Digital Hardware Systems

Digital Systems
Digital vs. Analog Waveforms

Digital:
only assumes discrete values

Analog:
values vary over a broad range continuously

Digital Hardware Systems

- Digital Binary System
- Two discrete values:
- yes, on, 5 volts, current flowing, "1"
- no, off, 0 volts, no current flowing, "0"
- Advantage of binary systems:
- rigorous mathematical foundation based on logic
- it's easy to implement

IF the garage door is open AND the car is running
THEN the car can be backed out of the garage
both the door must be open and the car running before / can back out
the preconditions must be true to imply the conclusion

Binary Bit and Group Definitions

- Bit - a single binary digit
- Nibble - a group of four bits
- Byte - a group of eight bits
- Word - depends on processor; $8,16,32$, or 64 bits
- LSB - Least Significant Bit (on the right)
- MSB - Most Significant Bit (on the left)

Binary Representation of Information

- Information divided into groups of symbols
- 26 English letters
- 10 decimal digits
- 50 states in USA
- Digital systems manipulate information as 1's \& 0's
- The mapping of symbols to binary value is known as a "code"
- The mapping must be unique

Minimum number of bits

- In binary, 'r' bits can represent $n=2{ }^{\text {r }}$ symbols
- e.g. 3 bits can represent up to 8 symbols, 4 for 16, etc.
- For N symbols to be represented, the minimum number of bits required is the lowest integer ' r ' that satisifies the relationship:

$$
2^{\mathrm{r}} \geq \mathrm{N}
$$

e.g. if $\mathrm{N}=26$, minimum r is 5 since
$2^{4}=16$
$2^{5}=32$

Positional Number Systems

- Numeric value is represented by a series of digits
- Number of digits used is fixed by radix
- Digits multiplied by a power of the radix
- Digit order determines radix powers
- Very large numbers can be represented
- Can also represent fractional values.

Positional Integer Number Values

Given a digit series of

The full expression for the represented value is

$$
\begin{aligned}
& A_{n-1} \times r^{n-1}+\ldots A_{3} \times r^{3}+A_{2} \times r^{2}+A_{i} \times r^{1} A_{0} \times r^{0} \\
& o r \\
& \sum_{i=0}^{i n-1} A_{i} \times r^{i}
\end{aligned}
$$

Positional Fractional Number Values

Given a digit series of

The full expression for the represented value is

$$
\begin{aligned}
& A_{-1} \times r^{-1}+A_{-2} \times r^{-2}+A_{-3} \times r^{-3} A_{-4} \times r^{-4}+\ldots A_{-m} \times r^{-m} \\
& \text { or } \\
& \sum_{i=-1}^{i=-m} A_{i} \times r^{i}
\end{aligned}
$$

Binary Number System

- Just like decimal numbers except
- The only valid digits are 0 and 1
- The base is 2 instead of 10
- Binary to decimal conversion is just the explicit expression of the positional values,
- both integer and fraction
- E.G.

$$
\xrightarrow{\stackrel{1}{\longrightarrow} 1 \times 2^{0}=1} \begin{array}{r}
\text { Total }=5
\end{array}
$$

Decimal to Binary Conversion

- Effectively the reverse of binary to decimal conversion
- Integers:
- Divide number by two; keep track of remainder
- Repeat with dividend = last quotient until zero
- First remainder is binary LSB, last is the MSB
- Fractions:
- Multiply fraction by two; keep track of integer part
- Repeat with multiplier = last product fraction
- First integer is MSB, last is the LSB
- Conversion may not be exact; a repeated fraction

Decimal to Binary Conversion (cont.)

E.G. 13.2 to binary

Integer

$$
\begin{aligned}
13 / 2 & =6 R 1 \text { LSB } \\
6 / 2 & =3 R 0 \\
3 / 2 & =1 R 1 \\
1 / 2 & =0 R 1 \text { MSB }
\end{aligned}
$$

Fraction
$.2 \times 2=0.4 \mathrm{MSB}$
$.4 \times 2=0.8$
$.8 \times 2=1.6$
$.6 \times 2=1.2$
$.2 \times 2=0.4$ LSB repeating

Result is 1101.00110011......

If you're not sure of the results, convert back to decimal to check yourself.

Octal and Hexadecimal Number Systems

- Both are positional systems with different radix and digits
- Octal:
- Radix $=8$
- Digits = 0,1,2,3,4,5,6,7
- Hexadecimal:
- Radix $=16$
- Digits = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Primary advantage of both is it's easy to convert to/from binary

Octal and Hexadecimal Conversions

- To/From decimal is same technique with a radix of 8 or 16 instead of 2
- To convert from binary:
- Starting at radix point, go left/right and group bits into groups of 3 or 4 bits / group
- Convert each bit group into equivalent octal or hex digit
- To convert to binary expand each octal / hex digit into equivalent 3 or 4 bit binary value.

Octal, Hex Conversion Example

Numeric Information Representation

- Numeric information has some special characteristics which influence the was it is represented
- Number set is usually in positional notation
- There is a defined range of numbers
- There is a specified resolution for the set
- In general, numeric representations:
- are in some form of positional binary notation
- have no. of bits determined by range and res.

Numeric Representations (cont.)

- The number of values in the set of numbers is found from the following equation

$$
N_{\text {vatuess }}=\frac{R_{\text {max }}-R_{\text {NIN }}}{\text { RES }}+1
$$

where $\mathrm{R}_{\text {MAX }}$ and $\mathrm{R}_{\text {MIN }}$ are the maximum and minimum range values and RES is the resolution

- The minimum number of bits needed must meet the relationship already presented

Numeric Representations (cont.)

- For example, the set of numbers from -5 to +10 with a resolution of 1 has 16 values

$$
\text { [+15-(-5)] / } 1=16
$$

- Therefore the minimum number of bits is 4

$$
2^{4}=16
$$

Numeric Representations (cont.)

- For the set of numbers from 0 to 100 with a resolution of 10 we have 11 values

$$
0,10,20,30,40,50,60,70,80,90,100
$$

- For the set of numbers from 0 to 5 with a resolution of 0.1 we have 51 values

$$
[(5-0) / 0.1]+1=51
$$

Numeric Representations (cont.)

- The actual representation could be any unique binary assignment but is usually of a positional form
- binary integer.fraction with sufficient bits to meet the range and resolution criteria
- binary integer form where the number of bits is as previously defined and the LSB value is the desired resolution

Numeric Representations (cont.)

- EG: Represent 0 to 5, resolution $=0.1$
- integer.fraction notation implies 3 bits for the integer (6 values) and 4 bits for the fraction (2^{-4} $=0.0625$) for a total of 7 bits
2.3 represented by 010.0101 (closest fraction)
- integer * res notation requires 51 values or 6 bits; each value in set is represented by the equivalent binary integer = value / res
2.3 represented by binary 010111 (2.3 / 0.1)

Numeric Representations (cont.)

- Negative ranges are handled by special assignments or negative number representations
- These are the most common numeric representations BUT they are certainly not the only ones!

Representation of Signed Numbers

- Positive number representation same in most systems
- Standard positional binary notation
- MSB is the sign bit; $0=$ plus, 1 = minus
- Major differences are in how negative numbers are represented
- Three major schemes:
- sign and magnitude
- ones complement
- twos complement

Negative Number Representation

- Assumptions:
- we'll assume a 4 bit machine word
- 16 different values can be represented
- roughly half are positive, half are negative
- sign bit is the MSB; 0 = plus, 1 = minus

Sign-Magnitude Representation

$0100=+4$
$1100=-4$

High order bit is sign: $0=$ positive (or zero), $1=$ negative

Three low order bits is the magnitude: 0 (000) thru 7 (111)

Number range for n bits $= \pm 2^{n-1}-1$
Two representations for 0

The major disadvantage is that we need separate circuits to both add and subtract

Number magnitudes need to be compared to get the right result

Representing -N

- What we really want is -N
- Do A - B as A + (-B)
- We really are working in a closed, modulo number system; 0 to 2^{r-1} values
- Therefore for r bits, $2^{r} \equiv 0$
- If $-\mathrm{N} \equiv 0-\mathrm{N}$ then $-\mathrm{N} \equiv 2^{\mathrm{r}}-\mathrm{N}$

