Mathematical Statistics-1

Dr. Muhannad F Al-Saadony email: muhannad.alsaadony@qu.edu.iq muhannad.alsaadony@gmail.com

January 3, 2016

Table of contents

Introduction

Random Variable and Function of Random Variable
Function of Random Variable

Joint, Marginal and Conditional distribution

Distribution of Random Variable

Ditributions of functions of random variable

Introduction

We have to know some terms which are very important in probability theory

1. A Random Experiment is an experiment or process for which the outcome can not be predicted with certainty.

Example 1.1 Three coins are tossed and let r.v. represents the number of heads then x may take values x = 1, 2, 3, . $S.S = \{HHH, HTH, THH, HHT, TTH, THT, HTT, TTT\}.$ Then, x = 0, 1, 2, 3.

Introduction

We have to know some terms which are very important in probability theory

- 1. A *Random Experiment* is an experiment or process for which the outcome can not be predicted with certainty.
- 2. The Sample Space Ω is the collection of all possible outcomes of a Random Experiment

Example 1.1 Three coins are tossed and let r.v. represents the number of heads then x may take values x = 1, 2, 3, . $S.S = \{HHH, HTH, THH, HHT, TTH, THT, HTT, TTT\}.$ Then, x = 0, 1, 2, 3.

Introduction

We have to know some terms which are very important in probability theory

- 1. A Random Experiment is an experiment or process for which the outcome can not be predicted with certainty.
- 2. The Sample Space Ω is the collection of all possible outcomes of a Random Experiment
- 3. An Event is a subset of the Sample Space.

Example 1.1 Three coins are tossed and let r.v. represents the number of heads then x may take values x = 1, 2, 3, . $S.S = \{HHH, HTH, THH, HHT, TTH, THT, HTT, TTT\}.$ Then, x = 0, 1, 2, 3.

<u>Remark</u> If x_1 and x_2 are two r.v.s and c_1, c_2 are constants, then:

1. $c_1x_1 + c_2x_2$ is r.v.

<u>Remark</u> If x_1 and x_2 are two r.v.s and c_1, c_2 are constants, then:

- 1. $c_1x_1 + c_2x_2$ is r.v.
- 2. $x_1 \pm x_2$ is r.v.

<u>Remark</u> If x_1 and x_2 are two r.v.s and c_1, c_2 are constants, then:

- 1. $c_1x_1 + c_2x_2$ is r.v.
- 2. $x_1 \pm x_2$ is r.v.
- 3. $\max\{x_1, x_2\}$ is r.v.

<u>Remark</u> If x_1 and x_2 are two r.v.s and c_1, c_2 are constants, then:

- 1. $c_1x_1 + c_2x_2$ is r.v.
- 2. $x_1 \pm x_2$ is r.v.
- 3. $\max\{x_1, x_2\}$ is r.v.
- 4. $\min\{x_1, x_2\}$ is r.v.

Definition

If x is discrete r.v. with counting values $x_1, x_2, ...$ then the function denoted by $p_x(x)$ and defined as follows:-

$$p_{x}(x) = \begin{cases} p(x = x_{j}) & x = x_{j} \\ 0 & x \neq x_{j} \end{cases} \quad j = 1, 2, 3, 4, \dots,$$
 (1)

the above equation is called p.m.f.

1.
$$Pr(a \le x \le b) = \sum_{x=a}^{b} p(x)$$
.

Definition

If x is discrete r.v. with counting values $x_1, x_2, ...$ then the function denoted by $p_x(x)$ and defined as follows:-

$$p_{x}(x) = \begin{cases} p(x = x_{j}) & x = x_{j} \\ 0 & x \neq x_{j} \end{cases} \quad j = 1, 2, 3, 4, \dots,$$
 (1)

the above equation is called p.m.f.

- 1. $Pr(a \le x \le b) = \sum_{x=a}^{b} p(x)$.
- 2. $Pr(a < x \le b) = \sum_{x=a+1}^{b} p(x)$.

