
 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 1

Introduction to Artificial Intelligent

1.1 Artificial Intelligent (AI)

Is the study of how to make computers do things which at the moment,

people do better . or in specific definition AI is a branch of computer

science concerned with the study & creation of computer systems that

exhibit some form of intelligence: systems that learn new concepts &

tasks ,system that can reason & draw useful conclusion about the world

around us, system that can understand a natural language or perceive &

comprehend a visual sense ,& system perform other types of fact that

require human types of intelligence or in other words we say

AI is the study of mental faculties through the use of computational

models

 (CHARNAIK & MCDERMORTT,1985)

The use of the term "natural faculties" may make the field sound like of

psychology. AI is concerned with working programs whereas

psychologists feel more importantly, while AI is concerned with the

general behavior that goes with intelligence, it's not committed to any

particular way of producing the result.

Dictionary define intelligence as the ability to acquire, understand &

apply knowledge or ability to acquire or the ability to exercise

thought & reason

1.2 Commercial Products of AI

 Robotics device.

 Vision systems that recognize shapes & objects.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 2

 Expert systems that perform difficult task as well as or better

than human expert counterpart.

 Intelligent instructions system that help pace student's

learning & monitor the student's progress.

 Intelligent editors that assets users in building special

knowledge bases.

 System which can learn to improve this performance.

1.3 Importance of AI

 AI may well be one of the most important development of the

world. It will affect government & private companies

interested in the development of computer products, robotics

& related field.

 Japanese realized that many of their goals to produce systems

that can converse in a natural language, understand speech &

visual sense, learn & refine their knowledge , make decisions,

& exhibit other traits can be achieved.

 British initiated a plan called the Alvey project with a

reasonable budget.

 France, Canada, Russsia, Italy, Australia, & Singapore have

committed to some extent to funded research & development.

 1983, developed VLSI to use in AI technologies.

 MCC(Microelectronics & computer technology corporation)

& is headquartered in Austin, Texas.

 Second DARPA(Defense Advanced Research Projects

Agency) has increased its funding for research in AI &

supported in three significant programs:-

1. development of an autonomous land vehicle(ALV) a

driverless military vehicle.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 3

2. the development of a pilot's associate(an expert system

which provides assistance to fighter pilot)

3. the strategic computing program(an AI based military super

computer project).

1.4 Goals of AI

the goal of AI is to develop working computer system that truly capable

of performing tasks that require high levels of intelligence. The programs

are not necessarily meant to imitate human sense & thought processes.

Indeed, in performing some tasks differently, they may actually exceed

human capabilities. The important point is that the systems all be capable

of performing intelligent tasks effectively & efficient.

1.5 AI Technique

The three important AI techniques are:-

1. search: provides a way of solving programs for which no more

direct approach is available as well as a frame work into which any

direct techniques that are available can be embedded.

2. use of knowledge:- provides a way of solving complex problems

by exploiting the structures of the objects that are involved.

3. abstraction: provides a way of separating important features &

variations from the many unimportant ones that would otherwise

overwhelm any process.

 the techniques of AI must often require that the problem defined in

some specific way, for ex. Breaking a complex decision into a

series of simpler sub problems that lead to the final solution.

 The presentation of a problem in a simple, easily process able form

then aids in the development of a solution.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 4

 In other words, we say, define the data structure for the problem

domain , develop an algorithm for it & solved it with a heuristic

evaluation function.

 Algorithm is a specific set of operations, procedures &

decisions which guarantees to yield correct results.(Gloriose &

Osorio,1990)

 Where heuristic is a rule of thumb ,trick, strategy, simplification or

any other method that aids the solution of complex problems.

