\sum_{n=0}^{\infty} a_{n}$ converges abs. if $l \leqslant 1$ and div. if $l>1$
c) (The root test) If $\left|a_{n}\right|^{\frac{1}{n}} \rightarrow l$ as $n \rightarrow \infty$, then $\sum_{n=0}^{\infty} a_{n}$ cony abs. f $l<1$ and div. if $l>1$

Example : $\sum_{n=0}^{\infty}(-2)^{n}$
$\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(-2)^{n+1}}{(-2)^{n}}\right|=2>1 \Rightarrow$ The Series.div.

Example : $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
$\ln n<n^{\varepsilon}$ for $\varepsilon>0$ and larg $\Rightarrow \frac{\ln n}{n}<\frac{n^{0.5}}{n^{2}} \cdot n^{\frac{3}{2}}$ and
$\lim _{n \rightarrow \infty} \frac{\ln n}{n^{2}} / \frac{1}{n^{\frac{3}{2}}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n} \lim _{n \rightarrow \infty} \frac{1}{n} / \frac{1}{2}=\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{2}}}=0$.
Since $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ onn. su by limit comp. test $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ conv.

TH: (Thealternating series test)

Suppose the seq $\left\{a_{n}\right\}$ is decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ is convergent. Moreover, If S_{k} and S denote the kth partial sum and the full sum of the series, we have $S_{k}>S$ for k even, $S_{k}<S$ for k odd and $\left|S_{k}-S\right|<a_{k+1}$ for all k The summery of the test :

1) $\lim _{n \rightarrow \infty} a_{n}=0$
2) $a_{n} \geq a_{n+1}$ for $n>N$
3) $a_{n} \geq 0$ for all $n>N$

Proof: Since $a_{k} \geq a_{k+1} \forall$ all k, we have

Advanced Calculus

$S_{2 m+1}=S_{2 m-1}+a_{2 m}-a_{2 m-1} \geq S_{2 m-1}$ because ($a_{2 m}-a_{2 m+1} \geq 0$),
$S_{2 m+2}=S_{2 m}-a_{2 m+1}+a_{2 m+2} \leq S_{2 m}$ because $\left(-a_{2 m+1}+a_{2 m+2} \leq 0\right)$.
Thus the seq. $\left\{S_{2 m-1}\right\}$ of odd numbered partial sums is increasing and the seq. $\left\{S_{2 m}\right\}$ of even numbered partial sums is decreasing. This monotonicity implies that $S_{2 m-1}=S_{2 m-2}-a_{2 m-1} \leq S_{2 m-2} \leq S_{0} \quad$ because $\left(-a_{2 m-1} \leq 0\right.$ and $\left\{S_{2 m}\right\}$ is decreasing sea)

Also $S_{2 m}=S_{2 m-1}+a_{2 m} \geq S_{2 m-1} \geq S_{1}$, because ($\left.a_{2 m} \geq 0\right)$.
So , $\left\{S_{2 m-1}\right\}$ and $\left\{S_{2 m}\right\}$ are bounded above and below resp. .s by the monotone seq. theorem these seq. both conv. and since $S_{2 m}-S_{2 m}=a_{2 m} \rightarrow 0 \Rightarrow$
$\lim _{m \rightarrow \infty} S_{2 m}=\lim _{m \rightarrow \infty} S_{2 m-1}$ are equal, so the whole seq. $\left\{S_{k}\right\}$ also conv. and hence the series $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ conv.
The even - numbered partial sums decrea to the full sum S, while the oddnumbered ones increase. So $S<S_{2 m}$, $n d \rightarrow S_{2 m-1}$ (or all m . In particular,
$0<S-S_{2 m-1}<S_{2 m}-S_{2 m-1}=a_{2 m}$,
And $0<S_{2 m}-S<S_{2 m}-S_{2 m+1}=a_{2 m}, S S_{k}-S Y \ll a_{k+1}$ where k is even or odd
Remark : $\left\{a_{n}\right\}$ is called ono one sed If $a_{n} \geq a_{n+1} \forall n \geq N$ or $a_{n} \leq a_{n+1} \quad \forall n \geq N$
Example : $\sum^{\infty} n_{n}^{n}\left(e e^{n}-1\right)$ conv by alternating series test.
Because (1) $\lim _{\rightarrow \infty}(1 / n-1) \rightarrow 0$
2) $\left(e^{1 / n}-1\right) \geq\left(e^{1 / n+1}-1\right)$ for $n \geq 1$
3) $\left(e^{1 / n}-1\right)>0$ for all $n \geq 1$

