
JCM
Page 1

55:032 - Introduction to Digital Design

Digital Hardware Systems

Digital Systems
Digital vs. Analog Waveforms

Analog:
values vary over a broad range
continuously

Digital:
only assumes discrete values

+5

V

–5

1 0 1

T ime

+5

V

–5

T ime

JCM
Page 2

55:032 - Introduction to Digital Design

the preconditions must be true to imply the conclusion

IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage

both the door must
be open and the car
running before I can
back out

Digital Hardware Systems
• Digital Binary System

– Two discrete values:
• yes, on, 5 volts, current flowing, "1"
• no, off, 0 volts, no current flowing, "0”

– Advantage of binary systems:
• rigorous mathematical foundation based on logic
• it’s easy to implement

JCM
Page 3

55:032 - Introduction to Digital Design

Binary Bit and Group Definitions

• Bit - a single binary digit
• Nibble - a group of four bits
• Byte - a group of eight bits
• Word - depends on processor; 8, 16, 32, or

64 bits
• LSB - Least Significant Bit (on the right)
• MSB - Most Significant Bit (on the left)

JCM
Page 4

55:032 - Introduction to Digital Design

Binary Representation of Information

• Information divided into groups of symbols
– 26 English letters
– 10 decimal digits
– 50 states in USA

• Digital systems manipulate information as
1’s & 0’s

• The mapping of symbols to binary value is
known as a “code”

• The mapping must be unique

JCM
Page 5

55:032 - Introduction to Digital Design

Minimum number of bits
• In binary, ‘r’ bits can represent n = 2r

symbols
– e.g. 3 bits can represent up to 8 symbols, 4 for

16, etc.
– For N symbols to be represented, the minimum

number of bits required is the lowest integer ‘r’
that satisifies the relationship:

2r ≥ N
e.g. if N = 26, minimum r is 5 since
24 = 16
25 = 32

JCM
Page 6

55:032 - Introduction to Digital Design

Positional Number Systems

• Numeric value is represented by a series of
digits
– Number of digits used is fixed by radix
– Digits multiplied by a power of the radix
– Digit order determines radix powers

• Very large numbers can be represented
• Can also represent fractional values.

JCM
Page 7

55:032 - Introduction to Digital Design

Positional Integer Number Values

Given a digit series of

The full expression for the represented value is

.)pointRadix (01231... AAAAAn−

∑
−=

=

−

−

×

××+×+×+×

1

0

0
0

1
1

2
2

3
3

1
1 ...

ni

i

i
i

n
n

rA

rArArArArA
or

JCM
Page 8

55:032 - Introduction to Digital Design

Positional Fractional Number Values

Given a digit series of

The full expression for the represented value is

AAAAA m−−−−−•
...4321 point)(Radix

∑
−=

−=

−

−

−

−

−

−

−

−

−

−

×

×+××+×+×

mi

i

i
i

m
m

rA

rArArArArA
or

1

4
4

3
3

2
2

1
1 ...

JCM
Page 9

55:032 - Introduction to Digital Design

Binary Number System

• Just like decimal numbers except
– The only valid digits are 0 and 1
– The base is 2 instead of 10

• Binary to decimal conversion is just the
explicit expression of the positional values,

• both integer and fraction
– E.G. 1 0 1

1 x 20 = 1
0 x 21 = 0
1 x 22 = 4

Total = 5

JCM
Page 10

55:032 - Introduction to Digital Design

Decimal to Binary Conversion

• Effectively the reverse of binary to decimal
conversion
– Integers:

• Divide number by two; keep track of remainder
• Repeat with dividend = last quotient until zero
• First remainder is binary LSB, last is the MSB

– Fractions:
• Multiply fraction by two; keep track of integer part
• Repeat with multiplier = last product fraction
• First integer is MSB, last is the LSB
• Conversion may not be exact; a repeated fraction

JCM
Page 11

55:032 - Introduction to Digital Design

Decimal to Binary Conversion (cont.)

E.G. 13.2 to binary

Integer Fraction

13 / 2 = 6 R 1 LSB .2 x 2 = 0.4 MSB
6 / 2 = 3 R 0 .4 x 2 = 0.8
3 / 2 = 1 R 1 .8 x 2 = 1.6
1 / 2 = 0 R 1 MSB .6 x 2 = 1.2

.2 x 2 = 0.4 LSB repeating

Result is 1101.00110011…...

If you’re not sure of the results, convert
back to decimal to check yourself.

JCM
Page 12

55:032 - Introduction to Digital Design

Octal and Hexadecimal Number Systems

• Both are positional systems with different
radix and digits
– Octal:

• Radix = 8
• Digits = 0,1,2,3,4,5,6,7

– Hexadecimal:
• Radix = 16
• Digits = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Primary advantage of both is it’s easy to
convert to/from binary

JCM
Page 13

55:032 - Introduction to Digital Design

Octal and Hexadecimal Conversions
• To/From decimal is same technique with a

radix of 8 or 16 instead of 2
• To convert from binary:

– Starting at radix point, go left/right and group
bits into groups of 3 or 4 bits / group

– Convert each bit group into equivalent octal or
hex digit

• To convert to binary expand each octal /
hex digit into equivalent 3 or 4 bit binary
value.

JCM
Page 14

55:032 - Introduction to Digital Design

Octal, Hex Conversion Example

0100111010111010.01100010101100101000

4 E B A . 6 2 B 2 8

4 7 2 7 2 . 3 0 5 3 1 2

JCM
Page 15

55:032 - Introduction to Digital Design

Numeric Information Representation

• Numeric information has some special
characteristics which influence the was it is
represented
– Number set is usually in positional notation
– There is a defined range of numbers
– There is a specified resolution for the set

• In general, numeric representations:
– are in some form of positional binary notation
– have no. of bits determined by range and res.

JCM
Page 16

55:032 - Introduction to Digital Design

Numeric Representations (cont.)

• The number of values in the set of numbers
is found from the following equation

where RMAX and RMIN are the maximum and
minimum range values and RES is the resolution

• The minimum number of bits needed must
meet the relationship already presented

1
RES

 -
 RRN MINMAX

VALUES +=

JCM
Page 17

55:032 - Introduction to Digital Design

Numeric Representations (cont.)

• For example, the set of numbers from -5 to
+10 with a resolution of 1 has 16 values

[+15 -(-5)] / 1 = 16

• Therefore the minimum number of bits is 4

24 = 16

JCM
Page 18

55:032 - Introduction to Digital Design

Numeric Representations (cont.)
• For the set of numbers from 0 to 100 with a

resolution of 10 we have 11 values

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

• For the set of numbers from 0 to 5 with a
resolution of 0.1 we have 51 values

[(5 - 0) / 0.1] + 1 = 51

JCM
Page 19

55:032 - Introduction to Digital Design

Numeric Representations (cont.)

• The actual representation could be any
unique binary assignment but is usually of a
positional form
– binary integer.fraction with sufficient bits to

meet the range and resolution criteria
– binary integer form where the number of bits is

as previously defined and the LSB value is the
desired resolution

JCM
Page 20

55:032 - Introduction to Digital Design

Numeric Representations (cont.)

• EG: Represent 0 to 5, resolution = 0.1
– integer.fraction notation implies 3 bits for the

integer (6 values) and 4 bits for the fraction (2-4

= 0.0625) for a total of 7 bits
2.3 represented by 010.0101 (closest fraction)

– integer * res notation requires 51 values or 6
bits; each value in set is represented by the
equivalent binary integer = value / res
2.3 represented by binary 010111 (2.3 / 0.1)

JCM
Page 21

55:032 - Introduction to Digital Design

Numeric Representations (cont.)

• Negative ranges are handled by special
assignments or negative number
representations

• These are the most common numeric
representations BUT they are certainly not
the only ones!

JCM
Page 22

55:032 - Introduction to Digital Design

Representation of Signed Numbers

• Positive number representation same in
most systems
– Standard positional binary notation
– MSB is the sign bit; 0 = plus, 1 = minus

• Major differences are in how negative
numbers are represented

• Three major schemes:
– sign and magnitude
– ones complement
– twos complement

JCM
Page 23

55:032 - Introduction to Digital Design

Negative Number Representation

• Assumptions:
– we'll assume a 4 bit machine word
– 16 different values can be represented
– roughly half are positive, half are negative
– sign bit is the MSB; 0 = plus, 1 = minus

JCM
Page 24

55:032 - Introduction to Digital Design

High order bit is sign: 0 = positive
(or zero), 1 = negative

Three low order bits is the
magnitude: 0 (000) thru 7 (111)

Number range for n bits = ±2n-1 - 1

Two representations for 0

Sign-Magnitude Representation

+0 +1
+2

+3

+4

+5

+6
+7

0001
0000

0010

0011

0100

0101

0110
0111

1000

1100

1001
1010

1011

1101

1110
1111

-7
-6

-5

-4

-3
-2

-1
-0

0 100 = +4
1 100 = - 4

The major disadvantage is that
we need separate circuits to
both add and subtract

Number magnitudes need to be
compared to get the right result

JCM
Page 25

55:032 - Introduction to Digital Design

Representing -N

• What we really want is -N
– Do A - B as A + (-B)

• We really are working in a closed, modulo
number system; 0 to 2r-1 values

• Therefore for r bits, 2r ≡ 0
• If -N ≡ 0 - N then -N ≡ 2r - N

This is the 2’s complement
representation for -N

JCM
Page 26

55:032 - Introduction to Digital Design

+0 +1
+2

+3

+4

+5

+6
+7

0001
0000

0010

0011

0100

0101

0110
0111

1000

1100

1001
1010

1011

1101

1110
1111

-1
-2

3

-4

-5
-6

-7
-8

Twos Complement Representation

• Only one representation for 0

• One more negative number
than positive number

• Generation of the 2’s
complement as 2r - N implies
r + 1 bits available in system

