دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

4. Continuous Linear Functions

4.1 Definitions and General Properties

Recall that a function f from a topological space X into topological space Y (i.e. $f: X \rightarrow Y$) is called continuous at a point $x \in X$ if for every neighborhood U of $f(x)$ in Y there is a neighborhood V of x in X such that $f(V) \subseteq U$. If f is continuous at every point, it is called continuous. A function $f: X \rightarrow Y$ is continuous iff each open (rsp. closed) set U in Y the set $f^{-1}(U)$ is open (rsp. closed) set in X. A function $f: X \rightarrow Y$ from a linear space X into linear space Y is called a linear if $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ for all $x, y \in \mathbb{X}$ and $\alpha, \beta \in F$. - Linear function of a linear space X into its field F is called linear functional on X.

- Let $C(X, Y)$ denote the set of all continuous linear functions from a topological linear space X into a topological linear space Y. Then $C(X, Y)$ is a linear space. If $Y=X$, we write $C(X)$ instead of $C(X, X)$. The space of all continuous linear functionals defined on a topological linear space X is called the dual space and denoted by X^{*},i.e. $X^{*}=C(X, F)$. If X is finite dimensional, then $X^{\prime}=X^{*}$

Definition(4.1.1)

Let (X, d) and $\left(Y, d^{*}\right)$ be metric spaces. A function $f: X \rightarrow Y$ is called an Isometry if (1) f is bijective, i.e. one -one and onto (2) $d^{*}(f(x), f(y))=d(x, y)$ for all $x, y \in X$

Theorem(4.1.2) Completion theorem
Let (X, d) be an arbitrary metric space. There exists a complete metric space
$\left(X^{*}, d^{*}\right)$ in which (X, d) can be isometrically embedded in such a way that X is dense in X^{*}, i.e. (X, d) is isometric to a dense subspace of $\left(X^{*}, d^{*}\right)$.
Note that : All completions of metric space are isometric.

Definition(4.1.3)

Let X and Y be normed spaces, An isometric isomorphism of X into Y is a one-one linear function f of \mathcal{X} into Y such that $\|f(x)\|=\|x\|$ for every $x \in X$. Also we say that X is isometrically isomorphic (or congruent) to Y if there exists an isomorphism of X onto Y.

Remark

Let f be an isometric isomorphism of X into Y where X and Y are normed spaces. Let $x, y \in X$
Then $\|f(x)-f(y)\|=\|f(x-y)\|=\|x-y\|$
Thus f preserves distances and so it is an Isometry.

Definition(4.1.4)

Let X and Y be normed spaces. A topological isomorphism of X into Y is a one-one linear function f of X into Y such that f and f^{-1} are continuous on their respective domains. Also

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

we say that X is topological isomorphic to Y if there exists a topological isomorphism of X onto Y. In other words, X and Y are topologically isomorphic provided there exists a homeomorphism of X onto which is also a linear function.

Remark

Topological isomorphism space need not be isometrically isomorphic . In fact there do exists examples of pairs op spaces which are topologically isomorphic but not congruent.

Theorem(4.1.5)

Let X and Y be normed spaces. Then X and Y are topologically isomorphic iff there exists a linear function of X onto Y and positive constants α, β such that $\alpha\|x\| \leq\|f(x)\| \leq \beta\|x\|$.

Proof :

Suppose X and Y are topologically isomorphic, then there exists a linear function f of X onto Y such that f and f^{-1} are continuous. But f is continuous iff there exists a positive constant β such that $\|f(x)\| \leq \beta\|x\|$ for all $x \in X$.
Again f^{-1} is continuous iff there exists a positive constant α such that $\alpha\|x\| \leq\|f(x)\|$ for all $x \in X$. It follows that X and Y are topologically isomorphic iff there exists a linear function of X onto Y and positive constants α, β such that $\alpha\|x\| \leq\|f(x)\| \leqslant \beta\|x\|$.

Theorem(4.1.6)

Let X and Y be topological linear spaces and let $f: X \rightarrow Y$ be a linear function. If f is continuous at 0 , then it is continuous

Proof:

Let $x \in X$ and let U be a neighborhood of $f(x)$ in Y, then $U=f(x)+W$, where W is a neighborhood of 0 in Y
Since f is continuous at 0 in \vec{X}, then there exist a neighborhood V of 0 in X such that $f(V) \subset W \Rightarrow x+V$ is a neighborhood of x in X.
To show that $f(x+V)$ C U
Let $z \in f(x+V) \Rightarrow \forall \quad y \in x+V$ such that $z=f(y)$
Since $y \in x+V \Rightarrow y-x \in V \Rightarrow f(y-x) \in f(V)$
$f(y)-f(x) \in f(V) \Rightarrow z-f(x) \in f(V) \Rightarrow \quad z \in f(x)+f(V) \Rightarrow z \in U$
$\Rightarrow f$ is continuous at x, then f is continuous.

Theorem(4.1.7)

Let X and Y be normed spaces and let $f: X \rightarrow Y$ be a linear function. Then f is continuous either at every point of X or at no point of X.

Proof :

Let x_{1} and x_{2} be any two points of X and suppose f is continuous at x_{1}. Then to each $\varepsilon>0$ there exists $\delta>0$ such that

تحيل دالي Functional Analysis
 3: 1: 3:

$$
\left\|x-x_{1}\right\|<\delta \Rightarrow\left\|f(x)-f\left(x_{1}\right)\right\|<\varepsilon
$$

Now

$$
\begin{aligned}
\left\|x-x_{2}\right\|<\delta \Rightarrow\left\|\left(x+x_{1}-x_{2}\right)-x_{1}\right\|<\delta & \Rightarrow\left\|f\left(x+x_{1}-x_{2}\right)-f\left(x_{1}\right)\right\|<\varepsilon \\
\Rightarrow\left\|f(x)+f\left(x_{1}\right)-f\left(x_{2}\right)-f\left(x_{1}\right)\right\|<\varepsilon & \Rightarrow\left\|f(x)-f\left(x_{2}\right)\right\|<\varepsilon
\end{aligned}
$$

$\Rightarrow \quad f$ is continuous at x_{2}, then f is continuous.

Lemma (4.1.8)

Let X and Y be Banach spaces and $f: X \rightarrow Y$ a continuous, linear and onto function. Then the image of each open ball centered on the origin in X contains an open ball centered on the origin in Y.