The conv. is conditionally, because $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+$
$e^{1 / n}=1+\frac{1}{n}+\frac{1}{2!n^{2}}+\ldots \ldots \ldots \approx 1+\frac{1}{n}$ for large n
$e^{1 / n}-1=\frac{1}{n}+R\left(\frac{1}{n}\right)$ for large n
$\sum_{n=1}^{\infty}\left(e^{1 / n}-1\right)=\sum_{n=1}^{\infty} \frac{1}{n}+\sum_{n=1}^{\infty} R\left(\frac{1}{n}\right)$
$\sum_{n=1}^{\infty} \frac{1}{n}$ div. and $\sum_{n=1}^{\infty} R\left(\frac{1}{n}\right)$ conv. by comp. test
$\sum_{n=1}^{\infty}\left(e^{1 / n}-1\right)$ div.
But $\sum_{n=1}^{\infty}(-1)^{n}\left(e^{1 / n}-1\right) \quad$ conv. conditionally by alternating series test.

Interval of conv. for power series:

$\sum_{n=}^{\infty} C_{n}(x-a)^{n} \quad$ we use the ratio or m in rove test
$l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}} \| x-a\right|<1$
Example: $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{(n+1) 2^{2 n+1}}$
$l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\operatorname{li}_{\rightarrow \infty} A_{\infty}\left|-1, \frac{(x-3)^{n+1} /(n+2) 2^{2 n+3}}{(x-3)^{n} /(n+1) 2^{2 n+1}}\right|=\frac{n+1|x-3|}{(n+2) 4} \rightarrow\left|\frac{x-3}{4}\right|$ as $\mathrm{n} \rightarrow \infty$.
If $\frac{|x-3|}{4}<1 \Rightarrow|x, 3|<4$, then the series conv. abs. If $|x-3|>4$, then the series div.
$-4<x-3<-1<x<7$
At end points
$x=-1 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}(-4)^{n}}{(n+1) 2^{2 n+1}}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n+1}$ div.
$x=7 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}(4)^{n}}{(n+1) 2^{2 n+1}}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$ conv.
$\Rightarrow-1<x \leq 7$ the interval of conv. and radius of conv. is $R=4$

Ex 6.4 1,2,3,, 14, 16-18.

Advanced Calculus

EX 6.4) Determine the values of x at which the series converges absolutely or conditionally.

1) $\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{n^{2}+1}$

By ratio test

$$
\begin{aligned}
& l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{(n+1)^{2}+1} \cdot \frac{n^{2}+1}{(x+2)^{n}}\right|=|x+2| \lim _{n \rightarrow \infty} \frac{n^{2}+1}{(n+1)^{2}+1}=|x+2|<1 \\
& -1<x+2<1 \Rightarrow-3<x<-1 \\
& x=-3 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1} \text { conv. abs. } \\
& x=-1 \Rightarrow \sum_{n=0}^{\infty} \frac{1}{n^{2}+1} \text { conv. abs. }
\end{aligned}
$$

$$
\Rightarrow-3 \leq x \leq-1 \text { conv. abs. }
$$

$$
\text { 3) } \sum_{n=0}^{\infty} \frac{x^{2 n}}{1.3 \ldots \ldots \ldots . .(2 n+1)}
$$

$$
l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{1.3 \ldots \ldots \ldots .(2 n+3)} \cdot \frac{1.3 \ldots \ldots \ldots \ldots .(2)+1)}{x^{2}}\right|=x^{2} \lim \left(\frac{1}{2 n+3}=0\right.
$$

\Rightarrow The S . conv. abs. for all x
5) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-4)^{n}}{\left(2^{n}-3\right) \log (n+3)}$

$$
\begin{aligned}
& l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a}\right|=\operatorname{lin}_{n \rightarrow \infty}\left|\frac{(}{(2} \frac{1)^{m+1}(x-4)^{n+1}}{\left.\frac{1}{1}-3\right) \log (n+4)} \cdot \frac{\left(2^{n}-3\right) \log (n+3)}{(-1)^{n}(x-4)^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \left\lvert\, x-4 \cdot \frac{2^{n}-3}{22^{n}-3} \cdot \lim _{n \rightarrow \infty} \frac{\log (n+3)}{\log (n+4)}=\frac{|x-4|}{2} \cdot \lim _{n \rightarrow \infty} \frac{(n+3)}{(n+4)}=\frac{|x-4|}{2}<1\right. \\
& \frac{|x-4|}{2}<1 \Rightarrow|x-4|<2 \Rightarrow-2<x-4<2 \Rightarrow 2<x<6 .
\end{aligned}
$$

$$
\text { At } x=2 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}(-2)^{n}}{\left(2^{n}-3\right) \log ((n+3)}=\sum_{n=0}^{\infty} \frac{(2)^{n}}{\left(2^{n}-3\right) \log ((n+3)}
$$

$$
\frac{1}{n+3}<\frac{2^{n}}{2^{n}} \cdot \frac{1}{\log ((n+3)}<\frac{2^{n}}{\left(2^{n}-3\right)} \cdot \frac{1}{\log ((n+3)}
$$

