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Lecture 1: Newtonian mechanics

I think that Isaac Newton is doing most of the
driving right now.

— Bill Anders, Apollo 8 mission

In this lecture we introduce the basic assumptions underlying newtonian mechan-
ics, which deals with the motions of point particles in space. Being based on em-
pirical evidence, these assumptions have a limited domain of validity and hence the
laws derived from them are known to break down in the very small, the very large
or the very fast. Nevertheless newtonian mechanics has a remarkably wide domain
of applicability, encompassing for instance both apples falling on the surface of the
Earth and planets orbiting stars. Historically it was also the first modern physical
theory.

1.1 The universe according to Newton

The newtonian universe is R×R3, where R is time and

(1) R3 =







x1

x2

x3


 such that xi ∈R





is a three-dimensional euclidean space together with the usual dot product,

(2) a ·b = a1b1 +a2b2 +a3b3 =
3∑

i=1
ai bi ,

for a =



a1

a2

a3


 and b =




b1

b2

b3


. The dot product defines a norm onR3. If a ∈R3, its norm

|a| is defined by

(3) |a| = (a ·a)1/2 .

Notation

This seems a good point to alert you to other notations you will come
across. Our convention is that vectors are boldfaced in the printed notes,
but underlined in the blackboard. In Physics, it is also common to write ai

for (the components of) the vector a, and the scalar product a ·b is then
written ai bi with the convention that repeated indices are to be summed
over all their values, in this case i = 1,2,3. Finally, an alternative notation
for the scalar product is 〈a,b〉 which is closer to the bracket notation em-
ployed in Quantum Mechanics.

A point (t , a) in the universe is called an event. Two events (t , a) and (t ′,b) are said
to be simultaneous if and only if t = t ′. It makes sense to talk about the distance
between simultaneous events (t , a) and (t ,b), and this is given by the norm |a −b|
of the difference vector.
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Particle trajectories are given by worldlines, which are graphs of functions x : R→
R3; that is, subsets of the universe of the form

(4) {(t , x(t )) | t ∈R} .

We will assume that such functions x are continuously differentiable as many times
as required. Figure 1 illustrates the worldlines of two particles.

R

R3

Figure 1: Two worldlines

Let x : R→ R3 define the worldline of a particle. The first derivative (with respect to
time) ẋ is called the velocity and the second derivative ẍ the acceleration.
We are often interested in mechanical systems consisting of more that one particle.
The configuration space of an n-particle system is the n-fold cartesian product

R3 ×·· ·×R3
︸ ︷︷ ︸

n

=RN , N = 3n .

The worldline of the i th particle is given by x i :R→R3 and the n worldlines together
define a curve x :R→RN in the configuration space,

x(t ) = (x1(t ), . . . , xn(t )) .

1.2 Newton’s equation

The other basic assumption of newtonian mechanics is determinacy, which means
that the initial state of a mechanical system, by which we mean the totality of the
positions and velocities of all the particles at a given instant in time, uniquely de-
termines the motion. In other words, x(0) and ẋ(0) determine x(t ) for all t , or at
least for all t in some finite interval.
In particular, the acceleration is determined, so there must exist some relationship
of the form

(5) ẍ =Φ(x , ẋ , t ) ,



PoMP 2006 (jmf) 5

for some function Φ : RN ×RN ×R → RN. This second-order ordinary differential
equation (ODE) is called Newton’s equation. Solving a second-order ODE involves
integrating twice, which gives rise to two constants of integration (per degree of free-
dom). These constants are then fixed by the initial conditions.
We will be dealing almost exclusively with functions Φ depending only on x and
neither on ẋ nor on t .

Example 1.1 (Particle in a force field). The version of Newton’s equation (5) which
describes the motion of a particle in the presence of a force field F :R3 →R3 is

(6) F(x) = mẍ

where m is the (inertial) mass of the particle. A point x0 ∈R3 where F(x0) = 0 is said
to be a point of equilibrium, since a particle sitting at x0 feels no force.

Dimensional analysis

Physical quantities have dimension. The basic dimensions in these lec-
tures are length (L), time (T) and mass (M). For example, the position
vector x has dimension of length, and we write this as [x] = L. Simil-
arly, the time-derivative has dimension of inverse time, whence if a time-
dependent quantity Q has dimension [Q], then its time-derivative has di-
mension [Q̇] = [Q]T−1. It follows from this that the velocity and accelera-
tion have dimensions [ẋ] = LT−1 and [ẍ] = LT−2, respectively. Dimension is
multiplicative in the sense that [Q1Q2] = [Q1][Q2], whence from Newton’s
equation (6) [F] = [mẍ] = MLT−2, where we have used that [m] = M, natur-
ally. It is a very useful check of the correctness of a calculation that the result
should have the expected dimension.

Example 1.2 (Invariance under time reversal). WhenΦ only depends on x , Newton’s
equation (5) is invariant under time reversal; that is, if x(t ) solves the equation, so
does x(t ) := x(−t ). To see this, it suffices to observe that the double derivative with
respect to t is the same as the double derivative with respect to −t . In detail,

ẍ(t ) = ẍ(−t ) =Φ(x(−t )) =Φ(x(t )) ,

where the second equality follows because x satisfies Newton’s equation.

Example 1.3 (The free particle). This is a particular case of Example 1.1, where F =
0. Newton’s equation (6) says that there is no acceleration, so that the velocity v is
constant. Integrating a second time we obtain

(7) x(t ) = x0 + t v ,

where x0 = x(0) is the initial position. Given x0 and v there is a unique solution x(t )
to Newton’s equation with F = 0 with x(0) = x0 and ẋ(0) = v .
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Example 1.4 (Circular motion). A particle of mass m is observed moving in a circular
trajectory

(8) x(t ) =



Rcosωt
Rsinωt

0


 ,

where R,ω are positive constants. The force is given by F = mẍ , whence

F = mẍ =−mω2x .

Thus the force is parallel to the line joining the origin with x and pointing towards
the origin.

A standard trick allows us to turn Newton’s equation (5) into an equivalent first-order
ODE. The trick consists in introducing a new function v : R→ RN together with the
equation ẋ = v . Newton’s equation is then

ẍ = v̇ =Φ(x , v , t ) .

In other words, in terms of the function (x , v ) :R→R2N, Newton’s equation becomes

(9) (ẋ , v̇ ) = (v ,Φ(x , v , t )) .

It is not difficult to show that equations (5) and (9) have exactly the same solutions.
Indeed, if x solves equation (5), let v = ẋ and then (x , v ) solves (9). Conversely, if
(x , v ) solves (9), then v = ẋ and ẍ = v̇ =Φ(x , v , t ) =Φ(x , ẋ , t ).
The space of positions and velocities, here R2N, defines the state space of the mech-
anical system. The pair of functions (x , v ) defines a curve in the space of states,
which, if it obeys (9), is called a physical trajectory. This reformulation of New-
ton’s equation makes contact with MAT-2-MAM, where it is proved that if Φ is suffi-
ciently differentiable, equation (9) has a unique solution for specified initial condi-
tions (x(0), v (0) = ẋ(0)), at least in some time interval. In other words, through every
point in state space there passes a unique physical trajectory.
This mathematical fact turns out to have an important physical consequence. Let
x(t ) be a physical trajectory for a particle in a force field for which x(0) = x0 is a point
of equilibrium; that is, a point where the force field vanishes. Then if ẋ(0) = 0 then
x(t ) = x0 for all t . Indeed, the constant trajectory x(t ) = x0 for all t obeys Newton’s
equation ẍ(t ) = F(x(t )) for all t , and satisfies the initial conditions x(0) = x0 and
ẋ(0) = 0. By uniqueness of the solutions to this initial value problems, this is the
only solution with those initial conditions.

Example 1.5 (Galilean gravity). Consider dropping an apple of mass m from the
Tower of Pisa. Empirical evidence suggests that the force of gravity points down-
wards, is constant and proportional to the mass. Letting z(t ) denote the height at
time t , Newton’s equation is then

(10) mz̈ =−mg ,

where g is a constant with dimension [g ] = LT−2, and g ≈ 9.8ms−2 on the surface of
the Earth. We can solve equation (10) by integrating twice

z(t ) = z0 + v0t − 1
2 g t 2 .
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The relevant space of states is the right half-plane

(11) {(z, v) | z ≥ 0} ⊂R2 ,

and the physical trajectories are the parabolas given by

(12) (z(t ), v(t )) = (
z0 + v0t − 1

2 g t 2, v0 − g t
)

.

Some of these trajectories are plotted in Figure 2. Notice that whatever the initial
conditions (z0, v0) the apple always ends up on the floor. This is contrary to obser-
vation (e.g., rockets can break free of Earth’s gravity) and indeed it is known that as
the distance from the Earth increases, her gravitational pull weakens. This will be
corrected in Newton’s theory of gravity.

v

0

z

Figure 2: Physical trajectories of equation (10) in units where g = 1

The equivalence principle

The m in the RHS of equation (10) is called the (gravitational) mass and it
is an empirical fact (famously demonstrated by Galileo and later by Eötvös)
that it is equal to the (inertial) mass appearing in the LHS. This equality is
called the equivalence principle: it hints at a geometric origin of gravity
and is a cornerstone of Einstein’s general theory of relativity.



PoMP 2006 (jmf) 8

Lecture 2: Conservation laws

Nature uses as little as possible of anything.
— Johannes Kepler

As a mechanical system evolves in time it will change its state (x , v ) according to
Newton’s equation (9). However there are functions of (x , v ) which remain con-
stant. Such functions are called integrals of the motion. Among them there are
some which are of particular importance in mechanics. At a fundamental level they
are related to symmetries of the physical system: homogeneity of space and time
(the fact that there is no preferred origin or initial time) and isotropy of space (the
fact that there is no preferred direction), for example. Such an integral of the motion
is called a conserved quantity due to the fact that it is additive in the sense that, if a
mechanical system is composed of two non-interacting parts, then its value for the
system is the sum of its values for each of the parts.

Example 2.1 (Conservation of momentum). For the free particle of Example 1.3, the
momentum p : R6 → R3, defined by p(x , v ) = mv is conserved. Of course, v is also
conserved, but it is the momentum which is additive. Indeed, if we now consider
a system of two non-interacting free particles, with momenta p1 = m1v 1 and p2 =
m2v 2, the momentum of the system will be the sum p = p1 +p2.

Example 2.2 (Conservation of energy). For the falling apple in Example 1.5 the en-
ergy

E(z, v) = 1
2 mv2 +mg z

is conserved. Since z ≥ 0, the energy is non-negative. In this case, the physical tra-
jectories are the parabolas 1

2 v2+g z = E/m, just as we had found by integrating New-
ton’s equation.