 One of the difference between a heuristic & an algorithm is that

while a heuristic generally aids in finding the solution, it does not

guarantee an optimal solutions or no a solution at all. However,

with an algorithm, one can be sure of finding the correct results.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 5

Introduction to Program in Logic

 imperative language such as c++, Java, pascal, a program is a

specification of a sequence of instructions to be executed one after

the other by a target machine to solve the problem. The description

of the problem is incorporated implicitly in this specification &

usually it's not possible to clearly distinguish between the

descriptions of the problem & the method used for its solution.

 In logic programming, the description of the problem & the method

used for its solution it explicitly separated from each other. This

separation has been expressed by R.A.Kowalski in the following

equation.

Algorithm = logic + control

 logic in this equation indicate the description component of the

algorithm, that is, the description of the problem

 control indicate the component that tries to find a solution taking

the description of the problem as a point of departure, the logic

component defines what the algorithm is supposed to do , the

control indicate how it should be done.

 A specified problem is described in terms of relevant objects &

relations between objects , which are then represent in clausal form

of logic, a restricted form of first order predicate logic.

 The control component employs logical deduction or reasoning for

deriving new facts from the logic program.

Programming in Prolog

 it was designed by A. Colmerauer & P.Roussel at the university of

Marseille, influenced by the ideas of R.A.Kowalski in 1970.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 6

 Its simple

 Is a high level logic programming(PROgramming LOGique).

 To interact with the prolog system directly by typing commands

directly into the terminal.

 Best for pattern matching & searching.

 Excellent for language processing, rule based expert system

planning & other AI application.

 Use depth first search & backtracking to search for solution

automatically.

 Best written in a little chunks(modular code): indeed this is

assumed in its syntax.

Algorithem = logic + control

 What how

 Horn clause resolution

 Prolog DB prolog Interpreter

The relationship between prolog & logic programming

 A program consist of

1. facts

2. rules

3. questions or query

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 7

Prolog Basics

Main Concept

 Fact: assert some property of an object or states some relation

between two or more objects. Is made up of a predicate which

states the relation or property of a number of arguments (which are

the objects).

 Ex.

Alan Likes coffee. In English

 likes(alan,coffee). in prolog with two arguments

listing. in prolog with zero argument

likes(alan, coffee).

Predicate arguments

Ex2.

Mary is female in English

female(mary) in prolog

DB is a collection of facts in prolog.

Predicate: is something that asserts a fact about one or more

entities.

 Note : predicate should always be the verb as it can then apply to

many subjects & objects. The subject should always the first

argument , while object the second argument.

 Questions:- if a question is asked by the user, the prolog interpreter

looks at the DB of facts that's if the information is enough to

answer

 Ex

Does Alan like coffee?

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 8

Who drinks tea?

1. first, prolog finds a fact that matches the predicate in the

question.

2. if this match succeeds , prolog then matches the first argument

to the predicate

3. if this match succeeds, prolog matches the second argument &

so on for the rest argument

4. if the match fails at any point, prolog looks for the next

assertion that the predicate matches & tries again to match the

arguments

5. if the predicate, & all argument are successfully matched, the

process stops the interpreter printed yes, otherwise the goal not

satisfied.

Variables

*What does Alan like?

What: begins with a capital letter, this is indicate it’s a variable. Its

placeholder that can take on any value through instantiation.

alan coffee tea….

These do not change, they always represent the same object & it is called

a constant.

Note:-
 Term is used to refer to any data object in prolog, there are

four types of terms: atoms, variables, constant & compound

terms.

Atoms & numbers sometimes are grouped together and called

atomic terms.

 A constant, variable is a term

 Constants can be (atoms, integers, real numbers)

 Atoms are usually string made of lower &uppercase

letter,digits, & the underscores, starting with lower case

letter.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 9

elephant, abXY, x_123, my_College

Also any series of character enclosed with single qout are also

atom.

Also special char like + - : */<> … are also atom.

