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4. Continuous Linear Functions

4.1 Definitions and General Properties
Recall that a function f  from a topological space X  into topological space Y (i.e. YXf : )
is called continuous at a point Xx  if for every neighborhood U  of )(xf  in Y  there is a
neighborhood V  of x  in X  such that UVf )( . If f  is continuous at every point, it is called
continuous. A function YXf :  is  continuous iff each open (rsp. closed) set U   in Y  the
set )(1 Uf   is open (rsp. closed) set in X . A function YXf :  from a linear space X  into
linear space Y  is called a linear if )()()( yfxfyxf    for all Xyx ,  and F , .
Linear function of a linear space X  into its field F  is called linear functional on X .
  Let ),( YXC denote the set of all continuous linear functions from a topological linear  space X

into a topological linear space Y . Then ),( YXC  is a linear space. If XY  , we write )(XC

instead of ),( XXC . The space of all continuous linear functionals defined on a  topological

linear space X  is called the dual space and denoted by X ,i.e. ),( FXCX  . If X  is finite

dimensional, then  XX
Definition(4.1.1)
Let ( , )X d and ( , )Y d   be metric spaces . A function :f X Y  is called an Isometry if
(1) f is bijective , i.e. one –one and onto (2) ( ( ), ( )) ( , )d f x f y d x y   for all ,x y X

Theorem(4.1.2) Completion theorem
Let ( , )X d  be an arbitrary  metric space .There exists a complete metric space

( , )X d  in which ( , )X d can be isometrically embedded in such a way that X is dense in
X  , i.e. ( , )X d  is isometric to a dense subspace of ( , )X d  .
Note that : All completions of  metric space are isometric.
Definition(4.1.3)
  Let X and Y be normed spaces, An isometric isomorphism of X into Y is a one-one linear
function f of X into Y such that ( )f x x  for every x X . Also we say that X is
isometrically isomorphic (or congruent) to Y if there exists an isomorphism of X onto Y .
Remark
Let f be an isometric isomorphism of X into Y where X and Y are normed spaces. Let ,x y X
Then ( ) ( ) ( )f x f y f x y x y    

Thus f  preserves distances and so it is an Isometry.
Definition(4.1.4)
  Let X and Y be normed spaces.  A topological isomorphism of X into Y is a one-one linear
function f of X into Y such that f and 1f   are continuous on their respective domains. Also
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we say that X is topological isomorphic to Y if there exists a topological isomorphism of
X onto Y . In other words, X and Y are topologically isomorphic provided there exists a
homeomorphism of X onto which is also a linear function.
Remark
Topological isomorphism space need not be isometrically isomorphic . In fact there do exists
examples of pairs op spaces which are topologically isomorphic but not congruent.
Theorem(4.1.5)
  Let X and Y be normed spaces. Then X and Y  are topologically isomorphic iff there exists a
linear function of X onto Y and positive constants ,   such that ( )x f x x   .

Proof :
Suppose X and Y are topologically isomorphic, then there exists a linear function f

of X onto Y such that f and 1f   are continuous. But f is continuous iff there exists a positive
constant   such that ( )f x x  for all x X .

Again 1f   is continuous iff there exists a positive constant such that ( )x f x   for all x X .
It follows that X and Y are topologically isomorphic iff there exists a linear function of X onto
Y and positive constants ,   such that ( )x f x x   .

Theorem(4.1.6)
 Let X and Y be topological linear spaces and let YXf :  be a linear function. If f  is continuous
at 0 , then it is continuous
Proof :
      Let Xx  and let U  be a neighborhood of )(xf  in Y , then WxfU  )( , where W is a
neighborhood of 0  in Y
Since f  is continuous at 0 in X , then there exist a neighborhood V  of 0 in X  such that

WVf )( Vx   is a neighborhood  of x in X .
To show that UVxf  )(

Let VxyVxfz  )(  such that )(yfz 
Since )()( VfxyfVxyVxy 

UzVfxfzVfxfzVfxfyf  )()()()()()()(

f  is continuous at x , then f  is continuous.

Theorem(4.1.7)
   Let X and Y be normed spaces and let YXf :  be a linear function. Then f  is continuous
either at  every point of X  or at no point of X .
Proof :
        Let 1x  and 2x be any two points of X and suppose f  is continuous at 1x .Then to each

0 there exists 0  such that
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      11 xfxfxx

Now
    1212 xxxxxx      121 xfxxxf

         121 xfxfxfxf      2xfxf

f  is continuous at 2x , then f  is continuous.