This is the 2's complement representation for -N

Twos Complement Representation

- Only one representation for 0
- One more negative number than positive number
- Generation of the 2's complement as 2^{r} - N implies $r+1$ bits available in system

Twos Complement Operations

Example: Twos complement of $7 \quad 2^{4}=10000$

$$
\text { sub } 7=\frac{0111}{1001}=\text { repr. of }-7
$$

Example: Twos complement of -7 $\quad 2^{4}=10000$

$$
\text { sub }-7=1001
$$

$$
0111 \text { = repr. of } 7
$$

Shortcut method:
Twos complement = bitwise complement + 1

$$
N^{*}=2^{r}-N
$$

$$
0111 \text {-> } 1000+1 \text {-> } 1001 \text { (representation of -7) }
$$

$$
1001 \text {-> } 0110 \text { + } 1 \text {-> } 0111 \text { (representation of 7) }
$$

Ones Complement Representation

Ones Complement

N is positive number, then \mathbf{N} is its negative 1 's complement

$$
\bar{N}=\left(2^{n}-1\right)-N
$$

Example: 1's complement of 7

Shortcut method:

1111
$-7=\underline{0111}$
$1000=-7$ in 1's comp.
simply compute bit wise complement

$$
0111 \text {-> } 1000
$$

Ones Complement Representation

like 2's comp except shifted one position counter-clockwise

- Subtraction implemented by addition \& 1's complement
- Still two representations of 0 ! This causes some problems
- Some complexities in addition

Addition and Subtraction of Numbers

Sign and Magnitude

result sign bit is the	4	0100	-4	1100	
same as the operands'	+3		0011	$+(-3)$	1011
		0111		-7	1111

when signs differ, operation is subtract,	4	0100	-4	1100	
sign of result depends	-3	1011		+3	0011
on sign of number with the larger magnitude	1	0001		-1	1001

Addition and Subtraction of Numbers

Ones Complement Calculations

Addition and Subtraction of Numbers

Ones Complement Calculations

Why does end-around carry work?
Its equivalent to subtracting 2^{n} and adding 1

$$
\begin{array}{rlr}
M-N=M+\bar{N}=M+\left(2^{n}-1-N\right)=(M-N)+2^{n}-1 \quad(M>N) \\
-M+(-N)=M+N & =\left(2^{n}-M-1\right)+\left(2^{n}-N-1\right) \\
& =2^{n}+\left[2^{n}-1-(M+N)\right]-1 &
\end{array}
$$

after end around carry:

$$
=2^{n}-1-(M+N)
$$

this is the correct form for representing -($\mathrm{M}+\mathrm{N}$) in 1's comp!

Addition and Subtraction of Numbers

Twos Complement Calculations

| | 4 | 0100 | -4 | 1100 |
| :--- | ---: | :--- | ---: | ---: | ---: |
| | +3 | 0011 | $+(-3)$ | 1101 |
| If carry-in to sign $=$
 carry-out then ignore
 carry | 7 | 0111 | -7 | 11001 |
| if carry-in differs from
 carry-out then overflow | 4 | 0100 | -4 | 1100 |
| | -3 | $\underline{1101}$ | +3 | $\frac{0011}{}$ |

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Addition and Subtraction of Numbers

Twos Complement Calculations
Why can the carry-out be ignored?
$-\mathrm{M}+\mathrm{N}$ when $\mathrm{N}>\mathrm{M}$:

$$
M^{*}+N=\left(2^{n}-M\right)+N=2^{n}+(N-M)
$$

Ignoring carry-out is just like subtracting 2^{n}

$$
\begin{aligned}
-M+-N \text { where } N+M & <\text { or }=2^{n-1} \\
-M+(-N)=M^{*}+N^{*} & =\left(2^{n}-M\right)+\left(2^{n}-N\right) \\
& =2^{n}-(M+N)+2^{n}
\end{aligned}
$$

After ignoring the carry, this is just the right twos compliment representation for $-(\mathrm{M}+\mathrm{N})$!

Overflow Conditions

Add two positive numbers to get a negative number or two negative numbers to get a positive number

Overflow Conditions

5	$\begin{array}{r} 0111 \\ 011 \end{array}$	-7	$\begin{array}{r} 1000 \\ 1001 \end{array}$
3	0011	-2	1100
-8	1000	7	10111
Ove		Ove	
5	$\begin{array}{rlll} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}$	-3	$\begin{array}{r} 1111 \\ 1101 \end{array}$
2	0010	-5	1011
7	0111	-8	11000
No overflow		No overflow	

Overflow when carry in to sign does not equal carry out

Weighted and Unweighted Codes

- Most numeric number representations are in a class known as "Weighted Codes" where

$$
\text { Value }=\sum_{\mathrm{i}=0}^{\mathrm{r}-1} \mathrm{~b}_{\mathrm{i}} \bullet \mathrm{w}_{\mathrm{i}}
$$

- Binary integers and fractions are special case where weights are powers of 2
- Unweighted codes are codes that cannot be assigned a weight value for each bit

Binary Coded Decimal

- Four bits are used to represent each decimal digit
- In each 4-bit group, 6 values are not used
- Many possible codes, natural BCD (equivalent binary digits) most common
- BCD is not as efficient as binary
- BCD is easy to convert to/from decimal (it really is decimal with different symbols)
- BCD add/subtract circuits are complex

BCD Code Examples

Weighted codes

The 8421 or natural BCD code is the most common BCD code in use

BCD Addition

BCD Addition (cont.)

- BCD addition is therefore performed as follows
- 1) Add the two BCD digits together using normal binary addition
- 2) Check if correction is needed
- a) 4-bit sum is in range of 1010 to 1111
- b) carry out of MSB = 1
- 3) If correction is required, add 0110 to 4-bit sum to get the correct result; BCD carry out = 1

BCD Negative Number Representation

- Similar to binary negative number representation except $\mathrm{r}=10$.
- BCD sign-magnitude
- MSD (sign digit options)
- MSD $=0$ (positive); not equal to $0=$ negative
- MSD range of 0-4 positive; 5-9 negative
- BCD 10's complement
- $-\mathrm{N} \equiv 10^{\mathrm{r}}-\mathrm{N}$; 9's complement + 1
- BCD 9;s complement
- invert each BCD digit $(0 \rightarrow 9,1 \rightarrow 8,2 \rightarrow 7,3 \rightarrow 6$, $\ldots 7 \rightarrow 2,8 \rightarrow 1,9 \rightarrow 0)$

Negative BCD Numbers

- 84-2-1 and XS3 codes allow for easy digit inversion.
- XS3 code is also easy to implement
- Addition is like binary
- Correction factor is -3 or +3

Gray Codes

- Grey codes are minimum change codes
- From one numeric representation to the next, only one bit changes
- Primary use is in numeric input encoding apps. where we expect non-random input values changes (I.e. value n to either $\mathrm{n}-1$ or $\mathrm{n}+1$)
- Milling machine table position
- Rotary shaft position

Gray Codes (cont.)

Binary	Grey
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1110
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

Alphanumeric Representation

- Binary codes used to represent alphabetic and numeric characters
- Two most common are:
- ASCII, 7 bit code, 128 symbols
- EBCDIC, 8 bit code, 256 symbols
- Problems can arise when comparing symbol values (collation)
- Comparing ' A ' to 'a' in ASCII system yields different results in an EBCDIC system.

Parity Bit

- ASCII code may have an extra bit appended to detect data transmission errors
$-\mathrm{P}=0$ if the number of 1 s in the character is even, else P = 1 (even parity)
$-\mathrm{P}=0$ if the number of 1 s in the character is odd, else $\mathrm{P}=1$ (odd parity)
- If any single bit changes, parity will be wrong at receive end

	Even parity		Odd parity
ASCII $A=1000001$	01000001		11000001
ASCII T = 1010100	11010100		01010100

Other Information Representation

- ALL information must be encoded before we can design circuits to process it
- You can assign any code to any information
- E.G. 00 - north, 01 - east, 11 - south, 10 - west
- If the information goes somewhere else, the user has to have access to your definition
- Standards are best if available
- Already published and easily available
- Allows your system to work with many others

Combinational Logic Circuits

Overview

- Binary logic operations and gates
- Switching algebra
- Algebraic Minimization
- Standard forms
- Karnaugh Map Minimization
- Other logic operators
- IC families and characteristics

Combinational Logic

- One or more digital signal inputs
- One or more digital signal outputs
- Outputs are only functions of current input values (ideal) plus logic propagation delays

Combinational Logic (cont.)