The declarative semantics Information (facts, rules, and queries) is

represented in PROLOG using the formalism of Horn clause logic. A

Horn clause takes the following form:

B A1,…,An

where B, A1,…An, n 0, are atomic formulas. Instead of the (reverse)

implication symbol,

in PROLOG usually the symbol :- is used, and clauses are terminated by

a dot. An atomic formula is an expression of the following form:

P(t1,…, tm)

Formal name In prolog name

A Unit clause A. fact

 B1,…,Bn Goal clause ?-B1,…,Bn. query

A1 B1,…,Bn Clause A:-B1,…,Bn. rule

Table 1: Horn clauses and PROLOG

where P is a predicate having m arguments, m 0, and t1,…, tm are terms.

A term is either a constant, a variable, or a function of terms. In

PROLOG two types of constants are distinguished: numeric constants,

called numbers, and symbolic constants, called atoms.

(Note that the word atom is used here in a meaning differing from that of

atomic formula, thus deviating from the standard terminology of

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 11

predicate logic.) Because of the syntactic similarity of predicates and

functions, both are called functors in PROLOG. The terms of a

functor are called its arguments. The arguments of a functors are enclosed

in parentheses, and separated by commas.

Seen in the light of the discussion from the previous section, the predicate

P in the atomic formula P(t1,…, tm) is interpreted as the name of the

relationship that holds between the objects t1,…, tm which occur as the

arguments of P. So, in a Horn clause B :- A1,…,An,

the atomic formulas B, A1,…,An, denote relations between objects. A

Horn clause now is interpreted as stating:

`B (is true) if A1 and A2 and … and An (are true)'

A1,…,An are called the conditions of the clause, and B its conclusion. The

commas between the conditions are interpreted as the logical ^, and the :-

symbol as the (reverse) logical implication .

If n = 0, that is, if conditions Ai are lacking in the clause, then there are

no conditions for the conclusion to be satisfied, and the clause is said to

be a fact. In case the clause is a fact, the :- sign is replaced by a dot.

Both terminology and notation in PROLOG differ slightly from those

employed in logic programming. Table 1 summarizes the differences and

similarities.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 11

Syntax of the prolog program

 All predicate start with a lower case letter.

 All variable start with upper case letter.

 The format of each fact or assertion is:-

 A predicate followed by any number of arguments.

 The argument are separated by comma and round by closed

brackets.

 There is no space between predicate & open bracket.

 A full stop followed closed bracket.

 the predicate can be string like son_of, drinks, likes, & so on.

 The argument can be constant, variable, even other assertion.

Rules

 Prolog rules have a left side & right side ,& the symbol :- is

between.

 Left side is a single predicate expression.

 Right side is a query, with possibly multiple predicate

expression combined with the comma "and" ,semicolon "or, &

"not" symbol.

Ex:- write the prolog program for the rule down.

gray_ship(x):-part_of(navy,X),

 color(X,gray).

Yes if right side succeeds

No if right side fails.

X is local var. , it value will be thrown a way when the rule is done.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 12

Ex2:- write a prolog program for the rule below.

color_object(X,C):-part_of(X,Y),

 color(Y,C).

X & C parameter var.s values for X & C will be returned.

Rules in Natural Language

Ex:-

If a vehicle floats on water, then it's a ship.

ship(X):-vehicle(X, floats(X,water).

If a vehicle floats on water , it's ship.

Define a ship as anything that floats on water.

Assume as a ship anything that floats on water.

A ship is any vehicle that floats on water ,ships are water-floating vehicle.

Something that is a vehicle and floats on water is a ship.

"postponed" binding of variables.

?-color_object(ship_1,C).

color_object(ship_1,green).

Means c=green

Binding is only done when truly necessary to answer a query.

Ex3:- write a prolog program to find the sister relation.

Domain

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 13

 X,Y,F=string.

Predicates

 femal(X).

 parents(X,X).

Clauses

 female(nada).

 female(suha).

 female(muna).

 parents(ahmed,nada).

 parents(sami,muna).

 parents(ahmed,suha).

sister_of(X,Y):-female(X),

 parents(M,X),

 parents(M,Y).

