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Digital Hardware Systems

Digital Systems
Digital vs. Analog Waveforms

Analog: 
values vary over a broad range
continuously

Digital: 
only assumes discrete values
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the preconditions must be true to imply the conclusion

IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage

both the door must 
be open and the car
running before I can
back out

Digital Hardware Systems
• Digital Binary System

– Two discrete values:
• yes, on, 5 volts, current flowing, "1"
• no, off, 0 volts, no current flowing, "0”

– Advantage of binary systems:
• rigorous mathematical foundation based on logic
• it’s easy to implement
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Binary Bit and Group Definitions

• Bit - a single binary digit
• Nibble - a group of four bits
• Byte - a group of eight bits
• Word - depends on processor; 8, 16, 32, or 

64 bits
• LSB - Least Significant Bit (on the right)
• MSB - Most Significant Bit (on the left)
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Binary Representation of Information

• Information divided into groups of symbols
– 26 English letters
– 10 decimal digits
– 50 states in USA

• Digital systems manipulate information as 
1’s & 0’s

• The mapping of symbols to binary value is 
known as a “code”

• The mapping must be unique
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Minimum number of bits
• In binary, ‘r’ bits can represent n = 2r

symbols
– e.g. 3 bits can represent up to 8 symbols, 4 for 

16, etc.
– For N symbols to be represented, the minimum 

number of bits required is the lowest integer ‘r’ 
that satisifies the relationship:

2r ≥ N
e.g. if N = 26, minimum r is 5 since
24 = 16
25 = 32
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Positional Number Systems

• Numeric value is represented by a series of 
digits
– Number of digits used is fixed by radix 
– Digits multiplied by a power of the radix
– Digit order determines radix powers

• Very large numbers can be represented 
• Can also represent fractional values.
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Positional Integer Number Values

Given a digit series of 

The full expression for the represented value is
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Positional Fractional Number Values

Given a digit series of 

The full expression for the represented value is
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Binary Number System

• Just like decimal numbers except
– The only valid digits are 0 and 1
– The base is 2 instead of 10

• Binary to decimal conversion is just the 
explicit expression of the positional values,

• both integer and fraction
– E.G. 1  0  1

1 x 20 = 1
0 x 21 = 0
1 x 22 = 4

Total = 5
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Decimal to Binary Conversion

• Effectively the reverse of binary to decimal 
conversion 
– Integers:

• Divide number by two; keep track of remainder
• Repeat with dividend = last quotient until zero
• First remainder is binary LSB, last is the MSB

– Fractions:
• Multiply fraction by two; keep track of integer part
• Repeat with multiplier = last product fraction
• First integer is MSB, last is the LSB
• Conversion may not be exact; a repeated fraction
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Decimal to Binary Conversion (cont.)

E.G.  13.2 to binary

Integer Fraction

13 / 2 = 6 R 1  LSB .2 x 2 = 0.4  MSB
6 / 2 = 3 R 0 .4 x 2 = 0.8
3 / 2 = 1 R 1 .8 x 2 = 1.6
1 / 2 = 0 R 1  MSB .6 x 2 = 1.2

.2 x 2 = 0.4  LSB repeating

Result is 1101.00110011…...

If you’re not sure of the results, convert 
back  to decimal to check yourself.
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Octal and Hexadecimal Number Systems

• Both are positional systems with different 
radix and digits
– Octal:

• Radix = 8
• Digits = 0,1,2,3,4,5,6,7

– Hexadecimal:
• Radix = 16
• Digits = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Primary advantage of both is it’s easy to 
convert to/from binary
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Octal and Hexadecimal Conversions
• To/From decimal is same technique with a 

radix of 8 or 16 instead of 2
• To convert from binary:

– Starting at radix point, go left/right and group 
bits into groups of 3 or 4 bits / group

– Convert each bit group into equivalent octal or 
hex digit

• To convert to binary expand each octal / 
hex digit into equivalent 3 or 4 bit binary 
value.
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Octal, Hex Conversion Example

0100111010111010.01100010101100101000

4      E     B     A   .   6      2      B      2      8

4   7    2    7    2  .  3    0    5     3    1    2
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Numeric Information Representation

• Numeric information has some special 
characteristics which influence the was it is 
represented
– Number set is usually in positional notation
– There is a defined range of numbers
– There is a specified resolution for the set

• In general, numeric representations:
– are in some form of positional binary notation
– have no. of bits determined by range and res.
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Numeric Representations (cont.)

• The number of values in the set of numbers 
is found from the following equation

where RMAX and RMIN are the maximum and 
minimum range values and RES is the resolution

• The minimum number of bits needed must 
meet the relationship already presented

1  
RES

 - 
  RRN MINMAX

VALUES +=
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Numeric Representations (cont.)

• For example, the set of numbers from -5 to 
+10 with a resolution of 1 has 16 values

[+15 -(-5) ] / 1 = 16

• Therefore the minimum number of bits is 4

24 = 16
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Numeric Representations (cont.)
• For the set of numbers from 0 to 100 with a 

resolution of 10 we have 11 values

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

• For the set of numbers from 0 to 5 with a 
resolution of 0.1 we have 51 values

[(5 - 0) / 0.1] + 1 = 51
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Numeric Representations (cont.)

• The actual representation could be any 
unique binary assignment but is usually of a 
positional form
– binary integer.fraction with sufficient bits to 

meet the range and resolution criteria
– binary integer form where the number of bits is 

as previously defined and the LSB value is the 
desired resolution
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Numeric Representations (cont.)

• EG: Represent 0 to 5, resolution = 0.1
– integer.fraction notation implies 3 bits for the 

integer (6 values) and 4 bits for the fraction (2-4 

= 0.0625) for a total of 7 bits
2.3 represented by 010.0101 (closest fraction)

– integer * res notation requires 51 values or 6 
bits; each value in set is represented by the 
equivalent binary integer = value / res
2.3 represented by binary 010111 (2.3 / 0.1)
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Numeric Representations (cont.)

• Negative ranges are handled by special 
assignments or negative number 
representations

• These are the most common numeric 
representations BUT they are certainly not 
the only ones!
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Representation of Signed Numbers

• Positive number representation same in 
most systems
– Standard positional binary notation
– MSB is the sign bit; 0 = plus, 1 = minus

• Major differences are in how negative 
numbers are represented

• Three major schemes:
– sign and magnitude
– ones complement
– twos complement
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Negative Number Representation

• Assumptions:
– we'll assume a 4 bit machine word
– 16 different values can be represented
– roughly half are positive, half are negative
– sign bit is the MSB; 0 = plus, 1 = minus
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High order bit is sign: 0 = positive 
(or zero), 1 = negative

Three low order bits is the 
magnitude: 0 (000) thru 7 (111)

Number range for n bits = ±2n-1 - 1

Two representations for 0

Sign-Magnitude Representation

+0 +1
+2

+3

+4

+5

+6
+7

0001
0000

0010

0011

0100

0101

0110
0111

1000

1100

1001
1010

1011

1101

1110
1111

-7
-6

-5

-4

-3
-2

-1
-0

0 100 = +4
1 100 = - 4

The major disadvantage is that
we need separate circuits to 
both add and subtract

Number magnitudes need to be
compared to get the right result
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Representing -N

• What we really want is -N
– Do A - B as A + (-B)

• We really are working in a closed, modulo 
number system; 0 to 2r-1 values

• Therefore for r bits, 2r ≡ 0
• If -N ≡ 0 - N    then    -N ≡ 2r - N

This is the 2’s complement 
representation for -N
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+0 +1
+2

+3

+4

+5

+6
+7

0001
0000

0010

0011

0100

0101

0110
0111

1000

1100

1001
1010

1011

1101

1110
1111

-1
-2

3

-4

-5
-6

-7
-8

Twos Complement Representation

• Only one representation for 0

• One more negative number 
than positive number

• Generation of the 2’s 
complement as 2r - N implies 
r + 1 bits available in system
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N* = 2r - N

Example: Twos complement of 7 24 =  10000

7   =    0111

1001  = repr. of -7

sub

Example: Twos complement of -7 24 =  10000

-7  =    1001

0111  = repr. of 7

sub

Shortcut method:
Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

Twos Complement Operations
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Ones Complement Representation

Ones Complement

N is positive number, then N is its negative 1's complement

N = (2   - 1) - Nn

Example: 1's complement of 7

2     =  10000

-1    =  00001

1111

-7    =    0111

1000 = -7 in 1's comp.Shortcut method:

simply compute bit wise complement

0111 -> 1000

4
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+0 +1
+2

+3

+4

+5

+6
+7

0001
0000

0010

0011

0100

0101

0110
0111

1000

1100

1001
1010

1011

1101

1110
1111

-0
-1

-2

-3

-4
-5

-6
-7

like 2's comp except shifted
one position counter-clockwise

Ones Complement Representation

• Subtraction implemented by 
addition & 1's complement

• Still two representations of 0!  
This causes some problems

• Some complexities in addition
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Sign and Magnitude

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1011

1111

result sign bit is the
same as the operands'
sign

4

- 3

1

0100

1011

0001

-4

+ 3

-1

1100

0011

1001

when signs differ,
operation is subtract,
sign of result depends
on sign of number with
the larger magnitude

Addition and Subtraction of Numbers
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Ones Complement Calculations

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1011

1100

10111

1

1000

4

- 3

1

0100

1100

10000

1

0001

-4

+ 3

-1

1011

0011

1110

End around carry

End around carry

Addition and Subtraction of Numbers
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Addition and Subtraction of Numbers

Ones Complement Calculations

Why does end-around carry work?