JCM
Page 27

55:032 - Introduction to Digital Design

N* = 2r - N

Example: Twos complement of 7 24 = 10000

7 = 0111

1001 = repr. of -7

sub

Example: Twos complement of -7 24 = 10000

-7 = 1001

0111 = repr. of 7

sub

Shortcut method:
Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

Twos Complement Operations

JCM
Page 28

55:032 - Introduction to Digital Design

Ones Complement Representation

Ones Complement

N is positive number, then N is its negative 1's complement

N = (2 - 1) - Nn

Example: 1's complement of 7

2 = 10000

-1 = 00001

1111

-7 = 0111

1000 = -7 in 1's comp.Shortcut method:

simply compute bit wise complement

0111 -> 1000

4

JCM
Page 29

55:032 - Introduction to Digital Design

+0 +1
+2

+3

+4

+5

+6
+7

0001
0000

0010

0011

0100

0101

0110
0111

1000

1100

1001
1010

1011

1101

1110
1111

-0
-1

-2

-3

-4
-5

-6
-7

like 2's comp except shifted
one position counter-clockwise

Ones Complement Representation

• Subtraction implemented by
addition & 1's complement

• Still two representations of 0!
This causes some problems

• Some complexities in addition

JCM
Page 30

55:032 - Introduction to Digital Design

Sign and Magnitude

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1011

1111

result sign bit is the
same as the operands'
sign

4

- 3

1

0100

1011

0001

-4

+ 3

-1

1100

0011

1001

when signs differ,
operation is subtract,
sign of result depends
on sign of number with
the larger magnitude

Addition and Subtraction of Numbers

JCM
Page 31

55:032 - Introduction to Digital Design

Ones Complement Calculations

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1011

1100

10111

1

1000

4

- 3

1

0100

1100

10000

1

0001

-4

+ 3

-1

1011

0011

1110

End around carry

End around carry

Addition and Subtraction of Numbers

JCM
Page 32

55:032 - Introduction to Digital Design

Addition and Subtraction of Numbers

Ones Complement Calculations

Why does end-around carry work?

Its equivalent to subtracting 2 and adding 1n

M - N = M + N = M + (2 - 1 - N) = (M - N) + 2 - 1n n (M > N)

-M + (-N) = M + N = (2 - M - 1) + (2 - N - 1)

= 2 + [2 - 1 - (M + N)] - 1

n n

n n M + N < 2
n-1

after end around carry:

= 2 - 1 - (M + N)
n

this is the correct form for representing -(M + N) in 1's comp!

JCM
Page 33

55:032 - Introduction to Digital Design

Addition and Subtraction of Numbers
Twos Complement Calculations

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to sign =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

JCM
Page 34

55:032 - Introduction to Digital Design

Addition and Subtraction of Numbers

Twos Complement Calculations

Why can the carry-out be ignored?

-M + N when N > M:

M* + N = (2 - M) + N = 2 + (N - M)
n n

Ignoring carry-out is just like subtracting 2 n

-M + -N where N + M < or = 2 n-1

-M + (-N) = M* + N* = (2 - M) + (2 - N)

= 2 - (M + N) + 2n n

After ignoring the carry, this is just the right twos compliment
representation for -(M + N)!

n n

JCM
Page 35

55:032 - Introduction to Digital Design

Overflow Conditions

Add two positive numbers to get a negative number
or two negative numbers to get a positive number

5 + 3 = -9

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

-7 - 2 = +7

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

JCM
Page 36

55:032 - Introduction to Digital Design

Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry in to sign does not equal carry out

JCM
Page 37

55:032 - Introduction to Digital Design

Weighted and Unweighted Codes

• Most numeric number representations are in
a class known as “Weighted Codes” where

• Binary integers and fractions are special
case where weights are powers of 2

• Unweighted codes are codes that cannot be
assigned a weight value for each bit

∑
=

•=
1-r

0i
ii w b Value

JCM
Page 38

55:032 - Introduction to Digital Design

Binary Coded Decimal

• Four bits are used to represent each decimal
digit
– In each 4-bit group, 6 values are not used
– Many possible codes, natural BCD (equivalent

binary digits) most common
– BCD is not as efficient as binary

• BCD is easy to convert to/from decimal (it
really is decimal with different symbols)

• BCD add/subtract circuits are complex

JCM
Page 39

55:032 - Introduction to Digital Design

BCD Code Examples

Digit

0
1
2
3
4
5
6
7
8
9

8421

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

84-2-1

0000
0111
0110
0101
0100
1011
1010
1001
1000
1111

XS3

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

The 8421 or natural BCD code is the most
common BCD code in use

Weighted codes Unweighted code

JCM
Page 40

55:032 - Introduction to Digital Design

BCD Addition

Case 1: Case 2:

Case 3:

0001 1
0101 5

(0) 0110 (0) 6

0110 6
0101 5

(0) 1011 (1) 1

1000 8
1001 9

(1) 0001 (1) 7

WRONG!

Note that for cases 2 and 3,
adding a factor of 6 (0110)
gives us the correct result.

JCM
Page 41

55:032 - Introduction to Digital Design

BCD Addition (cont.)

• BCD addition is therefore performed as
follows
– 1) Add the two BCD digits together using

normal binary addition
– 2) Check if correction is needed

• a) 4-bit sum is in range of 1010 to 1111
• b) carry out of MSB = 1

– 3) If correction is required, add 0110 to 4-bit
sum to get the correct result; BCD carry out = 1

JCM
Page 42

55:032 - Introduction to Digital Design

BCD Negative Number Representation

• Similar to binary negative number
representation except r = 10.
– BCD sign-magnitude

• MSD (sign digit options)
– MSD = 0 (positive); not equal to 0 = negative
– MSD range of 0-4 positive; 5-9 negative

– BCD 10’s complement
• -N ≡ 10r - N; 9’s complement + 1

– BCD 9;s complement
• invert each BCD digit (0→9, 1 → 8, 2 → 7,3 → 6,

…7 → 2, 8 → 1, 9 → 0)

JCM
Page 43

55:032 - Introduction to Digital Design

Negative BCD Numbers

• 84-2-1 and XS3 codes allow for easy digit
inversion.

• XS3 code is also easy to implement
– Addition is like binary
– Correction factor is -3 or +3

JCM
Page 44

55:032 - Introduction to Digital Design

Gray Codes

• Grey codes are minimum change codes
– From one numeric representation to the next,

only one bit changes
– Primary use is in numeric input encoding apps.

where we expect non-random input values
changes (I.e. value n to either n-1 or n+1)

• Milling machine table position
• Rotary shaft position

JCM
Page 45

55:032 - Introduction to Digital Design

Gray Codes (cont.)

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Grey

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

JCM
Page 46

55:032 - Introduction to Digital Design

Alphanumeric Representation

• Binary codes used to represent alphabetic
and numeric characters

• Two most common are:
– ASCII, 7 bit code, 128 symbols
– EBCDIC, 8 bit code, 256 symbols

• Problems can arise when comparing symbol
values (collation)
– Comparing ‘A’ to ‘a’ in ASCII system yields

different results in an EBCDIC system.

JCM
Page 47

55:032 - Introduction to Digital Design

Parity Bit

• ASCII code may have an extra bit appended
to detect data transmission errors
– P = 0 if the number of 1s in the character is

even, else P = 1 (even parity)
– P = 0 if the number of 1s in the character is

odd, else P = 1 (odd parity)
• If any single bit changes, parity will be

wrong at receive end
Even parity Odd parity

ASCII A = 1000001 01000001 11000001
ASCII T = 1010100 11010100 01010100

JCM
Page 48

55:032 - Introduction to Digital Design

Other Information Representation

• ALL information must be encoded before
we can design circuits to process it

• You can assign any code to any information
– E.G. 00 - north, 01 - east, 11 - south, 10 - west

• If the information goes somewhere else, the
user has to have access to your definition

• Standards are best if available
– Already published and easily available
– Allows your system to work with many others

Introduction to Digital Design Page 1

Combinational Logic Circuits

55:032 - Introduction to Digital Design Page 2

Overview

• Binary logic operations and gates
• Switching algebra
• Algebraic Minimization
• Standard forms
• Karnaugh Map Minimization
• Other logic operators
• IC families and characteristics

23 March 2013 55:032 - Introduction to Digital Design Page 3

Combinational Logic

• One or more digital signal inputs
• One or more digital signal outputs
• Outputs are only functions of current input

values (ideal) plus logic propagation delays

Combinational
Logic

I1

Im

O1

On

() () ()()tItIFtt m,...O 111 =Δ+

() () ()()tItIFtt mnn ,...O 1=Δ+

55:032 - Introduction to Digital Design Page 4

Combinational Logic (cont.)

• Combinational logic has no memory!
Outputs are only function of current input
combination
Nothing is known about past events
Repeating a sequence of inputs always gives the
same output sequence

• Sequential logic (covered later) does have
memory

Repeating a sequence of inputs can result in an
entirely different output sequence

Introduction to Digital Design Page 5

Switching Algebra

• Based on Boolean Algebra
Developed by George Boole in 1854
Formal way to describe logic statements and
determine truth of statements

• Only has two-values domain (0 and 1)
• Huntington’s Postulates define underlying

assumptions

Introduction to Digital Design Page 6

Huntington’s Postulates

• Closure
If X and Y are in set (0,1) then operations X+Y

and X ·Y are also in set (0,1)
• Identity

X + 0 = X X · 1 = X
• Commutative

X + Y = Y + X X · Y = Y · X

Introduction to Digital Design Page 7

Huntington’s Postulates (cont.)