Ex4:-

X is a bird if X is an animal, and X has feathers.

Domains

X=string.

Predicates

animal(X).

has_feather(X).

Clauses

 animal(duck).

 animal(hen).

 animal(sparrow).

 has_feather(duck).

 has_feather(hen).

 has_feather(sparrow).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 14

bird(X):-animal(X),has_feather(X).

 ex

A man is happy if he is rich and he is famous.

happy(Person):- man(Person),

 rich(Person),

 famous(Person).

Ex

Someone is happy if they are healthy or

Someone is happy if they are wealthy or

Someone is happy if they are wise.

happy(Person):- healthy(Person).

happy(Person):-wealthy(Person).

happy(Person):-wise(Person).

Recursive Definition

When defining some thing , we can use the same thing that has not yet

been completely defined.

 Prolog uses recursive definition very easily.

 Recursive programming is one of the fundamental principles

of programming in prolog.

?-predecessor(pam,X)

X=bob;

X=ann;

X=pat;

X=jim;

predecessor(X,Z):-parent(X,Y1),parent(Y1,Y2),parent(Y2,Z). indirect

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 15

For all X and Z

1. X is a parent of y and

2. Y is predecessor of z

predecessor(X,Z):-parent(X,Y),

 predecessor(Y,Z).

general rules for matching two terms S & T

1. if S & T are constant then S & T match only if they are the same

object.

2. if S a var. & T is anything, then they match, and s is instantiated to

T. conversely, if T is a var. then T is instantiated to s.

3. if s and T are structures they match only if

a. S & T have the same principle functor , and

b. All their corresponding components match.

The resulting instantiation is determined by the matching of the

components.

Ex:-

?-date(D,M,1983)=date(D1,may,Y1),

date(D,M,1983)=date(15,M,Y).

First goal:

D=D1

M=may

Y1=1983

Second goal

D=15

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 16

D1=15

M=may

Y1=1983

Y=1983

Ex2:-

parent(tom,bob). Clauses of facts

parent(pam,bob).

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

?-parent(bob,pat).

Yes

?-parent(tom,john).

No

?-parent(bob,jim).

Yes

?-parent(X,bob).

X=tom;

X=pam

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 17

Ex. Write prolog program to satisfy this sentence.

You talk about someone if you know them or you know someone who

talks about them

Solution

Domains

A,B,P,R,Q=string

Predicates

 talks_about(A,A)

 knows(A,A)

Clauses

knows(bill,jane).

knows(jane,pat).

knows(jane,fred).

knows(fred,bill).

talks_about(A,B):-

knows(A,B).

talks_about(P,R):-

 knows(P,Q),

 talks_about(Q,R).

H.W

write a program for the following sentence

some body has flu if he infected with flu or he kisses person who has

flu.

has_flu(X):-infected(X).

has_flu(X):-kisses(X,Y),has_flu(Y).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 18

Built in Predicates or System Predicate

A predicate is a collection of clauses with the same predicate name & the

number f arguments, the number of argument of a predicate is the arity of

it.

 The partition of the program below represents knowledge

about books , their publisher & the shops that stock these

publishers.

stocks(james,).

askbook:-

 write('what book would you like to buy'),nl,

 read(book),nl,

 canbuy(Book,Shop),

 write('you can buy'),

write(Book),

 Write('at'),

 Write(Shop),

 Write('.').

canbuy(Book,Shop):-

 book(Book,Publisher),

 stocks(Shop,Publisher),

 open(Shop).

askbook:-

write(' I don’t know where you can buy that book, sorry.').

 go:-

 askbook, nl,

 write('would you like another book?'), nl,

 read(Reply),nl,

check(Reply),nl.

check(Reply):_

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 19

 Reply = yes,

 go.

check(Reply):-

write('I hope I Was of some help to you have a nice day').