Its equivalent to subtracting 2   and adding 1n

M - N  =  M + N  =  M + (2   - 1 - N)  =  (M - N) + 2   - 1n n (M > N)

-M + (-N)  =  M + N  =  (2   - M - 1) + (2   - N - 1)

= 2   + [2   - 1 - (M + N)] - 1

n n

n n M + N < 2
n-1

after end around carry:

=  2   - 1 - (M + N)
n

this is the correct form for representing -(M + N) in 1's comp!
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Addition and Subtraction of Numbers
Twos Complement Calculations

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to sign =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems
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Addition and Subtraction of Numbers

Twos Complement Calculations

Why can the carry-out be ignored?

-M + N when N > M:

M*  +  N  =  (2    - M)  +  N  =  2    +  (N - M)
n n

Ignoring carry-out is just like subtracting 2 n

-M + -N where N + M < or = 2 n-1

-M + (-N) = M* + N* = (2   - M) + (2   - N)

= 2   - (M + N)  +  2n n

After ignoring the carry, this is just the right twos compliment
representation for -(M + N)!

n n
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Overflow Conditions

Add two positive numbers to get a negative number
or two negative numbers to get a positive number

5 + 3 = -9

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

-7 - 2 = +7

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1
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Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry in to sign does not equal carry out
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Weighted and Unweighted Codes

• Most numeric number representations are in 
a class known as “Weighted Codes” where

• Binary integers and fractions are special 
case where weights are powers of 2

• Unweighted codes are codes that cannot be 
assigned a weight value for each bit

∑
=

•=
1-r

0i
ii  w b Value
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Binary Coded Decimal

• Four bits are used to represent each decimal 
digit
– In each 4-bit group, 6 values are not used
– Many possible codes, natural BCD (equivalent 

binary digits) most common
– BCD is not as efficient as binary

• BCD is easy to convert to/from decimal (it 
really is decimal with different symbols)

• BCD add/subtract circuits are complex
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BCD Code Examples

Digit

0
1
2
3
4
5
6
7
8
9

8421

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

84-2-1

0000
0111
0110
0101
0100
1011
1010
1001
1000
1111

XS3

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

The 8421 or natural BCD code is the most 
common BCD code in use

Weighted codes Unweighted code
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BCD Addition

Case 1: Case 2:

Case 3:

0001 1
0101 5

(0) 0110   (0) 6

0110 6
0101 5

(0) 1011   (1) 1

1000 8
1001 9

(1) 0001   (1) 7

WRONG!

Note that for cases 2 and 3, 
adding a factor of 6 (0110) 
gives us the correct result.
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BCD Addition (cont.)

• BCD addition is therefore performed as 
follows
– 1) Add the two BCD digits together using 

normal binary addition
– 2) Check if correction is needed

• a) 4-bit sum is in range of 1010 to 1111
• b) carry out of MSB = 1

– 3) If correction is required, add 0110 to 4-bit 
sum to get the correct result; BCD carry out = 1
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BCD Negative Number Representation

• Similar to binary negative number 
representation except r = 10.
– BCD sign-magnitude

• MSD (sign digit options)
– MSD = 0 (positive); not equal to 0 = negative
– MSD range of 0-4 positive; 5-9 negative

– BCD 10’s complement
• -N ≡ 10r - N;  9’s complement + 1

– BCD 9;s complement
• invert each BCD digit (0→9, 1 → 8, 2 → 7,3 → 6, 

…7 → 2, 8 → 1, 9 → 0)
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Negative BCD Numbers

• 84-2-1 and XS3 codes allow for easy digit 
inversion.

• XS3 code is also easy to implement
– Addition is like binary
– Correction factor is -3 or +3
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Gray Codes

• Grey codes are minimum change codes
– From one numeric representation to the next, 

only one bit changes
– Primary use is in numeric input encoding apps. 

where we expect non-random input values 
changes (I.e. value n to either n-1 or n+1)

• Milling machine table position
• Rotary shaft position



JCM
Page 45

55:032 - Introduction to Digital Design

Gray Codes (cont.)

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Grey

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000
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Alphanumeric Representation

• Binary codes used to represent alphabetic 
and numeric characters

• Two most common are:
– ASCII, 7 bit code, 128 symbols
– EBCDIC, 8 bit code, 256 symbols 

• Problems can arise when comparing symbol 
values (collation)
– Comparing ‘A’ to ‘a’ in ASCII system yields 

different results in an EBCDIC system.
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Parity Bit

• ASCII code may have an extra bit appended 
to detect data transmission errors
– P = 0 if the number of 1s in the character is 

even, else P = 1 (even parity)
– P = 0 if the number of 1s in the character is 

odd, else P = 1 (odd parity)
• If any single bit changes, parity will be 

wrong at receive end
Even parity Odd parity

ASCII A = 1000001 01000001 11000001
ASCII T = 1010100 11010100 01010100
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Other Information Representation

• ALL information must be encoded before 
we can design circuits to process it

• You can assign any code to any information
– E.G. 00 - north, 01 - east, 11 - south, 10 - west

• If the information goes somewhere else, the 
user has to have access to your definition

• Standards are best if available
– Already published and easily available
– Allows your system to work with many others
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Combinational Logic Circuits



55:032 - Introduction to Digital Design Page 2

Overview

• Binary logic operations and gates
• Switching algebra
• Algebraic Minimization
• Standard forms
• Karnaugh Map Minimization
• Other logic operators
• IC families and characteristics
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Combinational Logic

• One or more digital signal inputs
• One or more digital signal outputs
• Outputs are only functions of current input 

values (ideal) plus logic propagation delays

Combinational 
Logic 

I1

Im

O1

On

( ) ( ) ( )( )tItIFtt m,...O 111 =Δ+

( ) ( ) ( )( )tItIFtt mnn ,...O 1=Δ+
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Combinational Logic (cont.)

• Combinational logic has no memory!
Outputs are only function of current input 
combination
Nothing is known about past events
Repeating a sequence of inputs always gives the 
same output sequence

• Sequential logic (covered later) does have 
memory

Repeating a sequence of inputs can result in an 
entirely different output sequence
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Switching Algebra

• Based on Boolean Algebra
Developed by George Boole in 1854
Formal way to describe logic statements and 
determine truth of statements

• Only has two-values domain (0 and 1)
• Huntington’s Postulates define underlying 

assumptions
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Huntington’s Postulates

• Closure
If X and Y are in set (0,1) then operations X+Y 

and X ·Y are also in set (0,1)
• Identity

X + 0 = X X · 1 = X
• Commutative

X + Y = Y + X X · Y = Y · X
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Huntington’s Postulates (cont.)

