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Introduction

We have to know some terms which are very important in
probability theory

1. A Random Experiment is an experiment or process for which
the outcome can not be predicted with certainty.

2. The Sample Space Ω is the collection of all possible outcomes
of a Random Experiment

3. An Event is a subset of the Sample Space.

Example 1.1 Three coins are tossed and let r.v. represents the
number of heads then x may take values x = 1, 2, 3, .
S .S = {HHH,HTH,THH,HHT ,TTH,THT ,HTT ,TTT}.
Then, x = 0, 1, 2, 3.
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Random Variable and Function of Random Variable

Remark If x1 and x2 are two r.v.s and c1, c2 are constants, then:

1. c1x1 + c2x2 is r.v.

2. x1 ± x2 is r.v.

3. max{x1, x2} is r.v.

4. min{x1, x2} is r.v.
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Discrete Random Variable

Definition
If x is discrete r.v. with counting values x1, x2, . . . then the
function denoted by px(x) and defined as follows:-

px(x) =

{
p(x = xj) x = xj j = 1, 2, 3, 4, , · · · ,
0 x 6= xj

(1)

the above equation is called p.m.f.

Remark

1. Pr(a ≤ x ≤ b) =
∑b

x=a p(x).

2. Pr(a < x ≤ b) =
∑b

x=a+1 p(x).

3. Pr(a ≤ x < b) =
∑b−1

x=a p(x).

4. Pr(a < x < b) =
∑b−1

x=a+1 p(x).
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Discrete Random Variable

Properties of p.m.f

1. px(x) ≥ 0. for all x = 0, 1, 2, 3, 4, . . .

2.
∑

for all x px(x) = 1.

Remark

1.
∑

for all x x = n(n+1)
2 .

2.
∑

for all x x
2 = n(n+1)(2n+1)

6 .

3.
∑

for all x x
3 =

[
n(n+1)

2

]2
.
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Discrete Random Variable

Practical 1.1

1. Let

px(x) =

{
x
10 x = 1, 2, 3, 4.

0 otherwise

1− Prove that px(x) is a p.m.f.?
2− Sketch the graph of px(x) ?
3− Find the p(x = 1), p(x = 5) and p(x = 1

2) ?
4− Find p(x ≤ 3), p(|x | < 2)?

2. Determine the constant c so that p(x) is p.m.f.
1− p(x) = c

[
1
3

]x
x = 1, 2, 3, . . .

2− p(x) = cx x = 1, 2, 3, . . . , 10.
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Discrete Random Variable

Practical 1.1

3. Let a r.v. x has p.m.f x = 0, 1, 2, 3, 4, 5, 6, 7, 8.
and p(x) = a, 3a, 5a, 7a, 9a, 11a, 13a, 15a, 17a.
1− Determine the value of a.?
2− Find p(x < 2), p(x ≤ 6), andp(3 < x < 5)?



Continuous Random Variable

Definition
If x is continuous random variable then f (x) is called probability
density function p.d.f.. The properties of p.d.f. :

1. f (x) ≥ 0 ∀x .
2.
∫∞
−∞ f (x)dx = 1.

Remark

1. Pr(a < x < b) = Pr(a ≤ x ≤ b) =
∫ b
a f (x)dx .

2. Pr(x = a) = 0. for continuous random variable.

3. Pr(x = a) = Pr(a). for discrete random variable.



Continuous Random Variable

Example

Let f (x) = cx 0 < x < 1 where f (x) is p.d.f. : −
1. Find the constant c ?

2. Sketch the graph of f (x) ?

3. Find Pr(12 < x < 3
4) and Pr(−1

2 < x < 1
2) ?



Continuous Random Variable

Practical 1.2

1. Let the r.v x have:

f (x) =

{
sin x
2 0 ≤ x ≤ π

0 otherwise

Prove that the f (x) is p.d.f of x and compute the Pr(x ≥ π
3 ) ?

2. Determine the value of k which would make:

f (x) =

{
kx |x − 2| < 1

0 |x − 2| > 1

a p.d.f of x ?



Cumulative distribution function c.d.f

If x is a r.v. having p.m.f and p.d.f such as p(x) and f (x). Then
the cumulative distribution function is defined as follows:

1. FX (x) = Pr(X ≤ x).

2. FX (x) = Pr(X ≤ x) =
∑

X≤x p(X ) d .r .v

3. FX (x) = Pr(X ≤ x) =
∫
X≤x f (X ) c.r .v

Properties of c.d.f

1. 0 ≤ FX (x) ≤ 1 because 0 ≤ p(X ≤ x) ≤ 1.