Proof : H.W

Theorem(4.1.9) The open mapping theorem
Let X and Y be Banach spaces. If $f: X \rightarrow Y$ is a continuous, linear and onto function, then f is open
Proof :
Let G be open set in X. We want to show that $f(G)$ is open in Y
Let $y \in f(G)$, then $y=f(x)$ for some $x \in G$
Since G is open set in X, there exist $r>0$ such that $\beta_{r}(x) \subseteq G \Rightarrow f\left(\beta_{r}(x)\right) \subseteq f(G)$
Since $\beta_{r}(x)=x+\beta_{r}(0) \Rightarrow x+\beta_{r}(0) \subseteq G$
By our lemma, there exists an open sphere $\beta_{r}^{\prime}(0)$ in Y centered at origin such that
$\beta_{r}^{\prime}(0)_{r} \subseteq f\left(\beta_{r}(0)\right)$
$\Rightarrow \quad y+\beta_{r}^{\prime}(0) \subseteq y+f\left(\beta_{r}(0)\right)=f(x)+f\left(\beta_{r}(0)\right)=f\left(x+\beta_{r}(0)\right)=f\left(\beta_{r}(x)\right) \subseteq f(G)$
Since $y+\beta_{r}^{\prime}(0)=\beta_{r}^{\prime}(y) \Rightarrow \beta_{r}^{\prime}(y) \subseteq f(G) \Rightarrow f(G)$ is open, thus f is an open .
The following special case of the above theorem is very important.

Theorem(4.1.10)

Let X and Y be Banach spaces. If $f: X \rightarrow Y$ is a bijection continuous linear function, then f is homeomorphism.
Proof :
Since f is bijection continuous function, we need only prove that f is an open function.

Definition(4.1.11)

Let X and Y be any non-empty sets and let $f: X \rightarrow Y$ be a function. The set

$$
\{(x, y) \in X \times Y \quad y=f(x)\}=\{(x, f(x)): x \in X, f(x) \in Y\}
$$

is called the graph of f. We shall denote the graph of f by f_{G}.i.e.

$$
f_{G}=\{(x, y) \in X \times Y \quad y=f(x)\}=\{(x, f(x)): x \in X, f(x) \in Y\} .
$$

In the case X and Y are normed spaces.Then $X \times Y$ is a normed spaces We will now generalize the above notion of graph

دراسات عليا - ماجستير

 تحليل دالي دراتي

 تحليل دالي دراتي
 3: 1: 3 :

Closed Linear Function

Definition(4.1.12)

Let X and Y be normed Spaces and let D be a subspace of X.The linear function $f: D \rightarrow Y$ is called closed if for every sequence $\left\{x_{n}\right\}$ in D such that $x_{n} \rightarrow x \in X$ and $f\left(x_{n}\right) \rightarrow y$, then $x \in D$ and $y=f(x)$.

Theorem(4.1.13)

Let X and Y be normed Spaces and let D be a subspace of X. The linear function $f: D \rightarrow Y$ is closed iff its graph f_{G} is closed subspace.

Proof:

Suppose that $f: D \rightarrow Y$ is closed to show that f_{G} is closed subspace.
Let (x, y) be any limit point of f_{G},i.e. $(x, y) \in \overline{f_{G}}$, then there exists a sequence of points in $f_{G},\left(x_{n}, f\left(x_{n}\right)\right.$) where, $x_{n} \in D$ such that $\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow(x, y)$ $\Rightarrow\left(x_{n}, f\left(x_{n}\right)\right)-(x, y) \rightarrow 0 \Rightarrow\left\|\left(x_{n}, f\left(x_{n}\right)\right)-(x, y)\right\| \rightarrow 0 \Rightarrow\left\|\left(x_{n}-x, f\left(x_{n}\right)-y\right)\right\| \rightarrow 0$
$\left\|x_{n}-x\right\|+\left\|f\left(x_{n}\right)-y\right\| \rightarrow 0 \Rightarrow\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|f\left(x_{n}\right)-y\right\| \rightarrow 0 \Rightarrow x_{n} \rightarrow x$ and $f\left(x_{n}\right) \rightarrow y$
Since $f: D \rightarrow Y$ is closed, then $x \in D$ and $y=f(x) \Rightarrow(x, y) \in f_{G} \Rightarrow f_{G}$ is closed.
Conversely, let the graph f_{G} is closed. To show that The linear function $f: D \rightarrow Y$ is closed.
Let $\left\{x_{n}\right\}$ be a sequence in D such that $x_{n} \rightarrow x \in X$ and $f\left(x_{n}\right) \rightarrow y \Rightarrow\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow(x, y)$
$\Rightarrow(x, y) \in \overline{f_{G}}$, since f_{G} is closed $\Rightarrow \overline{f_{G}}=f_{G} \Rightarrow(x, y) \in f_{G} \Rightarrow x \in D$ and $y=f(x)$.
Therefore The linear function $f: D \rightarrow K$ is closed.
Theorem(4.1.14) Closed Graph Theorem
Let X and Y be Banach spaces .If $f: X \rightarrow Y$ is a linear function, then f is continuous iff its graph is closed

Proof :

Suppose that f is continuous. To show that $f_{G}=\{(x, f(x)): x \in X, f(x) \in Y\}$ is closed Let (x, y) be any limit point of f_{G}, i.e. $(x, y) \in \overline{f_{G}}$, then there exists a sequence $\left(x_{n}, f\left(x_{n}\right)\right)$ in f_{G} such that $\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow(x, y)$
$\Rightarrow\left(x_{n}, f_{s}\left(x_{j}\right)\right)-(x, y) \rightarrow 0 \Rightarrow\left\|\left(x_{n}, f\left(x_{n}\right)\right)-(x, y)\right\| \rightarrow 0 \Rightarrow\left\|\left(x_{n}-x, f\left(x_{n}\right)-y\right)\right\| \rightarrow 0$
$\left\|x_{n}-x\right\|+\left\|f\left(x_{n}^{s}\right)-y\right\| \rightarrow 0 \Rightarrow\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|f\left(x_{n}\right)-y\right\| \rightarrow 0 \quad \Rightarrow \quad x_{n} \rightarrow x$ and $f\left(x_{n}\right) \leftrightarrow y$
Since $f: X \rightarrow Y$ is continuous and $x_{n} \rightarrow x$, then $f\left(x_{n}\right) \rightarrow f(x)$
Since $f\left(x_{n}\right) \rightarrow y$, then $y=f(x) \Rightarrow(x, y)=(x, f(x)) \in f_{G} \Rightarrow f_{G}$ is closed.
Conversely, let f_{G} be closed. To show that f is continuous(H.w)

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3 :

4.2 Boundedeness

Definition(4.2.1)

Let X and Y be topological linear spaces and let $f: X \rightarrow Y$ be a linear function. We say that f is bounded if $f(A)$ is bounded subset of Y for every bounded subset A of X.