• Distributive
X · (Y + Z) =( X · Y) + (X · Z)
X + (Y · Z) =( X + Y) · (X + Z)

• Complement

0  X X

1  X  X

=⋅

=+

Note that for each property, one form is the dual of the other;

(0s to 1s, 1s to 0s, ·s to +s, +s to ·s)
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Switching Algebra Operations - Not

• Unary complement or inversion operation
• Usually shown as overbar (X ), other forms 

are ~X,  X’

1X
0
1

X
1
0

X X X X
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Switching Algebra Operations - AND

• Also known as the conjunction operation; 
output is true (1) only if all inputs are true

• Algebraic operators are ‘·’, ‘&’, ‘∧’

X
0
0
1
1

Y
0
1
0
1

X·Y
0
0
0
1

&
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Switching Algebra Operations - OR

• Also known as the disjunction operation; 
output is true (1) if any input is true

• Algebraic operators are ‘+’, ‘|’, ‘∨’ 

X
0
0
1
1

Y
0
1
0
1

X+Y
0
1
1
1

≥1
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Logic Expressions

• Terms and Definitions
Logic Expression - a mathematical formula 
consisting of logical operators and variables
Logic Operator - a function that gives a well 
defined output according to switching algebra
Logic Variable - a symbol representing the two 
possible switching algebra values of 0 and 1
Logic Literal - the values 0 and 1 or a logic 
variable or it’s complement
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Logic Expressions - Precedence

• Like standard algebra, switching algebra 
operators have a precedence of evaluation

NOT operations have the highest precedence
AND operations are next
OR operations are lowest

• Parentheses explicitly define the order of 
operator evaluation

If in doubt, USE PARENTHESES!
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Logic Expression Minimization

• Goal is to find an equivalent of an original 
logic expression that:

a) has fewer variables per term
b) has fewer terms
c) needs less logic to implement

• There are three main manual methods
Algebraic minimization
Karnaugh Map minimization
Quine-McCluskey (tabular) minimization
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Algebraic Minimization

• Process is to apply the switching algebra 
postulates, laws, and theorems to transform 
the original expression

Hard to recognize when a particular law can be 
applied
Difficult to know if resulting expression is truly 
minimal
Very easy to make a mistake

Incorrect complementation
Dropped variables



Introduction to Digital Design Page 15

Switching Algebra Laws and Theorems

Involution:

( )X  X =
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Switching Algebra Laws and Theorems

Identity:

X  1  X        X  0  X
0  0  X          1  1  X

=⋅=+
=⋅=+
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Switching Algebra Laws and Theorems

Idempotence:

XXX       XXX =⋅=+
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Switching Algebra Laws and Theorems

Associativity:

Z   Y) (X  Z)  (Y  X
Z   Y) (X  Z)  (Y  X

⋅⋅=⋅⋅
++=++
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Switching Algebra Laws and Theorems

Adjacency:

( ) ( ) X  Y  X   Y X

X  Y  X   Y X

=+⋅+

=⋅+⋅
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Switching Algebra Laws and Theorems

Absorption:

( )
( ) X   YX  X

X   YX  X
=+⋅
=⋅+
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Switching Algebra Laws and Theorems

Simplification:

( )
( )  Y X   YX  X

 Y X   YX  X

⋅=+⋅

+=⋅+
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Switching Algebra Laws and Theorems

Consensus:

( ) ( ) ( ) ( ) ( )ZX  YX  ZY  ZX  YX

ZX  YX  Z Y ZX  YX

+⋅+=+⋅+⋅+

⋅+⋅=⋅+⋅+⋅
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Switching Algebra Laws and Theorems

DeMorgan’s Theorem:

Y XYX

Y  X   Y X

+=⋅

⋅=+

)X ... ,X , ,G(   )X ... ,X , ,(F n1n1 ⋅+=+⋅

General form:
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DeMorgan’s Theorem

Very useful for complementing function expressions:

( )
ZXYX  F

Z  Y  X  F          ZY  X F

Z Y X  F        Z; Y X  F

.g.e

⋅+⋅=

+⋅=⋅⋅=

⋅+=⋅+=
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• Adjacency is easy to use; very powerful
Look for two terms that are identical except for 
one variable

Application removes one term and one variable 
from the remaining term

Minimization via Adjacency

( ) ( )
( ) ( ) ( ) CBA      1CBA       D DCBA

CBA      DCBA      DCBA

CBA      DCBA      DCBA

⋅⋅=⋅⋅⋅=+⋅⋅⋅

⋅⋅=⋅⋅⋅+⋅⋅⋅

⋅⋅=⋅⋅⋅+⋅⋅⋅

DCBA      DCBA  e.g. ⋅⋅⋅+⋅⋅⋅
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Example of Adjacency Minimization

012301230123012301233 bb bbb b bbbbbbbbbbbbbb  ++++=x

0123012301230123012301233 bb bbb b bbbbbbbbbbbbbbbbbb  +++++=x

Adjacencies

Duplicate 3rd. term and rearrange

Apply adjacency on term pairs

1231230233 b bbbbbbbb  ++=x
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Combinational Circuit Analysis

• Combinational circuit analysis starts with a 
schematic and answers the following 
questions:

What is the truth table(s) for the circuit output 
function(s)
What is the logic expression(s) for the circuit 
output function(s)
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Literal Analysis

• Literal analysis is process of manually 
assigning a set of values to the inputs, tracing 
the results, and recording the output values

For ‘n’ inputs there are 2n possible input 
combinations
From input values, gate outputs are evaluated to 
form next set of gate inputs
Evaluation continues until gate outputs are 
circuit outputs

• Literal analysis only gives us the truth table
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Literal Analysis - Example

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

x
x
x
x
x
x
1
x

A B ZCA
C

B

Z
0

1

1
1 1

0

1

Assign input values

Determine gate outputs and propagate
Repeat until we reach output
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Symbolic Analysis

• Like literal analysis we start with the circuit 
diagram

Instead of assigning values, we determine gate 
output expressions instead
Intermediate expressions are combined in 
following gates to form complex expressions
We repeat until we have the output function and 
expression

• Symbolic analysis gives both the truth table 
and logic expression
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Symbolic Analysis (cont.)

• Note that we are constructing the truth table 
as we go

truth table has a column for each intermediate 
gate output
intermediate outputs are combined in the truth 
table to generate the complex columns

• Symbolic analysis is more work but gives us 
complete information
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Symbolic Analysis - Example

Generate intermediate 
expression
Create associated TT 
column
Repeat till output 
reached

1
0
1
0
1
0
1
0

0
0
0
0
1
0
1
0

0
0
0
1
0
0
0
1

0
0
0
1
1
0
1
1

A·CA
C

B

Z

B·C A·C B·C+

A·C B·C
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B C A·C B·C+Z = C

C
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Standard Expression Forms

• Two standard (canonical) expression forms
Canonical sum form

AKA disjunctive normal form or sum-of-products
OR of AND terms

Canonical product form
AKA conjunctive normal form or product-of-sums
AND or OR terms

• In both forms, each first-level operator 
corresponds to one row of truth table

• 2nd-level operator combines 1st-level results
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Standard Forms (cont.)

( ) ( ) ( ) ( )CBACBACBACBAC]B,F[A, ⋅⋅+⋅⋅+⋅⋅+⋅⋅=

( ) ( ) ( ) ( )CBACBACBACBAC]B,F[A, ++⋅++⋅++⋅++=

Standard Sum Form
Sum of Products (OR of AND terms)

Standard Product Form
Product of Sums (AND of OR terms)

Minterms

Maxterms
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Standard Sum Form

• Each product (AND) term is a Minterm
ANDed product of literals in which each 
variable appears exactly once, in true or 
complemented form (but not both!)
Each minterm has exactly one ‘1’ in the truth 
table
When minterms are ORed together each 
minterm contributes a ‘1’ to the final function

NOTE: NOT ALL PRODUCT TERMS ARE 
MINTERMS!
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Minterms and Standard Sum Form
C
0
1
0
1
0
1
0
1

B
0
0
1
1
0
0
1
1

A
0
0
0
0
1
1
1
1

Minterms
m0 = 
m1 =
m2 =
m3 =
m4 =
m5 =
m6 =
m7 = CBA

CBA

CBA

CBA

CBA

CBA

CBA

CBA

⋅⋅
⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

m0
1
0
0
0
0
0
0
0

m3
0
0
0
1
0
0
0
0

m6
0
0
0
0
0
0
1
0

m7
0
0
0
0
0
0
0
1

F
1
0
0
1
0
0
1
1

( )
( ) ( )∑=

+++=
⋅⋅+⋅⋅+⋅⋅+⋅⋅=

7 6, 3, 0,m  CB,A,F
m  m  m  mCB,A,F

CBACBACBACBAF

7630
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Standard Product Form

• Each OR (sum) term is a Maxterm
ORed product of literals in which each variable 
appears exactly once, in true or complemented 
form (but not both!)
Each maxterm has exactly one ‘0’ in the truth 
table
When maxterms are ANDed together each 
maxterm contributes a ‘0’ to the final function