• Distributive
X · (Y + Z) =(X · Y) + (X · Z)
X + (Y · Z) =(X + Y) · (X + Z)

• Complement

0 X X

1 X X

=⋅

=+

Note that for each property, one form is the dual of the other;

(0s to 1s, 1s to 0s, ·s to +s, +s to ·s)

Introduction to Digital Design Page 8

Switching Algebra Operations - Not

• Unary complement or inversion operation
• Usually shown as overbar (X), other forms

are ~X, X’

1X
0
1

X
1
0

X X X X

Introduction to Digital Design Page 9

Switching Algebra Operations - AND

• Also known as the conjunction operation;
output is true (1) only if all inputs are true

• Algebraic operators are ‘·’, ‘&’, ‘∧’

X
0
0
1
1

Y
0
1
0
1

X·Y
0
0
0
1

&

Introduction to Digital Design Page 10

Switching Algebra Operations - OR

• Also known as the disjunction operation;
output is true (1) if any input is true

• Algebraic operators are ‘+’, ‘|’, ‘∨’

X
0
0
1
1

Y
0
1
0
1

X+Y
0
1
1
1

≥1

Introduction to Digital Design Page 11

Logic Expressions

• Terms and Definitions
Logic Expression - a mathematical formula
consisting of logical operators and variables
Logic Operator - a function that gives a well
defined output according to switching algebra
Logic Variable - a symbol representing the two
possible switching algebra values of 0 and 1
Logic Literal - the values 0 and 1 or a logic
variable or it’s complement

Introduction to Digital Design Page 12

Logic Expressions - Precedence

• Like standard algebra, switching algebra
operators have a precedence of evaluation

NOT operations have the highest precedence
AND operations are next
OR operations are lowest

• Parentheses explicitly define the order of
operator evaluation

If in doubt, USE PARENTHESES!

Introduction to Digital Design Page 13

Logic Expression Minimization

• Goal is to find an equivalent of an original
logic expression that:

a) has fewer variables per term
b) has fewer terms
c) needs less logic to implement

• There are three main manual methods
Algebraic minimization
Karnaugh Map minimization
Quine-McCluskey (tabular) minimization

Introduction to Digital Design Page 14

Algebraic Minimization

• Process is to apply the switching algebra
postulates, laws, and theorems to transform
the original expression

Hard to recognize when a particular law can be
applied
Difficult to know if resulting expression is truly
minimal
Very easy to make a mistake

Incorrect complementation
Dropped variables

Introduction to Digital Design Page 15

Switching Algebra Laws and Theorems

Involution:

()X X =

Introduction to Digital Design Page 16

Switching Algebra Laws and Theorems

Identity:

X 1 X X 0 X
0 0 X 1 1 X

=⋅=+
=⋅=+

Introduction to Digital Design Page 17

Switching Algebra Laws and Theorems

Idempotence:

XXX XXX =⋅=+

Introduction to Digital Design Page 18

Switching Algebra Laws and Theorems

Associativity:

Z Y) (X Z) (Y X
Z Y) (X Z) (Y X

⋅⋅=⋅⋅
++=++

Introduction to Digital Design Page 19

Switching Algebra Laws and Theorems

Adjacency:

() () X Y X Y X

X Y X Y X

=+⋅+

=⋅+⋅

Introduction to Digital Design Page 20

Switching Algebra Laws and Theorems

Absorption:

()
() X YX X

X YX X
=+⋅
=⋅+

Introduction to Digital Design Page 21

Switching Algebra Laws and Theorems

Simplification:

()
() Y X YX X

 Y X YX X

⋅=+⋅

+=⋅+

- Introduction to Digital Design Page 22

Switching Algebra Laws and Theorems

Consensus:

() () () () ()ZX YX ZY ZX YX

ZX YX Z Y ZX YX

+⋅+=+⋅+⋅+

⋅+⋅=⋅+⋅+⋅

Introduction to Digital Design Page 23

Switching Algebra Laws and Theorems

DeMorgan’s Theorem:

Y XYX

Y X Y X

+=⋅

⋅=+

)X ... ,X , ,G()X ... ,X , ,(F n1n1 ⋅+=+⋅

General form:

Introduction to Digital Design Page 24

DeMorgan’s Theorem

Very useful for complementing function expressions:

()
ZXYX F

Z Y X F ZY X F

Z Y X F Z; Y X F

.g.e

⋅+⋅=

+⋅=⋅⋅=

⋅+=⋅+=

Introduction to Digital Design Page 25

• Adjacency is easy to use; very powerful
Look for two terms that are identical except for
one variable

Application removes one term and one variable
from the remaining term

Minimization via Adjacency

() ()
() () () CBA 1CBA D DCBA

CBA DCBA DCBA

CBA DCBA DCBA

⋅⋅=⋅⋅⋅=+⋅⋅⋅

⋅⋅=⋅⋅⋅+⋅⋅⋅

⋅⋅=⋅⋅⋅+⋅⋅⋅

DCBA DCBA e.g. ⋅⋅⋅+⋅⋅⋅

Introduction to Digital Design Page 26

Example of Adjacency Minimization

012301230123012301233 bb bbb b bbbbbbbbbbbbbb ++++=x

0123012301230123012301233 bb bbb b bbbbbbbbbbbbbbbbbb +++++=x

Adjacencies

Duplicate 3rd. term and rearrange

Apply adjacency on term pairs

1231230233 b bbbbbbbb ++=x

Introduction to Digital Design Page 27

Combinational Circuit Analysis

• Combinational circuit analysis starts with a
schematic and answers the following
questions:

What is the truth table(s) for the circuit output
function(s)
What is the logic expression(s) for the circuit
output function(s)

Introduction to Digital Design Page 28

Literal Analysis

• Literal analysis is process of manually
assigning a set of values to the inputs, tracing
the results, and recording the output values

For ‘n’ inputs there are 2n possible input
combinations
From input values, gate outputs are evaluated to
form next set of gate inputs
Evaluation continues until gate outputs are
circuit outputs

• Literal analysis only gives us the truth table

Introduction to Digital Design Page 29

Literal Analysis - Example

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

x
x
x
x
x
x
1
x

A B ZCA
C

B

Z
0

1

1
1 1

0

1

Assign input values

Determine gate outputs and propagate
Repeat until we reach output

Introduction to Digital Design Page 30

Symbolic Analysis

• Like literal analysis we start with the circuit
diagram

Instead of assigning values, we determine gate
output expressions instead
Intermediate expressions are combined in
following gates to form complex expressions
We repeat until we have the output function and
expression

• Symbolic analysis gives both the truth table
and logic expression

Introduction to Digital Design Page 31

Symbolic Analysis (cont.)

• Note that we are constructing the truth table
as we go

truth table has a column for each intermediate
gate output
intermediate outputs are combined in the truth
table to generate the complex columns

• Symbolic analysis is more work but gives us
complete information

Introduction to Digital Design Page 32

Symbolic Analysis - Example

Generate intermediate
expression
Create associated TT
column
Repeat till output
reached

1
0
1
0
1
0
1
0

0
0
0
0
1
0
1
0

0
0
0
1
0
0
0
1

0
0
0
1
1
0
1
1

A·CA
C

B

Z

B·C A·C B·C+

A·C B·C
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B C A·C B·C+Z = C

C

Introduction to Digital Design Page 33

Standard Expression Forms

• Two standard (canonical) expression forms
Canonical sum form

AKA disjunctive normal form or sum-of-products
OR of AND terms

Canonical product form
AKA conjunctive normal form or product-of-sums
AND or OR terms

• In both forms, each first-level operator
corresponds to one row of truth table

• 2nd-level operator combines 1st-level results

Introduction to Digital Design Page 34

Standard Forms (cont.)

() () () ()CBACBACBACBAC]B,F[A, ⋅⋅+⋅⋅+⋅⋅+⋅⋅=

() () () ()CBACBACBACBAC]B,F[A, ++⋅++⋅++⋅++=

Standard Sum Form
Sum of Products (OR of AND terms)

Standard Product Form
Product of Sums (AND of OR terms)

Minterms

Maxterms

Introduction to Digital Design Page 35

Standard Sum Form

• Each product (AND) term is a Minterm
ANDed product of literals in which each
variable appears exactly once, in true or
complemented form (but not both!)
Each minterm has exactly one ‘1’ in the truth
table
When minterms are ORed together each
minterm contributes a ‘1’ to the final function

NOTE: NOT ALL PRODUCT TERMS ARE
MINTERMS!

Introduction to Digital Design Page 36

Minterms and Standard Sum Form
C
0
1
0
1
0
1
0
1

B
0
0
1
1
0
0
1
1

A
0
0
0
0
1
1
1
1

Minterms
m0 =
m1 =
m2 =
m3 =
m4 =
m5 =
m6 =
m7 = CBA

CBA

CBA

CBA

CBA

CBA

CBA

CBA

⋅⋅
⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

m0
1
0
0
0
0
0
0
0

m3
0
0
0
1
0
0
0
0

m6
0
0
0
0
0
0
1
0

m7
0
0
0
0
0
0
0
1

F
1
0
0
1
0
0
1
1

()
() ()∑=

+++=
⋅⋅+⋅⋅+⋅⋅+⋅⋅=

7 6, 3, 0,m CB,A,F
m m m mCB,A,F

CBACBACBACBAF

7630

Introduction to Digital Design Page 37

Standard Product Form

• Each OR (sum) term is a Maxterm
ORed product of literals in which each variable
appears exactly once, in true or complemented
form (but not both!)
Each maxterm has exactly one ‘0’ in the truth
table
When maxterms are ANDed together each
maxterm contributes a ‘0’ to the final function

NOTE: NOT ALL SUM TERMS ARE
MAXTERMS!