Arithmetic operator

Arithmetic operator are another type of system predicat which enables us

to do arithmetic in prolog

+ - * /

There is also a system that the results of applying these operators called

is/2

All arithmetic operator can be used as infix (between argument) or prefix

(like predicate).

Ex.

?-x is 3+7.

X=10

?-B is +(2,99).

B=101

?-4=3+1

No

?- 4 is 3+1

Yes

?- s is H + 2

Error: un instantiated var. in arithmetic expression

No

Not:- is/2 means evaluate to= means will unify with.

?- A is 3+7.

A=10

?- B is +(2,5).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 21

B=7

?-Bis 3+3.

No

?-3 is 2 +1.

Yes

?- 4 is 4.

Yes

?- 3 is 2 +1.

Yes

?-2+1 is 3.

No

?- D is H+2.

Error

?- A is 3+3, B is A+2.

A=6

B=8

?- T is +(-(3,1),*(6,4)).

T=26

Yes

?- B is <(+(-(3,1),*(6,4)),+(*(7,8),-(8,10))).

(3-1)+(6*4) < (7*8)+(8-10)

2 +24 < 56+(-2)

26 < 54

Yes

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 21

Backtracking

cut

Prolog provides a predicate that perform this function. It's called cut

which represented by ! (exclamation point). The cut effectively tells

prolog to freeze the decision mode in this predicate. That is, if

required to backtrack, it will automatically fail without trying other

alternatives.

Ex.

a(1).

a(2).

a(4).

b(2).

b(3).

d(X,Y):-a(X),b(Y),X=4,!.

Goal:- d(X,Y)

X=1 ,Y=2 ,1=4 fail

X=1 ,Y=3 ,1=4 fail

X=2 ,Y=2 ,2=4 fail

X=2 ,Y=3 ,2=4 fail

X=4 ,Y=2 ,4=4 true

o/p

1 solution X=4 , Y=2

ex2:-

d(X,Y):-a(X),!, b(Y),X=4.

Goal:- d(X,Y)

x=1 ,y=2 ,2=4 fail

x=1 ,y=3 ,1=4 fail

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 22

o/p no solution found

Fail

the fail predicate is provided when it's called, it causes the failure of the

rule and this will be forever, nothing can change the statement of this

predicate.

Ex.

x(1).

x(2).

x(3).

loop:-x(A), write(A),fail.

Goal:-loop

Output:1 2 3 No

Note:-

To report back answer, we can put an un instantiated var in the

query, then instantiated the answer to that var when the query

succeeds. Lastly, pass the var all the way back to the query.

Ex.

bigger_than(X,Y,Big):- XY,Big=X.

bigger_than(X,Y,Big):-XY,Big=Y.

Goal:-bigger_than(5,2,Big),bigger_than(Big,4,Newbig).

Output Newbig =5

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 23

Built in mathematical function

Prolog has a full rang of built in mathematical function & predicates

that operate on integer & real values.

Function Description

X mod Y return the remainder (modules) of x divided by Y

X div Y return the quotient of X divided by Y

abs(X) return the absolute value of X

cos(x) return the cosine value of angle X in radians

sin(x) return the sin value of X

tan(X) return the tan value of X

arctan(X) return the arc tan of X

exp(X) return the exponential of x

ln(X) logarithm of X with base e

log(X) logarithm of X base 10

sqrt(X) square root of X

random(X) randomize of X, 0X1

random(X,Y) randomize y less than X, 0YX

round(X) return the rounded value of X

trunk(X) truncate X

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 24

Arithmetic Comparison Operators

The arithmetic comparison operators are :<=<>>==:=/=

 X<Y

 True if X is less than Y.

 X=<Y

 True if X is less than or equal to Y.

 X>Y

 True if X is greater than Y.

 X>=

 True if X is greater than or equal to Y.

 X=:=Y

 True if X is equal to Y.