2.1 Conservative forces: potentials

In the notation of Example 1.1, a force field F : R3 → R3 is said to be conservative
if it can be expressed as (minus) the gradient of a function V : R3 → R, called the
potential: F = −∇V. The potential is only defined up to a constant and the minus
sign is conventional.

Example 2.3 (Gravitational potential). The gravitational potential in galilean gravity
is given by V = mg z. Indeed, computing (minus) the gradient of V = mg z, one finds

−∇V =



0
0

−mg


 ,

as expected.

More generally, for an n-particle mechanical system with configuration space RN

and state space R2N, a potential is a function U : RN → R such that Newton’s equa-
tion (5) can be written as

ẍ =−∇U .
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A common feature of conservative force fields is that energy is conserved along
physical trajectories. Indeed, Newton’s equation (6) for a conservative force field
is (after bringing the force term to the LHS):

mẍ +∇V = 0 .

Taking the inner product with ẋ we obtain

mẋ · ẍ + ẋ ·∇V = 0 ,

which we recognise as the constancy along physical trajectories of the energy

(13) E(x , v ) = 1
2 m|v |2 +V .

Indeed, a version of the product (Leibniz) rule says that

d

d t
|v |2 = 2v · v̇ ,

and the chain rule (see below) says that

d

d t
V = ẋ ·∇V ,

whence along physical trajectories, where v = ẋ and ẍ =−∇V, we find

d

d t
E(x , v ) = mẋ · ẍ + ẋ ·∇V = ẋ · (mẍ +∇V) = 0 .

The chain rule

Let x : R→ R3 and V : R3 → R. The composition V ◦ x : R→ R sends t ∈ R to
V(x(t )) ∈ R. The derivative with respect to t of the composition is given by
the chain rule, as you have seen in MAT-2-SVC:

(14)
d

d t
V(x(t )) =∇V

∣∣
x(t ) · ẋ(t ) .

The first term in the RHS of the expression (13) for the energy is called the kinetic
energy and depends on the motion of the particle, whereas the second term is the
potential energy and depends on the position. Physical trajectories lie on “constant
energy surfaces” in the space of states, defined by

{(x , v ) | E(x , v ) = E0} .

In the case of one-dimensional motion energy conservation alone suffices to de-
termine the physical trajectories, as we saw already in the case of galilean gravity.
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2.2 Quadratic potentials and simple harmonic motion

We start by considering one-dimensional potential motion. Let x(t ) denote the po-
sition of a particle of mass m at time t and let V(x) denote the potential. Newton’s
equation is then simply

(15) mẍ =−dV

d x
.

We saw in Example 2.3 that a linear potential is responsible for Galilean gravity,
where the force is constant. The next simplest potential is a quadratic potential,
which means that the force is linear.

Example 2.4 (Hooke’s law). If the potential is V(x) = 1
2 kx2, with k > 0, the resulting

force is F =−kx, which is a good approximation to the restoring force of a spring, an
empirical law due to Hooke. In Lecture 7 we will reinterpret this, not as a particular
property of springs, but as a universal property of small displacements about stable
equilibria.

Hooke’s law leads to simple harmonic motion. Indeed, Newton’s equation in this
case reads

(16) mẍ =−kx ,

whose solutions are
x(t ) = x0 cosωt + v0

ω
sinωt ,

where ω2 = k/m and x0 = x(0) and v0 = ẋ(0) are the initial position and velocity of
the particle, respectively. Using the trigonometric addition formula

Asin(ωt +ϕ) = Asin(ωt )cosϕ+Acos(ωt )sinϕ

and comparing with the solution, we see that

x(t ) = Asin(ωt +ϕ)

where
x0 = Asinϕ and

v0

ω
= Acosϕ ,

whence

A2 = x2
0 +

v2
0

ω2 = 2

mω2 E = 2E

k
,

where E is the energy, and

tanϕ= Asinϕ

Acosϕ
= ωx0

v0
.

In particular, the amplitude of oscillation goes like E1/2.
The physical trajectories in the space of states R2 are ellipses corresponding to the
constant energy curves

1
2 mv2 + 1

2 kx2 = E ≥ 0 ,

and some of these curves are plotted in Figure 3. In particular, the physical traject-
ories are closed and the motion is therefore periodic, with period 2π/ω.
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Figure 3: Physical trajectories of equation (16) for ω= 2

2.3 Applications of energy conservation

In this section we show how energy conservation determines the physical trajector-
ies of a one-dimensional conservative mechanical system; that is, one described by
equation (15). As remarked above, the energy

(17) E = 1
2 mv2 +V(x)

is a constant of the motion. Notice that the kinetic energy term ( 1
2 mv2) is always

non-negative, therefore E ≥ V(x) and equality holds if and only if the velocity van-
ishes; that is, at a turning point. Configurations with potential energy greater than
the energy of a particle are inaccessible. In particular, classical particles cannot pen-
etrate potential barriers unless they have sufficient energy. (These statements will
be revisited and revised in Quantum Mechanics, which is the subject of the second
half of this course.)

V(x)

E

a b c

Figure 4: One-dimensional potential motion

Figure 4 illustrates this discussion. It shows the graph of a potential function V(x)
and three turning points: x = a, x = b and x = c, where V(x) = E, a fixed value of the
energy. Energy conservation means that there are two accessible regions: either the
finite interval [a,b] or the semi-infinite interval [c,∞). If a ≤ x(t ) ≤ b the motion will
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be oscillatory and if x(t ) ≥ c then there are two possibilities: either ẋ(0) < 0, whence
x(0) > c and it will move towards to c and then turn and move away forever, or else
ẋ(0) ≥ 0 in which case it will move away from c forever.
In the case of oscillatory motion, we can actually prove that the motion is periodic.
This follows from uniqueness of the solution of the initial value problem. Let a be
a turning point for a given fixed energy. Then there exists a unique solution x(t )
with x(0) = a, and hence ẋ(0) = 0. Now suppose that a certain time T later, x(T) = a
again. The function xT(t ) := x(t +T) solves the same differential equation as x, and
xT(0) = a, whence ẋT(0) = 0. By uniqueness, xT = x and we see that x(t ) = x(t +T);
that is, x is periodic.
Furthermore, one can use energy conservation to derive an expression for the period.
Indeed, from

1
2 mẋ2 +V(x) = E

we solve for ẋ to obtain

ẋ =±
√

2(E−V(x))

m
.

Integrating, we find that the time taken from a to b is

(18) T(a → b) =
√

m

2

∫ b

a

d xp
E−V(x)

.

Because of the invariance of Newton’s equation (15) under time reversal, this is also
the time taken from b to a, whence the period of oscillation is given by

(19) T =
p

2m
∫ b

a

d xp
E−V(x)

.

Example 2.5 (Simple harmonic motion). Consider Hooke’s potential V(x) = 1
2 kx2,

with k > 0.
We saw from the explicit form of the physical tra-
jectories that the period is 2π/ω with ω2 = k/m.
Let us rederive this using (19). The limits of in-
tegration are the roots of E = 1

2 kx2, whence x =
±
p

2E/k. Therefore the period is

T =
p

2m
∫ √

2E
k

−
√

2E
k

d x√
E− 1

2 kx2
.

Changing variables in the integral to u =
p

k/2Ex,
we obtain

T = 2

√
m

k

∫ 1

−1

dup
1−u2

= 2π

√
m

k
= 2π

ω
,

as expected.

The integral in equation (19) has to be treated with care, because the integrand is
singular at the limits of integration, since a and b are zeros of E−V(x). In fact, it is
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not hard to show that the integral converges if and only if a and b are not critical
points of the potential. To illustrate this, let us suppose that we increase the energy
of the particle so that it coincides with a maximum value of the potential, as shown
in Figure 5.

ba

E

V(x)

Figure 5: One-dimensional potential motion (cont’d)

Suppose the particle starts from rest at x(0) = a. One might be tempted to think that
it will move towards b and, upon reaching b, it will turn and come back to a; however
this cannot happen, because b is an equilibrium point: if the particle reaches b and
turns, it means that it would have zero velocity there, whence it will remain in b
forever. What happens in this idealised newtonian universe is that the particle never
reaches b! This can be demonstrated by analysing the convergence of the integral
which computes the time taken for the particle from a to b, which we now properly
write as a limit:

T(a → b) =
√

m

2
lim
ε→0+

∫ b−ε

a

d xp
E−V(x)

.

Indeed, let us expand the potential around b to obtain

V(x) = V(b)+V′(b)(x −b)+ 1
2 V′′(b)(x −b)2 +·· ·

whence if V′(b) = 0, then

E−V(x) =− 1
2 V′′(b)(b −x)2 +·· · .

The integrand near b is approximated by the first nonzero term in this series expan-
sion. Notice that V′′(b) ≤ 0. If V′′(b) < 0, the integral is approximated by

2|V′′(b)|−1/2
∫

d x

b −x
∼−2|V′′(b)|−1/2 log(b −x)

which is unbounded as x → b. If V′′(b) = 0, then a similar argument shows that the
integral behaves like a negative power of b − x, which is again unbounded as x → b.
In either case, the integral will not converge. In summary, if b is a critical point of
the potential, it takes an “infinite” time for the particle to reach b.
Another application of energy conservation, in particular of formula (18), is the de-
termination of the probability of finding the particle in a particular region in space.
Let us consider for simplicity the case of oscillatory motion between turning points
at x = a and x = b as above. Let a < c < d < b and let us ask the question: what is
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the probability of finding the particle in the interval [c,d ]? What we are after is the
probability density P(x) defined in such a way that the

probability of finding particle in [c,d ] =
∫ d

c
P(x)d x .

On the other hand, the probability of finding the particle in [c ,d ] is given by the ratio
of how long it spends in [c,d ] to one period of oscillation. Therefore

probability of finding particle in [c,d ] = T(c → d)

T(a → b)

= 1

T(a → b)

∫ d

c

√
m

2

d xp
E−V(x)

,

(20)

whence we read off the probability density as

P(x) = 1
∫ b

a
d yp

E−V(y)

1p
E−V(x)

.

Example 2.6 (Harmonic potential). For the harmonic potential V(x) = 1
2 kx2, k > 0,

the period 2T(a → b) = 2π/ω, where ω2 = k/m. Plugging this into equation (20) we
obtain

P(x) = 1

π
√

2E
k −x2

.

This is plotted in Figure 6.
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Figure 6: Probability density for harmonic potential and E = k/2

This result for the probability density P(x) is to be compared with the quantum
mechanical probability density |Ψ(x)|2 of a quantum state Ψ(x), to be studied later
in the course. You will see (hopefully) that there is a well-defined notion of classical
limit in which the quantum probability density |Ψ(x)|2 tends to the classical probab-
ility density P(x). In Quantum Mechanics this is an example of the Correspondence
Principle.
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Lecture 3: The two-body problem

Eppur si muove. (And yet it does move.)
— Galileo Galilei

In this lecture we will study the mechanics of two massive particles interacting via
a conservative force whose potential depends only on the distance between the
particles. A special case of such a system is that of a planet orbiting a star, as we
will see in the next couple of lectures.