Theorem(4.2.2)

Let X be a topological linear spaces over F. Then $f: X \rightarrow F$ is continuous at 0 in X. If for every $r>0$, there exists a neighborhood V at 0 in X such that $|f(x)|<r$ for all $x \in V$.

Theorem(4.2.3)

Let X be a Hausdorff topological linear spaces over F and $f \in X^{\prime}$. Assume $f(x) \neq 0$ for some $x \in X$. Then the following statements are equivalent
(1) f is continuous
(2) $\operatorname{ker}(f)$ is closed
(3) $\operatorname{ker}(f)$ is not dense in X.
(4) f is bounded in some neighborhood V of 0 in X

Proof :

$$
(1) \Rightarrow(2)
$$

Since $\{0\}$ is closed in F and $f: X \rightarrow F$ is continuous, then $f^{-1}(\{0\})$ is closed in X
$\Rightarrow \operatorname{ker}(f)=f^{-1}(\{0\})$ is closed in X
(2) \Rightarrow (3)

Since $\operatorname{ker}(f)$ is closed in $X \Rightarrow \overline{\operatorname{ker}(f)}=\operatorname{ker}(f)$
Since $f(x) \neq 0$ for some $x \in X$, then $x \notin \operatorname{ker}(f) \Rightarrow \operatorname{ker}(f) \neq X \Rightarrow \operatorname{ker}(f)$ is not dense in X
(3) \Rightarrow (4)

Let $A=X \mid \overline{\operatorname{ker}(f)}$. Since $\overline{\operatorname{ker}(f)} \neq X \Rightarrow A \neq \phi$
Since $\overline{\operatorname{ker}(f)}$ is closed in X, then A is open set in $X \Rightarrow \operatorname{int}(A)=A \neq \phi$, then there is $x \in \operatorname{int}(A) \Rightarrow x+V \subseteq A$ for some balanced neighborhood V of is 0 in X, since f is a linear, then $f(\bar{V})$ is balanced set in $F \Rightarrow$ either $f(V)$ is bounded or $f(V)=F$.
If $f(V)=\tilde{F}$, then there is $y \in V$ such that $f(y)=-f(x) \Rightarrow f(x+y)=0 \Rightarrow x+y \in \operatorname{ker}(f)$
$\Rightarrow \quad(x+V) \cap \operatorname{ker}(f) \neq \phi$. This contradiction, so that $f(V)$ is bounded
(4) \Rightarrow (1)

Since f is bounded in some neighborhood V of 0 in X.
$\exists M>0$, such that $|f(x)|<M$ for all $x \in V$
Let $r>0$, take $W=\frac{r}{M} V \Rightarrow W$ is a neighborhood of 0 in X

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

Let $y \in W \Rightarrow y=\frac{r}{M} x \quad$ where $x \in V$
$|f(y)|=\left|f\left(\frac{r}{M} x\right)\right|=\left|\frac{r}{M} f(x)\right|=\frac{r}{M}|f(x)|<\frac{r}{M} \cdot M=r$
$|f(y)|<r$ for all $y \in W \Rightarrow f$ is continuous at 0 in X, then f is continuous.

Example(4.2.4)

Let X and Y be normed spaces and let $f: X \rightarrow Y$ be a linear function. If f is continuous, then $\operatorname{ker}(f)$ is closed, but the converse is not true.
Ans :
Since $\{0\}$ is closed in Y and $f: X \rightarrow Y$ is continuous, then $f^{-1}(\{0\})$ is closed in X
$\Rightarrow \operatorname{ker}(f)=f^{-1}(\{0\})$ is closed in X
The counter example
Let $X=C^{1}[0,1]$ and $Y=C[0,1]$ with the same norm $\|\Psi\|=\sup \{\Psi(x): 0 \leq x \leq 1\}$
Define $f: X \rightarrow Y$ by $f(\Psi)=\frac{d \Psi}{d x}$
Then $\operatorname{ker}(f)$ is the set of all constant functions, then $\operatorname{ker}(f)$ is closed, but f is not continuous because, if $\Psi_{n}(x)=x^{n}$ for all $x \in[0,1]$, then $\left\|\Psi_{n}\right\|=1$, but $\left\|f\left(\Psi_{n}\right)\right\|=\left\|n x^{n-1}\right\|=n$ for all $n=0,1,2, \cdots$

Theorem(4.2.5)

Let X and Y be topological linear spaces and let $f: X \rightarrow Y$ be a linear function. Among the following four properties of f, the implications (1) $\Rightarrow(2) \Rightarrow(3)$ hold, If X is metrizable, then also $(3) \Rightarrow(4) \Rightarrow(1)$
So that all four properties are equivalent.
(1) f is continuous
(2) f is bounded
(3) If $x_{n} \rightarrow 0$, then $\left\{f\left(x_{n}\right)\right\}$ is bounded
(4) If $x_{n} \rightarrow 0$, then $f\left(x_{n}\right) \rightarrow 0$

Proof :

(1) $\Rightarrow(2)$

Let A be a bounded set in X and let W be a neighborhood of 0 in Y (since $(f(0)=0)$
Since f is continuous, then f is continuous at 0 , there is a neighborhood V of 0 in X such that $f(V) \subset W$.
Since A is bounded, then there is $\lambda>0$ such that $A \subset \lambda V$
$\Rightarrow f(A) \subset f(\lambda V)=\lambda f(V) \subset \lambda W \Rightarrow f(A)$ is bounded in $Y \Rightarrow f$ is bounded.