NOTE:  NOT ALL SUM TERMS ARE 
MAXTERMS!
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Maxterms and Standard Product Form
C
0
1
0
1
0
1
0
1

B
0
0
1
1
0
0
1
1

A
0
0
0
0
1
1
1
1

Maxterms
M0 = 
M1 =
M2 =
M3 =
M4 =
M5 =
M6 =
M7 = CBA

CBA

CBA

CBA

CBA

CBA

CBA

CBA

++

++

++

++

++

++

++

++
M1
1
0
1
1
1
1
1
1

M2
1
1
0
1
1
1
1
1

M4
1
1
1
1
0
1
1
1

M5
1
1
1
1
1
0
1
1

F
1
0
0
1
0
0
1
1

( ) ( ) ( ) ( )
( )
( ) ( )∏=

⋅⋅⋅=
++⋅++⋅++⋅++=

5 4, 2, 1,M  CB,A,F

M  M  M  MCB,A,F
CBACBACBACBAF

5421
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BCD to XS3 Example
b0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

b1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

b2

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

b3

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

x0

1
0
1
0
1
0
1
0
1
0
-
-
-
-
-
-

x1

1
0
0
1
1
0
0
1
1
0
-
-
-
-
-
-

x2

0
1
1
1
1
0
0
0
0
1
-
-
-
-
-
-

x3

0
0
0
0
0
1
1
1
1
1
-
-
-
-
-
-

Note: Don’t cares can 
work to our advantage 
during minimization; we 
can assign either 0 or 1 
as needed.  Assume 0’s 
for now.
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BCD to XS3 Example (cont.)

• Generate the Standard Sum of Products 
logical expressions for the outputs

012301230123012301230

012301230123012301231

012301230123012301232

012301230123012301233

bbbbbbbbbbbbbbbbbbbb  x

bbbbbbbbbbbbbbbbbbbb  x

bbbbbbbbbbbbbbbbbbbb  x

bbbbbbbbbbbbbbbbbbbb  x

++++=

++++=

++++=

++++=
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Karnaugh Map Minimization

• Karnaugh Map (or K-map) minimization is a 
visual minimization technique

Is an application of adjacency 
Procedure guarantees a minimal expression
Easy to use; fast
Problems include:

Applicable to limited number of variables (4 ~ 8)
Errors in translation from TT to K-map
Not grouping cells correctly 
Errors in reading final expression
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K-map Minimization (cont.)

• Basic K-map is a 2-D rectangular array of 
cells

Each K-map represents one bit column of output
Each cell contains one bit of output function

• Arrangement of cells in array facilitates 
recognition of adjacent terms

Adjacent terms differ in one variable value; 
equivalent to difference of one bit of input row 
values

e.g. m6 (110) and m7 (111)
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Truth Table Rows and Adjacency

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0

0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0

m0
m1
m3
m2
m6
m7
m5
m4
m12
m13
m15
m14
m10
m11
m9
m8

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

A    B     C     D       minterm
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

m0
m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11
m12
m13
m14
m15

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A    B     C     D       minterm

Standard TT ordering
doesn’t show adjacency

Key is to use gray
code for row order

This helps but it’s still hard to see all possible adjacencies.
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Folding of Gray Code Truth Table into K-map
ABCD
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

00 01 11 10
00
01
11
10

AB
CD
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K-map Minimization (cont.)

• For any cell in 2-D array, there are four 
direct neighbors (top, bottom, left, right)

• 2-D array can therefore show adjacencies of 
up to four variables.

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

AB 
01 11 10 

0 

C 

A 

C

B 

00 

1 

Four
variable
K-map

Three
variable
K-map

Don’t forget that cells are adjacent
top to bottom and side to side.
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Truth Table to K-map

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A      B      C      D            F

Number of TT rows MUST match number of K-map cells

m13

m12

m15

m5 m9

m0

m7

m2

Note different ways K-map is labeled
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K-map Minimization of X3

b3 b2 
00 01 11 10 

00 

01 

11 

10 
C 

b1 b0 

A 

D

B 

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
0
1
1
1
1
1
-
-
-
-
-
-

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

b3    b2     b1    b0           x3

0

00

0

0

0

1

1

1

1

10

0

0

0

0

Entry of TT data into K-map

Watch out for ordering of 10 
and 11 rows and columns!

Use 0’s 
for now



Introduction to Digital Design Page 48

Grouping - Applying Adjacency

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

1

00

0

1

0

1

1

1

1

10

0

0

0

0

ABCD

ABCD

ABC

If two cells have the same value 
and are next to each other, the 
terms are adjacent.

This adjacency is shown by 
enclosing them.

Groups can have common cells.

Group size is a power of 2 and 
groups are rectangular.

You can group 0s or 1s.
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Reading the Groups

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

1

00

0

1

0

1

1

1

1

10

0

0

0

0

ABC

If 1s grouped, the expression is a 
product term, 0s - sum term.

Within group, note when variable 
values change as you go cell to 
cell.  This determines how the 
term expression is formed by the 
following table

Variable changes Exclude Exclude
Variable constant 0 Inc. comp. Inc. true
Variable constant 1 Inc. true Inc. comp.

Grouping 1s    Grouping 0s
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Reading the Groups (cont.)

• When reading the term expression…
If the associated variable value changes within 
the group, the variable is dropped from the term

If reading 1s, a constant 1 value indicates that 
the associated variable is true in the AND term

If reading 0s, a constant 0 value indicates that 
the associated variable is true in the OR term
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Implicants and Prime Implicants

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

1

00

0

1

0

1

1

1

1

10

0

0

0

0

Prime Implicants

Implicants

Single cells or groups that 
could be part of a larger 
group are know as implicants

A group that is as large as 
possible is a prime implicant

Single cells can be prime 
implicants is they cannot be 
grouped with any other cell
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Implicants and Minimal Expressions

• Any set of implicants that encloses (covers) 
all values is “sufficient”; i.e. the associated 
logical expression represents the desired 
function.

All minterms or maxterms are sufficient.
• The smallest set of prime implicants that 

covers all values forms a minimal expression 
for the desired function.

There may be more than one minimal set.
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Essential and Secondary Prime Implicants

• If a prime implicant has any cell that is not 
covered by any other prime implicant, it is an 
“essential prime implicant”

• If a prime implicant is not essential is is a 
“secondary prime implicant”

• A minimal set includes ALL essential prime 
implicants and the minimum number of 
secondary PIs as needed to cover all values.
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K-map Minimization Method

• Technique is valid for either 1s or 0s

A) Find all prime implicants (largest groups of 
1s or 0s in order of largest to smallest)

B) Identify minimal set of PIs
1) Find all essential PIs
2) Find smallest set of secondary PIs

The resulting expression is minimal.
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K-map Minimization of X3 (CONT.)

b3 b2 
00 01 11 10 

00 

01 

11 

10 
b1 

b1 b0 

b3 

b0 

b2 

0

00

0

0

0

1

1

1

1

10

0

0

0

0

b3 b2 b0* b3 b2 b1*

We want a sum of 
products expression so 
we circle 1s.
* PIs are essential; no 
implicants remain ( no 
secondary PIs).
The minimal expression 
is: 

b0 b2 b3b1 b2 b3b1 b2 3bX3 ++=

b3 b2 b1*
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Another K-map Minimization Example

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

0

10

0

1

0

0

1

0

1

11

1

0

0

0

We want a sum of 
products expression so 
we circle 1s.
* PIs are essential; and 
we have 2 secondary PIs.
The minimal expressions 
are: 

DBADCACAF

DCBDCACAF

⋅⋅+⋅⋅+⋅=

⋅⋅+⋅⋅+⋅=

* CA ⋅

DBA ⋅⋅

DCB ⋅⋅

* DCA ⋅⋅
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A 3rd K-map Minimization Example

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

0

10

0

1

0

0

1

0

1

11

1

0

0

0

We want a product of 
sums expression so we 
circle 0s.
* PIs are essential; and 
we have 1 secondary PI 
which is redundant.
The minimal expression 
is: 

)CBA(D)C(C)A(F ++⋅+⋅+=

* DC +

* CBA ++

DA +

* CA +
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5 Variable K Maps

ƒ(A,B,C,D,E) = Σm(3,4,7,10,11,
14,15,16,17,20,26,27,30 31)