3.1 Centre of mass and the relative problem

Consider two point-particles of masses m1 and m2 moving in space subject to a
conservative force field whose potential depends only on the distance between the
particles. In other words, if x1 and x2 denote the positions of the particles, the po-
tential depends only on |x1 − x2|. The configuration space is R6 and the space of
states is therefore R12. Newton’s equation are

(21) m1ẍ1 =−∇1V

m2ẍ2 =−∇2V .

We notice that due to the form of the potential, the chain rule implies ∇1V =−∇2V,
whence

m1ẍ1 +m2ẍ2 = 0 ,

which in turn implies the conservation of the centre-of-mass momentum

(22) pc := m1ẋ1 +m2ẋ2 .

It is convenient to change coordinates from (x1, x2) to (x , xc ), where x := x1 − x2 is
the relative coordinate and

(23) xc := m1

m1 +m2
x1 +

m2

m1 +m2
x2

is the centre-of-mass coordinate. This is a linear change of coordinates (with unit
determinant) (

x
xc

)
=

(
1 −1

m1
m1+m2

m2
m1+m2

)(
x1

x2

)
,

which can be easily inverted
(

x1

x2

)
=

( m2
m1+m2

1
− m1

m1+m2
1

)(
x

xc

)
.

We therefore see that Newton’s equation (21) decouples into two equations: one for
the centre-of-mass motion,

(24) ẍc = 0 =⇒ xc (t ) = xc (0)+ pc t

m1 +m2
,

and one for the relative motion of the two particles

(25) mẍ =−∇V(x) ,

where V depends only on the norm |x |, and where we have introduced the reduced
mass

(26) m := m1m2

m1 +m2
.
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A philosophical observation

Notice that the original physical system of two particles (with masses m1

and m2) interacting under a potential depending only on the difference x1−
x2 of their position vectors has been shown to be equivalent to a system
consisting of two non-interacting particles: one, a free particle of mass m1+
m2, and another particle of mass m under the effect of a conservative force
field. In the absence of other interactions, no experiment can distinguish
between these two cases. Who is to say which of the two descriptions is
real? In fact, Physics only models Nature, and there is no reason to believe
that models are unique and hence we ought to be careful when ascribing
elements of truth or reality to our models.

Notation

I hope you will permit a slight abuse of notation. Hereafter we will write
V(|x |) to mean that V : R3 → R is a function of x which depends only on
|x |. A more correct notation would require introducing a function h : R→
R, say, such that V(x) = h(|x |). I hope no confusion will result if we omit
mentioning this auxiliary function. (Thank you.)

The energy of the two-particle system, which is also conserved, also decomposes
into two terms:

E = 1
2 m1|v 1|2 + 1

2 m2|v 2|2 +V(|x |)

= 1
2

|pc |2
m1 +m2

+ 1
2 m|v |2 +V(|x |) ,

where the first term is the (kinetic) energy of the centre of mass and the last two
terms are the (kinetic + potential) energy of the relative motion.
Let us pause to summarise what we have learnt. The physics of these two massive in-
teracting particles is equivalent to the physics of two non-interacting particles: a free
particle of mass m1 +m2 located at the centre of mass of the two original particles
and a particle of mass m (the reduced mass) moving under the effect of a conservat-
ive force with potential V. Neither of these two particles exist, of course; but their
physics is equivalent to the physics of the original system.
Notice that when one of the masses is much larger than the other, say m2 À m1

the reduced mass is very close to the smaller mass m1 and the centre of mass is
very close to x2 and we can approximate this system by one in which the particle
of mass m1 is moving relative to the particle of mass m2. The next two examples
illustrate this for the case of the Earth/Sun system. We will use the Google calculator
to perform the calculations.

Example 3.1 (Center of mass of Earth/Sun system). Let us put the Sun at the origin
and let the Earth be a distance R away along the x-axis. The centre of mass will
be a distance m♁R/(m¯+m♁) along the x-axis, where m♁ is the mass of the Earth
and m¯ is the mass of the Sun. The average value of R is very close to 1 AU (AU =
Astronomical Unit). Typing

http://www.google.com/help/features.html#calculator
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(mass of earth * 1 AU)/(mass of earth + mass of sun)

into Google yields an answer of just under 450 km, which is to be compared with the
radius of the Sun, which is approximately 695,500km!

Example 3.2 (Reduced mass of the Earth/Sun system). The reduced mass is m =
m♁m¯/(m♁+m¯). Typing

(mass of earth * mass of sun)/(mass of earth + mass of sun)

into Google yields the answer 5.97418206×1024kg , just under the accepted value of
5.9742×1024kg for the mass of the Earth (also from Google).

In the next lecture we will study the relative system (25) and show how there is an ex-
tra conserved quantity, namely the angular momentum. This will reduce the prob-
lem further to an effective one-dimensional problem.

3.2 Elastic collisions

Let us consider the case where the two particles are non-interacting, so that V = 0.
In this case not just energy is conserved, but also momentum. Let the particles have
momenta p1 = m1v 1 and p2 = m2v 2, respectively, and energies E1 = 1

2 m1|v 1|2 and
E2 = 1

2 m2|v 2|2, respectively. Now suppose that they undergo an elastic collision, one
in which the same two particles emerge but with perhaps different momenta p ′

1 =
m1v ′

1 and p ′
2 = m2v ′

2 and hence different energies E′
1 = 1

2 m1|v ′
1|2 and E′

2 = 1
2 m2|v ′

2|2.
The total energy and momentum of the system is given by the sum of the energies
and momenta of the individual particles. By momentum conservation,

(27) p1 +p2 = p ′
1 +p ′

2

whereas energy conservation says that

(28) 1
2 m1|v 1|2 + 1

2 m2|v 2|2 = 1
2 m1|v ′

1|2 + 1
2 m2|v ′

2|2 .

For definiteness we will consider the special case where the second particle is ini-
tially at rest, so that v 2 = 0. The above equations become a little simpler:

p1 = p ′
1 +p ′

2

and
1
2 m1|v 1|2 = 1

2 m1|v ′
1|2 + 1

2 m2|v ′
2|2 .

The momenta before and after the collision are depicted in Figure 7, from where it
is clear that the motion takes place in the plane spanned by the final momenta.
The momentum conservation equation (27) has two components: one parallel and
one perpendicular to p1, which give rise to two equations

m1|v 1| = m1|v ′
1|cosθ1 +m2|v ′

2|cosθ2

0 = m1|v ′
1|sinθ1 −m2|v ′

2|sinθ2 .

Together with energy conservation, there are a total of three equations for four un-
knowns: |v ′

1|, |v ′
2|, θ1 and θ2, so we will not be able to determine the motion uniquely.
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θ2

θ1

v ′
2

v ′
1

m2

m1

m2v 1m1

Figure 7: Elastic collision

m1
c.o.m.

m2u1 u2

θ

u′
2

u′
1

m2

m1

Figure 8: Elastic collision relative to the centre of mass

A typical question we might hope to answer is, for example, “What is the maximum
possible value of θ1?”
It is easier to answer this question by studying the motion relative to the centre of
mass, as illustrated in Figure 8.
The centre-of-mass velocity v c is constant and equal to

v c =
m1

m1 +m2
v 1 ,

where we have used that v 2 = 0. The velocities relative to the centre of mass are
given by

u1 = v 1 −v c

u2 =−v c
and

u′
1 = v ′

1 −v c

u′
2 = v ′

2 −v c ,

again using that v 2 = 0. Relative to the centre-of-mass, motion before and after
the collision is collinear, for otherwise the centre-of-mass would not remain at rest.
Indeed,

m1u1 +m2u2 = 0 and m1u′
1 +m2u′

2 = 0 .

To see this, simply write v 1 = u1+v c and v 2 = u2+v c and the same for the primed ve-
locities after the collision. Inserting these expressions in the definition of the centre-
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of-mass velocity v c

(m1 +m2)v c = m1v 1 +m2v 2 = m1v ′
1 +m2v ′

2 ,

we obtain the desired equations.
Similarly, energy conservation says that

1
2 m1|u1|2 + 1

2 m2|u2|2 = 1
2 m1|u′

1|2 + 1
2 m2|u′

2|2 ,

where we have subtracted the centre-of-mass energy from both sides. Using the
above results we can express the velocities of the second particle in terms of those
of the first, and the resulting equation says that |u1| = |u′

1|, which when re-inserted
in the energy conservation equation yields that |u2| = |u′

2|.
In other words, relative to the centre of mass, the velocities get rotated by an angle
θ, as shown in Figure 8. However, energy and momentum conservation do not con-
strain this angle further.
Let us now relate the angles θ1 and θ. Consider the equation v ′

1 = u′
1 + v c and let us

look at the components parallel and perpendicular to the centre-of-mass velocity:

(∥) : |v ′
1|cosθ1 = |u′

1|cosθ+|v c |
(⊥) : |v ′

1|sinθ1 = |u′
1|sinθ ,

whence

tanθ1 =
|v ′

1|sinθ1

|v ′
1|cosθ1

= |u1|sinθ

|u1|cosθ+|v c |
,

where we have used that |u1| = |u′
1|. Since v 2 = 0, it follows that |v c | = |u2|, whence

dividing top and bottom by |u1| and using that |u2|/|u1| = m1/m2, we obtain

(29) tanθ1 =
sinθ

cosθ+m1/m2
.

In Figure 9 we have sketched tanθ1 as a function of θ ∈ [0,π] distinguishing between
three cases, according to whether m1/m2 is smaller than, equal to or greater than 1.

20

(a) m1 < m2

20

0

20

(b) m1 = m2

20

0

1

(c) m1 > m2

Figure 9: tanθ1 as a function of θ for different masses
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In the first case, when m1 < m2 we see that all angles θ1 ∈ [0,π] are possible, with
tanθ1 becoming unbounded both below and above at θ0 = cos−1(−m1/m2) > π

2 .
In the second case, when m1 = m2 all angles θ1 ∈ [0, π2 ] are possible, with tanθ1

becoming unbounded above at θ = π. Finally, the most interesting case is when
m1 > m2, where there is a maximum value for θ1.

Example 3.3 (The case m1 > m2). When m1 > m2, tanθ1 has a maximum at θ0 =
cos−1(−m2/m1) > π

2 and its maximum value is

θ1max = sin−1(m2/m1) ≤ π

2
.