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

(2) \Rightarrow (3)

Since $x_{n} \rightarrow 0 \Rightarrow\left\{x_{n}\right\}$ is bounded (because every converge sequence is bounded)
Since f is bounded $\Rightarrow\left\{f\left(x_{n}\right)\right\}$ is bounded.
(3) \Rightarrow (4)

Since X is metrizable and $x_{n} \rightarrow 0$, by theorem () there are positive scalar α_{n} such
that $\alpha_{n} \rightarrow \infty$ and $\alpha_{n} x_{n} \rightarrow 0$, we have $\left\{f\left(\alpha_{n} x_{n}\right)\right\}$ is bounded
Since $\alpha_{n} \rightarrow \infty \Rightarrow \lambda_{n}=\frac{1}{\alpha_{n}} \rightarrow 0$, then $f\left(x_{n}\right)=\lambda_{n} f\left(\alpha_{n} x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$
(4) \Rightarrow (1)

Assume f is not continuous
There exists a neighborhood W of 0 in Y such that $f^{-1}(W)$ contains no neighborhood of 0 in X.
If X has a countable local base, there is a sequence $\left\{x_{n}\right\}$ in X, so that $x_{n} \rightarrow 0$ but $f\left(x_{n}\right) \notin W$ (i.e. $f\left(x_{n}\right) \rightarrow 0$). Thus (4) fails, so that f is continuous.

Remark

Recall that, a subset A of a normed space X is bounded iff there is $k>0$ such that $\|x\| \leq k$ for all $x \in A$.

Theorem(4.2.6)

Let X and Y be normed spaces and let $f: X \rightarrow Y$ be a linear function. Then f is bounded iff there is $k>0$ such that $\|f(x)\| \leq k\|x\|$ for all $x \in X$.

Proof :

Suppose that f is bounded, since $A=\{x \in X:\|x\| \leq 1\}$ is bounded in $X \Rightarrow A$ is bounded in X.
Since, then f is bounded, then $f(A)$ is bounded in Y
There is $k>0$ such that $\mid f(x) \| \leq k$ for all $x \in A$.
Let $x \in X$
If $x \neq 0$, put $y=\frac{x}{\|x\|} \Rightarrow \quad\|y\|=1 \Rightarrow y \in A$
$\|f(y)\| \leq k \stackrel{y}{\Rightarrow}\left\|f\left(\frac{x}{\|x\|}\right)\right\| \leq k \Rightarrow \frac{1}{\|x\|}\|f(x)\| \leq k \Rightarrow\|f(x)\| \leq k\|x\|$
either if $x=0$, then $f(x)=f(0)=0$, so $\|f(x)\| \leq k\|x\|$ for all $x \in X$
Conversely
There is $k>0$ such that $\|f(x)\| \leq k\|x\|$ for all $x \in X$.
Let A be a bounded set in X, then there is $k_{1}>0$ such that $\|x\| \leq k_{1}$ for all $x \in A$
$\Rightarrow k|x| \leq k k_{1}=k_{2}$ for all $x \in A$

دراسات عليا - ماجستير
 تحليل دالي
 3: 1: 3 :

Since $\|f(x)\| \leq k\|x\|$ for all $x \in X$, then $\|f(x)\| \leq k\|x\|$ for all $x \in A$
$\Rightarrow\|f(x)\| \leq k_{2}$ for all $x \in A \Rightarrow f(A)$ is bounded in Y, then f is bounded.

Theorem(4.2.7)

Let X and Y be normed spaces and let $f: X \rightarrow Y$ be a linear function. Then f is bounded iff it is continuous.

Proof:

Let f be a bounded, then there is $k>0$ such that $\|f(x)\| \leq k\|x\|$ for all $x \in X$.
Let $x_{0} \in X$. For any $\varepsilon>0$, choose $\delta=\frac{\varepsilon}{k}$
$\left\|x-x_{0}\right\|<\delta$, we have $\left\|f(x)-f\left(x_{0}\right)\right\|=\left\|f\left(x-x_{0}\right)\right\| \leq k\left\|x-x_{0}\right\| \Rightarrow\left\|f(x)-f\left(x_{0}\right)\right\|<k . \delta=\varepsilon$, hence f is continuous at x_{0}. Since x_{0} is arbitrary $\Rightarrow f$ is continuous
Conversely : Assume that f is unbounded
For each positive integer n, we can find a vector x_{n} such that $\left\|f\left(x_{n}\right)\right\|>n \| x_{n} \mid$
$\Rightarrow \frac{1}{n\left\|x_{n}\right\|}\left\|f\left(x_{n}\right)\right\|>1 \Rightarrow\left\|f\left(\frac{x_{n}}{n\left\|x_{n}\right\|}\right)\right\|>1$
Put $y_{n}=\frac{x_{n}}{n\left\|x_{n}\right\|} \Rightarrow\left\|y_{n}\right\|=\frac{1}{n} \Rightarrow\left\|y_{n}\right\| \rightarrow 0$ as $n \rightarrow \overbrace{i}^{\infty} \Rightarrow y_{n} \rightarrow 0$ as $n \rightarrow \infty$
Since f is continuous, then $f\left(y_{n}\right) \rightarrow f(0)=0$
$\Rightarrow\left\|f\left(y_{n}\right)\right\| \rightarrow 0$. This contradiction, because $\left\|f\left(y_{n}\right)\right\|>1$, then f is bounded.

Theorem(4.2.8)

Let X and Y be normed spaces and let $f: X \rightarrow Y$ be a linear function. If X is finite dimensional, then f is bounded (continuous).

Proof:

Let $\operatorname{dim} X=n$, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for X, then every $x \in X$ has a unique representation,

$$
x=\sum_{i=1}^{n} \lambda_{i} x_{i}, \quad \lambda_{i} \in F, \quad i=1,2, \cdots, n
$$

$f(x)=\sum_{i=1}^{n} \lambda_{i}^{\prime} f\left(x_{i}\right) \quad \Rightarrow \quad\|f(x)\|=\left\|\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)\right\| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|\left\|f\left(x_{i}\right)\right\|$
Put $k=\max \left\{\left\|f\left(x_{1}\right)\right\|, \ldots,\left\|f\left(x_{n}\right)\right\|\right\}$, then $\quad\|f(x)\| \leq k \sum_{i=1}^{n}\left|\lambda_{i}\right| \quad \cdots \quad$ (1)

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

Since the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linear independent, by lemma of combination, there is $c>0$
such that $\|x\|=\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \geq c \sum_{i=1}^{n}\left|\lambda_{i}\right| \Rightarrow \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \frac{1}{C}\|x\|$
From (1), (2), we have $\quad\|f(x)\| \leq \frac{k}{C}\|x\|$, so that f is bounded.