Definition

If x is discrete r.v. with counting values $x_1, x_2, ...$ then the function denoted by $p_x(x)$ and defined as follows:-

$$p_{x}(x) = \begin{cases} p(x = x_{j}) & x = x_{j} \\ 0 & x \neq x_{j} \end{cases} \quad j = 1, 2, 3, 4, \dots,$$
 (1)

the above equation is called p.m.f.

- 1. $Pr(a \le x \le b) = \sum_{x=a}^{b} p(x)$.
- 2. $Pr(a < x \le b) = \sum_{x=a+1}^{b} p(x)$.
- 3. $Pr(a \le x < b) = \sum_{x=a}^{b-1} p(x)$.

Definition

If x is discrete r.v. with counting values $x_1, x_2, ...$ then the function denoted by $p_x(x)$ and defined as follows:-

$$p_{x}(x) = \begin{cases} p(x = x_{j}) & x = x_{j} \\ 0 & x \neq x_{j} \end{cases} \quad j = 1, 2, 3, 4, \dots,$$
 (1)

the above equation is called p.m.f.

- 1. $Pr(a \le x \le b) = \sum_{x=a}^{b} p(x)$.
- 2. $Pr(a < x \le b) = \sum_{x=a+1}^{b} p(x)$.
- 3. $Pr(a \le x < b) = \sum_{x=a}^{b-1} p(x)$.
- 4. $Pr(a < x < b) = \sum_{x=a+1}^{b-1} p(x)$.

Properties of p.m.f

1.
$$p_x(x) \ge 0$$
. for all $x = 0, 1, 2, 3, 4, ...$

1.
$$\sum_{\text{for all } x} x = \frac{n(n+1)}{2}$$
.

Properties of p.m.f

- 1. $p_x(x) \ge 0$. for all x = 0, 1, 2, 3, 4, ...
- 2. $\sum_{for \ all \ x} p_x(x) = 1$.

- 1. $\sum_{\text{for all } x} x = \frac{n(n+1)}{2}$.
- 2. $\sum_{\text{for all } x} x^2 = \frac{n(n+1)(2n+1)}{6}$.

Properties of p.m.f

- 1. $p_x(x) \ge 0$. for all x = 0, 1, 2, 3, 4, ...
- 2. $\sum_{for\ all\ x} p_x(x) = 1$.

- 1. $\sum_{\text{for all } x} x = \frac{n(n+1)}{2}$.
- 2. $\sum_{for \ all \ x} x^2 = \frac{n(n+1)(2n+1)}{6}$.
- 3. $\sum_{\text{for all } x} x^3 = \left[\frac{n(n+1)}{2}\right]^2.$

Practical 1.1

1. Let

$$p_x(x) = \begin{cases} \frac{x}{10} & x = 1, 2, 3, 4. \\ 0 & \text{otherwise} \end{cases}$$

- 1— Prove that $p_x(x)$ is a p.m.f.?
- 2— Sketch the graph of $p_x(x)$?
- 3- Find the p(x = 1), p(x = 5) and $p(x = \frac{1}{2})$?
- 4- Find $p(x \le 3)$, p(|x| < 2)?

Practical 1.1

1. Let

$$p_x(x) = \begin{cases} \frac{x}{10} & x = 1, 2, 3, 4. \\ 0 & \text{otherwise} \end{cases}$$

- 1— Prove that $p_x(x)$ is a p.m.f.?
- 2— Sketch the graph of $p_x(x)$?
- 3- Find the p(x = 1), p(x = 5) and $p(x = \frac{1}{2})$?
- 4- Find $p(x \le 3)$, p(|x| < 2)?
- 2. Determine the constant c so that p(x) is p.m.f.

$$1-p(x)=c\left[\frac{1}{3}\right]^{x}$$
 $x=1,2,3,...$

$$2-p(x)=cx$$
 $x=1,2,3,\ldots,10.$

Practical 1.1

- 3. Let a r.v. x has p.m.f x = 0, 1, 2, 3, 4, 5, 6, 7, 8. and p(x) = a, 3a, 5a, 7a, 9a, 11a, 13a, 15a, 17a.
 - 1— Determine the value of a.?
 - 2- Find p(x < 2), $p(x \le 6)$, and p(3 < x < 5)?