- Combinational logic has no memory!
- Outputs are only function of current input combination
- Nothing is known about past events
- Repeating a sequence of inputs always gives the same output sequence
- Sequential logic (covered later) does have memory
- Repeating a sequence of inputs can result in an entirely different output sequence

Switching Algebra

- Based on Boolean Algebra
- Developed by George Boole in 1854
- Formal way to describe logic statements and determine truth of statements
- Only has two-values domain (0 and 1)
- Huntington’s Postulates define underlying assumptions

Huntington's Postulates

- Closure

If X and Y are in set $(0,1)$ then operations $X+Y$ and $\mathrm{X} \cdot \mathrm{Y}$ are also in set $(0,1)$

- Identity

$$
\mathrm{X}+0=\mathrm{X} \quad \mathrm{X} \cdot 1=\mathrm{X}
$$

- Commutative

$$
X+Y=Y+X \quad X \cdot Y=Y \cdot X
$$

Huntington's Postulates (cont.)

- Distributive

$$
\begin{aligned}
& \mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) \\
& \mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})
\end{aligned}
$$

- Complement

$$
\begin{aligned}
& X+\bar{X}=1 \\
& X \cdot \bar{X}=0
\end{aligned}
$$

Note that for each property, one form is the dual of the other;
(0 s to $1 \mathrm{~s}, 1 \mathrm{~s}$ to $0 \mathrm{~s}, \cdot \mathrm{~s}$ to $+\mathrm{s},+\mathrm{s}$ to $\cdot \mathrm{s}$)

Switching Algebra Operations - Not

- Unary complement or inversion operation
- Usually shown as overbar ($\overline{\mathrm{X}}$), other forms are ${ }^{\sim} \mathrm{X}, \mathrm{X}$ '

X	$\overline{\mathrm{X}}$
0	1
1	0

Switching Algebra Operations - AND

- Also known as the conjunction operation; output is true (1) only if all inputs are true
- Algebraic operators are ‘‘’, '\&’, ‘ \wedge '

X	Y	$\mathrm{X} \cdot \mathrm{Y}$
0	0	0
0	1	0
1	0	0
1	1	1

Switching Algebra Operations - OR

- Also known as the disjunction operation; output is true (1) if any input is true
- Algebraic operators are '+', ‘|', ‘v’

X	Y	$\mathrm{X}+\mathrm{Y}$
0	0	0
0	1	1
1	0	1
1	1	1

Logic Expressions

- Terms and Definitions
- Logic Expression - a mathematical formula consisting of logical operators and variables
- Logic Operator - a function that gives a well defined output according to switching algebra
- Logic Variable - a symbol representing the two possible switching algebra values of 0 and 1
- Logic Literal - the values 0 and 1 or a logic variable or it's complement

Logic Expressions - Precedence

- Like standard algebra, switching algebra operators have a precedence of evaluation
- NOT operations have the highest precedence
- AND operations are next
- OR operations are lowest
- Parentheses explicitly define the order of operator evaluation
- If in doubt, USE PARENTHESES!

Logic Expression Minimization

- Goal is to find an equivalent of an original logic expression that:
- a) has fewer variables per term
- b) has fewer terms
- c) needs less logic to implement
- There are three main manual methods
- Algebraic minimization
- Karnaugh Map minimization
- Quine-McCluskey (tabular) minimization

Algebraic Minimization

- Process is to apply the switching algebra postulates, laws, and theorems to transform the original expression
- Hard to recognize when a particular law can be applied
- Difficult to know if resulting expression is truly minimal
- Very easy to make a mistake
- Incorrect complementation
- Dropped variables

Switching Algebra Laws and Theorems

Involution:

$$
X=(\overline{\bar{X}})
$$

Switching Algebra Laws and Theorems

Identity:

$$
\begin{array}{ll}
\mathrm{X}+1=1 & \mathrm{X} \cdot 0=0 \\
\mathrm{X}+0=\mathrm{X} & \mathrm{X} \cdot 1=\mathrm{X}
\end{array}
$$

Switching Algebra Laws and Theorems

Idempotence:

$$
X+X=X \quad X \cdot X=X
$$

Switching Algebra Laws and Theorems

Associativity:

$$
\begin{aligned}
& \mathrm{X}+(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y})+\mathrm{Z} \\
& \mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}
\end{aligned}
$$

Switching Algebra Laws and Theorems

Adjacency:

$$
\begin{aligned}
& X \cdot Y+X \cdot \bar{Y}=X \\
& (X+Y) \cdot(X+\bar{Y})=X
\end{aligned}
$$

Switching Algebra Laws and Theorems

Absorption:

$$
\begin{aligned}
& X+(X \cdot Y)=X \\
& X \cdot(X+Y)=X
\end{aligned}
$$

Switching Algebra Laws and Theorems

Simplification:

$$
\begin{aligned}
& X+(\bar{X} \cdot Y)=X+Y \\
& X \cdot(\bar{X}+Y)=X \cdot Y
\end{aligned}
$$

Switching Algebra Laws and Theorems

Consensus:

$\mathrm{X} \cdot \mathrm{Y}+\overline{\mathrm{X}} \cdot \mathrm{Z}+\mathrm{Y} \cdot \mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}+\overline{\mathrm{X}} \cdot \mathrm{Z}$
$(\mathrm{X}+\mathrm{Y}) \cdot(\overline{\mathrm{X}}+\mathrm{Z}) \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\overline{\mathrm{X}}+\mathrm{Z})$

Switching Algebra Laws and Theorems

DeMorgan's Theorem:

$$
\begin{aligned}
& \overline{X+Y}=\bar{X} \cdot \bar{Y} \\
& \overline{X \cdot Y}=\bar{X}+\bar{Y}
\end{aligned}
$$

General form:

$\overline{\mathrm{F}\left(\cdot,+, \mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)}=\mathrm{G}\left(+, \cdot, \overline{\mathrm{X}_{1}}, \ldots \overline{\mathrm{X}_{\mathrm{n}}}\right)$

DeMorgan’s Theorem

Very useful for complementing function expressions:

$$
\begin{array}{ll}
\text { e.g. } & \\
\begin{array}{ll}
\mathrm{F}=\mathrm{X}+\mathrm{Y} \cdot \mathrm{Z} ; & \overline{\mathrm{F}}=\overline{\mathrm{X}+\mathrm{Y} \cdot \mathrm{Z}} \\
\overline{\mathrm{~F}}=\overline{\mathrm{X}} \cdot \overline{\mathrm{Y} \cdot \mathrm{Z}} & \mathrm{~F}=\overline{\mathrm{X}} \cdot(\overline{\mathrm{Y}}+\overline{\mathrm{Z}}) \\
\overline{\mathrm{F}}=\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}+\overline{\mathrm{X}} \cdot \overline{\mathrm{Z}} &
\end{array}
\end{array}
$$

Minimization via Adjacency

- Adjacency is easy to use; very powerful
- Look for two terms that are identical except for one variable

$$
\text { e.g. } \mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}
$$

- Application removes one term and one variable from the remaining term

$$
\begin{aligned}
& A \cdot B \cdot C \cdot \bar{D}+A \cdot B \cdot C \cdot D=A \cdot B \cdot C \\
& (A \cdot B \cdot C) \cdot \bar{D}+(A \cdot B \cdot C) \cdot D=A \cdot B \cdot C \\
& (A \cdot B \cdot C) \cdot(\bar{D}+D)=(A \cdot B \cdot C) \cdot 1=A \cdot B \cdot C
\end{aligned}
$$

Example of Adjacency Minimization

Duplicate 3rd. term and rearrange
$x_{3}=\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \overline{\mathrm{~b}_{1}} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \overline{\mathrm{~b}_{0}}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}} \overline{\mathrm{~b}_{0}}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}} \mathrm{~b}_{0}$

Apply adjacency on term pairs

$$
x_{3}=\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}}
$$

Combinational Circuit Analysis

- Combinational circuit analysis starts with a schematic and answers the following questions:
- What is the truth table(s) for the circuit output function(s)
- What is the logic expression(s) for the circuit output function(s)

Literal Analysis

- Literal analysis is process of manually assigning a set of values to the inputs, tracing the results, and recording the output values
- For ' n ' inputs there are 2^{n} possible input combinations
- From input values, gate outputs are evaluated to form next set of gate inputs
- Evaluation continues until gate outputs are circuit outputs
- Literal analysis only gives us the truth table

Literal Analysis - Example

A	B	C	Z
0	0	0	x
0	0	1	x
0	1	0	x
0	1	1	x
1	0	0	x
1	0	1	x
1	1	0	1
1	1	1	x

Assign input values
Determine gate outputs and propagate
Repeat until we reach output

Symbolic Analysis

- Like literal analysis we start with the circuit diagram
- Instead of assigning values, we determine gate output expressions instead
- Intermediate expressions are combined in following gates to form complex expressions
- We repeat until we have the output function and expression
- Symbolic analysis gives both the truth table and logic expression

Symbolic Analysis (cont.)