4.3 Spaces of Bounded Linear Functions

Let $B(X, Y)$ denote the set of all bounded linear functions from a normed space X into a normed space Y.

Definition(4.3.1)

Let X and Y be normed spaces over F and let $f: X \rightarrow Y$ be a linear function. We define the norm of f by $\|f\|=\sup \{\|f(x)\|: x \in X, \quad\|x\| \leq 1\}$
Theorem(4.3.2)
Let X and Y be normed spaces over F and let $f: X \rightarrow Y$ be a linear function. If $a=\sup \{\|f(x)\|: x \in X, \quad\|x\|=1\}, b=\sup \left\{\frac{\|f(x)\|}{\|x\|}: x \in X, \quad x \neq 0\right\}$,
$c=\inf \{\lambda>0:\|f(x)\| \leq \lambda\|x\| \quad \forall x \in X\}$. Then $\|f\|=a=b=c$ and $\|f(x)\| \leq\|f\|\|x\|$ for all $x \in X$

Proof :

By definition of norm $\|f\|=\sup \left\{\|f(x)\|: x^{x} \in X, \quad\|x\| \leq 1\right\}$, by definition of c, we have
$\|f(x)\| \leq c\|x\|$ for $x \in X$
if $\|x\| \leq 1 \Rightarrow c\|x\| \leq c$ for $x \in X \quad \Rightarrow\|f(x)\| \leq c$ for $x \in X$ and $\|x\| \leq 1$
$\Rightarrow \sup \{\|f(x)\|: x \in X,\|x\| \leq 1\} \leq c \quad \Rightarrow\|f\| \leq c$
Also by definition of b, we have $\|f(x)\| \leq b\|x\|$ for all $x \neq 0$
Since $c=\inf \{\lambda>0:\|f(x)\| \leq \lambda\|x\| \forall x \in X\}$, we have $c \leq b$
let $x \in X, \quad x \neq 0$

$$
\begin{equation*}
\frac{\|f(x)\|}{\|x\|}=\frac{1}{\|x\|}\|f(x)\|=\left\|f\left(\frac{x}{\|x\|}\right)\right\| \tag{3}
\end{equation*}
$$

Put $y=\frac{x}{\|x\|} \Rightarrow\|y\|=1 \Rightarrow y \in X \quad \Rightarrow \quad b \leq a$
It is clear to show that $a \leq\|f\|$, so that $\|f\|=a=b=c$.
Finally definition of b, shows that
$b \geq \frac{\|f(x)\|}{\|x\|} \Rightarrow\|f(x)\| \leq b\|x\| \quad$ for all $x \in X$
But $\|f\|=b \Rightarrow\|f(x)\| \leq\|f\|\|x\|$ for all $x \in X$

تحيل دالي
 3: 1: 3:

Theorem(4.3.3)

Let X and Y be normed spaces over F. Then $B(X, Y)$ is normed space with respect to the norm defined by $\|f\|=\sup \{\|f(x)\|: x \in X,\|x\| \leq 1\}$ for all $f \in B(X, Y)$.

Proof :

(1) Since $\|f(x)\| \geq 0$ for all $x \in X$, then $\|f\| \geq 0$ for all $x \in X$
(2) $\|f\|=0 \Leftrightarrow \sup \{\|f(x)\|: x \in X, \quad\|x\| \leq 1\}=0$

$$
\begin{aligned}
& \left.\Leftrightarrow \sup : \frac{\|f(x)\|}{\|x\|}: x \in X, \quad x \neq 0\right\}=0 \Leftrightarrow \frac{\|f(x)\|}{\|x\|}=0: x \in X, \quad x \neq 0 \quad \Leftrightarrow\|f(x)\| \\
& \Leftrightarrow f(x)=0: x \in X \Leftrightarrow f=0
\end{aligned}
$$

(3) Let $f \in B(X, Y)$ and $\lambda \in F$

$$
\begin{aligned}
\|\lambda f\| & =\sup \{| | \lambda f)(x)\|: x \in X, \quad\| x \| \leq 1\}=\sup \{\lambda\| \| f(x)\|: x \in X, \quad\| x \| \leq 1\} \\
& =|\lambda| \sup \{| | f(x)\|: x \in X, \quad\| x \| \leq 1\} \mid \lambda\|f\|
\end{aligned}
$$

(4) Let $f, g \in B(X, Y)$

$$
\begin{aligned}
\|f+g\| & =\sup \{\|(f+g)(x)\|: x \in X, \quad\|x\| \leq 1\} \\
& =\sup \{\|f(x)+g(x)\|: x \in X,\|x\| \leq 1\} \\
& \leq \sup \{\|f(x)\|+\|g(x)\|: x \in X,\|x\| \leq 1\} \\
& \leq \sup \{\|f(x)\|: x \in X, \quad\|x\| \leq 1\}+\sup \{\|g(x)\|: x \in X, \quad\|x\| \leq 1\} \\
& =\|f\|+\|g\| \\
\Rightarrow & B(X, Y) \text { normed space }
\end{aligned}
$$

Theorem(4.3.4)

Let X and Y be normed spaces over F.If Y is Banach space, then $B(X, Y)$ is also Banach space.

Proof:

$B(X, Y)$ is a normed space (by above theorem)
Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $B(X, Y)$, then $\left\|f_{n}-f_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$
For all $x \in X$, then $\left\|f_{n}(x)-f_{m}(x)\right\|=\left\|\left(f_{n}-f_{m}\right)(x)\right\| \leq\left\|f_{n}-f_{m}\right\|\|(x)\|$
$\Rightarrow\left\|f_{n}(x)-f_{m}(x)\right\| \rightarrow 0$ as $n, m \rightarrow \infty \Rightarrow\left\{f_{n}(x)\right\}$ is Cauchy sequence in Y for all $x \in X$ Since \bar{Y} is complete, then $f(x) \in Y$ such that $f_{n}(x) \rightarrow f(x)$, then $f \in B(X, Y)$ why?, so that $\left\{f_{n}\right\}$ converge, then $B(X, Y)$ is Banach

Corollary(4.3.5)

If X is a normed space over F, then X^{*} is a Banach space.