Introduction to Digital Design Page 38

Maxterms and Standard Product Form
C
0
1
0
1
0
1
0
1

B
0
0
1
1
0
0
1
1

A
0
0
0
0
1
1
1
1

Maxterms
M0 =
M1 =
M2 =
M3 =
M4 =
M5 =
M6 =
M7 = CBA

CBA

CBA

CBA

CBA

CBA

CBA

CBA

++

++

++

++

++

++

++

++
M1
1
0
1
1
1
1
1
1

M2
1
1
0
1
1
1
1
1

M4
1
1
1
1
0
1
1
1

M5
1
1
1
1
1
0
1
1

F
1
0
0
1
0
0
1
1

() () () ()
()
() ()∏=

⋅⋅⋅=
++⋅++⋅++⋅++=

5 4, 2, 1,M CB,A,F

M M M MCB,A,F
CBACBACBACBAF

5421

Introduction to Digital Design Page 39

BCD to XS3 Example
b0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

b1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

b2

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

b3

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

x0

1
0
1
0
1
0
1
0
1
0
-
-
-
-
-
-

x1

1
0
0
1
1
0
0
1
1
0
-
-
-
-
-
-

x2

0
1
1
1
1
0
0
0
0
1
-
-
-
-
-
-

x3

0
0
0
0
0
1
1
1
1
1
-
-
-
-
-
-

Note: Don’t cares can
work to our advantage
during minimization; we
can assign either 0 or 1
as needed. Assume 0’s
for now.

Introduction to Digital Design Page 40

BCD to XS3 Example (cont.)

• Generate the Standard Sum of Products
logical expressions for the outputs

012301230123012301230

012301230123012301231

012301230123012301232

012301230123012301233

bbbbbbbbbbbbbbbbbbbb x

bbbbbbbbbbbbbbbbbbbb x

bbbbbbbbbbbbbbbbbbbb x

bbbbbbbbbbbbbbbbbbbb x

++++=

++++=

++++=

++++=

Introduction to Digital Design Page 41

Karnaugh Map Minimization

• Karnaugh Map (or K-map) minimization is a
visual minimization technique

Is an application of adjacency
Procedure guarantees a minimal expression
Easy to use; fast
Problems include:

Applicable to limited number of variables (4 ~ 8)
Errors in translation from TT to K-map
Not grouping cells correctly
Errors in reading final expression

Introduction to Digital Design Page 42

K-map Minimization (cont.)

• Basic K-map is a 2-D rectangular array of
cells

Each K-map represents one bit column of output
Each cell contains one bit of output function

• Arrangement of cells in array facilitates
recognition of adjacent terms

Adjacent terms differ in one variable value;
equivalent to difference of one bit of input row
values

e.g. m6 (110) and m7 (111)

Introduction to Digital Design Page 43

Truth Table Rows and Adjacency

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0

0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0

m0
m1
m3
m2
m6
m7
m5
m4
m12
m13
m15
m14
m10
m11
m9
m8

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

A B C D minterm
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

m0
m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11
m12
m13
m14
m15

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A B C D minterm

Standard TT ordering
doesn’t show adjacency

Key is to use gray
code for row order

This helps but it’s still hard to see all possible adjacencies.

Introduction to Digital Design Page 44

Folding of Gray Code Truth Table into K-map
ABCD
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

00 01 11 10
00
01
11
10

AB
CD

Introduction to Digital Design Page 45

K-map Minimization (cont.)

• For any cell in 2-D array, there are four
direct neighbors (top, bottom, left, right)

• 2-D array can therefore show adjacencies of
up to four variables.

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

AB
01 11 10

0

C

A

C

B

00

1

Four
variable
K-map

Three
variable
K-map

Don’t forget that cells are adjacent
top to bottom and side to side.

Introduction to Digital Design Page 46

Truth Table to K-map

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A B C D F

Number of TT rows MUST match number of K-map cells

m13

m12

m15

m5 m9

m0

m7

m2

Note different ways K-map is labeled

Introduction to Digital Design Page 47

K-map Minimization of X3

b3 b2
00 01 11 10

00

01

11

10
C

b1 b0

A

D

B

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
0
1
1
1
1
1
-
-
-
-
-
-

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

b3 b2 b1 b0 x3

0

00

0

0

0

1

1

1

1

10

0

0

0

0

Entry of TT data into K-map

Watch out for ordering of 10
and 11 rows and columns!

Use 0’s
for now

Introduction to Digital Design Page 48

Grouping - Applying Adjacency

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

1

00

0

1

0

1

1

1

1

10

0

0

0

0

ABCD

ABCD

ABC

If two cells have the same value
and are next to each other, the
terms are adjacent.

This adjacency is shown by
enclosing them.

Groups can have common cells.

Group size is a power of 2 and
groups are rectangular.

You can group 0s or 1s.

Introduction to Digital Design Page 49

Reading the Groups

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

1

00

0

1

0

1

1

1

1

10

0

0

0

0

ABC

If 1s grouped, the expression is a
product term, 0s - sum term.

Within group, note when variable
values change as you go cell to
cell. This determines how the
term expression is formed by the
following table

Variable changes Exclude Exclude
Variable constant 0 Inc. comp. Inc. true
Variable constant 1 Inc. true Inc. comp.

Grouping 1s Grouping 0s

Introduction to Digital Design Page 50

Reading the Groups (cont.)

• When reading the term expression…
If the associated variable value changes within
the group, the variable is dropped from the term

If reading 1s, a constant 1 value indicates that
the associated variable is true in the AND term

If reading 0s, a constant 0 value indicates that
the associated variable is true in the OR term

Introduction to Digital Design Page 51

Implicants and Prime Implicants

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

1

00

0

1

0

1

1

1

1

10

0

0

0

0

Prime Implicants

Implicants

Single cells or groups that
could be part of a larger
group are know as implicants

A group that is as large as
possible is a prime implicant

Single cells can be prime
implicants is they cannot be
grouped with any other cell

Introduction to Digital Design Page 52

Implicants and Minimal Expressions

• Any set of implicants that encloses (covers)
all values is “sufficient”; i.e. the associated
logical expression represents the desired
function.

All minterms or maxterms are sufficient.
• The smallest set of prime implicants that

covers all values forms a minimal expression
for the desired function.

There may be more than one minimal set.

Introduction to Digital Design Page 53

Essential and Secondary Prime Implicants

• If a prime implicant has any cell that is not
covered by any other prime implicant, it is an
“essential prime implicant”

• If a prime implicant is not essential is is a
“secondary prime implicant”

• A minimal set includes ALL essential prime
implicants and the minimum number of
secondary PIs as needed to cover all values.

Introduction to Digital Design Page 54

K-map Minimization Method

• Technique is valid for either 1s or 0s

A) Find all prime implicants (largest groups of
1s or 0s in order of largest to smallest)

B) Identify minimal set of PIs
1) Find all essential PIs
2) Find smallest set of secondary PIs

The resulting expression is minimal.

Introduction to Digital Design Page 55

K-map Minimization of X3 (CONT.)

b3 b2
00 01 11 10

00

01

11

10
b1

b1 b0

b3

b0

b2

0

00

0

0

0

1

1

1

1

10

0

0

0

0

b3 b2 b0* b3 b2 b1*

We want a sum of
products expression so
we circle 1s.
* PIs are essential; no
implicants remain (no
secondary PIs).
The minimal expression
is:

b0 b2 b3b1 b2 b3b1 b2 3bX3 ++=

b3 b2 b1*

Introduction to Digital Design Page 56

Another K-map Minimization Example

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0

10

0

1

0

0

1

0

1

11

1

0

0

0

We want a sum of
products expression so
we circle 1s.
* PIs are essential; and
we have 2 secondary PIs.
The minimal expressions
are:

DBADCACAF

DCBDCACAF

⋅⋅+⋅⋅+⋅=

⋅⋅+⋅⋅+⋅=

* CA ⋅

DBA ⋅⋅

DCB ⋅⋅

* DCA ⋅⋅

Introduction to Digital Design Page 57

A 3rd K-map Minimization Example

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0

10

0

1

0

0

1

0

1

11

1

0

0

0

We want a product of
sums expression so we
circle 0s.
* PIs are essential; and
we have 1 secondary PI
which is redundant.
The minimal expression
is:

)CBA(D)C(C)A(F ++⋅+⋅+=

* DC +

* CBA ++

DA +

* CA +

Introduction to Digital Design Page 58

5 Variable K Maps

ƒ(A,B,C,D,E) = Σm(3,4,7,10,11,
14,15,16,17,20,26,27,30 31)

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

1

00

0

0

0

1

1

0

1

01

1

0

0

1

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0

00

1

1

0

1

1

0

1

01

1

0

0

0

E = 0 E = 1

• Uses two 4 variable maps side-by-side
groups spanning both maps occupy the same
place in both maps