- Note that we are constructing the truth table as we go
- truth table has a column for each intermediate gate output
- intermediate outputs are combined in the truth table to generate the complex columns
- Symbolic analysis is more work but gives us complete information

Symbolic Analysis - Example

Generate intermediate
 expression

Create associated TT column
Repeat till output reached

A	B	C	$\overline{\mathrm{C}}$	$\mathrm{A} \cdot \overline{\mathrm{C}}$	$\mathrm{B} \cdot \mathrm{C}$	$\mathrm{Z}=\mathrm{A} \cdot \overline{\mathrm{C}}+\mathrm{B} \cdot \mathrm{C}$
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	0	1	0	0	0	0
1	1	0	1	1	0	1
1	1	1	0	0	1	1

Standard Expression Forms

- Two standard (canonical) expression forms
- Canonical sum form
- AKA disjunctive normal form or sum-of-products
- OR of AND terms
- Canonical product form
- AKA conjunctive normal form or product-of-sums
- AND or OR terms
- In both forms, each first-level operator corresponds to one row of truth table
- 2nd-level operator combines 1st-level results

Standard Forms (cont.)

Standard Sum Form
 Sum of Products (OR of AND terms)

$$
\mathrm{F}[\mathrm{~A}, \mathrm{~B}, \mathrm{C}]=(\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}})+\underset{\text { Minterms }}{(\overline{\mathrm{A}} \cdot \underset{\sim}{\mathrm{~B}} \cdot \mathrm{C})+(\mathrm{A} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}})+(\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}))}
$$

Standard Product Form Product of Sums (AND of OR terms)

$$
\begin{aligned}
& \mathrm{F}[\mathrm{~A}, \mathrm{~B}, \mathrm{C}]=(\mathrm{A}+\mathrm{B}+\overline{\mathrm{C}}) \cdot(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}) \cdot(\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C}) \cdot(\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}) \\
& \text { Maxterms }
\end{aligned}
$$

Standard Sum Form

- Each product (AND) term is a Minterm
- ANDed product of literals in which each variable appears exactly once, in true or complemented form (but not both!)
- Each minterm has exactly one ' 1 ' in the truth table
- When minterms are ORed together each minterm contributes a ' 1 ' to the final function

NOTE: NOT ALL PRODUCT TERMS ARE MINTERMS!

Minterms and Standard Sum Form

A	B	C	Minterms	m_{0}	$\mathrm{~m}_{3}$	$\mathrm{~m}_{6}$	$\mathrm{~m}_{7}$	F
0	0	0	$\mathrm{~m}_{0}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}$	1	0	0	0	1
0	0	1	$\mathrm{~m}_{1}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$	0	0	0	0	0
0	1	0	$\mathrm{~m}_{2}=\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}$	0	0	0	0	0
0	1	1	$\mathrm{~m}_{3}=\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \mathrm{C}$	0	1	0	0	1
1	0	0	$\mathrm{~m}_{4}=\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}$	0	0	0	0	0
1	0	1	$\mathrm{~m}_{5}=\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$	0	0	0	0	0
1	1	0	$\mathrm{~m}_{6}=\mathrm{A} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}$	0	0	1	0	1
1	1	1	$\mathrm{~m}_{7}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$	0	0	0	1	1

$$
\begin{aligned}
& \mathrm{F}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C}+\mathrm{A} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \\
& \mathrm{~F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{m}_{0}+\mathrm{m}_{3}+\mathrm{m}_{6}+\mathrm{m}_{7} \\
& \mathrm{~F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,3,6,7)
\end{aligned}
$$

Standard Product Form

- Each OR (sum) term is a Maxterm
- ORed product of literals in which each variable appears exactly once, in true or complemented form (but not both!)
- Each maxterm has exactly one ' 0 ' in the truth table
- When maxterms are ANDed together each maxterm contributes a ' 0 ' to the final function
NOTE: NOT ALL SUM TERMS ARE MAXTERMS!

Maxterms and Standard Product Form

	B	Maxterms	M_{1}	M_{2}	M_{4}	M_{5}	F
0	0	$\mathrm{M}_{0}=\mathrm{A}+\mathrm{B}+\mathrm{C}$	1	1	1	1	1
0	0	$M_{1}=A+B+\bar{C}$	0	1	1	1	0
0	1	$\mathrm{M}_{2}=\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}$	1	0	1	1	0
0	1	$\mathrm{M}_{3}=\mathrm{A}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$	1	1	1	1	1
1	0	$\mathrm{M}_{4}=\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C}$	1	1	0	1	0
1	0	$\mathrm{M}_{5}=\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}$	1	1	1	0	0
1	1	$\mathrm{M}_{6}=\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C}$	1	1	1	1	1
1	1	$\mathrm{M}_{7}=\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$	1	1	1	1	1
	$\mathrm{F}=$	$\mathrm{B}+\overline{\mathrm{C}}) \cdot(\mathrm{A}+$	+ +	($\overline{\text { a }}$	+	($\overline{\mathrm{A}}+$	
		$\begin{aligned} & \mathrm{C})=\mathrm{M}_{1} \cdot \mathrm{M}_{2} \\ & , \mathrm{C})=\prod \mathrm{M}(1, \end{aligned}$					

BCD to XS3 Example

$\left.\begin{array}{llll|llll}\mathrm{b}_{3} & \mathrm{~b}_{2} & \mathrm{~b}_{1} & \mathrm{~b}_{0} & \mathrm{x}_{3} & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & - & - & - & - \\ 1 & 0 & 1 & 1 & - & - & - & - \\ 1 & 1 & 0 & 0 & - & - & - & - \\ 1 & 1 & 0 & 1 & - & - & - & - \\ 1 & 1 & 1 & 0 & - & - & - & - \\ 1 & 1 & 1 & 1 & - & - & - & -\end{array}\right\}$

Note: Don't cares can work to our advantage during minimization; we can assign either 0 or 1 as needed. Assume 0's for now.

BCD to XS3 Example (cont.)

- Generate the Standard Sum of Products logical expressions for the outputs

$$
\begin{aligned}
& \mathrm{x}_{3}=\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \overline{\mathrm{~b}_{1}} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \overline{\mathrm{~b}_{0}}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}} \overline{\mathrm{~b}_{0}}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}} \mathrm{~b}_{0} \\
& \mathrm{x}_{2}=\overline{\mathrm{b}_{3}} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}}_{1} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3} \mathrm{~b}_{2}} \mathrm{~b}_{1} \overline{\mathrm{~b}_{0}}+\overline{\mathrm{b}_{3}} \overline{\mathrm{~b}}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \overline{\mathrm{~b}_{1}} \overline{\mathrm{~b}}_{0}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}}_{1} \mathrm{~b}_{0} \\
& \mathrm{x}_{1}=\overline{\mathrm{b}_{3}} \overline{\mathrm{~b}}_{2} \overline{\mathrm{~b}}_{1} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3} \mathrm{~b}_{2}} \mathrm{~b}_{1} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \overline{\mathrm{~b}_{1}} \overline{\mathrm{~b}_{0}}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}} \overline{\mathrm{~b}}_{0} \\
& \mathrm{x}_{0}=\overline{\mathrm{b}_{3}} \overline{\mathrm{~b}}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \overline{\mathrm{~b}}_{2} \mathrm{~b}_{1} \overline{\mathrm{~b}_{0}}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \overline{\mathrm{~b}_{1}} \mathrm{~b}_{0}+\overline{\mathrm{b}_{3}} \mathrm{~b}_{2} \mathrm{~b}_{1} \overline{\mathrm{~b}_{0}}+\mathrm{b}_{3} \overline{\mathrm{~b}_{2}} \overline{\mathrm{~b}_{1}} \mathrm{~b}_{0}
\end{aligned}
$$

Karnaugh Map Minimization

- Karnaugh Map (or K-map) minimization is a visual minimization technique
- Is an application of adjacency
- Procedure guarantees a minimal expression
- Easy to use; fast
- Problems include:
- Applicable to limited number of variables (4 ~ 8)
- Errors in translation from TT to K-map
- Not grouping cells correctly
- Errors in reading final expression

K-map Minimization (cont.)