2. F (X ) is a non-decreasing function of x .

3. F (∞) = limx→∞ F (x) = 1 and F (−∞) = limx→−∞ F (x) = 0.
Because the set [x : x ≤ ∞] is entire one dimensional space,
the set [x : x ≤ −∞] is a null set.

4. F (x) is continuous to the right side.



Cumulative distribution function c.d.f

Practical 1.2

1. Prove that the above properties are TRUE ?

2. Let N be a positive integer and let

p(x) =

{
2x

N(N+1) x = 1, 2, 3, . . . ,N

0 Otherwise

1− Show that p(x) is p.m.f?
2− Find c.d.f of p(x) ?

3. Let the r.v. x have

f (x) =

{
sin x
2 0 ≤ x ≤ π

0 Otherwise

1− Prove that the f (x) is p.d.f ?
2− Determine the c.d.f of x and sketch the graph of c.d.f ?
3− Find Pr(x ≥ π

3 ) and Pr(x ≥ m) = 1
2 ?



Cumulative distribution function c.d.f

Homework 1.1

1. A r.v. has c.d.f

F (x) =
1

π

[π
2

+ tan−1(x)
]

I Find the p.d.f of x ?
I Determine Pr(|x | < 1) ?



Mixed Distribution

Since the function F is right-continuous, it is dis-continuous at the
point x0, iff F(x ′0) < F(x0). We can say that the difference will be
called the jump p(x0) at the point x0. Then , we can write the
function as follows:

F(x) = αFc + (1− α)Fd , 0 ≤ α ≤ 1.

where Fc is a continuous c.d.f., and Fd is a discrete c.d.f..

1. If α = 0, then F(x) is a discrete function.

2. If α = 1, then F(x) is a continuous function.

3. Otherwise, the distribution F(x) will be called mixed
distribution. It means that the mixed distribution is
combination of discrete and continuous.



Mixed Distribution

Practical 1.3

1− Let x be a random variable. If the mixed distribution have

F (x) =


0 x < 0
x2

4 0 ≤ x < 1
x+1
4 1 ≤ x < 2

1 x ≥ 2

a− Sketch the graph of F (x) ?
b− Find the p.d.f of x ?
c− Find Pr(14 < x < 1),Pr(x = 1), and Pr(x = 1

2) ?



Mixed Distribution

HomeWork 1.2

1− Let x be a random variable. If the mixed distribution have

F (x) =


0 x < 0
x+1
2 0 ≤ x < 1

1 x ≥ 1

a− Sketch the graph of F (x) ?
b− Find the p.d.f of x ?
c− Find Pr(x = 1),Pr(x = 1

2),Pr(1 < x ≤ 2),Pr(x >
1
2)and Pr(|x | ≤ 1) ?



Mixed Distribution

HomeWork 1.2

2− Let x be a random variable. If the mixed distribution have

F (x) =


0 x < 0
x
3 0 ≤ x < 1
x
2 1 ≤ x < 2

1 x ≥ 2

a− Sketch the graph of F (x) ?
b− Find the p.d.f of x ?
c− Find Pr(12 ≤ x ≤ 3

2),Pr(12 ≤ x ≤ 1) and Pr(1 ≤ x ≤ 3
2) ?



Mixed Distribution

HomeWork 1.2

3− Leting c.d.f of discrete random variable

F (x) =


32
31

[
1− (12)x

]
x = 1, 2, 3, 4, 5

0 x < 1

1 x > 5

a− Find the p.m.f of x ?
b− Find Pr(x < 2),Pr(1 ≤ x ≤ 5),
Pr(|x | ≤ 3) and Pr(x ≤ 5

2) ?



Mathematical Expectation

Definition
If x is a r.v. and u(x) is a function of r.v. x , then the Mathematical
Expectation or Expected value for u(x) is defined as follows:

E [u(x)] =
∑
∀j

u(xj)p(uj) d.r.v

E [u(x)] =

∫
∀x

u(x)f (x)dx c.r.v



Properties of Mathematical Expectation

1. E (c) = c where c is constant.

2. E [cu1(x)] = cE [u1(x)].

3. E [c1u1(x) + c2u2(x)] = c1E [u1(x)] + c2E [u2(x)].

4. E [u1(x)] ≤ E [u2(x)] if u1(x) ≤ u2(x).

5.

µ = E (x) =
∑
∀x

xp(x) d.r.v

=

∫ ∞
−∞

xf (x)dx c.r.v

6.

var(x) =
∑
∀x

(x − µ)2p(x) d.r.v

=

∫ ∞
−∞

(x − µ)2f (x)dx c.r.v



Mathematical Expectation

Example

The p.d.f. of x is:

f (x) =

{
2 exp (−x) 0 ≤ x ≤ ln 2

0 otherwise

1. Find the c.d.f of x?

2. Find E (x) and E [exp (2x)]?

3. Letting g(x) a function of x where g(x) = 2x + 1.
Find E (2x + 1)?



The Moment

1. Non-Central Moment
If x is a r.v., the r th non-central moment of x usually denoted
by mr as mr = E (x)r where r is a positive integer number.
For example, m1 = E (x),m2 = E (x2), · · · , etc.

