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2 Computer System Structure  

 
The operating system must ensure the correct operation of the computer 

system. To ensure that user programs will not interfere with the proper   operation 

of the system, the hardware must provide appropriate mechanisms to ensure 

correct behavior.      We need to know the basic computer architecture that makes 

it possible to write a functional operating system.  
2.1 Computer-System Operation 

  A modern, general-purpose computer system consists of a CPU and a 

number of device controllers that are connected through a common bus that 

provides access to shared memory (Figure 2.1) . Each device controller is in charge 

of a specific type of device (for example, disk drives, audio devices, and video 

displays). The CPU and the device controllers can execute concurrently, competing 

for memory cycles. To ensure orderly access to the shared memory, a memory 

controller is provided whose function is to synchronize access to the memory. 

 

             

             

             

             

             

             

             

             

             

             

             

             

 

Figure 2.1 A modern computer system. 
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For a computer to start running needs to have an initial program. This initial 

program tends to be simple. It is stored in read-only memory (ROM). The 

bootstrap program must locate and load into memory the operating-system kernel. 

The operating system then starts executing the first process, such as "init," and 

waits for some event to occur. The occurrence of an event is usually signaled by an 

interrupt from either the hardware or the software. Hardware may trigger an 

interrupt at any time by sending a signal to the CPU. Software may trigger an 

interrupt by executing a special operation called a system call. 

Modern operating systems are interrupt driven. Events are almost always signaled 

by the occurrence of an interrupt or a trap. A trap (or an exception) is a software-

generated interrupt caused either by an error (for example, division by zero or 

invalid memory access) or by a specific request. For each type of interrupt, 

separate segments of code in the operating system determine what action should be 

taken. An interrupt service routine is provided that is responsible for dealing with 

the interrupt. When the CPU is interrupted, it stops what it is doing and 

immediately transfers execution to a fixed location. The fixed location usually 

contains the starting address where the service routine for the interrupt is located. 

The interrupt service routine executes; on completion, the CPU resumes the 

interrupted computation. Interrupts are an important part of a computer 

architecture. Each computer design has its own interrupt mechanism, but several 

functions are common. 

The interrupt must transfer control to the appropriate interrupt service routine. 

The straightforward method for handling this transfer would be to invoke a generic 

routine to examine the interrupt information; the routine, in turn, would call the 
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interrupt-specific handler. However, interrupts must be handled quickly, and, given 

that only a predefined number of interrupts is possible, a table of pointers to 

interrupt routines can be used instead. The interrupt routine is then called indirectly 

through the table, with no intermediate routine needed. Generally, the table of 

pointers is stored in low memory. These locations hold the addresses of the 

interrupt service routines for the various devices. This array, or interrupt vector, of 

addresses is then indexed by a unique device number, given with the interrupt 

request, to provide the address of the interrupt service routine for the interrupting 

device. 

The interrupt architecture must also save the address of the interrupted 

instruction. Many old designs simply stored the interrupt address in a fixed 

location or in a location indexed by the device number. More recent architectures 

store the return address on the system stack. If the interrupt routine needs to 

modify the processor state-for instance, by modifying register values-it must 

explicitly save the current state and then restore that state before returning. 

After the interrupt is serviced, the saved return address is loaded into the program 

counter, and the interrupted computation resumes as though the interrupt had not 

occurred. 

 

2.2 I/O Structure 
 

A general-purpose computer system consists of a CPU and multiple device 

controllers that are connected through a common bus. Each device controller is in 

charge of a specific type of device. Depending on the controller, there may be 

more than one attached device. For instance, the small computer-systems 

interface (SCSI) controller can have seven or more devices attached to it. A 
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device controller maintains some local buffer storage and a set of special-purpose 

registers. The device controller is responsible for moving the data between the 

peripheral devices that it controls and its local buffer storage. The size of the local 

buffer within a device controller varies from one controller to another, depending 

on the particular device being controlled.  

2.2.1 I/O Interrupts 

To start an I/O operation, the CPU loads the appropriate registers within the 

device controller. The device controller, in turn, examines the contents of these 

registers to determine what action to take. For example, if it finds a read request, 

the controller will start the transfer of data from the device to its local buffer. Once 

the transfer of data is complete, the device controller informs the CPU that it has 

finished its operation. It accomplishes this communication by triggering an 

interrupt. This situation will occur, in general, as the result of a user process 

requesting I/O. Once the I/O is started, two courses of action are possible. In the 

simplest case, the I/O is started; then, at I/O completion, control is returned to the 

user process. This case is known as synchronous I/O. The other possibility, called 

asynchronous I/O, returns control to the user program without waiting for the I/O 

to complete. The I/O then can continue while other system operations occur 

(Figure 2.2). 
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Waiting for I/O completion may be accomplished in one of two ways. Some 

computers have a special wait instruction that idles the CPU until the next 

interrupt. Machines that do not have such an instruction may have a wait loop: 

Loop: jmp Loop 

This tight loop simply continues until an interrupt occurs, transferring 

control to another part of the operating system. Such a loop might also need to poll 

any I/O devices that do not support the interrupt structure; instead, these devices 

simply set a flag in one of their registers and expect the operating system to notice 

that flag. 

If the CPU always waits for I/O completion, at most one I/O request is outstanding 

at a time. Thus, whenever an I/O interrupt occurs, the operating system knows 

exactly which device is interrupting. On the other hand, this approach excludes 

concurrent I/O operations to several devices, and also excludes the possibility of 

overlapping useful computation with I/O. 

A better alternative is to start the I/O and then to continue processing other 

operating-system or user program code. A system call is then needed to allow the 

user program to wait for I/O completion, if desired. If no user programs are ready 

to run, and the operating system has no other work to do, we still require the wait 

instruction or idle loop, as before. We also need to be able to keep track of many 

I/O requests at the same time. For this purpose, the operating system uses a table 

containing an entry for each I/O device: the device-status table (Figure 2.3). Each 

table entry indicates the device's type, address, and state (not functioning, idle, or 

Fig. 2.2 Two I/O methods: (a) synchronous, and (b) asynchronous 
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busy). If the device is busy with a request, the type of request and other parameters 

will be stored in the table entry for that device. Since it is possible for other 

processes to issue requests to the same device, the operating system will also 

maintain a wait queue-a list of waiting requests-for each I/O device. 

 

 

 

 

 

 

 

 

 

 

 

 

An I/O device interrupts when it needs service. When an interrupt occurs, 

the operating system first determines which I/O device caused the interrupt. It then 

indexes into the I/O device table to determine the status of that device, and 

modifies the table entry to reflect the occurrence of the interrupt. For most devices, 

an interrupt signals completion of an I/O request. If there are additional requests 

waiting in the queue for this device, the operating system starts processing the next 

request. Finally, control is returned from the I/O interrupt. If a process was waiting 

for this request to complete (as recorded in the device-status table), we can now 

 

Fig. 2.3 Device-status table 
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return control to it. Otherwise, we return to whatever we were doing before the I/O 

interrupt: to the execution of the user program (the program started an I/O 

operation and that operation has now finished, but the program has not yet waited 

for the operation to complete) or to the wait loop (the program started two or more 

I/O operations and is waiting for a particular one to finish, but this interrupt was 

from one of the other operations). In a time-sharing system, the main advantage of 

asynchronous I/O is increased system efficiency. While I/O is taking place, the 

system CPU can be used for processing or starting I/O to other devices. Because 

I/O can be slow compared to processor speed, the system makes efficient use of its 

facilities.  

 

 

 