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

1

00

0

0

0

1

1

0

1

01

1

0

0

1

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

0

00

1

1

0

1

1

0

1

01

1

0

0

0

E = 0 E = 1

• Uses two 4 variable maps side-by-side
groups spanning both maps occupy the same 
place in both maps
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5 Variable K Maps

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

1

00

0

0

0

1

1

0

1

01

1

0

0

1

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

0

00

1

1

0

1

1

0

1

01

1

0

0

0

E = 0 E = 1

E D C B  D C BA   E D A  D B  E)D,C,B,F(A, +++=

ƒ(A,B,C,D,E) = Σm(3,4,7,10,11,
14,15,16,17,20,26,27,30 31)
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Don’t Cares

• For expression minimization, don’t care 
values (- or x) can be assigned either 0 or 1

Hard to use in algebraic simplification; must 
evaluate all possible combinations
K-map minimization easily handles don’t cares

• Basic don’t care rule for K-maps is include 
the dc (- or x) in group if it helps to form a 
larger group; else leave it out
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K-map Minimization of X3 with Don’t Cares

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

0

x0

0

0

0

1

1

1

1

1x

x

x

x

x

BD* A*

We want a sum of 
products expression so 
we circle 1s and x’s 
(don’t cares)
* PIs are essential; no 
other implicants remain 
( no secondary PIs).
The minimal expression 
is: 

BDBCAX3 ++=

BC*



Introduction to Digital Design Page 62

AB 
00 01 11 10 

00 

01 

11 

10 
C 

CD 

A 

D

B 

0

x0

0

0

0

1

1

1

1

1x

x

x

x

x

K-map Minimization of X3 with Don’t Cares

*BA +

CB+

DCA ++ We want a product of 
sums expression so we 
circle 0s and x’s (don’t 
cares)
* PIs are essential; there 
are 3 secondary PIs.
The minimal expressions 
are: 

D)C(AB)(AF
D)CB(B)(AF

++⋅+=
++⋅+=

DCB ++
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Additional Logic Operations

• For two inputs, there are 16 ways we can 
assign output values

Besides AND and OR, five others are useful
• The unary Buffer operation is useful in the 

real world

1X
0
1

Z=X
0
1

X Z=X X Z=X
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Additional Logic Operations - NAND

• NAND (NOT - AND) is the complement of 
the AND operation

X
0
0
1
1

Y
0
1
0
1

X·Y
1
1
1
0

&



Introduction to Digital Design Page 65

Additional Logic Operations - NOR

• NOR (NOT - OR) is the complement of the 
OR operation

X
0
0
1
1

Y
0
1
0
1

X+Y
1
0
0
0

≥1



Introduction to Digital Design Page 66

Additional Logic Operations -XOR

• Exclusive OR is similar to the inclusive OR 
(AKA OR) except output is 0 for 1,1 inputs

• Alternatively the output is 1 when modulo 2 
input sum is equal to 1

X
0
0
1
1

Y
0
1
0
1

X+Y
0
1
1
0

=1
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Additional Logic Operations - XNOR

• Exclusive NOR is the complement of the 
XOR operation

• Alternatively the output is 1 when modulo 2 
input sum is not equal to 1

X
0
0
1
1

Y
0
1
0
1

X+Y
1
0
0
1

=1
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Minimal Logic Operator Sets

• AND , OR, NOT are all that’s needed to 
express any combinational logic function as 
switching algebra expression

operators are all that were originally defined
• Two other minimal logic operator sets exist

Just NAND gates
Just NOR gates

• We can demonstrate how just NANDs or 
NORs can do AND, OR, NOT operations 
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NAND as a Minimal Set
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NOR as a Minimal Set
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Three State Outputs

• Standard logic gate outputs only have two 
states; high and low

Outputs are effectively either connected to +V or 
ground (low impedance)

• Certain applications require a logic output 
that we can “turn off” or disable

Output is disconnected (high impedance)
• This is the three-state output

May be stand-alone (a buffer) or part of another 
function output



Introduction to Digital Design Page 73

Three State Buffers

IN_H OUT_H

EN_H

IN_H OUT_H

EN_L

IN_H OUT_L

EN_H

IN_H OUT_L

EN_L

IN
X
0
1

EN
0
1
1

OUT
HI-Z

0
1
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Overview

° Addition and subtraction of binary data is fundamental
• Need to determine hardware implementation

° Represent inputs and outputs
• Inputs: single bit values, carry in
• Outputs: Sum, Carry

° Hardware features
• Create a single-bit adder and chain together

° Same hardware can be used for addition and 
subtraction with minor changes

° Dealing with overflow
• What happens if numbers are too big?

Dr.Hisham
Text Box



ENGIN112  L14: Binary Adder Subtractor October 3, 2003 

Half Adder

C A B S 0 0 0 1 
A 0 
B 0 

S 0 

C 1 

0 0  0  0
0 1  1  0
1 0  1  0
1 1  0  1

Dec   Binary
1   1
+1  +1
2  10

° Add two binary numbers
• A0 , B0 -> single bit inputs
• S0 -> single bit sum
• C1 -> carry out

Dr.Hisham
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Multiple-bit Addition

A3 A2 A1 A0

0 1 0 1A 0 1 1 1
B3 B2 B1 B0

B

0 1 0 1
0 1 1 1

A
B

0

1

0

1

1

1

1

Ai
+Bi

Ci

Si

Ci+1

° Consider single-bit adder for each bit position.

Each bit position creates a sum and carry

Dr.Hisham
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Full Adder

0 0 0  0  0
0 0 1  1  0
0 1 0  1  0
0 1 1  0  1
1 0 0  1  0
1 0 1  0  1
1 1 0  0  1
1 1 1  1  1

Ci Ai Bi Si Ci+1

1 1

1 1

Ci

AiBi
00 01 11 10

0

1

Si

° Full adder includes carry in Ci

° Notice interesting pattern in Karnaugh map.
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Full Adder

0 0 0  0  0
0 0 1  1  0
0 1 0  1  0
0 1 1  0  1
1 0 0  1  0
1 0 1  0  1
1 1 0  0  1
1 1 1  1  1

Ci Ai Bi Si Ci+1 Si = !Ci & !Ai & Bi
# !Ci & Ai & !Bi
# Ci & !Ai & !Bi
# Ci & Ai & Bi

° Full adder includes carry in Ci

° Alternative to XOR implementation

Dr.Hisham
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Full Adder

Si = !Ci & !Ai & Bi
# !Ci & Ai & !Bi
# Ci & !Ai & !Bi
# Ci & Ai & Bi

Si = !Ci & (!Ai & Bi # Ai & !Bi)
# Ci & (!Ai & !Bi # Ai & Bi)

Si = !Ci & (Ai $ Bi)
# Ci & !(Ai $ Bi)

Si = Ci $ (Ai $ Bi)

° Reduce and/or representations into XORs

Dr.Hisham
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Full Adder

0 0 0  0  0
0 0 1  1  0
0 1 0  1  0
0 1 1  0  1
1 0 0  1  0
1 0 1  0  1
1 1 0  0  1
1 1 1  1  1

Ci Ai Bi Si Ci+1

1

1 11

Ci

AiBi
00 01 11 10

0

1

Ci+1

° Now consider implementation of carry out

° Two outputs per full adder bit (Ci+1, Si) 

Note: 3 inputs

Dr.Hisham
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Full Adder

0 0 0  0  0
0 0 1  1  0
0 1 0  1  0
0 1 1  0  1
1 0 0  1  0
1 0 1  0  1
1 1 0  0  1
1 1 1  1  1

Ci Ai Bi Si Ci+1 Ci

AiBi
00 01 11 10

0

1

1

1 11

Ci+1

Ci+1 = Ai & Bi
# Ci & Bi
# Ci & Ai

° Now consider implementation of carry out

° Minimize circuit for carry out - Ci+1

Dr.Hisham
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Full Adder

Ci+1 = Ai & Bi
# Ci !Ai & Bi
# Ci & Ai & !Bi

Ci+1 = Ai & Bi
# Ci & (!Ai & Bi # Ai & !Bi)

Ci+1 = Ai & Bi # Ci & (Ai $ Bi)

Recall:
Si = Ci $ (Ai $ Bi)

Ci+1 = Ai & Bi # Ci & (Ai $ Bi)

Dr.Hisham
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Full Adder

A 

B 

S 

C 

C i+1 

i 
i 

i 

i 

Si = Ci $ (Ai $ Bi)

Half-adder Half-adder

Ci+1 = Ai & Bi # Ci & (Ai $ Bi)

° Full adder made of several half adders

Dr.Hisham
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Full Adder

half-adder

half-adder
A 

B 
i 

i 

C i 

C i+1 

S i 

S 

C 

C 

A full adder can be made from
two half adders (plus an OR gate).