Continuous Random Variable

Definition

If x is continuous random variable then f(x) is called probability density function p.d.f.. The properties of p.d.f.:

- 1. $f(x) \ge 0 \quad \forall x$.
- $2. \int_{-\infty}^{\infty} f(x) dx = 1.$

- 1. $Pr(a < x < b) = Pr(a \le x \le b) = \int_a^b f(x) dx$.
- 2. Pr(x = a) = 0. for continuous random variable.
- 3. Pr(x = a) = Pr(a). for discrete random variable.

Continuous Random Variable

Example

Let f(x) = cx 0 < x < 1 where f(x) is p.d.f.: -

- 1. Find the constant *c* ?
- 2. Sketch the graph of f(x)?
- 3. Find $Pr(\frac{1}{2} < x < \frac{3}{4})$ and $Pr(-\frac{1}{2} < x < \frac{1}{2})$?

Continuous Random Variable

Practical 1.2

1. Let the r.v \times have:

$$f(x) = \begin{cases} \frac{\sin x}{2} & 0 \le x \le \pi \\ 0 & \text{otherwise} \end{cases}$$

Prove that the f(x) is p.d.f of x and compute the $Pr(x \ge \frac{\pi}{3})$?

2. Determine the value of k which would make:

$$f(x) = \begin{cases} kx & |x - 2| < 1\\ 0 & |x - 2| > 1 \end{cases}$$

a p.d.f of x?

Cumulative distribution function c.d.f

If x is a r.v. having p.m.f and p.d.f such as p(x) and f(x). Then the cumulative distribution function is defined as follows:

- 1. $F_X(x) = Pr(X \le x)$.
- 2. $F_X(x) = Pr(X \le x) = \sum_{X \le x} p(X)$ d.r.v
- 3. $F_X(x) = Pr(X \le x) = \int_{X \le x} f(X)$ c.r.v

Properties of c.d.f

- 1. $0 \le F_X(x) \le 1$ because $0 \le p(X \le x) \le 1$.
- 2. F(X) is a non-decreasing function of x.
- 3. $F(\infty) = \lim_{x \to \infty} F(x) = 1$ and $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$. Because the set $[x : x \le \infty]$ is entire one dimensional space, the set $[x : x \le -\infty]$ is a null set.
- 4. F(x) is continuous to the right side.

Cumulative distribution function c.d.f

Practical 1.2

- 1. Prove that the above properties are TRUE?
- 2. Let N be a positive integer and let

$$p(x) = \begin{cases} \frac{2x}{N(N+1)} & x = 1, 2, 3, \dots, N \\ 0 & \text{Otherwise} \end{cases}$$

- 1— Show that p(x) is p.m.f?
- 2— Find c.d.f of p(x)?
- 3. Let the r.v. x have

$$f(x) = \begin{cases} \frac{\sin x}{2} & 0 \le x \le \pi \\ 0 & \text{Otherwise} \end{cases}$$

- 1— Prove that the f(x) is p.d.f?
- 2— Determine the c.d.f of x and sketch the graph of c.d.f?
- 3- Find $Pr(x \ge \frac{\pi}{3})$ and $Pr(x \ge m) = \frac{1}{2}$?

Cumulative distribution function c.d.f

Homework 1.1

1. A r.v. has c.d.f

$$F(x) = \frac{1}{\pi} \left[\frac{\pi}{2} + \tan^{-1}(x) \right]$$

- Find the p.d.f of x?
- ▶ Determine Pr(|x| < 1) ?