2. Central Moment
If x is a r.v., the r th central moment of x around a is defined
as E (x − a). If a = µ, then the r th central moment
of x ,i.e., µx denoted by µ′r as: µ′r = E (x − µr )r .

Remark

µ′1 = E (x − µ1) = E (x)− µ1 = µ1 − µ1 = 0.

µ′2 = E (x − µ)2 = var(x) = E (x2)− (EX )2

µ′3 = E (x − µ)3 = E (x3)− 3µE (x2) + 3µ2Ex − µ3, generally,

µ′r = E

[
r∑

i=0

(
r

i

)
(−1)i (µ1)ix r−i

]



The Moment

HomeWork

1. Find the relationship between central and non-central
moments?

2. Let

p(x) =

{
1
3 x = −1, 0, 1

0 otherwise

1− Prove that p(x) is p.m.f? 2− Find the c.d.f of x?
3− Find the variance of x? 4− Find Pr(x = −1)
and Pr(−1

2 < x < 1
2)?

3. Let x has p.m.f p(x) is positive where x = −1, 0, 1.
If f (0) = 1

2 ,E (x) = 1
6 . Find E (x2) and determine f (1)

and f (−1)?



Factorial Moment

Definition
If x is a r.v., the r th factorial moment is defined as:

µ[r ] = E [x(x − 1)(x − 2) · · · (x − r + 1)] ,

where r is a positive integer number.

µ[1] = E (x)

µ[2] = E [x(x − 1)] = E (x2)− E (x)

µ[3] = E [x(x − 1)(x − 2)] = E (x3)− 3E (x2) + 2E (x)



Factorial Moment

Example

Let

f (x) =

{
2x
a2

0 ≤ x ≤ a

0 Otherwise

1. Find the expectation of x?

2. Find the second non-central moment of x?

3. Find the second central moment of x?

4. Find the third factorial moment of x?



Moment Generating Function M.G.F

Definition
The Moment Generating Function of a random variable x denoted
by Mx(t). It can be defined as follows:

Mx(t) = E [exp(tx)] =

∫ ∞
−∞

exp(tx)f (x)dx c.r .v .

Mx(t) = E [exp(tx)] =
∞∑
−∞

exp(tx)p(x) d .r .v .

where h is a positive number, −h < t < h.
If we differinate M.G .F r times with respect to t, then

∂rMx(t)

∂tr
=

∫ ∞
−∞

x r exp(tx)f (x)dx

∂rMx(t)

∂tr
|t=0 =

∫ ∞
−∞

x r f (x)dx



Properties of M.G.F

1. If y = ax + b and mx(t) is a moment generating function of x
then: My (t) = Mx(at)× exp(bt).

2. If z = y + x and Mx(t),My (t) are M.G.F of two independent
r.v. of (y , x) then: Mz(t) = My (t)×Mx(t).

3. Let x1, x2, · · · , xn be a random sample from distribution with
M.G.F, then: Mx(t) =

[
Mx( t

n )
]n
.

Example

Suppose that r.v. y has M.G.F My (t) = [1− t]−r r < 1.
FInd E (y)r , r = 1, 2, 3, · · · , then find the mean and the variance?

Homework
If the M.G.F of µx(t) = 2

5 exp(t) + 1
5 exp(2t) + 2

5 exp(3t). Find the
mean and variance of x and defined the p.d.f of x ?



Factorial Moment Generating Function

Let x be a r.v. the factorial M.G.F. is defined as :

Ψx(t) = E (tx) =

∫
∀x

tx f (x)dx c.r.v

Ψx(t) = E (tx) =
∑
∀x

txp(x) d.r.v

Example

Prove that

Ψr
x(t) = E [x(x − 1)(x − 2) . . . (x − r + 1)]?



Characteristic Function
In some cases, the distribution does not have M.G.F then there are
another techinque in which called Characteristic Function denoted
by φx(t). It can be defined as follows:

φx(t) = E exp(itx) =

∫
∀x

exp(itx)f (x)dx c.r.v.

φx(t) = E exp(itx) =
∑
∀x

exp(itx)p(x) d.r.v.

Properties of Characteristic Function

1− φx(0) = 1

2− φx(t) = E [cos(tx) + i sin(tx)]

3− |φx(t)| ≤ 1

4− φx(−t) = φx(t)



Characteristic Function

Some Theories

1. φcx(t) = φx(ct).