° Hardware repetition simplifies hardware design

Dr.Hisham
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Full Adder

Full Adder

A B 

C C 

S 

i i 

i+1 i 

i 

Block Diagram

° Putting it all together 
• Single-bit full adder
• Common piece of computer hardware

Dr.Hisham
Text Box



ENGIN112  L14: Binary Adder Subtractor October 3, 2003 

4-Bit Adder

Full Adder

A B 

0 
C 

S 

0 0 

1 

0 

Full Adder

A B 

C 

S 

1 1 

2 

1 

Full Adder

A B 

C 

S 

2 2 

3 

2 

Full Adder

A B 

C S 

3 3 

4 3 

C 1 1 1 0
A 0 1 0 1
B 0 1 1 1
S 1 1 0 0

° Chain single-bit adders together.

° What does this do to delay?
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Negative Numbers – 2’s Complement.

110 = 0116 = 00000001
-110 = FF16 = 11111111

12810 = 8016 = 10000000
-12810 = 8016 = 10000000

° Subtracting a number is the same as:
1. Perform 2’s complement
2. Perform addition

° If we can augment adder with 2’s complement 
hardware?

Dr.Hisham
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4-bit Subtractor: E = 1

Full Adder

A B 

C 

0 0 

1 

0 

Full Adder

A B 

C 

1 1 

2 

1 

Full Adder

A B 

C 

2 2 

3 

2 

Full Adder

A B 

C SD

3 3 

4 3 SD SD SD

E 

+1

Add A to B’ (one’s complement) plus 1
That is, add A to two’s complement of B
D = A - B

Dr.Hisham
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Adder- Subtractor Circuit

Dr.Hisham
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Overflow in two’s complement addition

° Definition:  When two values of the same signs are 
added:

• Result won’t fit in the number of bits provided
• Result has the opposite sign.

Overflow?

CN-1

BN-1

AN-1

Assumes an N-bit adder, with bit N-1 the MSB

Dr.Hisham
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10
1101
1010

--------
0111

11
1110
1101

--------
1011

01
0011
0110

--------
1001

00
0010
0011

--------
0101

00
0010
1100

--------
1110

11
1110
0100

--------
0010

Addition cases and overflow

OFL OFL

2
3
5

3
6
-7

-2
-3
-5

-3
-6
7

2
-4
-2

-2
4
2

Dr.Hisham
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Summary

° Addition and subtraction are fundamental to computer 
systems

° Key – create a single bit adder/subtractor
• Chain the single-bit hardware together to create bigger designs

° The approach is call ripple-carry addition
• Can be slow for large designs

° Overflow is an important issue for computers
• Processors often have hardware to detect overflow

° Next time: encoders/decoder. 

Dr.Hisham
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Shift Registers

Prof. Young Jin Nam
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Basic Functions

Register is
A digital circuit which two basic functions: data storage & data 
movement
Consisting of one or more F/Fs used to store & shift data

Flip-Flop as a Storage Element
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Basic Functions

Basic Data Movement in Shift Registers
Shift register can defined by three factors: capacity, the method of 
data input & output
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Basic Functions

Storage Capacity
The total # of bits (1s or 0s) of digital data it can retain
Each stage(flip-flop) in a shift register represents one bit of storage 
capacity
The # of stages in a register determines its storage capacity
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Serial In/Serial Out Shift Register

Serial In/Serial Out Shift Register
Accepts data serially (one bit at a time on a single line)
Produces the stored information on its output also in serial form
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Serial In/Serial Out Shift Register

Illustrative Example:
Four bits(1010) being entered serially into the register
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Serial In/Serial Out Shift Register

Illustrative Example:
Four bits(1010) being entered serially into the register
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Serial In/Serial Out Shift Register

Illustrative Example: Draw a Waveform

1 1

1

0

1

1

0

1

1

1

0

1

1

1

0
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Serial In/Serial Out Shift Register

Logic Symbol for an 8-bit Serial In/Serial Out Shift Register
SRG: Shift ReGister
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Serial In/Parallel Out Shift Register

Operations
Data bits are entered serially (right-most bit first) into the register
Each data bit appears on its respective output line (all bits are 
available simultaneously)
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Serial In/Parallel Out Shift Register

Example: Draw a Waveform

0

1

1

1

1

0

1

1

1

1

0

1

0

1

1

0
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Parallel In/Serial Out Shift Register

Operations
The data bits are entered simultaneously into their respective 
stages on parallel lines
One bit of data appears on an output line at a time
Four input lines (D0~D3), a SHIFT/LOAD’ input
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Parallel In/Serial Out Shift Register

When SHIFT/LOAD’ = 0
Allow four bits of data to load in parallel into the register
Gates G1 through G3 are enabled
Allow each data bit to be applied to the D input of its respective F/F

1

0
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Parallel In/Serial Out Shift Register

When SHIFT/LOAD’ = 1
Allow the data bits to shift right from one stage to the next
Gates G4 through G6 are enabled

0

1
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Parallel In/Serial Out Shift Register

Example: Draw a Waveform
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Parallel In/ Parallel Out Shift Register

Operations
Allow four bits of data to load in parallel into the register
All bits are available simultaneously
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Bidirectional Shift Registers

Operations
Data can shifted either left or right
When RIGHT/LEFT’=1, data are to be shifted right
When RIGHT/LEFT’=0, data are to be shifted left

1
0
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Bidirectional Shift Registers

Example: Draw a Waveform

right
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Shift Register Counters

A Shift Register Counter
A shift register with the serial output connected back to the serial 
input to produce special sequences
Classified as counters because they exhibit a specified sequence of 
states
Example: Johnson counter & ring counter
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The Johnson Counter

Johnson Counter
The complement of the output of the last F/F is connected back to 
the D input of the first F/F
It produces a modulus of 2n, where n is the number of stages in the 
counter

Example: Truth Table of 4-bit Johnson Sequence

<tab 10-1>
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The Johnson Counter

Block Diagram of 4-bit Johnson Counter
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The Johnson Counter

Timing Sequence of 4-bit Johnson Counter

1

0

0

0

1

1

0

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

0

0

0

0
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The Johnson Counter

Example: Truth Table of 5-bit Johnson Sequence

<tab 10-2>
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The Ring Counter

Ring Counter
Utilize one F/F for each state in its sequence
Decoding gate is not required (a unique output for each decimal 
digit)
Initially, 1 is preset into the first F/F & the rest are cleared

1 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0
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The Ring Counter

Truth Table of 10-bit Ring Counter

<tab 10-3>
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The Ring Counter

Example: Draw a Waveform
The initial state = 1010000000
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Application: Time Delay

Shift Register as a Time-Delay Device
Serial in/serial output shift register can be used to provide a time 
delay from input to output  that is a function of both the # of 
stages(n) in the register & the clock frequency

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
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Application: Ring Counter

A Ring Counter using a Shift Register
If the output is connected back to the serial input, a shift register 
can be used as a ring counter
Initially, a bit pattern of 1000 can be synchronously preset into the 
counter (LD’ = 0)

1
0

0

0

0
1

0

0

0
0

1

0

0
0

0

1

1
0

0

0
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Application: Serial-to-Parallel Data Converter

Simplified Serial-to-Parallel Data Converter
Consists of 11 bits
First bit(start bit) = 0 (beginning with a HIGH-to-LOW transition)
Next 8 bits (D7~D0) are the data bits
Last two bits (stop bits) are always 1s
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Application: Serial-to-Parallel Data Converter

Logic Diagram
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The end of “Shift Registers”
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Synchronous Sequential Circuit Design
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Motivation

• Analysis of a few simple circuits

• Generalizes to Synchronous Sequential Circuits (SSC)
Outputs are Function of State (and Inputs)
Next States are Functions of State and Inputs
Used to implement circuits that control other circuits
"Decision Making" logic

• Application of Sequential Logic Design Techniques
Word Problems
Mapping into formal representations of SSC behavior
Case Studies
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Overview

• Concept of the Synchronous Sequential Circuits 
Partitioning into Datapath and Control
When Inputs are Sampled and Outputs Asserted

• Basic Design Approach
Six Step Design Process

• Alternative SSC Representations
State Diagram, VHDL

• Moore and Mealy Machines
Definitions, Implementation Examples

• Word Problems
Case Studies
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Complex Digital System = Datapath + Control

Registers
Combinational Functional 

Units (e.g., ALU)
Busses

SSC generating sequences
of control signals

Instructs datapath what to
do next

The worker

The “Supervisor”

Status

Control

Control

Datapath

State

Control
Outputs

Status
Inputs

Concept of the Synchronous Sequential Circuit 
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Concept of the Synchronous Sequential Circuit

• Timing: When are inputs sampled, next state computed, 
outputs asserted?