Example (4.3.6)

The dual space of \mathbb{R}^{n} is \mathbb{R}^{n}, i.e. $\left(\mathbb{R}^{n}\right)^{*} \approx \mathbb{R}^{n}$

دراسات عليا ـ ماجستير
 تحليل دالي دي
 3: 1: 3:

Ans :

Since \mathbb{R}^{n} is finite dimensional, then $\left(\mathbb{R}^{n}\right)^{*}=\left(\mathbb{R}^{n}\right)^{\prime}$
let $\left\{x_{1}, \cdots, x_{n}\right\}$ be a basis for \mathbb{R}^{n}, then every $x \in \mathbb{R}^{n}$ has a unique representation,

$$
x=\sum_{i=1}^{n} \lambda_{i} x_{i}, \quad \lambda_{i} \in \mathbb{R}, \quad i=1,2, \cdots, n
$$

$$
f(x)=f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)=\sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)=\sum_{i=1}^{n} \lambda_{i} y_{i}, \quad y_{i}=f\left(x_{i}\right), \quad i=1, \cdots, n
$$

By using the Cauchy- Schwarz inequality, we have

$$
\begin{aligned}
& |f(x)| \leq \sum_{i=1}^{n}\left|\lambda_{i} y_{i}\right| \leq\left(\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{2}}\right)\left(\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}\right) \Rightarrow|f(x)| \leq\|x\|\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}} \\
& \|f\|=\sup \left\{|f(x)|: x \in R^{n}, \quad\|x\|=1\right\} \Rightarrow\|f\| \leq\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

This proves that the norm of f is the norm of \mathbb{R}^{n}, i.e. $\left.\|f\|=\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}}$
$\Rightarrow\|f\|=\|y\|$, where $Y=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$.Hence the function $\psi:\left(R^{n}\right)^{\prime} \rightarrow R^{n}$ defined by $\psi(f)=y=\left(y_{1}, \ldots, y_{n}\right)$ where $y_{i}=f\left(x_{i}\right)$ it is linear and bijective, it is an isomorphism. So that $\left(\mathbb{R}^{n}\right)^{*} \approx \mathbb{R}^{n}$.

Example (4.3.7)

The dual space of ℓ^{1} is ℓ^{∞}
Ans :
Let $\left\{e_{k}\right\}$ be a natural basis for ℓ where $e_{k}=\left(\delta_{k i}\right)$, i.e.

$$
e_{1}=(1,0,0, \cdots), e_{2}=(0,1,0, \cdots), e_{3}=(0,0,1, \cdots), \cdots
$$

Then every $x \in \ell^{1}$ has a unique representation, $x=\sum_{k=1}^{\infty} \lambda_{k} e_{k}$ where $\lambda_{k} \in F$
We consider any $f_{s} \in\left(\ell^{2}\right)^{*} \Rightarrow f$ is bounded linear functional on ℓ^{1}
$f(x)=f\left(\sum_{k=1}^{\infty} \lambda_{k} e_{k}\right) \Rightarrow \sum_{k=1}^{\infty} \lambda_{k} f\left(e_{k}\right)=\sum_{k=1}^{\infty} \lambda_{k} y_{k}, \quad, \quad y_{k}=f\left(e_{k}\right)$
Where $y_{k^{2}}=f\left(e_{k}\right)$ has a unique representation by f.Also $\left\|e_{k}\right\|=1$ and $\left|y_{k}\right|=\left|f\left(e_{k}\right)\right| \leq\|f\|\left\|e_{k}\right\|=\|f\| \Rightarrow \sup _{k}\left|y_{k}\right| \leq\|f\| \Rightarrow y=\left(y_{k}\right) \in \ell^{\infty}$
On the other hand, let $Z=\left(Z_{k}\right) \in \ell^{\infty}$, define $g: \ell^{1} \rightarrow F$ by $g(x)=\sum_{k=1}^{\infty} \lambda_{k} z_{k}$ where $x=\left(x_{k}\right) \in \ell^{1} \Rightarrow g$ is bounded linear
$|g(x)| \leq \sum_{k=1}^{\infty}\left|x_{k} z_{k}\right| \leq \sup _{j}\left|z_{k}\right| \sum_{k=1}^{\infty}\left|x_{k}\right|=\|x\| \sup _{j}\left|z_{k}\right| \Rightarrow g \in\left(\ell^{1}\right)^{*}$

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

We finally to show that $\|f\|=\sup \left|y_{j}\right|$
$|f(x)|=\left|\sum_{k=1}^{\infty} \lambda_{k} y_{k}\right| \leq \sup _{j}\left|y_{j}\right| \sum_{k=1}^{\infty}\left|\lambda_{k}\right|=\left\|x| | \sup \left|y_{j}\right| \Rightarrow\right\| f \| \leq \sup _{j}\left|y_{j}\right|$, so that $\|f\|=\sup _{j}\left|y_{j}\right|$
Hence the function $\Psi=\left(\ell^{1}\right)^{*} \rightarrow \ell^{\infty}$ defined by $\Psi(f)=\left(y_{j}\right)$ where $y_{j}=f\left(e_{j}\right)$ it is linear and bijective, it is an isomorphism.

Example (4.3.8)

The dual space of , $\ell^{p}, \quad 1<p<\infty$ is ℓ^{q} where $\frac{1}{p}+\frac{1}{q}=1$
Ans :
Let $\left\{e_{k}\right\}$ be a natural basis for ℓ^{p} where $e_{k}=\left(\boldsymbol{\delta}_{k i}\right)$, i.e.