 X=/=Y

 True if the values of X and Y are not equal

Unlike unification theses operators cannot be used to give values to a

variable. The can only be evaluated when every term on each side have

been instantiated.

List

Lists are powerful data structures for holding and manipulating groups of

things. In Prolog, a list is simply a collection of terms. The terms can be

any Prolog data types,including structures and other lists.

 list is denoted by square brackets with the terms separated by commas.

This gives us an alternative way of representing the locations of things.

Rather than having separate location predicates for each thing, we can

have one location predicate per container, with a list of things in the

container.

The empty list is represented by a set of empty brackets []. This is

equivalent to the nil in other programming language.

For our example in this section, it can describe the lack of things in a

place :

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 25

 list_where([], cave).

The Unification works on lists .

 ?- [_,_,X] = [lesson, work, sleeping].

 X = sleeping

At last, the special notation for list structures.

 [X | Y]

This structure is unified with a list, X is bound to the first element of the

list, called the head. Y is bound to the list of remaining elements, called

the tail.

Note that the tail is considered as a list for Prolog and the empty list does

not unify with the standard list syntax because it has no head. Here is an

example :

 ?- [X|Y] = [a, b, c, d, e].

 X = a

 Y = [b, c, d, e]

 ?- [X|Y] = [].

 no

The empty list does not unify with the standard list syntax because it has

no head.

 ?- [X|Y] = [].

 no

This failure is important, because it is often used to test for the boundary

condition in a recursive routine. That is, as long as there are elements in

the list, a unification with the [X|Y] pattern will succeed. When there are

no elements in the list, that unification fails, indicating that the boundary

condition applies. We can specify more than just the first element before

the bar (|). In fact, the only rule is that what follows it should be a list.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 26

How to manipulate list

For lists to be useful, there must be easy way to access, add, and delete

list elements. Moreover, we should not have to concern ourselves about

the number of list items, or their order.

In Prolog features enable to accomplish this easy access. One is a special

notation that allows reference to the first element of a list and the list of

remaining elements, and the other is recursion.

The first one we will look at is member. As with most recursive

predicates, we will start with the boundary condition, or the simple case.

An element is a member of a list if it is the head of the list.

 member(T,[T|Q]).

This clause also illustrates how a fact with variable arguments acts as a

rule. The second clause of member is the recursive rule. It says an

element is a member of a list if it is a member of the tail of the list.

 member(X,[T|Q]) :- member(X,Q).

As with many Prolog predicates, member can be used in multiple ways. If

the first argument is a variable, member will, on backtracking, generate

all of the terms in a given list.

 ?- membre(X, [baghdad, babylon, arbil]).

 X = baghdad;

 X = babylon;

 X = arbil;

Another very useful list predicate builds lists from other lists or

alternatively splits lists into separate pieces. This predicate is usually

called append. In this predicate the second argument is appended to the

first argument to yield the third argument. For example

 ?- append([a,b,c],[d,e,f],X).

 X = [a,b,c,d,e,f]

It is a little more difficult to follow, since the basic strategy of working

from the head of the list does not fit nicely with the problem of adding

something to the end of a list. append solves this problem by reducing the

first list recursively. The boundary condition states that if a list X is

appended to the empty list, the resulting list is also X.

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 27

 append([],X,X).

The recursive condition states that if list X is appended to list [T|Q1],

then the head of the new list is also H, and the tail of the new list is the

result of appending X to the tail of the first list.

 append([T|Q1],X,[T|Q2]) :- append(Q1,X,Q2).

If we want to print the elements of list you can use the following rule.

prlist([]).

prlist([(X,Y)|T]):-write(X,Y),print(T).

Ex.

 A list of integer can be shown as a bar graph for ex.

?-bars[3,4,6,5].

bars([]).

bars([N|L]):-

stars(N),nl,

bars(L).

 stars(N):-

 X>0,

 write(*),

 N1 is N-1,

 stars(N1).

 stars(N):- N<=0,!.