Indeed, differentiating tanθ1 with respect to θ, we find

d

dθ
tanθ1 =

1+ (m1/m2)cosθ

(cosθ+m1/m2)2 ,

whence the maximum occurs at θ0, where cosθ0 = −m2/m1. At this value of θ, we
find

tanθ1max =
1√

(m1/m2)2 −1
= m2/m1√

1− (m2/m1)2
= m2√

m2
1 −m2

2

,

which can be inverted to obtained the above value for θ1max.
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Lecture 4: Central force fields

What makes the planets go around the sun? At
the time of Kepler some people answered this
problem by saying that there were angels be-
hind them beating their wings and pushing the
planets around their orbit. This answer is not
very far from the truth. The only difference is
that the angels sit in a different direction and
their wings push inwards.

— Richard Feynman

In the last lecture we saw how the two-body problem decoupled into the free motion
of the centre of mass and a relative problem governed by equation (25):

mẍ =−∇V(|x |) ,

where m is the reduced mass (26). In this lecture we will study this equation.

4.1 Central forces

A force field F is called central if

(30) F(x) = f (x)x

for some function f :R3 →R; that is, if it points in the direction of the line through x ,
for all x . It is often the case that such a force field is singular at the origin, and if this
occurs we will implicitly restrict the configuration space to those points with |x | > 0.
Using that

∇|x | = x

|x | ,

we see that the force field F =−∇V in equation (25) is given by

(31) F =−V′(|x |)
|x | x ,

whence it is central.
We will now prove that for a conservative field, the property of being central can be
characterised in other ways. Indeed, the following are equivalent for a conservative
force field F:

(a) F is central,

(b) F = f (|x |)x ,

(c) F =−∇V(|x |).

Indeed, we have already seen that (c) implies (b), and by definition (b) implies (a). It
remains to show that (a) implies (c). This is equivalent to showing that V is constant
in each sphere SR = {

x ∈R3 | |x | = R
}
, so it only depends on |x | and not on its direc-

tion. We first observe (prove it!) that any two points in SR can be joined by a path
on SR. This reduces the problem to proving that V does not change along any path
on SR. Let x(t ) be a path on SR. This means that |x(t )| = R for all t . Differentiating
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with respect to t we learn that x(t ) · ẋ(t ) = 0 for all t . Now let V(x(t )) be the value of
V along this path. Differentiating with respect to t and using (14), we see that

d

d t
V(x(t )) =∇V

∣∣
x(t ) · ẋ(t ) =−F(x(t )) · ẋ(t ) .

For a central field, F(x) = f (x)x , whence

d

d t
V(x(t )) =− f (x(t ))x(t ) · ẋ(t ) = 0 ,

as expected.
In other words, we learn that potentials for central force fields have the property that
they only depend on the length |x | and not on the direction. This means that they
are constant on the spheres of constant |x |. For this reason such potentials are said
to be spherically symmetric; although a better name would be spherically constant!

4.2 Conservation of angular momentum

An important property of central force fields—even if not conservative—is that mo-
tion is restricted to a plane, namely the plane spanned by x and ẋ . In fact, more is
true. Let us define the angular momentum vector

L = x ×p , with p = mẋ .

Explicitly, L =



L1

L2

L3


, where

(32) L1 = x2p3 −x3p2 L2 = x3p1 −x1p3 L3 = x1p2 −x2p1 ,

where x =



x1

x2

x3


 and p =




p1

p2

p3


. The angular momentum has dimension of [L] =

ML2T−1.
Whereas x and p evolve in time, for a central force field L is constant. Indeed, using
the product rule

d

d t
L = ẋ ×p +x ×F ,

where we have used Newton’s equation in the form d
d t p = F. Now ẋ and p are parallel

whence the first term vanishes, and for a central force field F and x are also parallel,
so the second term vanishes as well.
If L 6= 0 then it defines a perpendicular plane, which is the plane spanned by x and
p = mẋ . If L = 0, then x and ẋ are parallel, but then so is ẍ , whence the motion is
linear, which is a particular case of planar motion.
Conservation of angular momentum has reduced a three-dimensional problem to a
two-dimensional problem, but in fact we can do better. This is because in restrict-
ing to the plane we have only used that the direction of the angular momentum is
constant. The fact that also the magnitude of the angular momentum is conserved
will reduce this problem to an effective one-dimensional problem which we now
describe.



PoMP 2006 (jmf) 23

The ε-symbol

In the Physics notation introduced in Section 1.1, the angular momentum
Li can be written in terms of the ε-symbol as

Li = εi j k x j pk ,

where you are reminded that repeated indices are summed over. The sym-
bol εi j k is uniquely defined by the following two properties. First, it is al-
ternating, so that under permutation of the labels it gets multiplied by the
sign of the permutation; e.g.,

ε132 =−ε123 , ε231 = ε123 , etc

In particular, it vanishes whenever two of the labels agree. Last, it is norm-
alised so that ε123 = +1. The first equation in (32) can thus be recovered as
follows

L1 = ε1 j k x j pk

= ε123x2p3 +ε132x3p2

= x2p3 −x3p2 ,

and similarly for the other components.

4.3 The effective one-dimensional problem

Let us reorient our axes so that L =



0
0

m`


 is pointing along the x3-axis, so that the

motion is restricted to the (x1, x2)-plane. It is convenient to employ polar coordin-
ates (r,θ) so that

x1 = r cosθ and x2 = r sinθ .

The momentum vector p has (nonzero) components

p1 = mẋ1 = mṙ cosθ−mr θ̇sinθ

p2 = mẋ2 = mṙ sinθ+mr θ̇cosθ .

Therefore conservation of angular momentum, which says that L3 = m` = x1p2 −
x2p1 is constant, becomes

(33) r 2θ̇= ` .

Notice that if ` 6= 0, then θ̇ 6= 0 and it never changes sign: it is either always positive
or always negative.
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Kepler’s area law

Equation (33) has a geometrical interpretation. Indeed, 1
2 r 2θ̇ is the areal

velocity; that is, the rate of change of the area swept by the particle as it
moves, as illustrated in Figure 10. Conservation of angular momentum says
therefore not just that motion is planar, but that the areal velocity is con-
stant, whence equal areas are swept in equal time. This is Kepler’s second
law of planetary motion; although now we understand that this law is more
general and applies to any central force field.

≈ r∆θ
∆θ

r

x(t )

Figure 10: Area swept during motion in central force field

Equation (33) can be used to solve for θ̇ in terms of r , effectively eliminating this
variable from Newton’s equation, which thus reduces to an equation for r . Indeed,
let us again assume that F is conservative with potential V. Then from equation (31),
using that |x | = r , we see that

F =−V′(r )




cosθ
sinθ

0


 ,

whereas

d

d t
p = m

(
r̈ − `2

r 3

)


cosθ
sinθ

0


 ,

where we have used equation (33) to get rid of any derivatives of θ. Finally, Newton’s
equation d

d t p = F becomes an ODE for r

(34) mr̈ =−V′(r )+ m`2

r 3 ,

which can be written as

(35) mr̈ =−V′
eff(r ) ,
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where we have introduced an effective potential

(36) Veff = V + m`2

2r 2 .

Equivalently, without reference to any choice of orientation of the axes, we can write
the effective potential also as

Veff = V + |L|2
2m|x |2 .

Energy conservation for the effective one-dimensional problem says that

(37) E = 1
2 mṙ 2 +V + m`2

2r 2

is a constant. The last term is called the centrifugal energy and is the kinetic en-
ergy due to the angular velocity: 1

2 mr 2θ̇2. We can analyse the physics of this system
as we did in Section 2.3, keeping in mind one important difference. The turning
points where E = Veff are now not points of zero velocity, since the angular velocity
is nonzero for nonzero angular momentum. Instead they are simply local minima
or local maxima of the function r (t ).
We can distinguish between two different kinds of motion, depending on whether
the energy condition restricts r to obey r ≥ rmin or to obey rmax ≥ r ≥ rmin. In the
former case, the particle comes from and returns to infinity, or in two-body lan-
guage, the two bodies are infinitely far apart in the remote past and will go back to
being infinitely far apart in the remote future: a physical process called scattering.
In the latter case, the path of the particle will lie within the annulus bounded by
rmax and rmin, or in two-body language, the distance between the two bodies will
oscillate forever between rmax and rmin. Unlike the case of truly one-dimensional
motion, this does not mean however that the orbits are closed. This is because θ is
also evolving, so going back to rmax, say, does not mean going back to the same point
in the plane of motion. This is illustrated in Figure 11.
To investigate when the orbits are closed, let us derive an expression for the angle
∆θ through which x(t ) turns in the time it takes for r (t ) to go from rmin to rmax and
back, as shown in Figure 11. From equation (37),

ṙ =±
√

2

m
(E−V(r ))− `2

r 2 ,

whereas from equation (33),

θ̇= `

r 2 .

These two expressions yield a formula for dθ
dr :

dθ

dr
= θ̇

ṙ
=± `/r 2

√
2
m (E−V(r ))− `2

r 2

.
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∆θ

rmin

rmax

Figure 11: Turning angle for bounded orbits

Invariance under time-reversal means that it takes just as long to go from rmax to
rmin than from rmin back to rmax, whence

(38) ∆θ= 2
∫ rmax

rmin

`dr /r 2

√
2
m (E−V(r ))− `2

r 2

.

Example 4.1 (Periodicity of orbits). We will show that the motion is periodic if and
only if∆θ is a rational multiple of 2π; that is, ∆θ= 2m

n π for (coprime) integers m and
n. To see this we observe that by uniqueness of solutions to ODEs, the motion will be
periodic if and only if the particle passes twice by the same point (rmax,θ0). Indeed,
when r = rmax, ṙ = 0 and θ̇= `/r 2

max. And the value of θ0 fixes the solution uniquely.
From Figure 11 it is clear that this will happen if and only if for some positive integer
n, n∆ is an integer multiple of 2π.

There are two potentials V(r ) for which (bounded) motion is always periodic: r 2

and r−1. The latter potential is the one responsible for planetary motion and will be
studied in detail in the next lecture.

Example 4.2 (Periodic orbits in the space oscillator). For the space oscillator po-
tential V(r ) = 1

2 kr 2, with k > 0, ∆θ = π for ` > 0 and any (admissible) value of the
other parameters and hence the orbits are periodic. To prove this takes a little bit of
calculation.
We compute ∆θ from equation (38), for which we need to determine the minimum
and maximum radii, which are the roots of the equation

E = 1
2 kr 2 + m`2

2r 2 ,
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which are found to be

r 2
min = E

k


1−

√
1− km`2

E2


 and r 2

max =
E

k


1+

√
1− km`2

E2


 .

In terms of these, the integral becomes

∆θ= 2

√
m`2

k

∫ rmax

rmin

dr /r√
(r 2 − r 2

min)(r 2
max − r 2)

.

We now embark in a sequence of changes of variables until we can reach an integral

we can evaluate. We define u := kr 2/E and introduce the parameter τ= 1−
√

mk`2

E2 ,
in terms of which the turning angle becomes

∆θ=
p

1−τ
∫ 1+pτ

1−pτ
du/u√

(u −1+p
τ)(1+p

τ−u)
.