Since the function F is right-continuous, it is dis-continuous at the point x_0 , iff $F_{(x_0')} < F_{(x_0)}$. We can say that the difference will be called the jump $p_{(x_0)}$ at the point x_0 . Then , we can write the function as follows:

$$F_{(x)} = \alpha F_c + (1 - \alpha)F_d, \qquad 0 \le \alpha \le 1.$$

where F_c is a continuous c.d.f., and F_d is a discrete c.d.f..

- 1. If $\alpha = 0$, then $F_{(x)}$ is a discrete function.
- 2. If $\alpha = 1$, then $F_{(x)}$ is a continuous function.
- 3. Otherwise, the distribution $F_{(x)}$ will be called *mixed* distribution. It means that the *mixed* distribution is combination of discrete and continuous.

Practical 1.3

1— Let x be a random variable. If the mixed distribution have

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{4} & 0 \le x < 1 \\ \frac{x+1}{4} & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

a- Sketch the graph of F(x) ?

b— Find the p.d.f of x?

$$c-$$
 Find $Pr(\frac{1}{4} < x < 1), Pr(x = 1), and $Pr(x = \frac{1}{2})$?$

HomeWork 1.2

1— Let x be a random variable. If the mixed distribution have

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x+1}{2} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

a— Sketch the graph of F(x) ? b— Find the p.d.f of x ? c— Find $Pr(x=1), Pr(x=\frac{1}{2}), Pr(1 < x \leq 2), Pr(x > \frac{1}{2})$ and $Pr(|x| \leq 1)$?

HomeWork 1.2

2 Let x be a random variable. If the mixed distribution have

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{3} & 0 \le x < 1 \\ \frac{x}{2} & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

- a— Sketch the graph of F(x) ?
- b- Find the p.d.f of x?
- c- Find $Pr(\frac{1}{2}\leq x\leq \frac{3}{2}), Pr(\frac{1}{2}\leq x\leq 1)$ and $Pr(1\leq x\leq \frac{3}{2})$?

HomeWork 1.2

3- Leting c.d.f of discrete random variable

$$F(x) = \begin{cases} \frac{32}{31} \left[1 - \left(\frac{1}{2}\right)^x \right] & x = 1, 2, 3, 4, 5 \\ 0 & x < 1 \\ 1 & x > 5 \end{cases}$$

a— Find the p.m.f of x? b— Find $Pr(x < 2), Pr(1 \le x \le 5),$ $Pr(|x| \le 3)$ and $Pr(x \le \frac{5}{2})$?

Mathematical Expectation

Definition

If x is a r.v. and u(x) is a function of r.v. x, then the Mathematical Expectation or Expected value for u(x) is defined as follows:

$$E[u(x)] = \sum_{\forall j} u(x_j) p(u_j) \quad \text{d.r.v}$$

$$E[u(x)] = \int_{\forall x} u(x) f(x) dx \quad \text{c.r.v}$$

Properties of Mathematical Expectation

- 1. E(c) = c where c is constant.
- 2. $E[cu_1(x)] = cE[u_1(x)].$
- 3. $E[c_1u_1(x) + c_2u_2(x)] = c_1E[u_1(x)] + c_2E[u_2(x)].$
- 4. $E[u_1(x)] \leq E[u_2(x)]$ if $u_1(x) \leq u_2(x)$.

5.

$$\mu = E(x) = \sum_{\forall x} xp(x) \text{ d.r.v}$$
$$= \int_{-\infty}^{\infty} xf(x)dx \text{ c.r.v}$$

6.

$$var(x) = \sum_{\forall x} (x - \mu)^2 p(x) \quad \text{d.r.v}$$
$$= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \quad \text{c.r.v}$$

Mathematical Expectation

Example

The p.d.f. of x is:

$$f(x) = \begin{cases} 2 \exp(-x) & 0 \le x \le \ln 2 \\ 0 & \text{otherwise} \end{cases}$$

- 1. Find the c.d.f of x?
- 2. Find E(x) and $E[\exp(2x)]$?
- 3. Letting g(x) a function of x where g(x) = 2x + 1. Find E(2x + 1)?