Introduction to Digital Design Page 59

5 Variable K Maps

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

1

00

0

0

0

1

1

0

1

01

1

0

0

1

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0

00

1

1

0

1

1

0

1

01

1

0

0

0

E = 0 E = 1

E D C B D C BA E D A D B E)D,C,B,F(A, +++=

ƒ(A,B,C,D,E) = Σm(3,4,7,10,11,
14,15,16,17,20,26,27,30 31)

Introduction to Digital Design Page 60

Don’t Cares

• For expression minimization, don’t care
values (- or x) can be assigned either 0 or 1

Hard to use in algebraic simplification; must
evaluate all possible combinations
K-map minimization easily handles don’t cares

• Basic don’t care rule for K-maps is include
the dc (- or x) in group if it helps to form a
larger group; else leave it out

Introduction to Digital Design Page 61

K-map Minimization of X3 with Don’t Cares

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0

x0

0

0

0

1

1

1

1

1x

x

x

x

x

BD* A*

We want a sum of
products expression so
we circle 1s and x’s
(don’t cares)
* PIs are essential; no
other implicants remain
(no secondary PIs).
The minimal expression
is:

BDBCAX3 ++=

BC*

Introduction to Digital Design Page 62

AB
00 01 11 10

00

01

11

10
C

CD

A

D

B

0

x0

0

0

0

1

1

1

1

1x

x

x

x

x

K-map Minimization of X3 with Don’t Cares

*BA +

CB+

DCA ++ We want a product of
sums expression so we
circle 0s and x’s (don’t
cares)
* PIs are essential; there
are 3 secondary PIs.
The minimal expressions
are:

D)C(AB)(AF
D)CB(B)(AF

++⋅+=
++⋅+=

DCB ++

Introduction to Digital Design Page 63

Additional Logic Operations

• For two inputs, there are 16 ways we can
assign output values

Besides AND and OR, five others are useful
• The unary Buffer operation is useful in the

real world

1X
0
1

Z=X
0
1

X Z=X X Z=X

Introduction to Digital Design Page 64

Additional Logic Operations - NAND

• NAND (NOT - AND) is the complement of
the AND operation

X
0
0
1
1

Y
0
1
0
1

X·Y
1
1
1
0

&

Introduction to Digital Design Page 65

Additional Logic Operations - NOR

• NOR (NOT - OR) is the complement of the
OR operation

X
0
0
1
1

Y
0
1
0
1

X+Y
1
0
0
0

≥1

Introduction to Digital Design Page 66

Additional Logic Operations -XOR

• Exclusive OR is similar to the inclusive OR
(AKA OR) except output is 0 for 1,1 inputs

• Alternatively the output is 1 when modulo 2
input sum is equal to 1

X
0
0
1
1

Y
0
1
0
1

X+Y
0
1
1
0

=1

Introduction to Digital Design Page 67

Additional Logic Operations - XNOR

• Exclusive NOR is the complement of the
XOR operation

• Alternatively the output is 1 when modulo 2
input sum is not equal to 1

X
0
0
1
1

Y
0
1
0
1

X+Y
1
0
0
1

=1

Introduction to Digital Design Page 68

Minimal Logic Operator Sets

• AND , OR, NOT are all that’s needed to
express any combinational logic function as
switching algebra expression

operators are all that were originally defined
• Two other minimal logic operator sets exist

Just NAND gates
Just NOR gates

• We can demonstrate how just NANDs or
NORs can do AND, OR, NOT operations

Introduction to Digital Design Page 69

NAND as a Minimal Set

Introduction to Digital Design Page 70

NOR as a Minimal Set

Introduction to Digital Design Page 72

Three State Outputs

• Standard logic gate outputs only have two
states; high and low

Outputs are effectively either connected to +V or
ground (low impedance)

• Certain applications require a logic output
that we can “turn off” or disable

Output is disconnected (high impedance)
• This is the three-state output

May be stand-alone (a buffer) or part of another
function output

Introduction to Digital Design Page 73

Three State Buffers

IN_H OUT_H

EN_H

IN_H OUT_H

EN_L

IN_H OUT_L

EN_H

IN_H OUT_L

EN_L

IN
X
0
1

EN
0
1
1

OUT
HI-Z

0
1

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

ENGIN 112

Intro to Electrical and Computer Engineering

Lecture 14

Binary Adders and Subtractors

Dr.Hisham
Text Box

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Overview

° Addition and subtraction of binary data is fundamental
• Need to determine hardware implementation

° Represent inputs and outputs
• Inputs: single bit values, carry in
• Outputs: Sum, Carry

° Hardware features
• Create a single-bit adder and chain together

° Same hardware can be used for addition and
subtraction with minor changes

° Dealing with overflow
• What happens if numbers are too big?

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Half Adder

C A B S 0 0 0 1
A 0
B 0

S 0

C 1

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Dec Binary
1 1
+1 +1
2 10

° Add two binary numbers
• A0 , B0 -> single bit inputs
• S0 -> single bit sum
• C1 -> carry out

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Multiple-bit Addition

A3 A2 A1 A0

0 1 0 1A 0 1 1 1
B3 B2 B1 B0

B

0 1 0 1
0 1 1 1

A
B

0

1

0

1

1

1

1

Ai
+Bi

Ci

Si

Ci+1

° Consider single-bit adder for each bit position.

Each bit position creates a sum and carry

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Ci Ai Bi Si Ci+1

1 1

1 1

Ci

AiBi
00 01 11 10

0

1

Si

° Full adder includes carry in Ci

° Notice interesting pattern in Karnaugh map.

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Ci Ai Bi Si Ci+1 Si = !Ci & !Ai & Bi
!Ci & Ai & !Bi
Ci & !Ai & !Bi
Ci & Ai & Bi

° Full adder includes carry in Ci

° Alternative to XOR implementation

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

Si = !Ci & !Ai & Bi
!Ci & Ai & !Bi
Ci & !Ai & !Bi
Ci & Ai & Bi

Si = !Ci & (!Ai & Bi # Ai & !Bi)
Ci & (!Ai & !Bi # Ai & Bi)

Si = !Ci & (Ai $ Bi)
Ci & !(Ai $ Bi)

Si = Ci $ (Ai $ Bi)

° Reduce and/or representations into XORs

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Ci Ai Bi Si Ci+1

1

1 11

Ci

AiBi
00 01 11 10

0

1

Ci+1

° Now consider implementation of carry out

° Two outputs per full adder bit (Ci+1, Si)

Note: 3 inputs

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Ci Ai Bi Si Ci+1 Ci

AiBi
00 01 11 10

0

1

1

1 11

Ci+1

Ci+1 = Ai & Bi
Ci & Bi
Ci & Ai

° Now consider implementation of carry out

° Minimize circuit for carry out - Ci+1

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

Ci+1 = Ai & Bi
Ci !Ai & Bi
Ci & Ai & !Bi

Ci+1 = Ai & Bi
Ci & (!Ai & Bi # Ai & !Bi)

Ci+1 = Ai & Bi # Ci & (Ai $ Bi)

Recall:
Si = Ci $ (Ai $ Bi)

Ci+1 = Ai & Bi # Ci & (Ai $ Bi)

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

A

B

S

C

C i+1

i
i

i

i

Si = Ci $ (Ai $ Bi)

Half-adder Half-adder

Ci+1 = Ai & Bi # Ci & (Ai $ Bi)

° Full adder made of several half adders

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

half-adder

half-adder
A

B
i

i

C i

C i+1

S i

S

C

C

A full adder can be made from
two half adders (plus an OR gate).

° Hardware repetition simplifies hardware design

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Full Adder

Full Adder

A B

C C

S

i i

i+1 i

i

Block Diagram

° Putting it all together
• Single-bit full adder
• Common piece of computer hardware

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

4-Bit Adder

Full Adder

A B

0
C

S

0 0

1

0

Full Adder

A B

C

S

1 1

2

1

Full Adder

A B

C

S

2 2

3

2

Full Adder

A B

C S

3 3

4 3

C 1 1 1 0
A 0 1 0 1
B 0 1 1 1
S 1 1 0 0

° Chain single-bit adders together.

° What does this do to delay?

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Negative Numbers – 2’s Complement.

110 = 0116 = 00000001
-110 = FF16 = 11111111

12810 = 8016 = 10000000
-12810 = 8016 = 10000000

° Subtracting a number is the same as:
1. Perform 2’s complement
2. Perform addition

° If we can augment adder with 2’s complement
hardware?

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

4-bit Subtractor: E = 1

Full Adder

A B

C

0 0

1

0

Full Adder

A B

C

1 1

2

1

Full Adder

A B

C

2 2

3

2

Full Adder

A B

C SD

3 3

4 3 SD SD SD

E

+1

Add A to B’ (one’s complement) plus 1
That is, add A to two’s complement of B
D = A - B

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Adder- Subtractor Circuit

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Overflow in two’s complement addition

° Definition: When two values of the same signs are
added:

• Result won’t fit in the number of bits provided
• Result has the opposite sign.

Overflow?

CN-1

BN-1

AN-1

Assumes an N-bit adder, with bit N-1 the MSB

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

10
1101
1010

0111

11
1110
1101

1011

01
0011
0110

1001

00
0010
0011

0101

00
0010
1100

1110

11
1110
0100

0010

Addition cases and overflow

OFL OFL

2
3
5

3
6
-7

-2
-3
-5

-3
-6
7

2
-4
-2

-2
4
2

Dr.Hisham
Text Box

ENGIN112 L14: Binary Adder Subtractor October 3, 2003

Summary

° Addition and subtraction are fundamental to computer
systems

° Key – create a single bit adder/subtractor
• Chain the single-bit hardware together to create bigger designs

° The approach is call ripple-carry addition
• Can be slow for large designs

° Overflow is an important issue for computers
• Processors often have hardware to detect overflow

° Next time: encoders/decoder.