Let v =
p

u−1+pτp
2
p
τ

, in terms of which

∆θ= 2
p

1−τ
∫ 1

0

d vp
1− v2

1

1+p
τ(2v2 −1)

.

Now let w = vp
1−v2

, so that

∆θ= 2
p

1−τ
∫ ∞

0

d w

1+w 2

1

1+p
τw2−1

1+w2

,

which can be rewritten as

∆θ= 2
p

1−τ
∫ ∞

0

d w

1−p
τ+ (1+p

τ)w 2

= 2

√
1−p

τ

1+p
τ

∫ ∞

0

d w
1−pτ
1+pτ +w2

.

Writing α= 1−pτ
1+pτ > 0 and letting z = w/α, we arrive at an elementary integral we can

evaluate, namely

∆θ= 2
∫ ∞

0

d z

1+ z2 =π .

Summarising what we have learnt in the last two lectures, we have reduced the two-
body problem to the problem of a particle on the half-line (r > 0) subject to an ef-
fective potential obtained by adding to the original potential a term involving the
angular momentum. To solve the two-body problem we must then solve this prob-
lem first for r (t ), we then use (33) to solve for θ and hence solve for the relative
motion of the two bodies. Finally we add the motion of the centre of mass.
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Lecture 5: The Kepler and Coulomb problems

If I let go of a hammer on a planet of positive
gravity, I need not see it fall to know that it has,
in fact, fallen.

— Spock, stardate 2948.9

Newton’s universal law of gravitation states that two massive bodies—e.g., hammer
and planet, Earth and Sun—exert an attractive force on each other which is propor-
tional to the product of their masses and inverse proportional to the square of the
distance separating them. Newton showed that this law recovered galilean gravity
in a certain regime (appropriate to the dynamics of falling objects near the surface
of the Earth) but also recovered Kepler’s laws on planetary motion. It was the first
truly modern physical theory and it proved unassailable for more than two centur-
ies, when it was replaced (for now) by Einstein’s theory of general relativity.

5.1 The Kepler problem

A more precise mathematical statement of this law is the following. The gravitational
potential between two point-particles of masses m1 and m2 at positions x1 and x2,
respectively is given by

(39) V =− Gm1m2

|x1 −x2|
,

where G ≈ 6.67300×10−11m3kg−1s−2 is Newton’s constant. The first precise meas-
urement of this constant was done by Cavendish.
How about for a body which is not a point particle? Let a massive body occupy a
compact—that is, closed and bounded—subset S ⊂ R3. The density function of the
body is a positive function µ : S → R with the property that the volume integral of µ
on S is equal to the mass m1 of the body. By definition, the gravitational potential felt
by a point particle of mass m2 at a point x outside S is given by the volume integral

(40) V(x) :=−Gm2

∫

S

µ(y)

|x − y |d 3 y .

In the case of planetary motion (or even falling apples), if we model the bodies in
question as spheres of uniform density, then the gravitational potential coincides
with the one of a point-particle sitting at the centre of mass. The next example illus-
trates this.

Example 5.1 (Gravitational potential of a uniform sphere). Consider a point-particle
of mass m2 a distance r from the centre of a uniform sphere of mass m1 and ra-
dius R, a situation is illustrated by Figure 12. Let us use spherical polar coordin-
ates (ρ,θ,ϕ) in which the volume element is ρ2 sinθdρdθdϕ. The distance from the
point-particle to a point in the sphere with coordinates (ρ,θ,ϕ) is denoted l in the
picture. Pythagoras tells us that

l 2 = (ρsinθ)2 + (r −ρcosθ)2 = ρ2 + r 2 −2ρr cosθ .
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ρ

θ
R

r

l

Figure 12: Gravitational potential of a uniform sphere

For a uniform body the density is constant, whence equation (40) becomes

V =−Gm2

∫
µρ2 sinθdρdθdϕ√
ρ2 + r 2 −2ρr cosθ

.

Nothing depends onϕ, so its integral gives 2π. Next we do the θ integral by changing
variables to u = cosθ, yielding

V =−2πµGm2

∫ R

ρ=0

∫ 1

u=−1

ρ2dρdu√
ρ2 + r 2 −2ρr u

.

Performing the elementary u-integral we get

V =−4πµGm2

r

∫ R

0
dρρ2

and performing the ρ-integral and recognising m1 = 4πµR3/3, we get

V =−Gm1m2

r
for r > R.

5.2 The galilean limit

We will first show that newtonian gravity reduces to galilean gravity; so that, for ex-
ample, on the surface of the Earth the force of gravity can be taken to be constant.
From Example 5.1, the force of gravity due to the Earth is the same as if all the mass
of the Earth were concentrated at its centre of mass. We are looking at displace-
ments (e.g., apples falling from medieval buildings) which are small compared from
the distance to the centre of the Earth. This is illustrated in Figure 13.
According to equation (39), the gravitational potential felt by the apple (of mass m)
at a height z above the surface of the Earth (of mass M) is given by

V(z) =−GMm

R+ z
=−GMm

R

1

1+ z/R
≈−GMm

R
+ GMm

R2 z +O
(
(z/R)2)

Ignoring the irrelevant constant term, we see that to first order in z/R, we obtain the
galilean potential

V(z) = mg z , where g = GM

R2 .

For example, typing

(G * mass of earth)/(radius of earth)ˆ2

into Google produces the answer g ≈ 9.79982305 ms−2. (Before you get too excited,
let me point out that this argument is circular, since to weigh the Earth one uses this
formula backwards from an empirical knowledge of g .)

http://www.google.com/search?q=%28G+*+mass+of+earth%29%2F%28radius+of+earth%29%5E2
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❦

R

z ¿ R

Figure 13: The galilean limit of newtonian gravity

5.3 The Coulomb potential

Our experience to this (star)date suggests that the gravitational potential is always
attractive: objects simply fall. However mathematically there is nothing which pre-
vents us from changing the sign of the potential and consider a repulsive force: a
sort of ‘negative’ gravity. Interestingly such a potential does exist in nature: it is
the electrostatic potential between charged particles, also known as the Coulomb
potential. The potential is formally the same as in the case of gravity, except that
instead of masses we have charges, and this is a crucial difference because unlike
masses, charges come in two flavours: positive and negative. The Coulomb poten-
tial is usually written as

(41) V = 1

4πε0

q1q2

|x1 −x2|
,

which is repulsive if the charges are of the same sign and attractive otherwise. The
constant ε0 is called the electrical permittivity (here, of empty space), but this shall
not matter in this course.
Much of what we will say will hold regardless of the constant in front of the potential,
whether it is positive of negative, so hereafter we will consider the case of a potential
of the form

(42) V =− k

|x1 −x2|
,

where k is a constant which depends on the Physics we are modelling, and has di-
mension [k] = ML3T−2. It is positive and equal to Gm1m2 in the case of gravitational
interactions and of indefinite sign and equal to −q1q2/4πε0 in the case of electro-
static interactions.

5.4 The effective potential

The potential (42) is an example of the two-body problem discussed in Lecture 3.
After decoupling the centre-of-mass motion, we are left with an effective one-dimensional
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system describing a particle of (reduced) mass m = m1m2/(m1+m2) in the presence
of an effective potential

(43) Veff =−k

r
+ m`2

2r 2 .

This potential is sketched in Figure 14 for ` 6= 0 for both signs of k. In particular the
energy is always positive in the repulsive case, whence only in the attractive case can
we have bounded orbits.

0

0 1

10

(a) attractive (k > 0)

0

0

10

1

(b) repulsive (k < 0)

Figure 14: Effective potentials for Kepler and Coulomb problems

Example 5.2 (Minimum radius). The function V(r ) =−α
r + β

r 2 , for positive α and β,
has a minimum at the roots of V′(r ) = 0. The only root is r = 2β/α, where V takes the
value −α2/4β. Inserting the values of α= k and β= 1

2 m`2 we obtain that the effective
potential Veff has a minimum at r = m`2/k with value Vmin =−k2/2m`2.

It follows from energy conservation that if E ≥ 0 the motion is unbounded, whereas
if E < 0 the motion is constrained to lie in the annulus rmax ≥ r ≥ rmin, where

(44)
1

rmin
= k

m`2


1+

√
1− 2|E|m`2

k2




1

rmax
= k

m`2


1−

√
1− 2|E|m`2

k2




For planets going around the Sun, rmin is called the aphelion and rmax the perihe-
lion. For the moon (or a satellite) going around the Earth, these are called apogee
and perigee, et cetera.

Example 5.3 (Periodicity of bounded orbits in the Kepler problem). Let E < 0 and
` 6= 0. The turning angle ∆θ is given by equation (38) where rmin and rmax are given
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in equation (44). After dividing the integrand by `, we find

∆θ=±2
∫ rmax

rmin

dr /r 2

√(
1
r − 1

rmax

)(
1

rmin
− 1

r

)

where the sign refers to the sign of `. Let us take ` > 0 from now on. Let us change
variables to u = r−1 − r−1

max, whence the integral becomes

∆θ= 2
∫ Λ

0

dup
u(Λ−u)

,

where we have introduced the shorthand Λ := r−1
min − r−1

max > 0. Let us change vari-

ables again to w =
p

v/Λ, which transforms the integral into an elementary integral

∆θ= 4
∫ 1

0

d wp
1−w 2

= 2π .

Hence from Example 4.1 it follows at once that the orbits are periodic.

The minimum allowed energy is E = Vmin in which case the orbit is circular with
radius m`2/k, as found in Example 5.2. Conservation of angular momentum (33)
implies that the angular velocity for such an orbit is constant: θ̇= k2/m2`3. It takes
a time T for θ to go from 0 to 2π, whence

(45) 2π= k2T

m2`3 =⇒ T = 2πm2`3

k2 .

This allows us to estimate the length of the year.

Example 5.4 (Estimating the distance to the Sun). From the knowledge of how long
an Earth year is, we can estimate the distance from the Earth to the Sun, assuming
the Earth’s orbit around the Sun to be circular. For a circular orbit of radius R, we
have that

`2 = G(m1 +m2)R .

The corresponding angular velocity is

θ̇=
p

G(m1 +m2)

R3/2
,

whence the period is

T = 2πR3/2

p
G(m1 +m2)

.

Solving for R we find

R =
(

G(m1 +m2)T2

4π2

) 1
3

.

