Computer Architecture1 Lecture 2 303 ح

- Introduction to Microprocessors
- Definition
- HISTORY OF MICROPROCESSORS
- 4-bit Microprocessors
- 16-bit Microprocessors
- 32-bit Microprocessors
- 64-bit Microprocessors
- System Bus
- Types of System Buses

INTRODUCTION TO MICROPROCESSORS

- The microprocessor is one of the most important components of a digital computer.
\square It acts as the brain of the computer system.
\square As technology has progressed, microprocessors have become faster, smaller and capable of doing more work per clock cycle.
\square Sometimes, microprocessor is written as μP.
(μ is pronounced as $M u$)

INTRODUCTION TO MICROPROCESSORS

Definition:

Microprocessor is the controlling unit or CPU of a micro-computer, fabricated on a very small chip capable of performing ALU operations and communicating with the external devices connected to it.

HISTORY OF MICROPROCESSORS

CONTENTS

>Introduction
>4-Bit Microprocessors
>8-Bit Microprocessors
>16-Bit Microprocessors
>32-Bit Microprocessors
>64-Bit Microprocessors

INTRODUCTION

$>$ Fairchild Semiconductors (founded in 1957) invented the first IC in 1959.
>In 1968, Robert Noyce, Gordan Moore, Andrew Grove resigned from Fairchild Semiconductors.
$>$ They founded their own company Intel (Integrated Electronics).
>Intel grown from 3 man start-up in 1968 to industrial giant by 1981.
>lt had $\mathbf{2 0 , 0 0 0}$ employees and $\$ 188$ million revenue.

4~BIT MICROPROCESSORS

INTEL 4004

$>$ Introduced in 1971.
>lt was the first microprocessor by Intel.
$>$ It was a 4-bit $\mu \mathrm{P}$.
>lts clock speed was 740 KHz .
>lt had 2,300 transistors.
$>$ It could execute around 60,000 instructions per
second.

INTEL 4040

>Introduced in 1974.
$>$ It was also 4-bit μ P.

8~BIT MICROPROCESSORS

INTEL 8008

>Introduced in 1972.

>lt was first 8-bit μ P.
>lts clock speed was 500 KHz .
>Could execute 50,000 instructions per second.

INTEL 8080

>Introduced in 1974.
$>$ It was also 8-bit μ P.
$>$ Its clock speed was 2 MHz .
>It had 6,000 transistors.
$>$ Was 10 times faster than 8008.
$>$ Could execute 5,00,000 instructions per second.
$>$ Introduced in 1976.

INTEL 8085

$>$ It was also 8-bit $\mu \mathrm{P}$.
> Its clock speed was 3 MHz .
$>$ Its data bus is 8 -bit and address bus is 16 -bit.
$>$ It had 6,500 transistors.
$>$ Could execute 7,69,230 instructions per second.
$>$ It could access 64 KB of memory.
$>$ It had 246 instructions.
> Over 100 million copies were sold.

16~BIT MICROPROCESSORS

> Introduced in 1978.

INTEL 8086

$>$ It was first 16-bit $\mu \mathrm{P}$.
> Its clock speed is $4.77 \mathrm{MHz}, 8$ MHz and 10 MHz , depending on the version.
$>$ Its data bus is 16-bit and address bus is 20-bit.
> It had 29,000 transistors.
> Could execute 2.5 million instructions per second.
> It could access 1 MB of memory.
$>$ It had 22,000 instructions.
$>$ It had Multiply and Divide instructions.

INTEL 8088

$>$ Introduced in 1979.
$>$ It was also 16 -bit μ P.
$>$ It was created as a cheaper version of Intel's 8086.
> It was a 16-bit processor with an 8-bit external bus.
> Could execute 2.5 million instructions per second.
$>$ This chip became the most popular in the computer industry when IBM used it for its first PC.

INTEL 80186 \& 80188

 $>$ Introduced in 1982.
$>$ They were 16 -bit μ Ps.
$>$ Clock speed was 6 MHz .
>80188 was a cheaper version of 80186 with an 8 -bit external data bus.
$>$ They had additional components like:
$>$ Interrupt Controller
>Clock Generator
>Local Bus Controller
>Counters

INTEL 80286

> Introduced in 1982.
$>$ It was 16 -bit μ P.
>lts clock speed was 8 MHz .
$>$ Its data bus is 16 -bit and address bus is 24-bit.
> It could address 16 MB of memory.
>It had 1,34,000 transistors.
$>$ It could execute 4 million instructions per second.

32~BIT MICROPROCESSORS

>Introduced in 1986.
$>$ It was first 32-bit μ P.
$>$ Its data bus is 32-bit and address bus is 32-bit.
$>$ It could address 4 GB of memory.
$>$ It had 2,75,000 transistors.
$>$ Its clock speed varied from 16 MHz
to 33 MHz depending upon the various versions.
>Different versions:
>80386 DX
>80386 SX
>80386 SL
$>$ Intel 80386 became the best selling microprocessor in history.

INTEL 80486

>Introduced in 1989.
>lt was also 32 -bit $\mu \mathrm{P}$.
$>$ It had 1.2 million transistors.
$>$ Its clock speed varied from 16 MHz to 100 MHz depending upon the various versions.
>lt had five different versions:
$>80486 \mathrm{DX}$
$>80486 \mathrm{SX}$
$>80486 \mathrm{DX} 2$
$>80486 \mathrm{SL}$
$>80486 \mathrm{DX} 4$
>8 KB of cache memory was introduced.
$>$ Introduced in 1993.

MNTEL PENTVUM $>$ It was also 32-bit μ P.