Dr.Hisham
Text Box

1 Prof. Young Jin Nam, Daegu University

Shift Registers

Prof. Young Jin Nam

2 Prof. Young Jin Nam, Daegu University

Basic Functions

Register is
A digital circuit which two basic functions: data storage & data
movement
Consisting of one or more F/Fs used to store & shift data

Flip-Flop as a Storage Element

3 Prof. Young Jin Nam, Daegu University

Basic Functions

Basic Data Movement in Shift Registers
Shift register can defined by three factors: capacity, the method of
data input & output

4 Prof. Young Jin Nam, Daegu University

Basic Functions

Storage Capacity
The total # of bits (1s or 0s) of digital data it can retain
Each stage(flip-flop) in a shift register represents one bit of storage
capacity
The # of stages in a register determines its storage capacity

5 Prof. Young Jin Nam, Daegu University

Serial In/Serial Out Shift Register

Serial In/Serial Out Shift Register
Accepts data serially (one bit at a time on a single line)
Produces the stored information on its output also in serial form

6 Prof. Young Jin Nam, Daegu University

Serial In/Serial Out Shift Register

Illustrative Example:
Four bits(1010) being entered serially into the register

7 Prof. Young Jin Nam, Daegu University

Serial In/Serial Out Shift Register

Illustrative Example:
Four bits(1010) being entered serially into the register

8 Prof. Young Jin Nam, Daegu University

Serial In/Serial Out Shift Register

Illustrative Example: Draw a Waveform

1 1

1

0

1

1

0

1

1

1

0

1

1

1

0

9 Prof. Young Jin Nam, Daegu University

Serial In/Serial Out Shift Register

Logic Symbol for an 8-bit Serial In/Serial Out Shift Register
SRG: Shift ReGister

10 Prof. Young Jin Nam, Daegu University

Serial In/Parallel Out Shift Register

Operations
Data bits are entered serially (right-most bit first) into the register
Each data bit appears on its respective output line (all bits are
available simultaneously)

11 Prof. Young Jin Nam, Daegu University

Serial In/Parallel Out Shift Register

Example: Draw a Waveform

0

1

1

1

1

0

1

1

1

1

0

1

0

1

1

0

12 Prof. Young Jin Nam, Daegu University

Parallel In/Serial Out Shift Register

Operations
The data bits are entered simultaneously into their respective
stages on parallel lines
One bit of data appears on an output line at a time
Four input lines (D0~D3), a SHIFT/LOAD’ input

13 Prof. Young Jin Nam, Daegu University

Parallel In/Serial Out Shift Register

When SHIFT/LOAD’ = 0
Allow four bits of data to load in parallel into the register
Gates G1 through G3 are enabled
Allow each data bit to be applied to the D input of its respective F/F

1

0

14 Prof. Young Jin Nam, Daegu University

Parallel In/Serial Out Shift Register

When SHIFT/LOAD’ = 1
Allow the data bits to shift right from one stage to the next
Gates G4 through G6 are enabled

0

1

15 Prof. Young Jin Nam, Daegu University

Parallel In/Serial Out Shift Register

Example: Draw a Waveform

16 Prof. Young Jin Nam, Daegu University

Parallel In/ Parallel Out Shift Register

Operations
Allow four bits of data to load in parallel into the register
All bits are available simultaneously

17 Prof. Young Jin Nam, Daegu University

Bidirectional Shift Registers

Operations
Data can shifted either left or right
When RIGHT/LEFT’=1, data are to be shifted right
When RIGHT/LEFT’=0, data are to be shifted left

1
0

18 Prof. Young Jin Nam, Daegu University

Bidirectional Shift Registers

Example: Draw a Waveform

right

19 Prof. Young Jin Nam, Daegu University

Shift Register Counters

A Shift Register Counter
A shift register with the serial output connected back to the serial
input to produce special sequences
Classified as counters because they exhibit a specified sequence of
states
Example: Johnson counter & ring counter

20 Prof. Young Jin Nam, Daegu University

The Johnson Counter

Johnson Counter
The complement of the output of the last F/F is connected back to
the D input of the first F/F
It produces a modulus of 2n, where n is the number of stages in the
counter

Example: Truth Table of 4-bit Johnson Sequence

<tab 10-1>

21 Prof. Young Jin Nam, Daegu University

The Johnson Counter

Block Diagram of 4-bit Johnson Counter

22 Prof. Young Jin Nam, Daegu University

The Johnson Counter

Timing Sequence of 4-bit Johnson Counter

1

0

0

0

1

1

0

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

0

0

0

0

23 Prof. Young Jin Nam, Daegu University

The Johnson Counter

Example: Truth Table of 5-bit Johnson Sequence

<tab 10-2>

24 Prof. Young Jin Nam, Daegu University

The Ring Counter

Ring Counter
Utilize one F/F for each state in its sequence
Decoding gate is not required (a unique output for each decimal
digit)
Initially, 1 is preset into the first F/F & the rest are cleared

1 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0

25 Prof. Young Jin Nam, Daegu University

The Ring Counter

Truth Table of 10-bit Ring Counter

<tab 10-3>

26 Prof. Young Jin Nam, Daegu University

The Ring Counter

Example: Draw a Waveform
The initial state = 1010000000

27 Prof. Young Jin Nam, Daegu University

Application: Time Delay

Shift Register as a Time-Delay Device
Serial in/serial output shift register can be used to provide a time
delay from input to output that is a function of both the # of
stages(n) in the register & the clock frequency

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

28 Prof. Young Jin Nam, Daegu University

Application: Ring Counter

A Ring Counter using a Shift Register
If the output is connected back to the serial input, a shift register
can be used as a ring counter
Initially, a bit pattern of 1000 can be synchronously preset into the
counter (LD’ = 0)

1
0

0

0

0
1

0

0

0
0

1

0

0
0

0

1

1
0

0

0

29 Prof. Young Jin Nam, Daegu University

Application: Serial-to-Parallel Data Converter

Simplified Serial-to-Parallel Data Converter
Consists of 11 bits
First bit(start bit) = 0 (beginning with a HIGH-to-LOW transition)
Next 8 bits (D7~D0) are the data bits
Last two bits (stop bits) are always 1s

30 Prof. Young Jin Nam, Daegu University

Application: Serial-to-Parallel Data Converter

Logic Diagram

31 Prof. Young Jin Nam, Daegu University

The end of “Shift Registers”

Page 1

Synchronous Sequential Circuit Design

Page 2

Motivation

• Analysis of a few simple circuits

• Generalizes to Synchronous Sequential Circuits (SSC)
Outputs are Function of State (and Inputs)
Next States are Functions of State and Inputs
Used to implement circuits that control other circuits
"Decision Making" logic

• Application of Sequential Logic Design Techniques
Word Problems
Mapping into formal representations of SSC behavior
Case Studies

Page 3

Overview

• Concept of the Synchronous Sequential Circuits
Partitioning into Datapath and Control
When Inputs are Sampled and Outputs Asserted

• Basic Design Approach
Six Step Design Process

• Alternative SSC Representations
State Diagram, VHDL

• Moore and Mealy Machines
Definitions, Implementation Examples

• Word Problems
Case Studies

Page 4

Complex Digital System = Datapath + Control

Registers
Combinational Functional

Units (e.g., ALU)
Busses

SSC generating sequences
of control signals

Instructs datapath what to
do next

The worker

The “Supervisor”

Status

Control

Control

Datapath

State

Control
Outputs

Status
Inputs

Concept of the Synchronous Sequential Circuit

Page 7

Concept of the Synchronous Sequential Circuit

• Timing: When are inputs sampled, next state computed,
outputs asserted?

• State Time: Time between clocking events
• Clocking event causes state/outputs to transition, based on

inputs
• For set-up/hold time considerations:

Inputs should be stable before clocking event
• After propagation delay, Next State entered, Outputs are

stable
NOTE: Asynchronous output (Mealy) take effect immediately
Synchronous outputs (Moore) take effect at the next clocking event

E.g., tri-state enable: effective immediately
sync. counter clear: effective at next clock event

Page 8

Example: Positive Edge Triggered Synchronous System

Concept of the Synchronous Sequential Circuit

• On rising edge, inputs sampled;
outputs, next state computed

• After propagation delay, outputs
and next state are stable

• Immediate Outputs:
affect datapath immediately
could cause inputs from datapath
to change

• Delayed Outputs:
take effect on next clock edge
propagation delays must exceed
hold times

Page 10

Sequential Circuit Analysis

• Start with schematic diagram
• Need to determine how circuit works

Trace schematic, determine equations of operation
FF input equations
sequential circuit output equations

Create State transition table
Sequential circuit inputs, FFs are comb. logic inputs
Organize truth table as current state (FFs) and inputs
Create FF input, seq. Circuit output columns
From FF char. Tables, determine FF next state values

Page 11

Sequential Circuit Analysis (cont.)

Generate State Diagram
Circles (nodes) represent current or present state values
Lines (arcs) represent how state and output values change

– Given the current state and current inputs, the next state and
output values are indicated by the associated arc

State diagram can have different forms depending on the
type of sequential circuit output.