For T = 1year, typing

((1 year)ˆ2*G*(mass of Earth + mass of Sun)/(4*piˆ2))ˆ(1/3) in AU

into Google yields 0.999993881AU, which is just under 1 astronomical unit, as ex-
pected.

http://www.google.co.uk/search?hl=en&q=%28%281+year%29%5E2*G*%28mass+of+earth+%2B+mass+of+sun%29%2F%284*pi%5E2%29%29%5E%281%2F3%29+in+AU
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5.5 The Laplace–Runge–Lenz vector

We have just seen that for E < 0 and ` 6= 0, the motion is periodic. We will see in
the next lecture that they are indeed ellipses with the centre of mass of the two-body
system as a focus. In fact, we will be able to describe the orbits geometrically. We will
set the stage by exhibiting yet another conserved quantity in addition to the energy
and angular momentum.
Let

A := ẋ ×L+Vx

denote the Laplace–Runge–Lenz vector. We claim that it is conserved. Indeed, us-
ing that L is constant, we find

d A

d t
= ẍ ×L+ (ẋ ·∇V)x +Vẋ

= mẍ × (x × ẋ)+ (ẋ ·∇V)x +Vẋ

=−∇V × (x × ẋ)+ (ẋ ·∇V)x +Vẋ ,

where we have used Newton’s equation in the last line. If we now use the explicit
expression V =−k/|x |, for which ∇V = kx/|x |3, we obtain

d A

d t
=− k

|x |3 x × (x × ẋ)+ k

|x |3 (ẋ ·x)x − k

|x |x ,

which is seen to vanish upon using the identity

(46) a × (b ×c) = (a ·c)b − (a ·b)c .

This identity also allows us to eliminate the cross product from the expression for A:

(47) A = (
ẋ ·p +V

)
x − (ẋ · x) p = (

m|ẋ |2 +V
)

x −m (ẋ ·x) ẋ .

The existence of this conserved quantity is special to the 1/r potential and as we
will see in the next lecture, it explains that the geometry of the orbits is very simple,
namely the orbits are conic sections: ellipses, parabolas and hyperbolas.
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The ε-symbol (cont’d)

The identity (46) can also be expressed using the ε-symbol. Recall that if
a,b ∈R3 and c = a ×b is their cross product, then

ci = εi j k a j bk .

Therefore, if we let d = a × (b ×c), we have

di = εi j k a j εkl mbl cm .

We now use the following identity

(48) εi j kεklm = δi lδ j m −δi mδ j l ,

where we have introduced the Kronecker δ, defined by

δi j =
{

1 , i = j

0 , i 6= j .

Therefore

di = a j c j bi −a j b j ci ,

which is equivalent to (46).
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Lecture 6: Kepler’s laws of planetary motion

Now it is quite clear to me that there are no solid
spheres in the heavens, and those that have
been devised by the authors to save the appear-
ances, exist only in the imagination.

— Tycho Brahe

In this lecture we will see that Newton’s law of gravitation implies Kepler’s laws and
discuss in some more detail the bounded orbits in the attractive potential; that is,
those orbits with negative energy. We have seen in Example 5.3 that these orbits
are closed, and in fact that they are simple closed curves: so that as r goes from
rmax to rmin and back to rmax, the angle turns by precisely 2π. Our first result is
that these orbits are in fact ellipses with the centre of mass as a focus. As we will
recall shortly, this is Kepler’s first law of planetary motion. In fact, we will prove
something stronger: namely that all orbits (whether bounded or not) are given by
conic sections; that is, ellipses, parabolas or hyperbolas, depending on the energy.

6.1 Conic sections and planetary orbits

Let us now use the conserved quantities in the Kepler problem to determine the
geometry of planetary orbits. The same result will of course hold for the orbits in the
Coulomb problem, whether attractive or repulsive.
We recall that since x ·L = 0, it follows that the motion takes place in the plane per-
pendicular to L, which, since L is conserved, is fixed throughout the motion. Since
A ·L = 0 as well, the Laplace–Runge–Lenz vector lies in the plane of motion. If we let
ϕ denote the angle between x and A, we know that

x ·A = |x ||A|cosϕ ,

whereas we can compute this explicitly from the definition of A to obtain

x ·A = x · (ẋ ×L)+V|x |2 .

Using the identity

(49) a · (b ×c) = c · (a ×b)

and the explicit form of the potential, we find that

x ·A = L · (x × ẋ)−k|x | = m`2 −k|x | .

Equating the two expressions for x ·A and rearranging, we find that

(50) |x |
(
1+ |A|

k
cosϕ

)
= m`2

k
,

which is the equation of a conic section with eccentricity |A|
k and latus rectum 2m`2

k .
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Conic sections

Conic sections (or simply conics) in R3 are planar curves defined by inter-
secting a right circular double cone with an affine plane. In polar coordin-
ates (r,ϕ) for the plane, the equation for a conic section is given by

(51) r (1+εcosϕ) = λ ,

where ε ≥ 0 is called the eccentricity and λ > 0 is called the semi-latus
rectum. There are three types of (nondegenerate) conics depending on the
value of the eccentricity:





ε< 1 , ellipse

ε= 1 , parabola

ε> 1 , hyperbola.

Circles are ellipses with ε= 0.

Earlier we saw that periodic orbits have negative energy, whence we expect that neg-
ative energy should be equivalent to the eccentricity < 1. This is indeed the case, as
we now show by computing

|A|2 = |ẋ ×L+Vx |2

= m2|ẋ |2`2 +k2 +2mV`2

where we have used the identity

(52) |a ×b|2 = |a|2|b|2 − (a ·b)2 ,

the facts that ẋ and L are perpendicular and that |L|2 = m2`2.

Two derivations

Identity (52) can be proved by using (46) and (49):

|a ×b|2 = a · (b × (a ×b))

= a · (|b|2a − (a ·b)b
)

= |a|2|b|2 − (a ·b)2 .

Equivalently, it can be proved from equation (48):

|a ×b|2 = εi j k a j bkεi l m al bm

= (δ j lδkm −δ j mδkl )a j bk al bm

= a j a j bk bk −a j b j ak bk

= |a|2|b|2 − (a ·b)2 .
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Continuing with the calculation and rearranging, we find that

|A|2 −k2 = 2m`2 ( 1
2 m|ẋ |2 +V

)
,

which, recognising the energy in the RHS and rearranging again, we rewrite as

(53) ε2 = 1+ 2m`2

k2 E ,

where ε is the eccentricity of the orbit. Therefore we see that E < 0 corresponds to
ellipses, E = 0 to parabolas and E > 0 to hyperbolas. The circular orbits correspond
to zero eccentricity, whence E = −k2/2m`2 which is the minimum allowed energy,
in agreement with the results of Example 5.2.

6.2 Kepler’s laws

In perhaps the earliest successful applications of data mining, Kepler studied obser-
vations of the planet Mars painstakingly recorded by Brahe over a period of many
years. Out of this data Kepler distilled three empirical laws:

I. that the planetary orbits are ellipses with the Sun as a focus,

II. that the planets move in such a way that they sweep equal areas in equal time,
and

III. that the period of the orbit is proportional to the 3
2 th power of the length of

the semi-major axis of the ellipse (see below).

We have seen above that bounded orbits are indeed ellipses; although in a small
correction to Kepler’s first law, it is the centre of mass of the Sun/planet system which
sits at the focus of the ellipse. For a planet such as the Earth, we saw in Example 3.1
that this correction is almost imperceptible.
The second law follows from the conservation of angular momentum, since this im-
plies that the areal velocity is constant. We also saw in Section 4.3 that this is not a
peculiarity of the 1/r potential, but in fact a general fact of central force fields.
In proving the third law we will derive below an explicit formula for the period of the
orbit, but we can understand why this has to be the case simply as a consequence
of the invariance of Newton’s equation (for this very particular potential) under a
(mechanical) similarity transformation.

Example 6.1 (Similarity invariance of Newton’s equation). Let x(t ) be a solution of
Newton’s equation:

mẍ =− kx

|x |3 .

Then we claim that so is xλ(t ) := λx(λ−3/2t ) for all λ> 0. Indeed, differentiating once
using the chain rule, we obtain

ẋλ(t ) = λ−1/2 ẋ(λ−3/2t ) ,

where here and in what follows a dot indicates a derivative with respect to the argu-
ment. Differentiating again, we obtain

ẍλ(t ) = λ−2ẍ(λ−3/2t ) .
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On the other hand,
−kxλ(t )

|xλ(t )|3 =−λ−2 kx(λ−3/2t )

|x(λ−3/2t )|2 .

Comparing we see that xλ(t ) indeed solves the equation.

It follows from this result that if x(t ) is a planetary orbit with period T and semi-
major axis of length a, then xλ(t ) is also an orbit but with period λ3/2T and semi-
major axis of length λa.

6.3 Elliptical geometry

Since the areal velocity is constant and the orbit is an ellipse, the area swept by the
radial vector during one period is the area of the ellipse. Computing the area geo-
metrically we can then determine the period T. More precisely,

area of ellipse =
∫ T

0

d A

d t
d t =

∫ T

0

1
2`d t = 1

2`T ,

whence the period is given by

(54) T = 2(area of ellipse)

`
.

We will now compute the area of the ellipse in terms of physical data. The geometry
of the ellipse is depicted in Figure 15, where a and b are the lengths of the semi-
major and semi-minor axes, respectively.

rmax

rmin

2b

2a

Figure 15: Geometry of the ellipse

It is clear from the picture that 2a = rmax + rmin. From the polar equation for the
ellipse

r (1+εcosϕ) = λ ,

we see that rmin occurs when ϕ= 0, whence rmin = λ/(1+ε), and rmax occurs when
ϕ= π, whence rmax = λ/(1−ε). This means that the length of the semi-major axis is
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given by

(55) a = λ

1−ε2 ,

which allows us to write the polar equation for the ellipse as

r (1+εcosϕ) = a(1−ε2) .

The length b of the semi-minor axis of the ellipse is the maximum length of r sinϕ.
Using the polar equation, we see that

r sinϕ= a(1−ε2)sinϕ

1+εcosϕ
.

We find the maximum by differentiating and setting the derivative to zero to obtain

a(1−ε2)

(1+εcosϕ)2

(
ε+cosϕ

)= 0 =⇒ cosϕ=−ε ,

which in turn implies that sinϕ=
p

1−ε2, whence

(56) b = a
√

1−ε2 .

We now express both a and b in terms of physical data. From equation (53) we see
that

1−ε2 = 2m`2|E|
k2 ,

and λ= m`2/k, whence using equation (55) and the above result,

a = k

2|E| and b =
√

m`2

2|E| .

Example 6.2 (Area of ellipse). Let us calculate the area of the ellipse. The equation
for an ellipse with semi-major axis of length a and semi-minor axis of length b is
given by

x2

a2 + y2

b2 = 1 .

By symmetry, the area inside the curve is 4 times the area inside the curve and inside
the positive quadrant, which can be written as the integral

∫ a

0
b

√
1− x2

a2 d x .