Advanced Calculus

$\sum_{n=0}^{\infty} \frac{1}{n+3} \operatorname{div}$.
$x=6 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}(2)^{n}}{\left(2^{n}-3\right) \log ((n+3)} \quad$ alternating
$\lim _{n \rightarrow \infty} \frac{(2)^{n}}{\left(2^{n}-3\right) \log ((n+3)}=0 \quad, a_{n} \geq a_{n+1}$
The series conv.
$\Rightarrow 2<x<6$ conv. absolutely, conditionally at $\mathrm{x}=6$
6) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(\frac{x-1}{x+1}\right)^{n}$

By the nth root test
$\lim _{n \rightarrow \infty} \frac{1}{(\sqrt{n})^{\frac{1}{n}}}\left|\frac{x-1}{x+1}\right|=\frac{|x-1|}{|x+1|}$, then the series conv. for $|\mathrm{x}-1|<|+1|$ then, $x^{2}-2 x+1<x^{2}+2 x+1 \Rightarrow 2 x>0 \Rightarrow x>0$, so the series cons. abs. for $x>e$,
at $\mathrm{x}=0$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{\mathrm{n}}}{\sqrt{n}}$ conv. conditionaly.
Lemma : (Summation by parts ve wo americal sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$,
Let $a_{n}^{\prime}=a_{n}-a_{n-1}, B_{n}=b_{0}+b_{1}+$
Then $\sum_{n=0}^{k} a_{n} b_{n}=a_{k} B_{k}-\sum_{n=1}^{k} a_{1} B_{n}$

Proof: we ha $=P_{0}$, and $b_{n}=-B_{n-1}+B_{n}$ for $n \geq 1$ so,

$$
\begin{aligned}
& a_{0} b_{0}+a_{1} b_{1}+\ldots \ldots \ldots \ldots+a_{k} b_{k}=a_{0} B_{0}+a_{1}\left(-B_{0}+B_{1}\right)+a_{2}\left(-B_{1}+B_{2}\right)+\ldots \ldots \ldots .+ \\
& a_{k}\left(-B_{k}+B_{k}\right) \\
& =a_{0} B_{0}-a_{1} B_{0}+a_{1} B_{1}-a_{2} B_{1}+a_{2} B_{2}+\ldots \ldots \ldots \ldots-a_{k} B_{k-1}+a_{k} B_{k} \\
& =\left(a_{0}-a_{1}\right) B_{0}+\left(a_{1}-a_{2}\right) B_{1}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .+a_{k} B_{k} \\
& =-a_{1}^{\prime} B_{0}-a_{2}^{\prime} B_{1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots-a_{k}^{\prime} B_{k-1}+a_{k} B_{k} \\
& =a_{k} B_{k}-\sum_{n=1}^{k} a_{n}^{\prime} B_{n-1}
\end{aligned}
$$

Advanced Calculus

TH : (Dirichlet Test) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be numerical seq. Suppose that the seq. $\{$ $\left.a_{n}\right\}$ is dec. and tends to zero as $n \rightarrow \infty$, and that the sums $B_{n}=b_{0}+b_{1}+\ldots \ldots \ldots . . .+b_{n}$ are bounded in absolute value by a constant C independent of n . Then the series $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges

Proof: By previous lemma $\sum_{n=0}^{k} a_{n} b_{n}=a_{k} B_{k}-\sum_{n=1}^{k} a_{n}^{\prime} B_{n-1}$, so it is enough to show that $\lim _{k \rightarrow \infty} a_{k} B_{k}$ exist and that the series $\sum_{n=0}^{\infty} a_{n} B_{n-1}$ con $v . S$ nce $\left|B_{k}\right| \leqslant C$ and $\lim _{k \rightarrow \infty} a_{k}=0$, then $\left|a_{k} B_{k}\right| \leq C\left|a_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$, s since the seq. $\left\{a_{n}\right\}$ is dec., then ove have $a_{n} \leq 0 \quad \forall n$, so $\left|\sum_{n=1}^{k} a_{n}^{\prime} B_{n-1}\right|=\sum_{n=1}^{k}\left|a_{n}^{\prime}\right|\left|B_{n-1}\right| \leq C \sum_{n=1}^{k}\left|a_{n}^{\prime}\right|$
$=C\left[\left(a_{0}-a_{1}\right)+\left(a_{1}-a_{2}\right)+\right.$.
$=C\left(a_{0}-a_{k}\right) \leq C a_{0} \quad \forall k$
So,$\sum_{n=0}^{\infty} a_{n}^{\prime} B_{n-1}$ is abs. cony. and hince con?
So $\sum_{n=0}^{\infty} a_{n} b_{n}$ conv.
Lemma : If θ is $n t$ an integer multiple of 2π, then
$\sum_{n=1}^{k} \cos n \theta=\frac{\cos _{2}^{2}(k+1) \theta \cdot \sin \frac{1}{2} k \theta}{\sin \frac{1}{2} \theta}$
$\sum_{n=1}^{k} \sin n \theta=\frac{\sin \frac{1}{2}(k+1) \theta \cdot \sin \frac{1}{2} k \theta}{\sin \frac{1}{2} \theta}$