- Basic K-map is a 2-D rectangular array of cells
- Each K-map represents one bit column of output
- Each cell contains one bit of output function
- Arrangement of cells in array facilitates recognition of adjacent terms
- Adjacent terms differ in one variable value; equivalent to difference of one bit of input row values

```
* e.g. m6 (110) and m7 (111)
```


Truth Table Rows and Adjacency

Standard TT ordering doesn't show adjacency

A	B	C	D	minterm
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	0	m 2
0	0	1	1	m 3
0	1	0	0	m 4
0	1	0	1	m 5
0	1	1	0	m 6
0	1	1	1	m 7
1	0	0	0	m 8
1	0	0	1	m 9
1	0	1	0	m 10
1	0	1	1	m 11
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	0	m 14
1	1	1	1	m 15

Key is to use gray code for row order

A	B	C	D	minterm
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	1	m 3
0	0	1	0	m 2
0	1	1	0	m 6
0	1	1	1	m 7
0	1	0	1	m 5
0	1	0	0	m 4
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	1	m 15
1	1	1	0	m 14
1	0	1	0	m 10
1	0	1	1	m 11
1	0	0	1	m 9
1	0	0	0	m 8

This helps but it's still hard to see all possible adjacencies.

Folding of Gray Code Truth Table into K-map

Introduction to Digital Design

K-map Minimization (cont.)

- For any cell in 2-D array, there are four direct neighbors (top, bottom, left, right)
- 2-D array can therefore show adjacencies of up to four variables.

Three
variable
K-map

Don't forget that cells are adjacent top to bottom and side to side.

Truth Table to K-map

Number of TT rows MUST match number of K-map cells

Note different ways K-map is labeled

K-map Minimization of X_{3}

Entry of TT data into K-map

Grouping - Applying Adjacency

If two cells have the same value and are next to each other, the terms are adjacent.

This adjacency is shown by enclosing them.

Groups can have common cells.
Group size is a power of 2 and groups are rectangular.

You can group 0s or 1s.

Reading the Groups

If 1s grouped, the expression is a product term, 0s - sum term.

Within group, note when variable values change as you go cell to cell. This determines how the term expression is formed by the following table

Reading the Groups (cont.)

- When reading the term expression...
- If the associated variable value changes within the group, the variable is dropped from the term
- If reading 1 s , a constant 1 value indicates that the associated variable is true in the AND term
- If reading 0 s , a constant 0 value indicates that the associated variable is true in the OR term

Implicants and Prime Implicants

Single cells or groups that could be part of a larger group are know as implicants

A group that is as large as possible is a prime implicant

C

Single cells can be prime implicants is they cannot be grouped with any other cell

Implicants and Minimal Expressions

- Any set of implicants that encloses (covers) all values is "sufficient"; i.e. the associated logical expression represents the desired function.
- All minterms or maxterms are sufficient.
- The smallest set of prime implicants that covers all values forms a minimal expression for the desired function.
- There may be more than one minimal set.

Essential and Secondary Prime Implicants

- If a prime implicant has any cell that is not covered by any other prime implicant, it is an "essential prime implicant"
- If a prime implicant is not essential is is a "secondary prime implicant"
- A minimal set includes ALL essential prime implicants and the minimum number of secondary PIs as needed to cover all values.

K-map Minimization Method

- Technique is valid for either 1s or 0s
A) Find all prime implicants (largest groups of 1 s or 0 s in order of largest to smallest)
B) Identify minimal set of PIs

1) Find all essential PIs
2) Find smallest set of secondary PIs

The resulting expression is minimal.

K-map Minimization of X_{3} (CONT.)

We want a sum of products expression so we circle 1s.

* PIs are essential; no implicants remain (no secondary PIs).
The minimal expression is:

$$
\mathrm{X}_{3}=\mathrm{b} 3 \overline{\mathrm{~b} 2} \overline{\mathrm{~b} 1}+\overline{\mathrm{b} 3} \mathrm{~b} 2 \mathrm{~b} 1+\overline{\mathrm{b} 3} \mathrm{~b} 2 \mathrm{~b} 0
$$

Another K-map Minimization Example

We want a sum of
products expression so we circle 1s.

* PIs are essential; and we have 2 secondary PIs. The minimal expressions are:

$$
\begin{aligned}
& \mathrm{F}=\mathrm{A} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \mathrm{C} \cdot \mathrm{D}+\mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D} \\
& \mathrm{~F}=\mathrm{A} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \mathrm{C} \cdot \mathrm{D}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{D}
\end{aligned}
$$

A $3^{\text {rd }}$ K-map Minimization Example

We want a product of sums expression so we circle 0s.

* PIs are essential; and we have 1 secondary PI which is redundant. The minimal expression is:

$$
\mathrm{F}=(\mathrm{A}+\mathrm{C}) \cdot(\overline{\mathrm{C}}+\mathrm{D}) \cdot(\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}})
$$

5 Variable K Maps

- Uses two 4 variable maps side-by-side
- groups spanning both maps occupy the same place in both maps

$E=0$
$f(A, B, C, D, E)=\sum m(3,4,7,10,11$,
$E=1$

5 Variable K Maps

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\mathrm{BD}+\overline{\mathrm{A}} \mathrm{DE}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}} \overline{\mathrm{E}}
$$

Don’t Cares

- For expression minimization, don't care values (- or x) can be assigned either 0 or 1
- Hard to use in algebraic simplification; must evaluate all possible combinations
- K-map minimization easily handles don’t cares
- Basic don’t care rule for K-maps is include the dc (- or x) in group if it helps to form a larger group; else leave it out

K-map Minimization of X_{3} with Don’t Cares

We want a sum of products expression so we circle 1s and x's (don't cares)

* PIs are essential; no other implicants remain (no secondary PIs). The minimal expression is:

$$
\mathrm{X}_{3}=\mathrm{A}+\mathrm{BC}+\mathrm{BD}
$$

K-map Minimization of X_{3} with Don’t Cares

We want a product of sums expression so we circle 0 s and x 's (don't cares)

* PIs are essential; there are 3 secondary PIs. The minimal expressions are:

$$
\begin{aligned}
& \mathrm{F}=(\mathrm{A}+\mathrm{B}) \cdot(\overline{\mathrm{B}}+\mathrm{C}+\mathrm{D}) \\
& \mathrm{F}=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C}+\mathrm{D})
\end{aligned}
$$

Additional Logic Operations

- For two inputs, there are 16 ways we can assign output values
- Besides AND and OR, five others are useful
- The unary Buffer operation is useful in the real world

X	$\mathrm{Z}=\mathrm{X}$
0	0
1	1

Additional Logic Operations - NAND

- NAND (NOT - AND) is the complement of the AND operation

Additional Logic Operations - NOR

- NOR (NOT - OR) is the complement of the OR operation

X	Y	$\overline{\mathrm{X}+\mathrm{Y}}$
0	0	1
0	1	0
1	0	0
1	1	0

Additional Logic Operations -XOR

- Exclusive OR is similar to the inclusive OR (AKA OR) except output is 0 for 1,1 inputs
- Alternatively the output is 1 when modulo 2 input sum is equal to 1

X	Y	$\mathrm{X} \oplus \mathrm{Y}$
0	0	0
0	1	1
1	0	1
1	1	0

Additional Logic Operations - XNOR

- Exclusive NOR is the complement of the XOR operation
- Alternatively the output is 1 when modulo 2 input sum is not equal to 1

X	Y	$\overline{\mathrm{X} \oplus \mathrm{Y}}$
0	0	1
0	1	0
1	0	0
1	1	1

Minimal Logic Operator Sets

- AND , OR, NOT are all that's needed to express any combinational logic function as switching algebra expression
- operators are all that were originally defined
- Two other minimal logic operator sets exist
- Just NAND gates
- Just NOR gates
- We can demonstrate how just NANDs or NORs can do AND, OR, NOT operations

NAND as a Minimal Set

NOR as a Minimal Set

Three State Outputs

- Standard logic gate outputs only have two states; high and low
- Outputs are effectively either connected to +V or ground (low impedance)
- Certain applications require a logic output that we can "turn off" or disable
- Output is disconnected (high impedance)
- This is the three-state output
- May be stand-alone (a buffer) or part of another function output

Three State Buffers

IN	EN	OUT
X	0	HI-Z
0	1	0
1	1	1

Binary Adders and Subtractors

${ }^{\circ}$ Addition and subtraction of binary data is fundamental

- Need to determine hardware implementation
${ }^{\circ}$ Represent inputs and outputs
- Inputs: single bit values, carry in
- Outputs: Sum, Carry
${ }^{\circ}$ Hardware features
- Create a single-bit adder and chain together
${ }^{\circ}$ Same hardware can be used for addition and subtraction with minor changes
${ }^{\circ}$ Dealing with overflow
- What happens if numbers are too big?