2. If x1 and x2 are two independent r.v. then

φx1+x2(t) = φx1(t) + φx2(t)

3. If x is a r.v. with characteristic function φx(t) and µr = Ex r

exists then

µr =

[
1

i

]r [∂rφx(t)

∂tr

]
t=0

Example Let x be c.r.v. having p.d.f:

f (x) =

{
1
2 exp(−|x |) −∞ < x <∞
0 otherwise

show that φx(t) = 1
(1+t2)

?



The Median of distribution

A median of any distribution for one r.v. can be computed as
follows:

p(x ≤ m) =
m∑
−∞

p(x) ≥ 1

2
or

p(x < m) =
m−1∑
−∞

p(x) ≤ 1

2
d.r.v.

f (x ≤ m) =

∫ m

−∞
f (x)dx =

1

2
or

f (x ≥ m) =

∫ ∞
m

f (x)dx =
1

2
c.r.v.



The Median of distribution

Examples

1. Find the median of the following p.d.f:

f (x) =

{
3x2 0 < x ≤ 1

0 otherwise

2. Let

p(x) =

{(4
x

)
(14)x(34)4−x x = 0, 1, 2, 3, 4

0 otherwise

find the median of p(x) ?



The Mode of distribution

A mode of any distribution of discrete or continuous r.v. is the
value of x when maxizing f (x).

Examples

1. find the mode of the following p.m.f

p(x) =

{
(12)x x = 1, 2, . . .

0 otherwise

2. Let

f (x) =

{
1
2x

2 exp(−x) 0 < x <∞
0 otherwise

find the mode of x ?



Joint, Marginal and Conditional distribution

Definition
Let x and y be two r.vs discrete or continuous the f (x , y) is called
Joint function or bivariate distribution of x and y .∫

∀x

∫
∀y

f (x , y)dxdy = 1 f (x , y) ≥ 0 c.r.v∑
∀x

∑
∀y

p(xi , yj) = 1 p(xi , yj) ≥ 0 i , j = 1, 2, . . . d.r.v

Marginal Function

Let f (x , y) be the joint p.d.f or p.m.f of x and y , then:

f (x) =

∫
∀y

f (x , y)dy c.r.v.

f (y) =

∫
∀x

f (x , y)dx c.r.v.



Joint, Marginal and Conditional distribution

f (x) =
∑
∀y

p(x , y) d.r.v.

f (y) =
∑
∀x

p(x , y) d.r.v.

Conditional distribution
The conditional distribution is defined as follows:

f (x |y) =
f (x , y)

f (y)
f (y) 6= 0

f (y |x) =
f (x , y)

f (x)
f (x) 6= 0

is the conditional distribution a p.d.f. Prove that?



Joint, Marginal and Conditional distribution

Remark

1. If f (x |y) is p.d.f then we can compute;

Pr(a < x < b|y) =

∫ b

a
f (x |y)dx ,

and

Pr(c < y < d |x) =

∫ d

c
f (y |x)dy .



Joint, Marginal and Conditional distribution

Conditional Expectation

Let u(x) be a function of x , then the Conditional Expectation is
defined as:

E [u(x)|y ] =

∫
u(x)f (x |y)dx c.r.v

=
∑

u(x)f (x |y) d.r.v

If u(x) = x then

E (x |y) =

∫
xf (x |y)dx

=
∑

xf (x |y)

var(x |y) = E (x2|y)− [E (x |y)]2



Joint, Marginal and Conditional distribution

Example

Let

p(x1, x2) =
x1 + x2

21
x1 = 1, 2, 3 and x2 = 1, 2

1. Show that p(x1, x2) is p.m.f?

2. Find p(x1) and p(x2) ?

3. Find p(x1|x2) and p(x2|x1) ?

4. Find E (x1|x2) and E (x2|x1) ?

5. Find Pr(x1 = 3),Pr(x2 = 2),Pr(x1 ≤ 3, x2 ≤ 2),Pr(1 < x1 ≤
3, x2 ≤ 2),Pr(0 < x1 < 3|x2 = 1) and Pr(0 < x2 < 2|x1 =
2) ?



Joint, Marginal and Conditional distribution

Some Theories

1. Let (x , y) be two r.vs then E [E (g(y)|x)] = E [g(y)] in
particular E [E (y |x)] = E (y) and E [E (g(x)|y)] = E [g(x)] in
particular E [E (x |y)] = E (x).

2. var(y) = E [var(y |x)] + var [E (y |x)].

Correlation Coefficient
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Discrete Distribution



Continuous Distribution



Ditributions of functions of random variable
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