• State Time: Time between clocking events
• Clocking event causes state/outputs to transition, based on 

inputs
• For set-up/hold time considerations:

Inputs should be stable before clocking event
• After propagation delay, Next State entered, Outputs are 

stable
NOTE: Asynchronous output (Mealy) take effect immediately
Synchronous outputs (Moore) take effect at the next clocking event

E.g., tri-state enable:  effective immediately
sync. counter clear:  effective at next clock event 
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Example: Positive Edge Triggered Synchronous System

Concept of the Synchronous Sequential Circuit

• On rising edge, inputs sampled; 
outputs, next state computed

• After propagation delay, outputs 
and next state are stable

• Immediate Outputs:
affect datapath immediately
could cause inputs from datapath 
to change

• Delayed Outputs:
take effect on next clock edge
propagation delays must exceed 
hold times
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Sequential Circuit Analysis

• Start with schematic diagram
• Need to determine how circuit works

Trace schematic, determine equations of operation
FF input equations
sequential circuit output equations

Create State transition table
Sequential circuit inputs, FFs are comb. logic inputs
Organize truth table as current state (FFs) and inputs
Create FF input, seq. Circuit output columns
From FF char. Tables, determine FF next state values
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Sequential Circuit Analysis (cont.)

Generate State Diagram
Circles (nodes) represent current or present state values
Lines (arcs) represent how state and output values change

– Given the current state and current inputs, the next state and 
output values are indicated by the associated arc

State diagram can have different forms depending on the 
type of sequential circuit output.

Present
State
Value

Next
State
Value

Inputs/outputs
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Basic Design Approach

• Six Step Process

1.  Understand the statement of the Specification
2.  Obtain an abstract specification of the SSC
3.  Generate State Table
4.  Perform state assignment
5.  Choose FF types to implement SSC state register
6.  Implement the SSC
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Example: Vending Machine SSC

General Machine Concept:
deliver package of gum after 15 cents deposited

single coin slot for dimes, nickels

no change

Block Diagram

Step 1. Understand the problem:

Vending 
Machine 

SSC

N

D

Reset

Clk

OpenCoin 
Sensor Gum 

Release 
Mechanism

Draw a picture!

Basic Design Approach
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Tabulate typical input sequences:
three nickels
nickel, dime
dime, nickel
two dimes
two nickels, dime

Draw state diagram:
Inputs: N, D, reset

Output: open

Step 2. Map into more suitable abstract representation

Vending Machine Example
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Step 3: State Minimization

reuse states
whenever
possible Symbolic State Table

Vending Machine Example
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Step 4: State Encoding

Next State 
Q +1 Q+ 0 

0 0 
0     1 
1     0 
X    X 
0     1 
1     0 
1     1 
X    X 
1     0 
1     1 
1     1 
X    X 
1     1 
1     1 
1     1 
X     X 

Present State 
Q 1 Q 0 
0 0 

0     1 

1     0 

1     1 

D 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

N 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

Inputs Output 
Open 

0 
0 
0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
1 
1 
1 
X 

Vending Machine Example

State

0¢

5¢

10¢

15¢

NOTE!
For D-FFs the next 
state will be what is 
at the D input.  So 
each FF’s next 
state values in the 
state table must be 
the D inputs for 
that FF.

D1 D0
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Step 5. Choose FFs for implementation D FF easiest to use

D1 = Q1 + D + Q0 N

D0 = N Q0  +  Q0 N  +  Q1 N  +  Q1 D

OPEN = Q1 Q0
8 Gates

Vending Machine Example

Q1 Q0 
00

D 

D N 

Q1 

N 

Q0 

0 0 1 1
0 1 1 1
X X X X
1 1 1 1

01 11 10

00

01

11

10

Q1 Q0 
00

D 

D N 

Q1 

N 

Q0 

0 1 1 0
1 0 1 1
X X X X
0 1 1 1

01 11 10

00

01

11

10

Q1 Q0 
00

D 

D N 

Q1 

N 

Q0 

0 0 1 0
0 0 1 0
X X X X
0 0 1 0

01 11 10

00

01

11

10
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Designing with SR, JK, and T Flip-Flops

• Sequential design with D-FFs is easy; next state 
depends on D input only

• We can use other FFs but the process is a little 
more involved

State table defines set of present state to next state 
transitions
What we need to design the next state combinational 
logic is the FF input values needed for each Q → Q+ 
transition

• This table is known as the FF excitation table
Derived from the FF characteristic table
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Derivation of JK Excitation Table

JK Characteristic Table JK Excitation Table

J

0
0
0
0
1
1
1
1

K

0
0
1
1
0
0
1
1

Q

0
1
0
1
0
1
0
1

Q+

0
1
0
0
1
1
1
0

Q+

0
1
0
1

Q

0
0
1
1

J

0
1
X
X

K

X
X
1
0
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Flip-Flop Excitation Tables

Q+

0
1
0
1

Q

0
0
1
1

J

0
1
X
X

K

X
X
1
0

S

0
1
0
X

R

X
0
1
0

T

0
1
1
0

D

0
1
0
1

You can use any FF type for your implementation

FF types can be mixed; I.e. in vending machinge
you could use a JK FF for Q1 and a T FF for Q0
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Step 5.  Choosing FF for Implementation
J-K FF

Remapped encoded state transition table using JK excitation table

Next State 
Q+ 1 Q+ 0 
0 0 
0     1 
1     0 
X    X 
0     1 
1     0 
1     1 
X    X 
1     0 
1     1 
1     1 
X    X 
1     1 
1     1 
1     1 
X    X 

Present State 
Q 1 Q 0 
0 0 

0     1 

1     0 

1     1 

D 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

N 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

Inputs K 1 

X 
X 
X 
X 
X 
X 
X 
X 
0 
0 
0 
X 
0 
0 
0 
X 

K 0 

X 
X 
X 
X 
0 
1 
0 
X 
X 
X 
X 
X 
0 
0 
0 
X 

J 1 

0 
0      
1     
X     
0     
1      
1      
X     
X     
X     
X    
X    
X    
X     
X    
X     

J 0 

0 
1 
0 
X 
X 
X 
X 
X 
0 
1 
1 
X 
X 
X 
X 
X 

Vending Machine Example

JK Excitation Table

Q+

0
1
0
1

Q

0
0
1
1

J

0
1
X
X

K

X
X
1
0
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Vending Machine Example

Q1 Q0 
00

D 

D N 

Q1 

N

Q0 

X X 0 0
X X 0 0

01 11 10

00

01

11

10

X X X X
X X 0 0

J1 = D  +  Q0 N

K1 = 0

J0 = N  +  Q1 D

K0 = Q1 N

7 Gates

Q1 Q0 
00

D 

D N 

Q1 

N

Q0 

0 0 X X
0 1 X X

01 11 10

00

01

11

10

X X X X
1 1 X X

Q1 Q0 
00

D 

D N 

Q1 

N

Q0 

X 0 0 X
X 1 0 X

01 11 10

00

01

11

10

X X X X
X 0 0 X

Q1 Q0 
00

D 

D N 

Q1 

N

Q0 

0 X X 0
1 X X 1

01 11 10

00

01

11

10

X X X X
0 X X 1

Implementation:
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Definitions Moore Machine

Outputs are function
solely of the current 

state

Outputs change 
synchronously with

state changes

Mealy Machine

Outputs depend on
state AND inputs

Input change causes
an immediate 

(asynchronous) 
output change

State
Register

Clock
State

Feedback 

X
Inputs 

Z
Outputs

Moore vs. Mealy Machines

Combinational
Logic for

Next State
(FF Inputs)