Lemma (4.1.8)
Let X and Y be Banach spaces  and :f X Y a continuous, linear and onto function.
Then the image of each open ball centered on the origin in X contains an open ball
centered on the origin in Y .
Proof : H.W
Theorem(4.1.9) The open mapping theorem
Let X and Y be Banach spaces . If :f X Y is a continuous, linear and onto function,
then f  is open
Proof :
            Let G  be open set in X . We want to show that ( )f G  is open in Y

Let ( )y f G , then ( )y f x  for some x G
Since G  is open set in X ,there exist 0r   such that ( ) ( ( )) ( )r rx G f x f G   

Since ( ) (0) (0)r r rx x x G      

By our lemma, there exists an open sphere (0)r   in Y centered at origin such that
(0) ( (0))r r rf  

(0) ( (0)) ( ) ( (0)) ( (0)) ( ( )) ( )r r r r ry y f f x f f x f x f G             

Since (0) ( ) ( ) ( )r r ry y y f G        ( )f G  is open , thus f  is an  open .
The following special case of the above theorem is very important.
Theorem(4.1.10)
Let X and Y be Banach spaces . If :f X Y  is a bijection continuous linear  function,
then f  is homeomorphism.
Proof :
Since f  is bijection continuous  function, we need only prove that f  is an open function.
Definition(4.1.11)

Let X and Y be any non-empty sets and let YXf :  be a function. The set
 ( , ) ( ) {( , ( )) : , ( ) }x y X Y y f x x f x x X f x Y     

 is called the graph of f . We shall denote the graph of f  by Gf .i.e.

 ( , ) ( ) {( , ( )) : , ( ) }Gf x y X Y y f x x f x x X f x Y       .
In the case X and Y are normed spaces .Then X Y  is a normed spaces
We will now generalize the above notion of graph
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Closed Linear Function
Definition(4.1.12)
Let X and Y be normed Spaces and let D  be a subspace of X .The linear function :f D Y
is called closed if for every sequence { }nx  in D such that nx x X   and ( )nf x y , then
x D and ( )y f x .

Theorem(4.1.13)
Let X and Y be normed Spaces and let D  be a subspace of X . The linear function

:f D Y  is closed iff  its graph Gf  is closed subspace.
Proof:
Suppose that :f D Y  is closed .to show that Gf  is closed subspace.

Let ( , )x y  be any limit point of Gf ,i.e. ( , ) Gx y f , then there exists a sequence of points
in Gf  , ( , ( ))n nx f x  where, nx D  such that ( , ( )) ( , )n nx f x x y

( , ( )) ( , ) 0 ( , ( )) ( , ) 0 ( , ( ) ) 0n n n n n nx f x x y x f x x y x x f x y         

( ) 0 0n n nx x f x y x x        and ( ) 0nf x y  nx x   and ( )nf x y

Since :f D Y  is closed, then x D and ( )y f x ( , ) G Gx y f f    is closed .
Conversely , let the graph Gf  is closed. To show that The linear function :f D Y  is closed.
Let { }nx  be a sequence in D such that nx x X   and ( )nf x y ( , ( )) ( , )n nx f x x y 

( , ) Gx y f  , since Gf  is closed ( , )G G Gf f x y f    x D  and ( )y f x .
Therefore The linear function :f D Y  is closed.
Theorem(4.1.14) Closed Graph Theorem
Let X and Y be Banach spaces . If :f X Y  is a linear  function, then f  is continuous
iff its graph is closed
Proof :
Suppose that f is continuous .To show that {( , ( )) : , ( ) }Gf x f x x X f x Y   is closed

Let ( , )x y  be any limit point of Gf ,i.e. ( , ) Gx y f , then there exists a sequence ( , ( ))n nx f x

in Gf  such that ( , ( )) ( , )n nx f x x y

( , ( )) ( , ) 0 ( , ( )) ( , ) 0 ( , ( ) ) 0n n n n n nx f x x y x f x x y x x f x y         

( ) 0 0n n nx x f x y x x        and ( ) 0nf x y  nx x   and
( )nf x y

Since :f X Y  is continuous and nx x  , then ( ) ( )nf x f x

Since ( )nf x y , then ( )y f x ( , ) ( , ( )) G Gx y x f x f f     is closed.
Conversely , let Gf  be closed. To show that f is continuous(H.w)
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4.2 Boundedeness
Definition(4.2.1)
Let X and Y be topological linear spaces and let YXf :  be a linear function. We say
that f  is bounded if )(Af  is bounded subset of Y  for every bounded subset A  of X .

Theorem(4.2.2)
   Let X be a topological linear spaces over F .Then FXf : is continuous at 0 in X . If
for every 0r , there exists a neighborhood V  at 0 in X  such that rxf )(  for all Vx .

Theorem(4.2.3)
Let X be a Hausdorff topological linear spaces over F and Xf   . Assume 0)( xf  for
some Xx . Then the following statements are equivalent
 (1) f  is continuous
 (2) )ker( f is closed
 (3) )ker( f  is not dense in X .
 (4) f  is bounded in some neighborhood V  of 0  in X .

Proof :
         (1)   (2)
    Since  0  is closed in F  and FXf : is continuous, then   01f  is closed in X

  0)ker( 1 ff  is closed in X

         (2)   (3)
 Since )ker( f is closed in X )ker()ker( ff 
Since 0)( xf  for some Xx , then )ker()ker()ker( fXffx   is not dense in
X
        (3)   (4)
Let )ker(| fXA  . Since Xf )ker(  A

Since )ker( f  is closed in X , then A  is open set in X  AA)int( , then there is
)int(Ax AVx    for some balanced neighborhood V of  is 0  in X , since f  is a

linear, then )(Vf is balanced set in F   either )(Vf  is bounded or FVf )( .
If FVf )( , then there is Vy such that )()( xfyf  )ker(0)( fyxyxf 

 )ker()( fVx . This contradiction, so that )(Vf  is bounded
     (4)   (1)
Since f  is bounded in some neighborhood V  of 0  in X .