Changing variables to x = a sinθ, the area is given by

A = 4ab
∫ π/2

0
cos2θdθ=πab .
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Finally, we can use equation (54) to solve for the period

T = 2πab

`
= πk

2|E|3/2
,

or in terms of the length a of the semi-major axis,

(57) T = 2πa3/2
√

m

k
,

just as Kepler had observed.
Notice finally that this agrees with the case of a circular orbit as in Example 5.2.
There we found that the radius of such an orbit was R = m`2/k, whereas equa-
tion (33) says that the angular velocity is constant and equal to θ̇ = k2/m2`3. The
period is T = 2π/θ̇, which after the dust settles is equal to the expression in (57) with
a = R.
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Lecture 7: Small oscillations about stable equilibria

In this lecture we begin the study of stable equilibria and show that small displace-
ments around such equilibria result in oscillatory behaviour. We will first see how a
one-dimensional particle executes simple harmonic motion in the neighbourhood
of a minimum of the potential. We will then generalise this first to three-dimensional
motion and then to an arbitrary (but finite) number of degrees of freedom. The fur-
ther generalisation to an infinite number of degrees of freedom gives rise to the the-
ory of wave motion, which belongs to the second half of this course.

7.1 Equilibria and critical points

Recall from Example 1.1 that an equilibrium point is a point where the force field
vanishes. Everyday experience provides a certain intuitive notion of ‘stability’ of an
equilibrium point: if we make a small displacement from equilibrium, the system
should remain near the equilibrium point. We will now try to make this intuition
precise. We will restrict ourselves for simplicity to the case of conservative force
fields. An equilibrium point is then a critical point of the potential; that is, a point
x0 where ∇V(x0) = 0.
Let us begin by discussing one-dimensional mechanical systems; that is, a particle
moving in a one-dimensional potential. Newton’s equation is given by (15). Without
loss of generality let us assume that x = 0 is a critical point of the potential. Since the
potential is defined up to an additive constant, let us choose that constant so that
V(0) = 0 without loss of generality. Expanding V around 0 we find that

(58) V(x) = 1
2 kx2 +O(x3) ,

where k := V′′(0) is the second derivative of V with respect to x evaluated at x = 0.
For small deviations from equilibrium we may truncate this expansion to second
order and assume that V(x) = 1

2 kx2. Newton’s equation is then

(59) mẍ =−kx .

There are three cases depending on whether k is positive, zero or negative. If k = 0
we say that the critical point is degenerate and we cannot say anything about its sta-
bility. Otherwise we have a non-degenerate critical point: a local minimum if k > 0
and a local maximum if k < 0. In the former case the force tends to restore the sys-
tem to equilibrium and we say that the equilibrium point is stable. In the latter case
the force tends to push away from equilibrium and we say that the equilibrium point
is unstable. We see that Hooke’s Law (see Example 2.4) is not particular to springs,
but in fact generic for small displacements around a stable equilibrium point. As we
saw in Section 2.2, this gives rise to simple harmonic motion.
We saw in Section 4.3 that conservation of angular momentum allows us to reduce
the dynamics of a particle moving in a conservative central force field to an effective
one-dimensional problem. The radial equation takes the form of Newton’s equation
with an effective potential Veff(r ). A critical point of the effective potential is a radius
r0 where V′

eff(r0) = 0. This means that circular orbits with radius r0 are possible.
Such circular orbits will be stable if r0 is a minimum of the effective potential; that
is, if V′′

eff(r0) > 0. Let us assume that this is the case. If we let r = r0 + ρ, where ρ,
assumed small, is the displacement from the circular orbit, the equation for small
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radial oscillations can be obtained from (35) by expanding the effective potential
about r0 up to second order

Veff(r ) = Veff(r0)+ 1
2 V′′

eff(r0)ρ2 +·· ·

Since mr̈ = mρ̈, equation (35) becomes

mρ̈=−V′′
eff(r0)ρ ,

which describes simple harmonic motion with frequency
√

V′′
eff(r0)/m.

Example 7.1 (Radial oscillations in the Kepler problem). We saw in Example 5.2
that the Kepler problem, for which the effective potential is given by equation (43),
admits circular orbits for r0 = m`2/k. Let us calculate the period of radial oscillations
around the circular orbit. We start by calculating V′′

eff(r0). Differentiating Veff twice
we find

V′′
eff(r ) =−2k

r 3 + 3m`2

r 4 ,

whence evaluating at r0 and simplifying, we obtain

V′′
eff(r0) = k4

m3`6 > 0 .

Hence r0 is indeed a minimum and the circular orbit is stable under small displace-
ments. The period of radial oscillations is given by

T = 2π

√
m

V′′
eff(r0)

= 2πm2`3

k2 .

Curiously, this is precisely the period (45) of the circular orbit! This means that per-
turbing the circular orbit we still get a closed orbit, illustrated in Figure 16. (This is
also the case with the space oscillator potential.)

(a) small perturbation (b) large perturbation

Figure 16: Perturbations of a circular orbit in the Kepler potential. (The thinner line
is the unperturbed circular orbit.)
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7.2 Three-dimensional potential motion

Now let us consider a particle of mass m moving in three dimensions subject to a
general potential function V : R3 → R. Let x0 be an equilibrium point; that is, a
critical point of the potential. Recall that this means that ∇V(x0) = 0. Critical points
come in several types, depending on the “shape” of the potential function near the
critical point. This can be quantified by expanding the potential function in a Taylor
series around the critical point.

Taylor expansions

Let V :R3 →R be an infinitely differentiable function. The first few terms in
the Taylor expansion of V about the point x0 ∈R3 take the form

(60) V(x) = V(x0)+ (x −x0) ·∇V(x0)+ 1
2 (x −x0) ·H(x −x0)+·· ·

where the hessian matrix H has entries

(61) Hi j =
∂2V

∂xi∂x j

∣∣∣∣
x0

.

Since V is differentiable, H is symmetric: Hi j = H j i .

We will make two simplifying assumptions without any loss of generality. First, we
will assume that the critical point x0 is the origin. This can be achieved simply by
changing coordinates: x 7→ x − x0. Second, we will assume that the potential func-
tion vanishes at the critical point. This can be achieved by subtracting V(x0) from
the potential, which is allowed since it is only the gradient of V that enters New-
ton’s equation. With these two assumptions, the Taylor (or now actually MacLaurin)
series (60) of V around 0 is given to second order by

(62) V(x) = 1
2 x ·Hx +·· · ,

where H is the hessian matrix of V at 0.
For small displacements from equilibrium, |x | is assumed to be small, whence we
can approximate the potential by the lowest term of its Taylor series, giving rise to a
linear force field F :R3 →R3:

(63) F =−∇V =−Hx ,

and Newton’s equation becomes

(64) mẍ =−Hx or equivalently ẍ =− 1
m Hx .

Let us assume for a moment that H is diagonal:

H =



k1

k2

k3


 .

In this case Newton’s equation decouples into three independent equations

mẍi =−ki xi , for i = 1,2,3.
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If ki > 0, then xi executes simple harmonic function with frequency ωi =
√

ki /m.
Let us assume that ki > 0 for i = 1,2,3. Then we can solve each decoupled equation
as done above, to obtain

xi (t ) = Ai sin
(
ωi t +ϕi

)
.

Whereas each xi is a periodic function, with period 2π/ωi , the overall motion need
not be periodic. Indeed, motion is periodic if for some T > 0, x(t +T) = x(t ) for all t .
In particular, x(T) = x(0). This means that for each i , xi (T) = xi (0). This is the case if
and only if T divides each of the periods 2π/ωi evenly; that is, T = 2πni /ωi for some
positive integers ni . In other words, this is true if and only if ωi /ω j = ni /n j ; that is,
if the frequencies are rationally related.

7.3 Normal modes and characteristic frequencies

In general, H will not be diagonal, but nevertheless, it is a fundamental result in
Linear Algebra that any symmetric matrix, e.g., H, is diagonalisable.

The spectral theorem for symmetric matrices

Let H be a symmetric N×N matrix. We say that a nonzero vector v ∈RN is a
(real) eigenvector of H with (real) eigenvalue λ ∈R, if Hv = λv . It is a basic
fact from Linear Algebra that H has N linearly independent eigenvectors v i ,
i = 1, . . . ,N with eigenvalues λi , not necessarily distinct. Furthermore we
can choose the v i to be pairwise orthogonal v i · v j = 0 for i 6= j and nor-
malised to |v i | = 1. This means that the matrix S whose i -th column is v i

is orthogonal: St S = I, where I is the N×N identity matrix and t denotes
the transpose operation. If we let D be the diagonal matrix with diagonal
entries λ1,λ2, . . . ,λN, then by construction, HS = SD.

Applying this to our three-dimensional example, there exists an orthogonal 3 × 3
matrix S such that

(65) H = SDSt where D =



k1

k2

k3


 .

The linearised Newton’s equation (64) becomes

mẍ =−SDSt x .

Acting on both sides of this equation from the left with St and using that S is ortho-
gonal, we find

mSt ẍ =−DSt x .

In terms of the new variable y = St x , the equation of motion becomes

m ÿ =−Dy ,

where we have used that S is independent of time. This reduces the problem to the

case of H diagonal, but in terms of y instead of x . Indeed, if y =



y1

y2

y3


, the equation
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decouples into three one-dimensional equations for each yi :

ÿi =
ki

m
yi .

Assuming that 0 is a minimum of the potential, so that the hessian matrix is positive-
definite, ki > 0 for all i . Then the above equations have oscillatory solutions

yi (t ) = Ai sin
(
ωi t +ϕi

)
,

where ω2
i = ki /m. Once we have determined y(t ) we recover x(t ) by changing vari-

ables back: x(t ) = S y(t ). The variables yi (t ) are known as the normal modes of
the system and the frequencies ωi are known as the characteristic frequencies. In
summary, small oscillations about a stable critical point are linear combinations of
independent one-dimensional oscillators. This does not preclude the system to ex-
hibit seemingly complicated behaviour as we will see below.

7.4 Coupled one-dimensional oscillators

Consider an idealised one-dimensional mechanical system con-
k k k

m m
sisting of two point masses each of mass m connected by springs
to each other and to two fixed ends. We will neglect gravity,

friction and the mass of the springs. The springs obey Hooke’s law with spring con-
stant k. We assume that the system is at equilibrium when the springs are relaxed,
and we want to study the system around equilibrium; that is, we wish to study small
displacements of the masses. We let xi for i = 1,2 denote the displacements from
equilibrium for each of the two point masses, as shown below.

- -x1 x2

Then the potential energy due to the springs is the sum of the potential energies of
each of the springs:

V = 1
2 k x2

1 + 1
2 k (x2 −x1)2 + 1

2 k x2
2

= k
(
x2

1 +x2
2 −x1x2

)
.

The kinetic energy is given by

T = 1
2 mẋ2

1 + 1
2 mẋ2

2 .