Present
State
Value

Next
State
Value

Inputs/outputs

Page 12

Basic Design Approach

• Six Step Process

1. Understand the statement of the Specification
2. Obtain an abstract specification of the SSC
3. Generate State Table
4. Perform state assignment
5. Choose FF types to implement SSC state register
6. Implement the SSC

Page 13

Example: Vending Machine SSC

General Machine Concept:
deliver package of gum after 15 cents deposited

single coin slot for dimes, nickels

no change

Block Diagram

Step 1. Understand the problem:

Vending
Machine

SSC

N

D

Reset

Clk

OpenCoin
Sensor Gum

Release
Mechanism

Draw a picture!

Basic Design Approach

Page 14

Tabulate typical input sequences:
three nickels
nickel, dime
dime, nickel
two dimes
two nickels, dime

Draw state diagram:
Inputs: N, D, reset

Output: open

Step 2. Map into more suitable abstract representation

Vending Machine Example

Page 15

Step 3: State Minimization

reuse states
whenever
possible Symbolic State Table

Vending Machine Example

Page 16

Step 4: State Encoding

Next State
Q +1 Q+ 0

0 0
0 1
1 0
X X
0 1
1 0
1 1
X X
1 0
1 1
1 1
X X
1 1
1 1
1 1
X X

Present State
Q 1 Q 0
0 0

0 1

1 0

1 1

D
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

N
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Inputs Output
Open

0
0
0
X
0
0
0
X
0
0
0
X
1
1
1
X

Vending Machine Example

State

0¢

5¢

10¢

15¢

NOTE!
For D-FFs the next
state will be what is
at the D input. So
each FF’s next
state values in the
state table must be
the D inputs for
that FF.

D1 D0

Page 17

Step 5. Choose FFs for implementation D FF easiest to use

D1 = Q1 + D + Q0 N

D0 = N Q0 + Q0 N + Q1 N + Q1 D

OPEN = Q1 Q0
8 Gates

Vending Machine Example

Q1 Q0
00

D

D N

Q1

N

Q0

0 0 1 1
0 1 1 1
X X X X
1 1 1 1

01 11 10

00

01

11

10

Q1 Q0
00

D

D N

Q1

N

Q0

0 1 1 0
1 0 1 1
X X X X
0 1 1 1

01 11 10

00

01

11

10

Q1 Q0
00

D

D N

Q1

N

Q0

0 0 1 0
0 0 1 0
X X X X
0 0 1 0

01 11 10

00

01

11

10

Page 18

Designing with SR, JK, and T Flip-Flops

• Sequential design with D-FFs is easy; next state
depends on D input only

• We can use other FFs but the process is a little
more involved

State table defines set of present state to next state
transitions
What we need to design the next state combinational
logic is the FF input values needed for each Q → Q+
transition

• This table is known as the FF excitation table
Derived from the FF characteristic table

Page 19

Derivation of JK Excitation Table

JK Characteristic Table JK Excitation Table

J

0
0
0
0
1
1
1
1

K

0
0
1
1
0
0
1
1

Q

0
1
0
1
0
1
0
1

Q+

0
1
0
0
1
1
1
0

Q+

0
1
0
1

Q

0
0
1
1

J

0
1
X
X

K

X
X
1
0

Page 20

Flip-Flop Excitation Tables

Q+

0
1
0
1

Q

0
0
1
1

J

0
1
X
X

K

X
X
1
0

S

0
1
0
X

R

X
0
1
0

T

0
1
1
0

D

0
1
0
1

You can use any FF type for your implementation

FF types can be mixed; I.e. in vending machinge
you could use a JK FF for Q1 and a T FF for Q0

Page 21

Step 5. Choosing FF for Implementation
J-K FF

Remapped encoded state transition table using JK excitation table

Next State
Q+ 1 Q+ 0
0 0
0 1
1 0
X X
0 1
1 0
1 1
X X
1 0
1 1
1 1
X X
1 1
1 1
1 1
X X

Present State
Q 1 Q 0
0 0

0 1

1 0

1 1

D
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

N
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Inputs K 1

X
X
X
X
X
X
X
X
0
0
0
X
0
0
0
X

K 0

X
X
X
X
0
1
0
X
X
X
X
X
0
0
0
X

J 1

0
0
1
X
0
1
1
X
X
X
X
X
X
X
X
X

J 0

0
1
0
X
X
X
X
X
0
1
1
X
X
X
X
X

Vending Machine Example

JK Excitation Table

Q+

0
1
0
1

Q

0
0
1
1

J

0
1
X
X

K

X
X
1
0

Page 22

Vending Machine Example

Q1 Q0
00

D

D N

Q1

N

Q0

X X 0 0
X X 0 0

01 11 10

00

01

11

10

X X X X
X X 0 0

J1 = D + Q0 N

K1 = 0

J0 = N + Q1 D

K0 = Q1 N

7 Gates

Q1 Q0
00

D

D N

Q1

N

Q0

0 0 X X
0 1 X X

01 11 10

00

01

11

10

X X X X
1 1 X X

Q1 Q0
00

D

D N

Q1

N

Q0

X 0 0 X
X 1 0 X

01 11 10

00

01

11

10

X X X X
X 0 0 X

Q1 Q0
00

D

D N

Q1

N

Q0

0 X X 0
1 X X 1

01 11 10

00

01

11

10

X X X X
0 X X 1

Implementation:

Page 23

Definitions Moore Machine

Outputs are function
solely of the current

state

Outputs change
synchronously with

state changes

Mealy Machine

Outputs depend on
state AND inputs

Input change causes
an immediate

(asynchronous)
output change

State
Register

Clock
State

Feedback

X
Inputs

Z
Outputs

Moore vs. Mealy Machines

Combinational
Logic for

Next State
(FF Inputs)

Comb.
Logic for
Outputs)

Mealy only; no connection for Moore

Page 24

State Diagram Equivalents

Outputs are associated
with State

Outputs are associated
with Transitions

Reset/0

N/0

N/0

N+D/1

15¢

0¢

5¢

10¢

D/0

D/1

(N D + Reset)/0

Reset/0

Reset/1

N D/0

N D/0

Moore
MachineReset

N

N

N+D

[1]

15¢

0¢

5¢

10¢

[0]

[0]

[0]

N D + Reset

Reset

Reset

N D

N D

Mealy
Machine

Moore and Mealy Machines

D

Page 25

States vs. Transitions
Mealy Machine typically has fewer states than Moore Machine

for same output sequence

Same I/O behavior

Different # of states

Moore and Mealy Machines

1

1

0

1

2

0

0
[0]

[0]

[1]

1/0

0

1

0/0

0/0

1/1

1

0

Page 26

Synchronous Mealy Machine

Latched state AND outputs
Avoids glitchy outputs!
Outputs are delayed by up to 1 clock period
Usually equivalent to the Moore form

Moore and Mealy Machines

State
Register

Clock
State

Feedback

X
Inputs

Z
Outputs

Combinational
Logic for

Next State
(FF Inputs)

Comb.
Logic for
Outputs)

Output
Register

Clock

Page 27

Mapping English Language Description to Formal Specifications

Four Case Studies:

• Finite String Pattern Recognizer

• Complex Counter with Decision Making

• Traffic Light Controller

• Digital Combination Lock

Synchronous Sequential Circuit Word Problems

Page 28

Finite String Pattern Recognizer

A finite string recognizer has one input (X) and one output (Z).
The output is asserted whenever the input sequence …010…
has been observed, as long as the sequence 100 has never been
seen.

Step 1. Understanding the problem statement

Sample input/output behavior:
X: 00101010010…
Z: 00010101000…

X: 11011010010…
Z: 00000001000…

Synchronous Sequential Circuit Word Problems

Page 29

Finite String Recognizer
Step 2. Draw State Diagrams for the strings that must be

recognized. I.e., 010 and 100.

Moore State Diagram
Reset signal places

SSC in S0

Outputs 1 Loops in State

Reset

Synchronous Sequential Circuit Word Problems

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

Page 30

Finite String Recognizer
Exit conditions from state S3: have recognized …010

if next input is 0 then have …0100!
if next input is 1 then have …0101 = …01 (state S2)

Synchronous Sequential Circuit Word Problems

Outputs 1 Loops in State

Reset

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

0
1

Page 31

Finite String Recognizer
Exit conditions from S1: recognizes strings of form …0 (no 1 seen)

loop back to S1 if input is 0
Exit conditions from S4: recognizes strings of form …1 (no 0 seen)

loop back to S4 if input is 1

Synchronous Sequential Circuit Word Problems

Outputs 1 Loops in State

Reset

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

0
1

0 1

Page 32

Finite String Recognizer
S2 = …01; If next input is 1, then string could be prefix of (01)1(00)

S4 handles just this case!
S5 = …10; If next input is 1, then string could be prefix of (10)1(0)

S2 handles just this case!

Final State Diagram

Synchronous Sequential Circuit Word Problems

Outputs 1 Loops in State

Reset

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

0
1

0 1

1

1

Page 33

Finite String Recognizer
Review of Process:

• Write down sample inputs and outputs to understand specification

• Write down sequences of states and transitions for the sequences
to be recognized

• Add missing transitions; reuse states as much as possible

• Verify I/O behavior of your state diagram to insure it functions
like the specification

Synchronous Sequential Circuit Word Problems

Page 34

Complex Counter
A sync. 3 bit counter has a mode control M. When M = 0, the counter
counts up in the binary sequence. When M = 1, the counter advances
through the Gray code sequence.

Binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior:

Synchronous Sequential Circuit Word Problems

Mode Input M

0
0
1
1
1
0
0

Current State

000
001
010
110
111
101
110

Next State (Z2 Z1 Z0)

001
010
110
111
101
110
111

Page 35

Complex Counter
One state for each output combination
Add appropriate arcs for the mode control

Synchronous Sequential Circuit Word Problems

S0
/000 S1

/001

S2
/010

S3
/011S4

/100

S5
/101

S6
/110

S7
/111

0

0

00

0

0,1

0 0,1

1 1

1
1

1
1

Page 36

Traffic Light Controller

A busy highway is intersected by a little used farmroad. Detectors
C sense the presence of cars waiting on the farmroad. With no car
on farmroad, light remain green in highway direction. If vehicle on
farmroad, highway lights go from Green to Yellow to Red, allowing
the farmroad lights to become green. These stay green only as long
as a farmroad car is detected but never longer than a set interval.
When these are met, farm lights transition from Green to Yellow to
Red, allowing highway to return to green. Even if farmroad vehicles
are waiting, highway gets at least a set interval as green.

Assume you have an interval timer that generates a short time pulse
(TS) and a long time pulse (TL) in response to a set (ST) signal. TS
is to be used for timing yellow lights and TL for green lights.

Note: The interval timer is just another sequential circuit!

Synchronous Sequential Circuit Word Problems

Page 37

Traffic Light Controller
Picture of Highway/Farmroad Intersection:

Synchronous Sequential Circuit Word Problems

Page 38

Traffic Light Controller
• Tabulation of Inputs and Outputs:

Input Signal
reset
C
TS
TL

Output Signal
HG, HY, HR
FG, FY, FR
ST

Description
place SSC in initial state
detect vehicle on farmroad
short time interval expired
long time interval expired

Description
assert green/yellow/red highway lights
assert green/yellow/red farmroad lights
start timing a short or long interval

• Tabulation of Unique States: Some light configuration imply others
State
S0
S1
S2
S3

Description
Highway green (farmroad red)
Highway yellow (farmroad red)
Farmroad green (highway red)
Farmroad yellow (highway red)

Synchronous Sequential Circuit Word Problems

Page 39

Synchronous Sequential Circuit Word Problems

Traffic Light Controller
Compare with state diagram:

S0: HG, FR

S1: HY, FR

S2: FG, HR

S3: FY, HR

Note: This sequential circuit has both Mealy and Moore outputs!

Reset
TL + C

S0

TL•C/ST

TS S1 S3

S2

TS/ST

TS/ST TL + C/ST

TS

TL • C

Page 40

Synchronous Sequential Circuit Word Problems

Digital Combination Lock

"3 bit serial lock controls entry to locked room. Inputs are RESET,
ENTER, 2 position switch for bit of key data. Locks generates an
UNLOCK signal when key matches internal combination. ERROR
light illuminated if key does not match combination. Sequence is:
(1) Press RESET, (2) enter key bit, (3) Press ENTER, (4) repeat (2) &
(3) two more times."

Problem specification is incomplete:
• how do you set the internal combination?
• exactly when is the ERROR light asserted?

Make reasonable assumptions:
• hardwired into next state logic vs. stored in internal register
• assert as soon as error is detected vs. wait until full combination

has been entered

Our design: registered combination plus error after full combination

Page 41

Synchronous Sequential Circuit Word Problems

Digital Combination Lock
Understanding the problem: draw a block diagram …

Internal
Combination

Operator Data

Inputs:
Reset
Enter
Key-In
L0, L1, L2

Outputs:
Unlock
Error

Page 42

Synchronous Sequential Circuit Word Problems

Note that each key entry is really a two-step process
1. Wait for the enter key
2. Check if correct key was selected

Si

Sj

Enter=‘0’

Enter=‘1’

KI = Li
KI /= Li

To error
sequence

Check
next key

Page 43

Synchronous Sequential Circuit Word Problems

Digital Combination Lock

State Diagram

Reset

Reset + Enter

Reset • Enter

Start

Comp0
KI = L0 KI ≠ L0

Enter

Enter

Enter

Idle0 Idle0a

Comp1 Error1

KI ≠ L1KI = L1

EnterEnter

Idle1 Idle1a

Comp2 Error2

KI ≠ L2KI = L2

Done
[Unlock]

Reset
Reset

Reset
Error3
[Error]

Enter Enter

Enter

Reset

	digiy-0
	Digital Hardware Systems
	Digital Hardware Systems
	Binary Bit and Group Definitions
	Binary Representation of Information
	Minimum number of bits
	Positional Number Systems
	Positional Integer Number Values
	Positional Fractional Number Values
	Binary Number System
	Decimal to Binary Conversion
	Decimal to Binary Conversion (cont.)
	Octal and Hexadecimal Number Systems
	Octal and Hexadecimal Conversions
	Octal, Hex Conversion Example
	Numeric Information Representation
	Numeric Representations (cont.)
	Numeric Representations (cont.)
	Numeric Representations (cont.)
	Numeric Representations (cont.)
	Numeric Representations (cont.)
	Numeric Representations (cont.)
	Representation of Signed Numbers
	Negative Number Representation
	Sign-Magnitude Representation
	Representing -N
	Twos Complement Representation
	Twos Complement Operations
	Ones Complement Representation
	Ones Complement Representation
	Addition and Subtraction of Numbers
	Addition and Subtraction of Numbers
	Addition and Subtraction of Numbers
	Addition and Subtraction of Numbers
	Addition and Subtraction of Numbers
	Overflow Conditions
	Overflow Conditions
	Weighted and Unweighted Codes
	Binary Coded Decimal
	BCD Code Examples
	BCD Addition
	BCD Addition (cont.)
	BCD Negative Number Representation
	Negative BCD Numbers
	Gray Codes
	Gray Codes (cont.)
	Alphanumeric Representation
	Parity Bit
	Other Information Representation

	digit-2
	Slide Number 1
	Overview
	Combinational Logic
	Combinational Logic (cont.)
	Switching Algebra
	Huntington’s Postulates
	Huntington’s Postulates (cont.)
	Switching Algebra Operations - Not
	Switching Algebra Operations - AND
	Switching Algebra Operations - OR
	Logic Expressions
	Logic Expressions - Precedence
	Logic Expression Minimization
	Algebraic Minimization
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	Switching Algebra Laws and Theorems
	DeMorgan’s Theorem
	Minimization via Adjacency
	Example of Adjacency Minimization
	Combinational Circuit Analysis
	Literal Analysis
	Literal Analysis - Example
	Symbolic Analysis
	Symbolic Analysis (cont.)
	Symbolic Analysis - Example
	Standard Expression Forms
	Standard Forms (cont.)
	Standard Sum Form
	Minterms and Standard Sum Form
	Standard Product Form
	Maxterms and Standard Product Form
	BCD to XS3 Example
	BCD to XS3 Example (cont.)
	Karnaugh Map Minimization
	K-map Minimization (cont.)
	Truth Table Rows and Adjacency
	Folding of Gray Code Truth Table into K-map
	K-map Minimization (cont.)
	Truth Table to K-map
	K-map Minimization of X3
	Grouping - Applying Adjacency
	Reading the Groups
	Reading the Groups (cont.)
	Implicants and Prime Implicants
	Implicants and Minimal Expressions
	Essential and Secondary Prime Implicants
	K-map Minimization Method
	K-map Minimization of X3 (CONT.)
	Another K-map Minimization Example
	A 3rd K-map Minimization Example
	5 Variable K Maps
	5 Variable K Maps
	Don’t Cares
	K-map Minimization of X3 with Don’t Cares
	K-map Minimization of X3 with Don’t Cares
	Additional Logic Operations
	Additional Logic Operations - NAND
	Additional Logic Operations - NOR
	Additional Logic Operations -XOR
	Additional Logic Operations - XNOR
	Minimal Logic Operator Sets
	NAND as a Minimal Set
	NOR as a Minimal Set
	Three State Outputs
	Three State Buffers

	digit-4
	digit-5
	Shift Registers
	Basic Functions
	Basic Functions
	Basic Functions
	Serial In/Serial Out Shift Register
	Serial In/Serial Out Shift Register
	Serial In/Serial Out Shift Register
	Serial In/Serial Out Shift Register
	Serial In/Serial Out Shift Register
	Serial In/Parallel Out Shift Register
	Serial In/Parallel Out Shift Register
	Parallel In/Serial Out Shift Register
	Parallel In/Serial Out Shift Register
	Parallel In/Serial Out Shift Register
	Parallel In/Serial Out Shift Register
	Parallel In/ Parallel Out Shift Register
	Bidirectional Shift Registers
	Bidirectional Shift Registers
	Shift Register Counters
	The Johnson Counter
	The Johnson Counter
	The Johnson Counter
	The Johnson Counter
	The Ring Counter
	The Ring Counter
	The Ring Counter
	Application: Time Delay
	Application: Ring Counter
	Application: Serial-to-Parallel Data Converter
	Application: Serial-to-Parallel Data Converter
	The end of “Shift Registers”

	digit-6
	Synchronous Sequential Circuit Design
	Motivation
	Overview
	Concept of the Synchronous Sequential Circuit
	Concept of the Synchronous Sequential Circuit
	Concept of the Synchronous Sequential Circuit
	Sequential Circuit Analysis
	Sequential Circuit Analysis (cont.)
	Basic Design Approach
	Basic Design Approach
	Vending Machine Example
	Vending Machine Example
	Vending Machine Example
	Vending Machine Example
	Designing with SR, JK, and T Flip-Flops
	Derivation of JK Excitation Table
	Flip-Flop Excitation Tables
	Vending Machine Example
	Vending Machine Example
	Moore vs. Mealy Machines
	Moore and Mealy Machines
	Moore and Mealy Machines
	Moore and Mealy Machines
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems
	Synchronous Sequential Circuit Word Problems