The Moment

1. Non-Central Moment

If x is a r.v., the r^{th} non-central moment of x usually denoted by m_r as $m_r = E(x)^r$ where r is a positive integer number. For example, $m_1 = E(x)$, $m_2 = E(x^2)$, \cdots , etc.

2. Central Moment

If x is a r.v., the r^{th} central moment of x around a is defined as E(x-a). If $a=\mu$, then the r^{th} central moment of x,i.e., μ_x denoted by μ_r' as: $\mu_r' = E(x-\mu_r)^r$.

$$\mu'_1 = E(x - \mu_1) = E(x) - \mu_1 = \mu_1 - \mu_1 = 0.$$

$$\mu'_2 = E(x - \mu)^2 = var(x) = E(x^2) - (EX)^2$$

$$\mu'_3 = E(x - \mu)^3 = E(x^3) - 3\mu E(x^2) + 3\mu^2 Ex - \mu^3, \text{ generally,}$$

$$\mu'_r = E\left[\sum_{i=0}^r \binom{r}{i} (-1)^i (\mu_1)^i x^{r-i}\right]$$

The Moment

HomeWork

- 1. Find the relationship between *central* and *non-central* moments?
- 2. Let

$$p(x) = \begin{cases} \frac{1}{3} & x = -1, 0, 1\\ 0 & \text{otherwise} \end{cases}$$

- 1— Prove that p(x) is p.m.f? 2— Find the c.d.f of x? 3— Find the variance of x? 4— Find Pr(x=-1) and $Pr(-\frac{1}{2} < x < \frac{1}{2})$?
- 3. Let x has p.m.f p(x) is positive where x=-1,0,1. If $f(0)=\frac{1}{2}, E(x)=\frac{1}{6}$. Find $E(x^2)$ and determine f(1) and f(-1)?

Factorial Moment

Definition

If x is a r.v., the r^{th} factorial moment is defined as:

$$\mu_{[r]} = E[x(x-1)(x-2)\cdots(x-r+1)],$$

where r is a positive integer number.

$$\mu_{[1]} = E(x)$$

$$\mu_{[2]} = E[x(x-1)] = E(x^2) - E(x)$$

$$\mu_{[3]} = E[x(x-1)(x-2)] = E(x^3) - 3E(x^2) + 2E(x)$$

Factorial Moment

Example

Let

$$f(x) = \begin{cases} \frac{2x}{a^2} & 0 \le x \le a \\ 0 & \text{Otherwise} \end{cases}$$

- 1. Find the expectation of x?
- 2. Find the second non-central moment of x?
- 3. Find the second central moment of x?
- 4. Find the third factorial moment of x?

Moment Generating Function M.G.F

Definition

The Moment Generating Function of a random variable x denoted by $M_x(t)$. It can be defined as follows:

$$M_X(t) = E[\exp(tx)] = \int_{-\infty}^{\infty} \exp(tx)f(x)dx \quad c.r.v.$$

$$M_X(t) = E[\exp(tx)] = \sum_{-\infty}^{\infty} \exp(tx)p(x) \quad d.r.v.$$

where h is a positive number, -h < t < h. If we differinate M.G.F r times with respect to t, then

$$\frac{\partial^r M_x(t)}{\partial t^r} = \int_{-\infty}^{\infty} x^r \exp(tx) f(x) dx$$
$$\frac{\partial^r M_x(t)}{\partial t^r}|_{t=0} = \int_{-\infty}^{\infty} x^r f(x) dx$$

Properties of M.G.F

- 1. If y = ax + b and $m_x(t)$ is a moment generating function of x then: $M_y(t) = M_x(at) \times \exp(bt)$.
- 2. If z = y + x and $M_x(t)$, $M_y(t)$ are M.G.F of two independent r.v. of (y,x) then: $M_z(t) = M_y(t) \times M_x(t)$.
- 3. Let x_1, x_2, \dots, x_n be a random sample from distribution with M.G.F, then: $M_{\overline{X}}(t) = \left[M_X\left(\frac{t}{n}\right)\right]^n$.