Half Adder

- Add two binary numbers
- $A_{0}, B_{0}->$ single bit inputs
- $S_{0}->$ single bit sum
- C_{1}-> carry out

A_{0}	B_{0}	S_{0}	C_{1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Dec Binary

$$
\begin{array}{r}
1 \\
+1 \\
+1 \\
\hline 2
\end{array} 10
$$

Multiple-bit Addition

- Consider single-bit adder for each bit position.

$$
\begin{array}{lllll}
& & A_{3} & A_{2} & A_{1}
\end{array} A_{0}
$$

$B_{3} \quad B_{2} \quad B_{1} \quad B_{0}$
$\begin{array}{lllll}B & 0 & 1 & 1 & 1\end{array}$

Each bit position creates a sum and carry

Full Adder

- Full adder includes carry in C_{i}
- Notice interesting pattern in Karnaugh map.

C_{i}	A_{i}	B_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

- Full adder includes carry in C_{i}
- Alternative to XOR implementation

C_{i}	A_{i}	B_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
S_{i} & =!C_{i} \&!A_{i} \& B_{i} \\
& \#!C_{i} \& A_{i} \&!B_{i} \\
& \# C_{i} \&!A_{i} \& \& B_{i} \\
& \# C_{i} \& A_{i} \& B_{i}
\end{aligned}
$$

Full Adder

- Reduce and/or representations into XOR

$$
\begin{aligned}
S_{i} & =!C_{i} \&!A_{i} \& B_{i} \\
& \#!C_{i} \& A_{i} \&!B_{i} \\
& \# C_{i} \&!A_{i} \&!B_{i} \\
& \# C_{i} \& A_{i} \& B_{i} \\
S_{i} & =!C_{i} \&\left(!A_{i} \& B_{i} \# A_{i} \&!B_{i}\right) \\
& \# C_{i} \&\left(!A_{i} \&!B_{i} \# A_{i} \& B_{i}\right) \\
S_{i} & =!C_{i} \&\left(A_{i} \& B_{i}\right) \\
& \# C_{i} \&!\left(A_{i} \$ B_{i}\right) \\
S_{i} & =C_{i} \$\left(A_{i} \$ B_{i}\right)
\end{aligned}
$$

Full Adder

- Now consider implementation of carry out
- Two outputs per full adder bit ($\mathrm{C}_{\mathrm{i}+1}, \mathrm{~S}_{\mathrm{i}}$)

C_{i}	A_{i}	B_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Note: 3 inputs

Full Adder

- Now consider implementation of carry out
- Minimize circuit for carry out - $\mathrm{C}_{\mathrm{i}+1}$

C_{i}	A_{i}	B_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	${ }^{{ }{ }^{B_{i}} 00}$	01	11	10
0			1	
1		1	1	1
$\mathrm{C}_{\mathrm{i}+1}$				
	$\mathrm{C}_{\mathrm{i}+1}$	=	A_{i} C_{i} i C_{i}	$\begin{aligned} & \mathrm{B}_{\mathrm{i}} \\ & \mathrm{~B}_{\mathrm{i}} \\ & \mathrm{~A}_{\mathrm{i}} \end{aligned}$

Full Adder

$$
\begin{aligned}
C_{i+1} & =A_{i} \& B_{i} \\
& \# C_{i}!A_{i} \& B_{i} \\
& \# C_{i} \& A_{i} \&!B_{i} \\
C_{i+1} & =A_{i} \& B_{i} \\
& \# C_{i} \&\left(!A_{i} \& B_{i} \# A_{i} \&!B_{i}\right) \\
C_{i+1} & =A_{i} \& B_{i} \# C_{i} \&\left(A_{i} \$ B_{i}\right)
\end{aligned}
$$

Recall:

$$
\begin{aligned}
S_{i} & =C_{i} \$\left(A_{i} \$ B_{i}\right) \\
C_{i+1} & =A_{i} \& B_{i} \# C_{i} \&\left(A_{i} \$ B_{i}\right)
\end{aligned}
$$

Full Adder

- Full adder made of several half adders

Full Adder

- Hardware repetition simplifies hardware design

A full adder can be made from two half adders (plus an OR gate).

Full Adder

- Putting it all together
- Single-bit full adder
- Common piece of computer hardware

Block Diagram

4-Bit Adder

- Chain single-bit adders together.
- What does this do to delay?

$$
\begin{array}{lllll}
\mathrm{C} & 1 & 1 & 1 & 0 \\
\mathrm{~A} & 0 & 1 & 0 & 1 \\
\mathrm{~B} & 0 & 1 & 1 & 1 \\
\mathrm{~S} & 1 & 1 & 0 & 0
\end{array}
$$

Negative Numbers - 2's Complement.

- Subtracting a number is the same as:

1. Perform 2's complement
2. Perform addition

- If we can augment adder with 2's complement hardware?

$$
\begin{aligned}
1_{10} & =01_{16}=00000001 \\
-1_{10} & =\mathrm{FF}_{16}=11111111 \\
128_{10} & =80_{16}=10000000 \\
-128_{10} & =80_{16}=10000000
\end{aligned}
$$

4-bit Subtractor: E = 1

That is, add \mathbf{A} to two's complement of \mathbf{B}
$\mathbf{D}=\mathbf{A}-\mathbf{B}$

Adder- Subtractor Circuit

Overflow in two's complement addition

${ }^{\circ}$ Definition: When two values of the same signs are added:

- Result won't fit in the number of bits provided
- Result has the opposite sign.

Assumes an N-bit adder, with bit N-1 the MSB

Addition cases and overflow

00
00100011
00110110
11
10
1110
1101
00
0010
1010
1100
11
1110
0100

01011001
2
3
5
1011
0111
1110
0010
2
-2
4
2
OFL
OFL

Summary

${ }^{\circ}$ Addition and subtraction are fundamental to computer systems
${ }^{\circ}$ Key - create a single bit adder/subtractor

- Chain the single-bit hardware together to create bigger designs
${ }^{\circ}$ The approach is call ripple-carry addition
- Can be slow for large designs
${ }^{\circ}$ Overflow is an important issue for computers
- Processors often have hardware to detect overflow
${ }^{\circ}$ Next time: encoders/decoder.