The equations of motion are then, for i = 1,2,

d

d t

∂T

∂ẋi
=− ∂V

∂xi
.

Explicitly, we have the following coupled system of second order ordinary differen-
tial equations:

mẍ1 =−2kx1 +kx2

mẍ2 =−2kx2 +kx1 .



PoMP 2006 (jmf) 46

Let us write this in matrix form. We introduce a column vector x =
(

x1

x2

)
. Then the

above system of equations becomes

(66) ẍ =−ω2 K x ,

where K is the matrix

K =
(

2 −1
−1 2

)
,

and where we have introduced the notation

ω :=
√

k

m
.

Notice that K is symmetric, hence it can be diagonalised by an orthogonal trans-
formation. Let us find its eigenvalues and its eigenvectors. The characteristic poly-
nomial of K is given by

χK(λ) =
∥∥∥∥

2−λ −1
−1 2−λ

∥∥∥∥= (2−λ)2 −1 = (λ−1)(λ−3) ,

from which it follows that it has as roots λ = 1,3. The normalised eigenvectors cor-
responding to these eigenvalues are

v 1 =
1p
2

(
1
1

)
, and v 3 =

1p
2

(
1

−1

)
,

respectively. We build the following matrix S out of the normalised eigenvectors

S = 1p
2

(
1 1
1 −1

)
.

One can check that S is orthogonal: St = S−1. One can also check that

K = S DSt ,

where D is the diagonal matrix of eigenvalues

D =
(
1 0
0 3

)
.

Inserting this expression into equation (66), we see that

ẍ =−ω2SDSt x .

In terms of the new variables

y =
(

y1

y2

)
= St x ,

the equation of motion (66) becomes

(67) ÿ =−ω2 D y .

Because the matrix D is diagonal, the equations of motion for the new variables yi

are now decoupled:

ÿ1 =−ω2 y1 and ÿ2 =−3ω2 y2 .
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One can now easily solve these equations,

y1(t ) = A1 sin(ω1 t +ϕ1)

y2(t ) = A2 sin(ω2 t +ϕ2) ,

whereω1 =ω,ω2 =
p

3ω and Ai andϕi are constants to be determined from the ini-
tial conditions. The physical variables in the original problem are the displacements
xi of each of the point masses. They can be found in terms of the new decoupled
variables yi simply by inverting the change of variables (67). Explicitly,

x1(t ) = A1p
2

sin(ω1t +ϕ1)+ A2p
2

sin(ω2t +ϕ2)

x2(t ) = A1p
2

sin(ω1t +ϕ1)− A2p
2

sin(ω2t +ϕ2) .

The variables yi are the normal modes of the system and they decouple the equa-
tions of motion. Their virtue is that they reduce an interacting (i.e., coupled) mech-
anical system around equilibrium to a set of independent free oscillators. Each of
these free oscillators are mathematical constructs: the normal modes do not gen-
erally correspond to the motion of any of the masses in the original system, but
they nevertheless possess a certain “physicality” and it is fruitful to work with them
as if they were physical. The original physical variables can then be understood as
linear combinations of the normal modes as we saw above. The frequencies ωi of
the normal modes are the characteristic frequencies of the mechanical system. In
particle physics, for example, the elementary particles are the normal modes and
their masses are the characteristic frequencies.
To illustrate the simplification in the dynamics which results from considering the
normal modes, in Figure 17 we have sketched the motion of the two masses in the
problem and of the two normal modes, with time running horizontally to the right.
Notice also that although the motion of each of the normal modes is periodic, the

(a) Point masses (b) Normal modes

Figure 17: Dynamics of point masses and normal modes.

system as a whole is not. This is due to the fact that the characteristic frequencies
are not rational multiples of each other. Indeed, if we were to plot the trajectory of
the system in the plane, with the trajectory of one of the point masses along the x-
axis and the trajectory of the other point mass along the y-axis, we see that the orbit
never repeats, and that we end up filling up the available configuration space. In
Figure 18 we have plotted the cumulative trajectory of the system after letting it run
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for T units of time, for different values of T. As you can see, as T grows the system has
visited more and more points in the available configuration space. Asymptotically,
as T →∞, the system will have visited the whole available space.

(a) T = 10 (b) T = 20 (c) T = 30

(d) T = 50 (e) T = 100 (f) T = 300

Figure 18: Trajectory of the mechanical system at different times.

7.5 Near-equilibrium dynamics

In this section we will consider a more general mechanical system near equilibrium.
Consider a mechanical system whose configuration space is N-dimensional euc-
lidean space RN. For example, it could be a system of n point particles in d di-
mensions, and then N = nd . In the previous section we discussed the case of a
one-dimensional system consisting of two point particles, so that the configuration
space was R2.
The potential energy is given by a function V :RN →R. The configurations of mech-
anical equilibrium are those for which the gradient of the potential vanishes. Hence
let us consider one such equilibrium configuration q 0 ∈RN:

∇V|q0
= 0 .

Because the potential energy is only defined up to an additive constant, we are free
to choose it such that V(q 0) = 0. We can therefore expand the potential function V
about q 0 and the first contribution will be quadratic:

V(q) = V(q0)+ ∇V|q0
· (q −q0)+ 1

2 (q −q 0) ·H(q −q 0)+·· ·
= 1

2 (q −q0) ·H(q −q0) ,
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where H : RN → RN is the hessian of V at q0, thought of as a symmetric linear trans-
formation of RN. Explicitly, in terms of the canonical basis {e i } for RN, then let
q = ∑

i qi e i define some coordinates qi for the configuration space. Then relative
to this basis the hessian of V has matrix elements

Hi j = e i ·H(e j ) = ∂2V

∂qi∂q j

∣∣∣∣
q0

,

which shows manifestly that it is symmetric: Hi j = H j i . Let us define x = q −q 0 to
be the displacements about equilibrium. These will be our dynamical variables. The
potential energy in the quadratic approximation is given by

V = 1
2 x ·H(x) = 1

2

∑
i , j

Hi j xi x j .

We will make the assumption that the kinetic energy is quadratic in the velocities ẋ :

T = 1
2 ẋ ·M(ẋ) = 1

2

∑
i , j

Mi j ẋi ẋ j ,

where the mass matrix M is assumed to be symmetric and positive-definite; that is,
all its eigenvalues are positive.

Example 7.2 (The double pendulum). Consider the double pendulum shown in the
figure.
It consists of a pendulum of length ` with a bob
of mass m hanging from a pendulum of length L
which has a bob of mass M. We assume that the
motion is constrained to a vertical plane. Let θ1

and θ2 denote the angular displacements from equi-
librium of each of the bobs as shown in the figure
below. We will assume that they are small.
The kinetic energy of the first bob is T1 = 1

2 ML2θ̇2
1,

whereas for the second bob, one has to take into
account that θ2 is measured relative to the first bob,
which is moving. Hence we must add the velocit-
ies, so that the kinetic energy of the second bob
is T2 = 1

2 m(Lθ̇1 + `θ̇2)2. The total kinetic energy is
therefore

T = T1 +T2 = 1
2 ML2θ̇2

1 + 1
2 m(Lθ̇1 +`θ̇2)2 .

This is of the torm T = 1
2

∑
i , j Mi j θ̇i θ̇ j , where the mass matrix is given by

[Mi j ] =
(
(M+m)L2 m`L

m`L m`2 .

)

It is clearly positive-definite, since the kinetic energy can be written as a sum of
squares.

We will now analyse the dynamics of small displacements from equilibrium follow-
ing the following prescription:

1. we will standardise the kinetic energy by diagonalising and normalising the
mass matrix; and



PoMP 2006 (jmf) 50

2. we will then diagonalise the potential energy and solve for the normal modes
and characteristic frequencies of this system.

Both steps make use of the spectral theorem for symmetric transformations. Be-
cause M is symmetric, there is an orthogonal matrix S1 such that M′ = St

1MS1 is
diagonal with positive entries. Let D1 be the diagonal matrix whose entries are the
(positive) square roots of the diagonal entries of M′. In other words, M′ = D2

1. We can
therefore write

M = S1 D2
1 St

1 = (S1 D1) (S1 D1)t ,

where we have used that Dt
1 = D1 since it is diagonal. Introduce then the following

variables
z = (S1 D1)t x = D1 St

1 x .

We can invert this change of variables as follows:

x = S1 D−1
1 z ,

where we have used that S1 is orthogonal, so that St
1 = S−1

1 . This change of variables
accomplishes the first step outlined above, since in terms of z , the kinetic energy
becomes simply

T = 1
2 |ż |2 = 1

2

∑
i

(żi )2 .

Similarly, the potential energy has become

V = 1
2 z ·Kz ,

where the matrix K is defined by

K = D−1
1 St

1 HS1 D−1
1 ,

which is clearly symmetric since H and D1 are. Therefore we can find a second or-
thogonal matrix S2 such that D := St

2 K S2 is diagonal. Let us define a new set of
variables

y = St
2 z ,

relative to which the kinetic energy remains simple

T = 1
2 |S2 ẏ |2 = 1

2 |ẏ |2 ,

since orthogonal matrices preserve norms, and the potential energy diagonalises

V = 1
2 y · D y .

Because D is diagonal, the equations of motion of the y are decoupled:

ÿ =−D y ,

whence the y are the normal modes of the system. Let D have entries

D =




λ1

λ2

. . .
λN




,

Then the equations of motion for the normal modes are

ÿi =−λi yi .

We can distinguish three types of solutions:
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1. (λi > 0) The solution is oscillatory with characteristic frequency ωi =
√
λi :

yi (t ) = Ai sin(ωi t +ϕi ) .

2. (λi = 0) The solution is linear

yi (t ) = ai +bi t .

Such a normal mode is said to be a zero mode, since it has zero characteristic
frequency.

3. (λi < 0) The solution is exponential

yi (t ) = Ai exp
(√

|λi |t
)
+Bi exp

(
−

√
|λi |t

)
.

If all eigenvalues λi are positive the equilibrium point is said to be stable, if they
are all non-negative then it is semistable, whereas if there is a negative eigenvalue,
then the equilibrium is unstable. The signs of the eigenvalues of the matrix D agree
with the sign of the eigenvalues of the hessian matrix of the potential at the equi-
librium point. The different types of equilibria are illustrated in Figure 19, which
shows the behaviour of the potential function around an equilibrium point in the
simple case of a two-dimensional configuration space. The existence of zero modes
is symptomatic of flat directions in the potential along which the system can evolve
without spending any energy. This usually signals the existence of some continuous
symmetry in the system. In the Figure we see that the semistable equilibrium point
indeed has a flat direction along which the potential is constant. In other words,
translation along the flat direction is a symmetry of the potential function.

(a) stable (b) semistable

(c) unstable

Figure 19: Different types of equilibrium points.
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