Example

Suppose that r.v. y has M.G.F $M_y(t) = [1-t]^{-r}$ r < 1. Find $E(y)^r, r = 1, 2, 3, \cdots$, then find the mean and the variance?

Homework

If the M.G.F of $\mu_X(t) = \frac{2}{5} \exp(t) + \frac{1}{5} \exp(2t) + \frac{2}{5} \exp(3t)$. Find the mean and variance of x and defined the p.d.f of x?

Factorial Moment Generating Function

Let x be a r.v. the factorial M.G.F. is defined as :

$$\Psi_x(t) = E(t^x) = \int_{\forall x} t^x f(x) dx$$
 c.r.v
 $\Psi_x(t) = E(t^x) = \sum_{\forall x} t^x p(x)$ d.r.v

Example

Prove that

$$\Psi_{x}^{r}(t) = E[x(x-1)(x-2)...(x-r+1)]?$$

Characteristic Function

In some cases, the distribution does not have M.G.F then there are another techinque in which called *Characteristic Function* denoted by $\phi_x(t)$. It can be defined as follows:

$$\phi_X(t) = E \exp(itx) = \int_{\forall x} \exp(itx)f(x)dx$$
 c.r.v.
 $\phi_X(t) = E \exp(itx) = \sum_{\forall x} \exp(itx)p(x)$ d.r.v.

Properties of Characteristic Function

$$1 - \phi_{x}(0) = 1
2 - \phi_{x}(t) = E[\cos(tx) + i\sin(tx)]
3 - |\phi_{x}(t)| \leq 1
4 - \phi_{x}(-t) = \phi_{x}(t)$$

Characteristic Function

Some Theories

- 1. $\phi_{cx}(t) = \phi_x(ct)$.
- 2. If x_1 and x_2 are two independent r.v. then

$$\phi_{x_1+x_2}(t) = \phi_{x_1}(t) + \phi_{x_2}(t)$$

3. If x is a r.v. with characteristic function $\phi_x(t)$ and $\mu_r = Ex^r$ exists then

$$\mu_r = \left[\frac{1}{i}\right]^r \left[\frac{\partial^r \phi_x(t)}{\partial t^r}\right]_{t=0}$$

Example Let x be c.r.v. having p.d.f:

$$f(x) = \begin{cases} \frac{1}{2} \exp(-|x|) & -\infty < x < \infty \\ 0 & \text{otherwise} \end{cases}$$

show that $\phi_X(t) = \frac{1}{(1+t^2)}$?

The Median of distribution

A *median* of any distribution for one r.v. can be computed as follows:

$$p(x \le m) = \sum_{-\infty}^{m} p(x) \ge \frac{1}{2} \quad \text{or}$$

$$p(x < m) = \sum_{-\infty}^{m-1} p(x) \le \frac{1}{2} \quad \text{d.r.v.}$$

$$f(x \le m) = \int_{-\infty}^{m} f(x) dx = \frac{1}{2} \quad \text{or}$$

$$f(x \ge m) = \int_{-\infty}^{\infty} f(x) dx = \frac{1}{2} \quad \text{c.r.v.}$$

The Median of distribution

Examples

1. Find the median of the following p.d.f:

$$f(x) = \begin{cases} 3x^2 & 0 < x \le 1\\ 0 & \text{otherwise} \end{cases}$$

2. Let

$$p(x) = \begin{cases} \binom{4}{x} (\frac{1}{4})^x (\frac{3}{4})^{4-x} & x = 0, 1, 2, 3, 4 \\ 0 & \text{otherwise} \end{cases}$$

find the median of p(x)?