Shift Registers

Prof. Young Jin Nam

Basic Functions

\square Register is

- A digital circuit which two basic functions: data storage \& data movement
- Consisting of one or more F/Fs used to store \& shift data
\square Flip-Flop as a Storage Element

Basic Functions

\square Basic Data Movement in Shift Registers

- Shift register can defined by three factors: capacity, the method of data input \& output

(a) Serial in/shift right/serial out

(b) Serial in/shift left/serial out

(c) Parallel in/serial out

Basic Functions

\square Storage Capacity

- The total \# of bits (1s or 0s) of digital data it can retain
- Each stage(flip-flop) in a shift register represents one bit of storage capacity
- The \# of stages in a register determines its storage capacity

Serial In/Serial Out Shift Register

\square Serial In/Serial Out Shift Register

- Accepts data serially (one bit at a time on a single line)
- Produces the stored information on its output also in serial form

Serial In/Serial Out Shift Register

- Illustrative Example:
- Four bits(1010) being entered serially into the register

Serial In/Serial Out Shift Register

- Illustrative Example:
- Four bits(1010) being entered serially into the register

Serial In/Serial Out Shift Register

- Illustrative Example: Draw a Waveform

Serial In/Serial Out Shift Register

\square Logic Symbol for an 8-bit Serial In/Serial Out Shift Register

- SRG: Shift ReGister

Serial In/Parallel Out Shift Register

\square Operations

- Data bits are entered serially (right-most bit first) into the register
- Each data bit appears on its respective output line (all bits are available simultaneously)

(a)

(b)

Serial In/Parallel Out Shift Register

\square Example: Draw a Waveform

(b)

Parallel In/Serial Out Shift Register

\square Operations

- The data bits are entered simultaneously into their respective stages on parallel lines
- One bit of data appears on an output line at a time
- Four input lines (D0~D3), a SHIFT/LOAD' input

Parallel In/Serial Out Shift Register

- When SHIFT/LOAD' = 0
- Allow four bits of data to load in parallel into the register
- Gates G1 through G3 are enabled
- Allow each data bit to be applied to the D input of its respective F/F

Parallel In/Serial Out Shift Register

- When SHIFT/LOAD' = 1
- Allow the data bits to shift right from one stage to the next
- Gates G4 through G6 are enabled

Parallel In/Serial Out Shift Register

E Example: Draw a Waveform

(a) SHIFT/LOAD

(b) Data out $\left(Q_{3}\right)$

Parallel In/ Parallel Out Shift Register

\square Operations

- Allow four bits of data to load in parallel into the register
- All bits are available simultaneously

Bidirectional Shift Registers

\square Operations

- Data can shifted either left or right
- When RIGHT/LEFT'=1, data are to be shifted right
- When RIGHT/LEFT'=0, data are to be shifted left

Bidirectional Shift Registers

\square Example: Draw a Waveform

Shift Register Counters

\square A Shift Register Counter

- A shift register with the serial output connected back to the serial input to produce special sequences
- Classified as counters because they exhibit a specified sequence of states
- Example: Johnson counter \& ring counter

The Johnson Counter

\square Johnson Counter

- The complement of the output of the last F/F is connected back to the D input of the first F / F
- It produces a modulus of 2 n , where n is the number of stages in the counter
\square Example: Truth Table of 4-bit Johnson Sequence
<tab 10-1>

The Johnson Counter

- Block Diagram of 4-bit Johnson Counter

The Johnson Counter

\square Timing Sequence of 4-bit Johnson Counter

The Johnson Counter

\square Example: Truth Table of 5-bit Johnson Sequence
<tab 10-2>

The Ring Counter

\square Ring Counter

- Utilize one F/F for each state in its sequence
- Decoding gate is not required (a unique output for each decimal digit)
- Initially, 1 is preset into the first F/F \& the rest are cleared

The Ring Counter

\square Truth Table of 10-bit Ring Counter
<tab 10-3>

The Ring Counter

\square Example: Draw a Waveform

- The initial state $=1010000000$

Application: Time Delay

\square Shift Register as a Time-Delay Device

- Serial in/serial output shift register can be used to provide a time delay from input to output that is a function of both the \# of stages(n) in the register \& the clock frequency

Application: Ring Counter

\square A Ring Counter using a Shift Register

- If the output is connected back to the serial input, a shift register can be used as a ring counter
- Initially, a bit pattern of 1000 can be synchronously preset into the counter (LD' = 0)

Application: Serial-to-Parallel Data Converter

\square Simplified Serial-to-Parallel Data Converter

- Consists of 11 bits
- First bit(start bit) $=0$ (beginning with a HIGH-to-LOW transition)
- Next 8 bits (D7~D0) are the data bits
- Last two bits (stop bits) are always 1s

Application: Serial-to-Parallel Data Converter

- Logic Diagram

The end of "Shift Registers"

Synchronous Sequential Circuit Design

Motivation

- Analysis of a few simple circuits
- Generalizes to Synchronous Sequential Circuits (SSC)
- Outputs are Function of State (and Inputs)
- Next States are Functions of State and Inputs
- Used to implement circuits that control other circuits
- "Decision Making" logic
- Application of Sequential Logic Design Techniques
- Word Problems
- Mapping into formal representations of SSC behavior
- Case Studies

Overview

- Concept of the Synchronous Sequential Circuits
- Partitioning into Datapath and Control
- When Inputs are Sampled and Outputs Asserted
- Basic Design Approach
- Six Step Design Process
- Alternative SSC Representations
- State Diagram, VHDL
- Moore and Mealy Machines
- Definitions, Implementation Examples
- Word Problems
- Case Studies

Concept of the Synchronous Sequential Circuit

Concept of the Synchronous Sequential Circuit

- Timing: When are inputs sampled, next state computed, outputs asserted?
- State Time: Time between clocking events
- Clocking event causes state/outputs to transition, based on inputs
- For set-up/hold time considerations:
- Inputs should be stable before clocking event
- After propagation delay, Next State entered, Outputs are stable
- NOTE: Asynchronous output (Mealy) take effect immediately
- Synchronous outputs (Moore) take effect at the next clocking event
- E.g., tri-state enable: effective immediately
- sync. counter clear: effective at next clock event

Concept of the Synchronous Sequential Circuit

Example: Positive Edge Triggered Synchronous System

Outputs

- On rising edge, inputs sampled; outputs, next state computed
- After propagation delay, outputs and next state are stable
- Immediate Outputs:
- affect datapath immediately
- could cause inputs from datapath to change
- Delayed Outputs:
- take effect on next clock edge
- propagation delays must exceed hold times

Sequential Circuit Analysis

- Start with schematic diagram
- Need to determine how circuit works
- Trace schematic, determine equations of operation
- FF input equations
- sequential circuit output equations
- Create State transition table
- Sequential circuit inputs, FFs are comb. logic inputs
- Organize truth table as current state (FFs) and inputs
- Create FF input, seq. Circuit output columns
- From FF char. Tables, determine FF next state values

Sequential Circuit Analysis (cont.)

- Generate State Diagram
- Circles (nodes) represent current or present state values
- Lines (arcs) represent how state and output values change
- Given the current state and current inputs, the next state and output values are indicated by the associated arc
- State diagram can have different forms depending on the type of sequential circuit output.

Basic Design Approach

- Six Step Process

1. Understand the statement of the Specification
2. Obtain an abstract specification of the SSC
3. Generate State Table
4. Perform state assignment
5. Choose FF types to implement SSC state register
6. Implement the SSC

Basic Design Approach

Example: Vending Machine SSC

General Machine Concept:

 deliver package of gum after 15 cents depositedsingle coin slot for dimes, nickels
no change

Step 1. Understand the problem:
Draw a picture!
Block Diagram

Vending Machine Example

Step 2. Map into more suitable abstract representation

Tabulate typical input sequences: three nickels nickel, dime dime, nickel two dimes two nickels, dime

Draw state diagram:"
Inputs: N, D, reset
Output: open

Vending Machine Example

Step 3: State Minimization

reuse states whenever possible

$\begin{array}{c}\text { Present } \\ \text { State }\end{array}$	$\begin{array}{c}\text { Inputs } \\ D\end{array}$		N	Next
State				

Open\end{array}\right]\)| 0ϕ | 0 | 0 | 0ϕ | 0 |
| :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 5ϕ | 0 |
| | 1 | 0 | 10ϕ | 0 |
| | 1 | 1 | X | X |
| 5ϕ | 0 | 0 | 5ϕ | 0 |
| | 0 | 1 | 10ϕ | 0 |
| | 1 | 0 | 15ϕ | 0 |
| | 1 | 1 | X | X |
| 10ϕ | 0 | 0 | 10ϕ | 0 |
| | 0 | 1 | 15ϕ | 0 |
| | 1 | 0 | 15ϕ | 0 |
| | 1 | 1 | X | X |
| 15ϕ | X | X | 15ϕ | 1 |

Symbolic State Table

Vending Machine Example

Step 4: State Encoding

NOTE!
For D-FFs the next state will be what is at the D input. So each FF's next state values in the state table must be the D inputs for that FF.