> It was originally named 80586.
> Its clock speed was 66 MHz .
$>$ Its data bus is 32-bit and address bus is 32-bit.
$>$ It could address 4 GB of memory.
> Could execute 110 million instructions per second.
> Cache memory:
$>8 \mathrm{~KB}$ for instructions.
$>8 \mathrm{~KB}$ for data.

INTEL PENTIUM PRO

> Introduced in 1995.
$>$ It was also 32-bit μ P.
> It had L2 cache of 256 KB.
> It had 21 million transistors.
$>$ It was primarily used in server systems.
$>$ Cache memory:
$>8 \mathrm{~KB}$ for instructions.
$>8 \mathrm{~KB}$ for data.
$>$ It had L2 cache of 256 KB.

INTEL PENTIUM II

>Introduced in 1997.
>lt was also 32-bit μ P.
>lts clock speed was 233 MHz to 500 MHz .
$>$ Could execute 333 million instructions per second.
>MMX technology was supported.
>L2 cache \& processor were on one circuit.

INTEL PENTIUM II

 XEON> Introduced in 1998.
$>$ It was also 32-bit μ P.
$>$ It was designed for servers.
> Its clock speed was 400 MHz to $\mathbf{4 5 0} \mathbf{~ M H z}$.
> L1 cache of 32 KB \& L2 cache of $512 \mathrm{~KB}, 1 \mathrm{MB}$ or 2 MB.
$>$ It could work with 4 Xeons in same system.

INTEL PENTIUM III

>Introduced in 1999.
>lt was also 32-bit μ P.
>lts clock speed varied from 500 MHz to 1.4 GHz .
$>$ It had 9.5 million transistors.

INTEL PENTIUM IV

$>$ Introduced in 2000.
$>$ It was also 32-bit μ P.
$>$ Its clock speed was from 1.3 GHz to 3.8 GHz .
$>$ L1 cache was of 32 KB \& L2 cache of 256 KB.
$>$ It had 42 million transistors.
$>$ All internal connections were made from aluminium to copper.
$>$ Introduced in 2006.

INTEL DUAL CORE

$>$ It is 32-bit or 64-bit $\mu \mathrm{P}$.
$>$ It has two cores.
$>$ Both the cores have there own internal bus and L1 cache, but share the external bus and L2 cache (Next Slide).
> It supported SMT technology.
> SMT: Simultaneously MultiThreading
$>$ E.g.: Adobe Photoshop supported SMT.

Dual CPU Core Chip

64~BIT MICROPROCESSORS

INTEL CORE 2

$>$ Introduced in 2006.
$>$ It is a 64-bit $\mu \mathrm{P}$.
$>$ Its clock speed is from 1.2 GHz to 3 GHz .
>lt has 291 million transistors.
>It has 64 KB of L1 cache per core and 4 MB of L2 cache.
>lt is launched in three different versions:

$>$ Intel Core 2 Duo
$>$ Intel Core 2 Quad
$>$ Intel Core 2 Extreme

INTEL CORE 17

>Introduced in 2008.

$>$ It is a 64-bit $\mu \mathrm{P}$.
>It has 4 physical cores.
$>$ Its clock speed is from 2.66 GHz to 3.33 GHz .
>lt has $\mathbf{7 8 1}$ million transistors.
$>$ It has 64 KB of L 1 cache per core, 256 KB of L2 cache and 8 MB of L3 cache.

INTEL CORE I5

>Introduced in 2009.

\Rightarrow It is a 64-bit $\mu \mathrm{P}$.
>lt has 4 physical cores.
$>$ Its clock speed is from 2.40 GHz to 3.60 GHz .
>lt has $\mathbf{7 8 1}$ million transistors.
$>$ It has 64 KB of L 1 cache per core, 256 KB of L2 cache and 8 MB of L3 cache.

INTEL CORE 13

$>$ Introduced in 2010.

$>$ It is a 64-bit $\mu \mathrm{P}$.
>lt has 2 physical cores.
$>$ Its clock speed is from 2.93 GHz to 3.33 GHz .
>lt has $\mathbf{7 8 1}$ million transistors.
$>$ It has 64 KB of L 1 cache per core, 512 KB of L2 cache and 4 MB of L3 cache.

SYSTEM BUS

- The CPU sends various data values, instructions and information to all the devices and components inside the computer.
- If you look at the bottom of a motherboard you'll see a whole network of lines or electronic pathways that join the different components together.
- This network of wires or electronic pathways is called the 'Bus'.

BOTTOM OF MOTHERBOARD

TYPES OF SYSTEM BUSES

- Data Bus
- Address Bus
- Control Bus

System Bus Model

Data Bus
Address Bus
Control Bus

DATA BUS

- A collection of wires through which data is transmitted from one part of a computer to another is called Data Bus.
- Data Bus can be thought of as a highway on which data travels within a computer.
- This bus connects all the computer components to the CPU and main memory.
- The size (width) of bus determines how much data can be transmitted at one time.
- E.g.:
- A 16-bit bus can transmit 16 bits of data at a time.
- 32-bit bus can transmit 32 bits at a time.

ADDRESS BUS

- A collection of wires used to identify particular location in main memory is called Address Bus.
- Or in other words, the information used to describe the memory locations travels along the address bus.
- The size of address bus determines how many unique memory locations can be addressed.
- E.g.:
- A system with 4-bit address bus can address $2^{4}=16$ Bytes of memory.
- A system with 16 -bit address bus can address $2^{16}=64 \mathrm{~KB}$ of memory.
- A system with 20-bit address bus can address $2^{20}=1 \mathrm{MB}$ of memory.

CONTROL BUS

- The connections that carry control information between the CPU and other devices within the computer is called Control Bus.
- The control bus carries signals that report the status of various devices.
- E.g.:
- This bus is used to indicate whether the CPU is reading from memory or writing to memory.