The Mode of distribution

A *mode* of any distribution of discrete or continuous r.v. is the value of x when maxizing f(x).

Examples

1. find the mode of the following p.m.f

$$p(x) = \begin{cases} (\frac{1}{2})^x & x = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

2. Let

$$f(x) = \begin{cases} \frac{1}{2}x^2 \exp(-x) & 0 < x < \infty \\ 0 & \text{otherwise} \end{cases}$$

find the mode of x?

Definition

Let x and y be two r.vs discrete or continuous the f(x, y) is called Joint function or bivariate distribution of x and y.

$$\int_{\forall x} \int_{\forall y} f(x,y) dx dy = 1 \qquad f(x,y) \ge 0 \qquad \text{c.r.v}$$

$$\sum_{\forall x} \sum_{\forall y} p(x_i,y_j) = 1 \quad p(x_i,y_j) \ge 0 \quad i,j = 1,2,\dots \text{d.r.v}$$

Marginal Function

Let f(x, y) be the joint p.d.f or p.m.f of x and y, then:

$$f(x) = \int_{\forall y} f(x, y) dy$$
 c.r.v.
 $f(y) = \int_{\forall y} f(x, y) dx$ c.r.v.

$$f(x) = \sum_{\forall y} p(x, y)$$
 d.r.v.

$$f(y) = \sum_{\forall x} p(x, y)$$
 d.r.v.

Conditional distribution

The conditional distribution is defined as follows:

$$f(x|y) = \frac{f(x,y)}{f(y)} \qquad f(y) \neq 0$$

$$f(y|x) = \frac{f(x,y)}{f(x)} \qquad f(x) \neq 0$$

$$f(y|x) = \frac{f(x,y)}{f(x)}$$
 $f(x) \neq 0$

is the conditional distribution a p.d.f. Prove that?

Remark

1. If f(x|y) is p.d.f then we can compute;

$$Pr(a < x < b|y) = \int_a^b f(x|y)dx,$$

and

$$Pr(c < y < d|x) = \int_{c}^{d} f(y|x)dy.$$

Conditional Expectation

Let u(x) be a function of x, then the *Conditional Expectation* is defined as:

$$E[u(x)|y] = \int u(x)f(x|y)dx \quad \text{c.r.v}$$
$$= \sum u(x)f(x|y) \quad \text{d.r.v}$$

If u(x) = x then

$$E(x|y) = \int xf(x|y)dx$$
$$= \sum xf(x|y)$$
$$var(x|y) = E(x^{2}|y) - [E(x|y)]^{2}$$

Example

Let

$$p(x_1, x_2) = \frac{x_1 + x_2}{21}$$
 $x_1 = 1, 2, 3$ and $x_2 = 1, 2$

- 1. Show that $p(x_1, x_2)$ is p.m.f?
- 2. Find $p(x_1)$ and $p(x_2)$?
- 3. Find $p(x_1|x_2)$ and $p(x_2|x_1)$?
- 4. Find $E(x_1|x_2)$ and $E(x_2|x_1)$?
- 5. Find $Pr(x_1 = 3)$, $Pr(x_2 = 2)$, $Pr(x_1 \le 3, x_2 \le 2)$, $Pr(1 < x_1 \le 3, x_2 \le 2)$, $Pr(0 < x_1 < 3|x_2 = 1)$ and $Pr(0 < x_2 < 2|x_1 = 2)$?

Some Theories

- 1. Let (x,y) be two r.vs then E[E(g(y)|x)] = E[g(y)] in particular E[E(y|x)] = E(y) and E[E(g(x)|y)] = E[g(x)] in particular E[E(x|y)] = E(x).
- 2. var(y) = E[var(y|x)] + var[E(y|x)].

Correlation Coefficient

Distribution of Random Variable

Discrete Distribution

Continuous Distribution

Ditributions of functions of random variable