$$
e_{1}=(1,0,0, \cdots), e_{2}=(0,1,0, \cdots), e_{3}=(0,0,1, \cdots), \cdot
$$

Then every $x \in \ell^{p}$ has a unique representation, $x=\sum_{k=1}^{\infty} \lambda_{k} e_{k}$ where $\lambda_{k} \in F$
We consider any $f \in\left(\ell^{p}\right)^{*} \Rightarrow f$ is bounded linear functional on ℓ^{p}
$f(x)=f\left(\sum_{k=1}^{\infty} \lambda_{k} e_{k}\right)=\sum_{k=1}^{\infty} \lambda_{k} f\left(e_{k}\right)=\sum_{k=1}^{\infty} \lambda_{k} y_{k}, \quad y_{k}=f\left(e_{k}\right)$
Let $q \in \mathbb{R}$, where $\frac{1}{p}+\frac{1}{q}=1$
Put $x_{n}=\left(\lambda_{k_{n}}\right)$, where $\lambda_{k n}=\left\{\begin{array}{lll}\frac{\left|y_{k}\right|^{q}}{y_{k}}, & k \leq n, y_{n} \neq 0 \\ 0, & \text { o.w }\end{array}\right.$
$f\left(x_{n}\right)=\sum_{k=1}^{\infty} \lambda_{n} y_{k}=\sum_{k=1}^{n}\left|y_{k}\right|^{q}$
$f\left(x_{n}\right) \leq\|f\|\left\|x_{n}\right\|=\|f\|=\left(\sum\left|\lambda_{k n}\right|^{p}\right)^{\frac{1}{p}}=\|f\|\left(\sum\left|y_{k}\right|^{(q-1) p}\right)^{\frac{1}{p}}=\|f\|\left(\sum\left|y_{k}\right|^{q}\right)^{\frac{1}{p}}$
$f\left(x_{n}\right)=\sum\left|y_{k}\right|^{q} \leq\left|| |\left(\sum\left|y_{k}\right|^{q}\right)^{\frac{1}{p}} \Rightarrow\left(\sum_{k=1}^{n}\left|y_{k}\right|^{q}\right)^{1-\frac{1}{p}}=\left(\sum_{k=1}^{n}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}} \leq\|f\|\right.$
Since n is arbitrary, letting $n \rightarrow \infty$, we obtain $\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}} \leq\|f\| \Rightarrow\left(y_{k}\right) \in \ell^{q}$
On the other hand, let $Z=\left(Z_{k}\right) \in \ell^{\infty}$, define $g: \ell^{1} \rightarrow F$ by $g(x)=\sum_{k=1}^{\infty} \lambda_{k} z_{k}$ where $x=\left(\lambda_{k}\right) \in \ell^{p}$
$\Rightarrow \quad g$ is bounded linear
$\left.|f(x)|=\left|\sum \lambda_{k} y_{k}\right| \leq\left(\sum_{k=1}^{\infty}\left|\lambda_{k}\right|\right)^{p}\right)^{\frac{1}{p}}\left(\left.\left.\sum_{k=1}^{\infty}\left|y_{k}\right|\right|^{q}=\frac{1}{q}=\| x \right\rvert\,\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}}\right.$

دراسات عليا ـ ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3 :

$\|f\| \leq\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}}$ so that $\|f\| \leq\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}}$
Hence the function $\Psi:\left(\ell^{p}\right)^{*} \rightarrow \ell^{q}$ defined by $\Psi(f)=\left(y_{k}\right)$ where $y_{k}=f\left(e_{k}\right)$ it is linear and bijective, it is an isomorphism.

Definition(4.3.9)

Let X be a normed Space over a filed F. We define $X^{* *}$ as :

$$
X^{* *}=\left(X^{*}\right)^{*}=\left\{G: X^{*} \rightarrow F, G \text { is bounded linear functional }\right\}
$$

$X^{* *}$ is called the second dual space.

Theorem(4.3.10)

Let X be a normed Space over a filed F.
(1) If $x \in X$ and $T_{x}: X^{*} \rightarrow F$ defined as $T_{x}(f)=f(x)$ for all $f \in X^{*}$, then $T_{x} \in X^{* *}$ and $\left\|T_{x}\right\|=\|x\|$
(2) If $\psi: X \rightarrow X^{\prime \prime}$ defined as $\psi(x)=T_{x}$ for all $x \in X$, then ψ is one-one linear function.

Proof :

(1) T_{x} is linear (see theorem8.1)

$$
\left\|T_{x}\right\|=\sup \left\{\frac{\left|T_{x}(f)\right|}{\|f\|}: f \in X^{*}, \quad f \neq 0\right\}=\sup \left\{\frac{|f(x)|}{\|f\|}: f \in X^{*}, \quad f \neq 0\right\}=\|x\|
$$

(2) (see theorem1.3.4)

Definition(4.3.11)

Let X be a normed Space over a filed F, We say that X is Reflexive space if ψ is onto, where ψ is canonical function defined in theorem (4.3.10).
It is clear to show that
(1) If X is reflexive space, then $X \simeq X^{* *}$
(2) Every finite dimensional normed space is reflexive.

Theorem(4.3.12)

Let X be a normed space. If X is reflexive, then X is complete, and hence it is Banach space.

Proof :

Since X^{*} is normed space $\Rightarrow X^{* *}$ is complete space
Since X is reflexive $\Rightarrow X \simeq X^{* *} \Rightarrow X$ is complete space.

4.4 Separable Spaces

Recall that a subset A of a topological space X is said to be dense in X if $\bar{A}=X$. and a topological space X is said separable if it has a countable subset which is dense in X.
Examples(4.4.1)
(1)The space \mathbb{R} is separable, because the set \mathbb{Q} of rational numbers is countable and is dense in \mathbb{R}.
(2)The space \mathbb{C} is separable, because a countable subset of \mathbb{C} is the set of all complex numbers whose real and imaginary parts both rational .
(3) A discrete metric space is separable iff X is separable .

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

Examples(4.4.2)

The space ℓ^{∞} is not separable
Ans:
Let A be a countable set in $\ell^{\infty} \Rightarrow A=\left\{x_{1}, x_{2}, \cdots\right\}$ where $x_{n}=\left(x_{1 n}, x_{2 n}, \cdots\right) \in \ell^{\infty}$
Let $y=\left(y_{k}\right) \in \ell^{\infty}$ where $y_{k}=\left\{\begin{array}{cl}x_{k k}+1 & , \\ 0 & \left|x_{k k}\right| \leq 1 \\ 0 & ,\end{array}\left|x_{k k}\right|>1\right.$
The component k of $y-x_{k}$ is $y_{k}-x_{k k},\left|y_{k}-x_{k k}\right| \geq 1$
$\Rightarrow\left\|y-x_{k}\right\| \geq 1 \Rightarrow y \notin \bar{A} \Rightarrow \bar{A} \neq \ell^{\infty}$ for all countable subset A of $\ell^{\infty} \Rightarrow . \Rightarrow \ell^{\infty}$ is not separable.