Vending Machine Example

Step 5. Choose FFs for implementation

D FF easiest to use

D Q1 Q0			Q1		
		0111		10	
00	0	0	1	0	
01	0	0	1	0	
- 11	X	X	X	X	
- 10	0	0	1	0	

D1 = Q1 + D + Q0 N
$D 0=N \overline{Q 0}+Q 0 \bar{N}+Q 1 N+Q 1 D$
OPEN = Q1 Q0

Designing with SR, JK, and T Flip-Flops

- Sequential design with D-FFs is easy; next state depends on D input only
- We can use other FFs but the process is a little more involved
- State table defines set of present state to next state transitions
- What we need to design the next state combinational logic is the FF input values needed for each $\mathrm{Q} \rightarrow \mathrm{Q}+$ transition
- This table is known as the FF excitation table
- Derived from the FF characteristic table

Derivation of JK Excitation Table

JK Characteristic Table
JK Excitation Table

J	K	Q	Q+		Q	Q+	J	K
0	0	0	0	\longrightarrow	0	0	0	X
0	0	1	1	\rightarrow	0	1	1	X
0	1	0	0	$\xrightarrow{\longrightarrow}$	1	0	X	1
0	1	1	0	\longrightarrow	1	1	X	0
1	0	0	1	,				
1	0	1	1					
1	1	0	1					
1	1	1	0					

Flip-Flop Excitation Tables

Q	Q+	J	K	S	R	T	D
0	0	0	X	0	X	0	0
0	1	1	X	1	0	1	1
1	0	X	1	0	1	1	0
1	1	X	0	X	0	0	1

You can use any FF type for your implementation
FF types can be mixed; l.e. in vending machinge you could use a JK FF for Q_{1} and a T FF for Q_{0}

Vending Machine Example

Step 5. Choosing FF for Implementation

Remapped encoded state transition table using JK excitation table

Vending Machine Example

Implementation:

$$
\begin{aligned}
& \mathrm{J} 1=\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\
& \mathrm{~K} 1=0 \\
& \mathrm{~J} 0=\mathrm{N}+\mathrm{Q} 1 \mathrm{D} \\
& \mathrm{~K} 0=\overline{\mathrm{Q} 1} \mathrm{~N}
\end{aligned}
$$

Page 22

Moore vs. Mealy Machines

Definitions

Moore Machine

Outputs are function solely of the current state

Outputs change synchronously with state changes

Mealy Machine

Outputs depend on state AND inputs

Input change causes an immediate (asynchronous) output change

Moore and Mealy Machines

State Diagram Equivalents

Mealy
Machine

Outputs are associated with Transitions

Outputs are associated with State

Moore and Mealy Machines

States vs. Transitions

Mealy Machine typically has fewer states than Moore Machine for same output sequence

Same I/O behavior
Different \# of states

Moore and Mealy Machines

Synchronous Mealy Machine

Latched state AND outputs
Avoids glitchy outputs!
Outputs are delayed by up to 1 clock period Usually equivalent to the Moore form

Synchronous Sequential Circuit Word Problems

Mapping English Language Description to Formal Specifications

Four Case Studies:

- Finite String Pattern Recognizer
- Complex Counter with Decision Making
- Traffic Light Controller
- Digital Combination Lock

Synchronous Sequential Circuit Word Problems

Finite String Pattern Recognizer

A finite string recognizer has one input (X) and one output (Z). The output is asserted whenever the input sequence ...010... has been observed, as long as the sequence 100 has never been seen.

Step 1. Understanding the problem statement
Sample input/output behavior:
X: 00101010010...
Z: 00010101000...
X: 11011010010...
Z: 00000001000...

Synchronous Sequential Circuit Word Problems

Finite String Recognizer
Step 2. Draw State Diagrams for the strings that must be recognized. I.e., 010 and 100.

Synchronous Sequential Circuit Word Problems

Finite String Recognizer
Exit conditions from state S3: have recognized ... 010 if next input is 0 then have ...0100! if next input is 1 then have $. . .0101=\ldots 01$ (state S2)

Synchronous Sequential Circuit Word Problems

Finite String Recognizer
Exit conditions from S1: recognizes strings of form ... 0 (no 1 seen) loop back to S 1 if input is 0
Exit conditions from S4: recognizes strings of form ... 1 (no 0 seen) loop back to S 4 if input is 1

Synchronous Sequential Circuit Word Problems

Finite String Recognizer
S2 = ... 01 ; If next input is 1 , then string could be prefix of (01)1(00) S4 handles just this case!
S5 = ...10; If next input is 1 , then string could be prefix of (10)1(0) S2 handles just this case!

Synchronous Sequential Circuit Word Problems

Finite String Recognizer
Review of Process:

- Write down sample inputs and outputs to understand specification
- Write down sequences of states and transitions for the sequences to be recognized
- Add missing transitions; reuse states as much as possible
- Verify I/O behavior of your state diagram to insure it functions like the specification

Synchronous Sequential Circuit Word Problems

Complex Counter

A sync. 3 bit counter has a mode control M. When $\mathbf{M}=0$, the counter counts up in the binary sequence. When $M=1$, the counter advances through the Gray code sequence.

Binary: 000, 001, 010, 011, 100, 101, 110, 111 Gray: 000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior:

Mode Input M	Current State	Next State (Z2 Z1 Z0)
0	000	001
0	001	010
1	010	110
1	110	111
1	111	101
0	101	110
0	110	111

Synchronous Sequential Circuit Word Problems

Complex Counter

One state for each output combination
Add appropriate arcs for the mode control

Synchronous Sequential Circuit Word Problems

Traffic Light Controller

A busy highway is intersected by a little used farmroad. Detectors C sense the presence of cars waiting on the farmroad. With no car on farmroad, light remain green in highway direction. If vehicle on farmroad, highway lights go from Green to Yellow to Red, allowing the farmroad lights to become green. These stay green only as long as a farmroad car is detected but never longer than a set interval. When these are met, farm lights transition from Green to Yellow to Red, allowing highway to return to green. Even if farmroad vehicles are waiting, highway gets at least a set interval as green.

Assume you have an interval timer that generates a short time pulse (TS) and a long time pulse (TL) in response to a set (ST) signal. TS is to be used for timing yellow lights and TL for green lights.

Note: The interval timer is just another sequential circuit!

Synchronous Sequential Circuit Word Problems

Traffic Light Controller

Picture of Highway/Farmroad Intersection:

Synchronous Sequential Circuit Word Problems

Traffic Light Controller

- Tabulation of Inputs and Outputs:

Input Signal	Description
reset	place SSC in initial state
C	detect vehicle on farmroad
TS	short time interval expired
TL	long time interval expired
Output Signal	Description
HG, HY, HR	assert green/yellow/red highway lights
FG, FY, FR	assert green/yellow/red farmroad lights
ST	start timing a short or long interval

- Tabulation of Unique States: Some light configuration imply others

State	Description
S0	Highway green (farmroad red)
S1	Highway yellow (farmroad red)
S2	Farmroad green (highway red)
S3	Farmroad yellow (highway red)

Synchronous Sequential Circuit Word Problems

Traffic Light Controller
Compare with state diagram:

S0: HG, FR
S1: HY, FR
S2: FG, HR
S3: FY, HR

Note: This sequential circuit has both Mealy and Moore outputs!

Synchronous Sequential Circuit Word Problems

Digital Combination Lock

"3 bit serial lock controls entry to locked room. Inputs are RESET, ENTER, 2 position switch for bit of key data. Locks generates an UNLOCK signal when key matches internal combination. ERROR light illuminated if key does not match combination. Sequence is:
(1) Press RESET, (2) enter key bit, (3) Press ENTER, (4) repeat (2) \&
(3) two more times."

Problem specification is incomplete:

- how do you set the internal combination?
- exactly when is the ERROR light asserted?

Make reasonable assumptions:

- hardwired into next state logic vs. stored in internal register
- assert as soon as error is detected vs. wait until full combination has been entered

Our design: registered combination plus error after full combination

Synchronous Sequential Circuit Word Problems

Digital Combination Lock

Understanding the problem: draw a block diagram ...

Internal
Combination

Inputs.
Reset
Enter
Outputs:
Unlock

Key-In
L0, L1, L2

Synchronous Sequential Circuit Word Problems

Note that each key entry is really a two-step process

1. Wait for the enter key
2. Check if correct key was selected

Synchronous Sequential Circuit Word Problems

Digital Combination Lock

State Diagram