Ex2. Add an element to a list without duplicate

add(X,L,L):-member(X,L),!.

add(X,L,[X|L]).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 28

Ex3. Find the length of list

length([],0).

length([-|Tail],N):-

 length(Tail, N1),

 N is 1+N1.

Ex4.

Delete an item.

del(X, [X|Tail], Tail).

del(X,[Y|Tail], [Y|Tail1]):-

 del(X,Tail,Tail1).

Note1

List head tail

[a] a []

[a,b,c,d] a [b,c,d]

[] fails fails

[[the,cat],sat] [the,cat] [sat]

[the,cat] the [cat]

[the,[cat,sat]] the [[cat,sat]]

[the,[cat,sat],down] the [[cat,sat],down]

Note 2

List1 list2 result

[X,Y/Z] [mary,likes,tea] X=mary, Y=likes, Z=[tea]

[[the,Y],/Z] [[X,hare],[is,here]] X=the,Y=hare,Z=[[is,here]]

[vale,horse] [hores,X] fails

[X,Y/Z,W] incorrect syntax

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 29

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 31

4.1 Lists in Prolog

Lists is a simple data structure widely used in non –numeric

programming . is a sequence of any number of items.

 A list is either empty, or it is a structure that has two

components: the head H and tail T. tail itself has to be a list.

 List notation consists of the elements of the list separated by

commas, and the whole list is enclosed in square brackets.

 List are handled in prolog as a special case of binary trees.

 Lists are written as

[Item1,Item2,…]

Or

[Head| Tail]

Or

[Item1,Item2,…,|Others]

Some operation on lists

List can be used to represent sets, there is a difference :the order of

elements in a set does not matter the order of items in a list does, also ,

the same object can occur repeatedly in a list . still, the most common

operations on the lists are similar to those on sets.

 Checking whether some object is in an element of a list

,which corresponds to checking for the set membership

 Concatenation of two list, obtained a third list, which may be

correspond to the union of sets

 Adding a new object to a list or deleting some object from it.

Membership

membership(X,L)

Where X is an object & L is a list. The goal member(X,L) is true if X

occurs in L.

X is a member of L if either

1. X is the Head of L or

2. X is a element of the tail of L.

This can be written as

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 31

member(X,[X| Tail]).

member(X,[Head| Tail]:-

 Member(X, Tail).

Concatenation

Conc(L1,L2,L3)

L1,L2 are two lists, & L3 is their concatenation . for ex.

conc([a,b],[c,d],[a,b,c,d])

Is true , but

conc([a,b],[c,d],[a,b,a,c,d]) is false.

In addition of conc, we will have again two cases depending on the

first argument, L1

1. if the first argument is empty list then the second & third

argument must be the same list (call it L);

conc([],L,L).

if the first argument of conc is non-empty list then it has a head & a

tail & must look like this:

conc([],L,L).

conc([X|L1],L2,[X|L3]):-

 conc(L1,L2,L3).

Ex.

Conc([a,b,c],[1,2,3],L).

L=[a,b,c,1,2,3]

Concatenation of lists

Ex.

?-conc(L1, L2, [a,b,c]).

L1=[]

L2=[a,b,c];

L1=[a]

L2=[b,c];

L1=[a,b]

L2=[c];

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 32

L1=[a,b,c]

L2=[];

No

?-conc(Before,[may|After],

 [jan, feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).

Before=[jan,feb,mar,apr]

After=[jun,jul,aug,sep,oct,nov,dec].

Ex.

?-conc(_,[Month1,may,Month2|_],

[jan,feb,mar,…..,dec]).

Month1=apr.

Month2=jun.

For example:

 [a] and [a,b,c], where a, b and c are symbols type.

 [1], [2,3,4] these are a lists of integer.

 [] is the atom representing the empty list.

Lists can contain other lists. Split a list into its head and tail using

the operation [X|Y].

