
Operating Systems I.....................................LEC 05... 104ح

1

2 Computer System Structure

The operating system must ensure the correct operation of the computer

system. To ensure that user programs will not interfere with the proper operation

of the system, the hardware must provide appropriate mechanisms to ensure

correct behavior. We need to know the basic computer architecture that makes

it possible to write a functional operating system.
2.1 Computer-System Operation

 A modern, general-purpose computer system consists of a CPU and a

number of device controllers that are connected through a common bus that

provides access to shared memory (Figure 2.1) . Each device controller is in charge

of a specific type of device (for example, disk drives, audio devices, and video

displays). The CPU and the device controllers can execute concurrently, competing

for memory cycles. To ensure orderly access to the shared memory, a memory

controller is provided whose function is to synchronize access to the memory.

Figure 2.1 A modern computer system.

Operating Systems I.....................................LEC 05... 104ح

2

For a computer to start running needs to have an initial program. This initial

program tends to be simple. It is stored in read-only memory (ROM). The

bootstrap program must locate and load into memory the operating-system kernel.

The operating system then starts executing the first process, such as "init," and

waits for some event to occur. The occurrence of an event is usually signaled by an

interrupt from either the hardware or the software. Hardware may trigger an

interrupt at any time by sending a signal to the CPU. Software may trigger an

interrupt by executing a special operation called a system call.

Modern operating systems are interrupt driven. Events are almost always signaled

by the occurrence of an interrupt or a trap. A trap (or an exception) is a software-

generated interrupt caused either by an error (for example, division by zero or

invalid memory access) or by a specific request. For each type of interrupt,

separate segments of code in the operating system determine what action should be

taken. An interrupt service routine is provided that is responsible for dealing with

the interrupt. When the CPU is interrupted, it stops what it is doing and

immediately transfers execution to a fixed location. The fixed location usually

contains the starting address where the service routine for the interrupt is located.

The interrupt service routine executes; on completion, the CPU resumes the

interrupted computation. Interrupts are an important part of a computer

architecture. Each computer design has its own interrupt mechanism, but several

functions are common.

The interrupt must transfer control to the appropriate interrupt service routine.

The straightforward method for handling this transfer would be to invoke a generic

routine to examine the interrupt information; the routine, in turn, would call the

Operating Systems I.....................................LEC 05... 104ح

3

interrupt-specific handler. However, interrupts must be handled quickly, and, given

that only a predefined number of interrupts is possible, a table of pointers to

interrupt routines can be used instead. The interrupt routine is then called indirectly

through the table, with no intermediate routine needed. Generally, the table of

pointers is stored in low memory. These locations hold the addresses of the

interrupt service routines for the various devices. This array, or interrupt vector, of

addresses is then indexed by a unique device number, given with the interrupt

request, to provide the address of the interrupt service routine for the interrupting

device.

The interrupt architecture must also save the address of the interrupted

instruction. Many old designs simply stored the interrupt address in a fixed

location or in a location indexed by the device number. More recent architectures

store the return address on the system stack. If the interrupt routine needs to

modify the processor state-for instance, by modifying register values-it must

explicitly save the current state and then restore that state before returning.

After the interrupt is serviced, the saved return address is loaded into the program

counter, and the interrupted computation resumes as though the interrupt had not

occurred.

2.2 I/O Structure

A general-purpose computer system consists of a CPU and multiple device

controllers that are connected through a common bus. Each device controller is in

charge of a specific type of device. Depending on the controller, there may be

more than one attached device. For instance, the small computer-systems

interface (SCSI) controller can have seven or more devices attached to it. A

Operating Systems I.....................................LEC 05... 104ح

4

device controller maintains some local buffer storage and a set of special-purpose

registers. The device controller is responsible for moving the data between the

peripheral devices that it controls and its local buffer storage. The size of the local

buffer within a device controller varies from one controller to another, depending

on the particular device being controlled.

2.2.1 I/O Interrupts

To start an I/O operation, the CPU loads the appropriate registers within the

device controller. The device controller, in turn, examines the contents of these

registers to determine what action to take. For example, if it finds a read request,

the controller will start the transfer of data from the device to its local buffer. Once

the transfer of data is complete, the device controller informs the CPU that it has

finished its operation. It accomplishes this communication by triggering an

interrupt. This situation will occur, in general, as the result of a user process

requesting I/O. Once the I/O is started, two courses of action are possible. In the

simplest case, the I/O is started; then, at I/O completion, control is returned to the

user process. This case is known as synchronous I/O. The other possibility, called

asynchronous I/O, returns control to the user program without waiting for the I/O

to complete. The I/O then can continue while other system operations occur

(Figure 2.2).

Operating Systems I.....................................LEC 05... 104ح

5

Waiting for I/O completion may be accomplished in one of two ways. Some

computers have a special wait instruction that idles the CPU until the next

interrupt. Machines that do not have such an instruction may have a wait loop:

Loop: jmp Loop

This tight loop simply continues until an interrupt occurs, transferring

control to another part of the operating system. Such a loop might also need to poll

any I/O devices that do not support the interrupt structure; instead, these devices

simply set a flag in one of their registers and expect the operating system to notice

that flag.

If the CPU always waits for I/O completion, at most one I/O request is outstanding

at a time. Thus, whenever an I/O interrupt occurs, the operating system knows

exactly which device is interrupting. On the other hand, this approach excludes

concurrent I/O operations to several devices, and also excludes the possibility of

overlapping useful computation with I/O.

A better alternative is to start the I/O and then to continue processing other

operating-system or user program code. A system call is then needed to allow the

user program to wait for I/O completion, if desired. If no user programs are ready

to run, and the operating system has no other work to do, we still require the wait

instruction or idle loop, as before. We also need to be able to keep track of many

I/O requests at the same time. For this purpose, the operating system uses a table

containing an entry for each I/O device: the device-status table (Figure 2.3). Each

table entry indicates the device's type, address, and state (not functioning, idle, or

Fig. 2.2 Two I/O methods: (a) synchronous, and (b) asynchronous

Operating Systems I.....................................LEC 05... 104ح

6

busy). If the device is busy with a request, the type of request and other parameters

will be stored in the table entry for that device. Since it is possible for other

processes to issue requests to the same device, the operating system will also

maintain a wait queue-a list of waiting requests-for each I/O device.

An I/O device interrupts when it needs service. When an interrupt occurs,

the operating system first determines which I/O device caused the interrupt. It then

indexes into the I/O device table to determine the status of that device, and

modifies the table entry to reflect the occurrence of the interrupt. For most devices,

an interrupt signals completion of an I/O request. If there are additional requests

waiting in the queue for this device, the operating system starts processing the next

request. Finally, control is returned from the I/O interrupt. If a process was waiting

for this request to complete (as recorded in the device-status table), we can now

Fig. 2.3 Device-status table

Operating Systems I.....................................LEC 05... 104ح

7

return control to it. Otherwise, we return to whatever we were doing before the I/O

interrupt: to the execution of the user program (the program started an I/O

operation and that operation has now finished, but the program has not yet waited

for the operation to complete) or to the wait loop (the program started two or more

I/O operations and is waiting for a particular one to finish, but this interrupt was

from one of the other operations). In a time-sharing system, the main advantage of

asynchronous I/O is increased system efficiency. While I/O is taking place, the

system CPU can be used for processing or starting I/O to other devices. Because

I/O can be slow compared to processor speed, the system makes efficient use of its

facilities.