Remark

An element $x=\left(x_{n}\right) \in \ell^{p}$ is called rational if
(1) $x_{n} \in \mathbb{Q}$ for all n, if $F=\mathbb{R}$
(2) both the real and imaginary parts are rationales, if $F=\mathbb{C}$

Example(4.4.3)

The space ℓ^{p} with $1 \leq p<\infty$ is separable
Ans :
Let $A=\left\{x=\left(x_{1}, x_{2}, \cdots, x_{n}, 0,0, \cdots\right) \in \ell^{p}: x\right.$ is rational $\} \Rightarrow A$ is countable.
we shall to prove $\ell^{p} \subset \bar{A}\left(\right.$ since $\left.\ell^{p} \subset \bar{A}\right)$
Let $y=\left(y_{i}\right) \in \ell^{p} \Rightarrow \sum_{i=1}^{\infty}\left|y_{i}\right|^{p}<\infty$
Then for every $\varepsilon>0$, there is an $m \in \mathbb{Z}^{+}$(depending on ε) such that $\sum_{i=m+1}\left|y_{i}\right|^{p}<\frac{\varepsilon^{p}}{2}$
Hence we can find a $x \overline{\mathcal{F}}\left(x_{1}, x_{2}, \cdots, x_{n}, 0,0, \cdots\right) \in A$ satisfying $\left|x_{i}-y_{i}\right|^{p}<\frac{\varepsilon^{p}}{2 m}$, for all $i=1,2, \cdots, m$ $\|x-y\|^{p}=\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right\rangle^{p}=\sum_{i=1}^{m}\left|x_{i}-y_{i}\right|^{p}+\sum_{i=m+1}^{\infty}\left|x_{i}\right|^{p}<m \cdot \frac{\varepsilon^{p}}{2 m}+\frac{\varepsilon^{p}}{2}=\varepsilon^{p}$
$\Rightarrow\|x-y\|<\mathcal{E}^{\prime} \Rightarrow y \in \bar{A} \Rightarrow \bar{A}=\ell^{p} \Rightarrow \ell^{p}$ is separable.

Theorem (4.4.4)

A normed space X over F is separable if X^{*} is separable

Proof:

Let $M=\left\{f \in X^{*}:\|f\|=1\right\} \Rightarrow M$ is subspace of X^{*}
Since X^{*} is separable, then M is separable, M contains a countable dense subset, say $A=\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\} \quad, \bar{A}=M$ since $A \subseteq M \quad \Rightarrow \quad f_{n} \in M$ for all $n \Rightarrow\left\|f_{n}\right\|=1$ for all n.

دراسات عليا - ماجستير
 تحليل دالي
 3: 1: 3:

Since $\left\|f_{n}\right\|=\sup \left\{\left|f_{n}(x)\right|:\|x\|=1\right\}$ for all n.there must exist some vector x_{n} with $\left\|x_{n}\right\|=1$ such that $\left|f_{n}(x)\right|>\frac{1}{2}$ (If such x_{n} did not exist, this would contradict the fact that $\|f\|=1$)
Let N be the closed subspace in X generated by the sequence $\left\{x_{n}\right\}$, i.e. $N=\left[\left\{x_{n}\right\}\right]$. We must prove $N=X$. Suppose that $N \neq X \quad \Rightarrow$ there exists $x_{0} \in X$ such that $x_{0} \notin N$, by theorem(6.13), there exists $f \in X^{*}$ such that $f\left(x_{0}\right) \neq 0,\|f\|=1$ and $f(x)=0$ for all $x y \in N$. Since $\|f\|=1 \Rightarrow f \in M$
Since $x_{n} \in N \Rightarrow f\left(x_{n}\right)=0$ for all n
$\frac{1}{2}<\left|f_{n}\left(x_{n}\right)\right|=\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=\left|\left(f_{n}-f\right)\left(x_{n}\right)\right|=\left\|\left(f_{n}-f\right)\right\|\left\|x_{n}\right\|=\left\|f_{n}-f\right\|$ (because $\begin{gathered} \\ \end{gathered} x_{n} \|=1$)
$\Rightarrow\left\|f_{n}-f\right\|>\frac{1}{2}$ for all $n \Rightarrow \beta_{\frac{1}{2}}(f) \cap A=\phi$ where $\beta_{\frac{1}{2}}(f)=\left\{g:\|g-f\|<\frac{1}{2}\right\} \Rightarrow f \notin \bar{A}$
This contradiction (since $\bar{A}=M$) and so we must have $N=X$. It then follows that the set of all linear combinations of the x_{n} 's whose coefficients are rational. $\Rightarrow X$ is separable.

Remark

The converse of above theorem is not true, i.e. if the normed space X is separable, then X^{*} is not necessary separable, for example, if $\bar{X}=\ell^{1} \Rightarrow X^{*}=\ell^{\infty}$ and ℓ^{1} is separable (see example 4.4.2), but ℓ^{∞} is not separable (see example 4.4.3).

Theorem(4.4.5)

Let X be a normed space. If X is separable space and X^{*} is not separable, then X is not reflexive

Proof :

Suppose X is reflexive $\Rightarrow X \simeq X$ **
Since X is separable space $\Rightarrow{ }^{*} X^{* *}$ is separable space $\Rightarrow X^{*}$ is separable space This contradiction.

Remark

If X is Banach then it is not necessary reflexive .for example ℓ^{1} is Banach space, but not reflexive . because ℓ^{1} is separable and $\left(\ell^{1}\right)^{*}=\ell^{\infty}$ is not separable.

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

Exercises (4)

4.1Let X, Y be linear space on a field F and let $f: X \rightarrow Y$ be bijective linear function. Define $\|\cdot\|_{1}: X \rightarrow \mathbb{R}$ by $\left\|x_{1}\right\|=\|f(x)\|_{2}$ for all $x \in X$. Show that $\|\cdot\|_{1}$ is a norm on X if $\|\cdot\|_{2}$ is a norm on Y 4.2 Let X be a normed space and f be nonzero linear functional on X. Show that either $\operatorname{ker}(f)$ is closed or $\operatorname{ker}(f)$ is dense in X.
4.3 Show that: If X is a locally convex space, then X^{*} separate points on X.
4.4 let X and Y be topological linear spaces and $f: X \rightarrow Y$ be a bijection linear function . prove or disprove f is continuous iff f^{-1} is also continuous
4.5 Suppose X and Y are topological vector spaces, $\operatorname{dim} Y<\infty, f: X \rightarrow Y$ is linear and $f(X)=Y$. If $\operatorname{ker}(f)$ is closed. Prove that f is continuous.