Ex.

 p([1,2,3]).

p([the,cat,sat,[on,the,hat]]).

Goal: p([X|Y]).

Output:

X = 1 Y = [2,3] ;

X = the Y = [cat,sat,[on,the,hat]].

Ex.

 p([a]).

Goal: p([H | T]).

Output:

H = a, T = [].

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 33

Ex.

p([a, b, c, d]).

Goal: p([X, Y | T]).

Output:

X = a, Y = b, T = [c, d].

Ex

 Print the contents of the list.

print([]).

print([(X,Y)|T]):-write(X,Y),print(T).

Goal: print([3,4,5])

Output: 3 4 5

ex.

 A list of integer can be shown as a bar graph for ex.

?-bars[3,4,6,5].

bars([]).

bars([N|L]):-

stars(N),nl,

bars(L).

 stars(N):-

 X>0,

 write(*),

 N1 is N-1,

 stars(N1).

 stars(N):- N<=0,!.

Ex2. Add an element to a list without duplicate

add(X,L,L):-member(X,L),!.

add(X,L,[X|L]).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 34

Ex. Find the length of list

length([],0).

length([-|Tail],N):-

 length(Tail, N1),

 N is 1+N1.

Ex.

Delete an item.

del(X, [X|Tail], Tail).

del(X,[Y|Tail], [Y|Tail1]):-

 del(X,Tail,Tail1).

Various kinds of equality & comparison

1. use =

ex. X=Y

2. X is E

Is true if X match the value of arithmetic expression E

3. E1=:=E2 is true if the value of arithmetic expression E1

& E2 are equal

4. E1=\=E2 is true if not equal

5. T1==T2 is true if terms T1 & T2 are identical(they

exactly the same structure & all the corresponding

component the same) in particular ,the name of the variable

also have to be the same.

6. T1\==T2 is true if not identical

Ex.

f(a,b)==f(a,b).

Yes

Ex. f(a,X)==f(a,Y).

No

Ex. f(a,b)==f(a,Y).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 35

X\==Y.

Yes

Ex. t(X,f(a,Y))==t(X,f(a,Y))

yes

 A db can be naturally represented as a set of facts for ex.a

clause in fig below show how the information about each

family can be structured.

 Each family has three component ,husband,wife,child . as the

no. of child is vary from family to other then it represented by

a list. Each person represented by four components.

Ex.

family(

 person(tom,fox,date(7,may,1960),works(bbc,15200)),

 person(ann,fox,date(9,may,1981),unemployed),

 [person(pat,fox,date(5,may,1983),unemployed),

 person(jim,fox,date(5,may,1983),unemployed)]).

Ex.

family(person(_,Armstrong,_,_),_,_).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 36

Names all Armstrong families

_ underscores denote different anonymous variable we don’t

care about their value

Ex.

family(_,_,[_,_,_])

Family with three childs

Ex.

To find all married women that at least 3 child

?-family(_,person(Name,Surname,_,_),[_,_,_|_]).

 We can provide a set of procedures that can be serve as a

utility to make interaction with the db

husband(X):-

family(X,_,_).

wife(X):-family(_,X,_).

child(X):- family(_,_,X).

exists(Person):-

 husband(Person)

 ;

 wife(Person)

 ;

 child(X).

dateofbirth(person(_,_,Date,_),Date).

salary(person(_,_,_, works(_,S),S).

salary(person,(_,_,_, unemployed),0).

 لمى الموسوي.د 023ح1محاضرات ذكاء اصطناعي

 37

 Find the names of all people in the db.

?- exists(person(Name, Surname, _, _)).

 Find all child born in 2000.

 ?- child(X),dateofbirth(X, date(_,_,2000).

 Find people born before 1960 whose salary is less than 8000.

?- exists(Person),

dateofbirth(Person, date(_,_, Year)),

year < 1960,

salary(Person, Salary),

Salary < 8000.