Advanced Calculus

Proof: $\sum_{n=1}^{k} e^{n i \theta}=\sum_{n=1}^{k} \cos n \theta+i \sum_{n=1}^{k} \sin n \theta$

Left side $=e^{i \theta}+e^{i 2 \theta}+e^{i 3 \theta}+\ldots \ldots \ldots . .+e^{i k \theta}=e^{i \theta}\left(1+e^{i \theta}+\ldots \ldots \ldots \ldots .+e^{i(k-1) \theta}\right.$
$=e^{i \theta} \frac{\left(e^{i k \theta}-1\right)}{e^{i \theta}-1}=e^{i \theta} \frac{e^{i k \theta / 2}\left[e^{i k \theta / 2}-e^{-i k \theta / 2}\right]}{e^{i \theta / 2}\left[e^{i \theta / 2}-e^{-i \theta / 2}\right]}$
$=e^{i \frac{\theta}{2}(k+1)} \cdot \frac{\sin \frac{1}{2} k \theta}{\sin \frac{1}{2} \theta}$
$=\left[\cos \frac{1}{2}(k+1) \theta+i \sin \frac{1}{2}(k+1) \theta\right] \frac{\sin \frac{1}{2} k^{\imath}}{\sin \frac{1}{2}}$
$=$ right side .

$$
\sum_{n=1}^{k} \cos n \theta=\frac{\cos \frac{1}{2}(k+1) \theta \cdot \sin \frac{2}{2} k \theta}{\sin \frac{1}{2} \theta}
$$

$$
\sum_{n=1}^{k} \sin n \theta \curvearrowright \frac{\sin -(k+1)) \cdot \sin \frac{1}{2} k \theta}{\sin \frac{1}{2} \theta}
$$

Corollary : Suppose that the seq. $\left\{a_{n}\right\}$ decreases to zero as $k \rightarrow \infty$,then the series $\sum_{n=1}^{\infty} a_{n} \cos n \theta$ conv. for all θ except perhaps for integer multiples of 2π, and the series $\sum_{n=1}^{\infty} a_{n} \sin n \theta$ conv. for all θ.

Proof : For $\theta \neq 2 \pi j$, for if $b_{n}=\cos n \theta$ or $\sin n \theta$

Advanced Calculus

$\left|B_{k}\right|=\left|\sum_{n=1}^{k} \cos n \theta\right|=\frac{\left|\cos \frac{1}{2}(k+1) \theta \cdot \sin \frac{1}{2} k \theta\right|}{\left|\sin \frac{1}{2} \theta\right|} \leq\left|\csc \frac{1}{2} \theta\right|$ for all n .
or $\left|\sum_{n=1}^{k} \sin n \theta\right|=\frac{\left|\sin \frac{1}{2}(k+1) \theta \cdot \sin \frac{1}{2} k \theta\right|}{\left|\sin \frac{1}{2} \theta\right|} \leq\left|\csc \frac{1}{2} \theta\right|$ for all n .

So , $\left\{B_{k}\right\}$ is bounded and since $\left\{a_{k}\right\}$ dec. to zero so by Dirichlet tes $\Rightarrow \sum_{n=1}^{\infty} a_{n} \cos n \theta$ and $\sum_{n=1}^{\infty} a_{n} \sin n \theta$, conv.

If $\theta=2 \pi j \Rightarrow \sum_{n=1}^{k} \sin n \theta \rightarrow 0$ for all $n \sin c e,(\sin 2 \pi j=0), \sigma \sum_{n=1}^{k} \sin n \theta$ is bounded.,
Then $\sum_{n=1}^{\infty} a_{n} \sin n \theta$ conv.
$\sum_{n=1}^{\infty} a_{n} \cos n \theta$ perhaps conv. or div. on $\theta=2 \pi j$,ee ause $\sum_{n=1}^{\infty} \cos n \theta$ unbounded.

Advanced Calculus

***Thank you ***