Comb.
Logic for
Outputs)

Mealy only; no connection for Moore
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State Diagram Equivalents

Outputs are associated 
with State

Outputs are associated 
with Transitions

Reset/0

N/0

N/0

N+D/1

15¢

0¢

5¢

10¢

D/0

D/1

(N D  + Reset)/0

Reset/0

Reset/1

N D/0

N D/0

Moore
MachineReset

N

N

N+D

[1]

15¢

0¢

5¢

10¢

[0]

[0]

[0]

N D  + Reset

Reset

Reset

N D

N D

Mealy
Machine

Moore and Mealy Machines

D



Page 25

States vs. Transitions
Mealy Machine typically has fewer states than Moore Machine

for same output sequence

Same I/O behavior

Different # of states

Moore and Mealy Machines

1

1

0

1

2

0

0
[0]

[0]

[1]

1/0

0

1

0/0

0/0

1/1

1

0
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Synchronous Mealy Machine

Latched state AND outputs
Avoids glitchy outputs!
Outputs are delayed by up to 1 clock period
Usually equivalent to the Moore form

Moore and Mealy Machines

State
Register

Clock
State

Feedback 

X
Inputs 

Z
Outputs

Combinational
Logic for

Next State
(FF Inputs)

Comb.
Logic for
Outputs)

Output
Register

Clock
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Mapping English Language Description to Formal Specifications

Four Case Studies:

•  Finite String Pattern Recognizer

•  Complex Counter with Decision Making

•  Traffic Light Controller

•  Digital Combination Lock

Synchronous Sequential Circuit Word Problems
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Finite String Pattern Recognizer

A finite string recognizer has one input (X) and one output (Z).
The output is asserted whenever the input sequence …010…
has been observed, as long as the sequence 100 has never been
seen.

Step 1.  Understanding the problem statement

Sample input/output behavior:
X:   00101010010…
Z:   00010101000…

X:   11011010010…
Z:   00000001000…

Synchronous Sequential Circuit Word Problems
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Finite String Recognizer
Step 2.  Draw State Diagrams for the strings that must be

recognized.  I.e., 010 and 100.

Moore State Diagram
Reset signal places

SSC in S0

Outputs 1 Loops in State

Reset

Synchronous Sequential Circuit  Word Problems

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0
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Finite String Recognizer
Exit conditions from state S3: have recognized …010

if next input is 0 then have …0100!
if next input is 1 then have …0101 = …01 (state S2)

Synchronous Sequential Circuit  Word Problems

Outputs 1 Loops in State

Reset

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

0
1
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Finite String Recognizer
Exit conditions from S1: recognizes strings of form …0 (no 1 seen)

loop back to S1 if input is 0
Exit conditions from S4: recognizes strings of form …1 (no 0 seen)

loop back to S4 if input is 1

Synchronous Sequential Circuit  Word Problems

Outputs 1 Loops in State

Reset

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

0
1

0 1
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Finite String Recognizer
S2 = …01; If next input is 1, then string could be prefix of (01)1(00)

S4 handles just this case!
S5 = …10; If next input is 1, then string could be prefix of (10)1(0)

S2 handles just this case!

Final State Diagram

Synchronous Sequential Circuit  Word Problems

Outputs 1 Loops in State

Reset

1

0

0

0

0

1

0,1

S1
/0

S0
/0

S2
/0

S3
/1

S4
/0

S5
/0

S6
/0

0
1

0 1

1

1
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Finite String Recognizer
Review of Process:

•  Write down sample inputs and outputs to understand specification

•  Write down sequences of states and transitions for the sequences
to be recognized

•  Add missing transitions;  reuse states as much as possible

•  Verify I/O behavior of your state diagram to insure it functions
like the specification

Synchronous Sequential Circuit  Word Problems
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Complex Counter
A sync. 3 bit counter has a mode control M.  When M = 0, the counter
counts up in the binary sequence.  When M = 1, the counter advances
through the Gray code sequence.

Binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray:    000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior:

Synchronous Sequential Circuit  Word Problems

Mode Input M

0
0
1
1
1
0
0

Current State

000
001
010
110
111
101
110

Next State (Z2 Z1 Z0)

001
010
110
111
101
110
111
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Complex Counter
One state for each output combination
Add appropriate arcs for the mode control

Synchronous Sequential Circuit  Word Problems

S0
/000 S1

/001

S2
/010

S3
/011S4

/100

S5
/101

S6
/110

S7
/111

0

0

00

0

0,1

0 0,1

1 1

1
1

1
1
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Traffic Light Controller

A busy highway is intersected by a little used farmroad.  Detectors
C sense the presence of cars waiting on the farmroad.  With no car
on farmroad, light remain green in highway direction.  If vehicle on 
farmroad, highway lights go from Green to Yellow to Red, allowing 
the farmroad lights to become green.  These stay green only as long 
as a farmroad car is detected but never longer than a set interval.  
When these are met, farm lights transition from Green to Yellow to 
Red, allowing highway to return to green.  Even if farmroad vehicles 
are waiting, highway gets at least a set interval as green.

Assume you have an interval timer that generates a short time pulse
(TS) and a long time pulse (TL) in response to a set (ST) signal.  TS
is to be used for timing yellow lights and TL for green lights.

Note: The interval timer is just another sequential circuit!

Synchronous Sequential Circuit  Word Problems
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Traffic Light Controller
Picture of Highway/Farmroad Intersection:

Synchronous Sequential Circuit  Word Problems
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Traffic Light Controller
•  Tabulation of Inputs and Outputs:

Input Signal
reset
C
TS
TL

Output Signal
HG, HY, HR
FG, FY, FR
ST

Description
place SSC in initial state
detect vehicle on farmroad
short time interval expired
long time interval expired

Description
assert green/yellow/red highway lights
assert green/yellow/red farmroad lights
start timing a short or long interval

•  Tabulation of Unique States: Some light configuration imply others
State
S0
S1
S2
S3

Description
Highway green (farmroad red)
Highway yellow (farmroad red)
Farmroad green (highway red)
Farmroad yellow (highway red)

Synchronous Sequential Circuit  Word Problems



Page 39

Synchronous Sequential Circuit  Word Problems

Traffic Light Controller
Compare with state diagram:

S0: HG, FR

S1: HY, FR

S2: FG, HR

S3: FY, HR

Note: This sequential circuit has both Mealy and Moore outputs!

Reset
TL + C

S0

TL•C/ST

TS S1 S3

S2

TS/ST

TS/ST TL + C/ST

TS

TL • C
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Synchronous Sequential Circuit  Word Problems

Digital Combination Lock

"3 bit serial lock controls entry to locked room.  Inputs are RESET,
ENTER, 2 position switch for bit of key data.  Locks generates an
UNLOCK signal when key matches internal combination.  ERROR
light illuminated if key does not match combination.  Sequence is:
(1) Press RESET, (2) enter key bit, (3) Press ENTER, (4) repeat (2) &
(3) two more times."

Problem specification is incomplete:
•  how do you set the internal combination?
•  exactly when is the ERROR light asserted?

Make reasonable assumptions:
•  hardwired into next state logic vs. stored in internal register
•  assert as soon as error is detected vs. wait until full combination

has been entered

Our design: registered combination plus error after full combination
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Synchronous Sequential Circuit  Word Problems

Digital Combination Lock
Understanding the problem: draw a block diagram …

Internal
Combination

Operator Data

Inputs:
Reset
Enter
Key-In
L0, L1, L2

Outputs:
Unlock
Error
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Synchronous Sequential Circuit  Word Problems

Note that each key entry is really a two-step process
1. Wait for the enter key 
2. Check if correct key was selected

Si

Sj

Enter=‘0’

Enter=‘1’

KI = Li
KI /= Li

To error
sequence

Check 
next key
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Synchronous Sequential Circuit  Word Problems

Digital Combination Lock

State Diagram

Reset

Reset + Enter

Reset • Enter

Start

Comp0
KI = L0 KI ≠ L0

Enter

Enter

Enter

Idle0 Idle0a

Comp1 Error1

KI ≠ L1KI = L1

EnterEnter

Idle1 Idle1a

Comp2 Error2

KI ≠ L2KI = L2

Done 
[Unlock]

Reset
Reset

Reset
Error3 
[Error]

Enter Enter

Enter

Reset
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