0M , such that Mxf )( for all Vx

Let 0r , take WV
M

r
W   is a neighborhood of 0  in X
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Let x
M

r
yWy     where Vx

rM
M

r
xf

M

r
xf

M

r
x

M

r
fyf 






 .)()()(

ryf )(   for all Wy f  is continuous at 0  in X , then f  is continuous.

Example(4.2.4)
Let X and Y be normed spaces and let YXf :  be a linear function. If f  is continuous,
 then )ker( f is closed, but the converse is not true.
Ans :
       Since  0  is closed inY  and YXf : is continuous, then   01f  is closed in X

  0)ker( 1 ff  is closed in X

The counter example
Let  1,01CX   and  1,0CY    with the same norm   10:sup  xx

Define YXf :  by  
xd

d
f




Then )ker( f  is the set of all constant functions, then )ker( f  is closed, but f  is not
continuous because, if   n

n xx   for all  1,0x , then 1n , but   nnxf n
n  1  for

all ,2,1,0n

Theorem(4.2.5)
Let X and Y be topological linear spaces and let YXf :  be a linear function. Among
the following four properties of f , the implications (1)   (2)   (3) hold, If X  is
metrizable, then also (3)   (4)   (1)
So that all four properties are equivalent.
(1) f  is continuous
(2) f  is bounded
(3) If 0nx , then  )( nxf  is bounded
(4) If 0nx , then 0)( nxf

Proof :
         (1)   (2)
Let A  be a bounded set in X and let W  be a neighborhood of 0  in Y (since 0)0(( f )
Since f  is continuous, then f  is continuous at 0 , there is a neighborhood V  of 0 in X

such that WVf )( .
Since A  is bounded, then there is 0  such that VA 

WVfVfAf   )()()( )(Af  is bounded in fY   is bounded.
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        (2)   (3)
 Since  nn xx  0  is bounded  (because every converge sequence is bounded)
Since f  is bounded  )( nxf   is bounded.
       (3)   (4)
    Since X   is metrizable and 0nx , by theorem () there are positive scalar n  such
that n  and 0nn x  , we have  )( nn xf   is bounded

Since 0
1


n
nn 

 , then 0)()(  nnnn xfxf   as n

     (4)   (1)
Assume f  is not continuous
There exists a neighborhood W of 0  in Y  such that )(1 Wf   contains no neighborhood of
0 in X .
If X  has a countable local base, there is a sequence  nx  in X , so that 0nx  but

Wxf n )(  (i.e. 0)( nxf  ). Thus (4) fails, so that f  is continuous.

Remark
Recall that, a subset A  of a normed space X  is bounded iff there is 0k  such that

kx   for all Ax .

Theorem(4.2.6)
  Let X and Y be normed spaces and let YXf :  be a linear function. Then f  is
bounded iff there is 0k  such that   xkxf    for all Xx .

Proof :
 Suppose that f  is bounded, since  1:  xXxA  is bounded in X A  is bounded in X .

Since , then f  is bounded, then  Af  is bounded in Y

There is 0k  such that   kxf   for all Ax .
Let Xx

If 0x , put Ayy
x

x
y  1

    xkxfkxf
x

k
x

x
fkyf 










 )(

1

either if 0x ,then 0)0()(  fxf , so   xkxf   for all Xx

Conversely
                There is 0k  such that   xkxf    for all Xx .

Let A  be a bounded set in X , then there is 01 k  such that 1kx   for all Ax

21 kkkxk   for all Ax
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Since   xkxf   for all Xx , then   xkxf   for all Ax

  2kxf   for all Ax  Af  is bounded in Y , then f  is bounded.

Theorem(4.2.7)
    Let X and Y be normed spaces and let YXf :  be a linear function. Then f  is
bounded iff it is continuous.
Proof :
    Let f  be  a bounded, then there is 0k  such that   xkxf   for all Xx .

Let Xx 0 . For any 0 , choose
k


 

 0xx , we have       000 xxkxxfxfxf        .0 kxfxf , hence

f  is continuous at 0x . Since 0x  is arbitrary f  is continuous
Conversely :  Assume that f  is unbounded
For each positive integer n , we can find a vector nx  such that   nn xnxf 

 1
1 1n

n
n n

x
f x f

n x n x

 
     

 

Put
n

y
xn

x
y n

n

n
n

1
  0ny  as 0 nyn  as n

Since f  is continuous, then     00  fyf n

0)(  nyf . This contradiction, because   1nyf , then f  is bounded.

Theorem(4.2.8)
 Let X and Y be normed spaces and let YXf :  be a linear function. If X  is finite
dimensional, then f  is bounded (continuous).
Proof :
 Let nX dim ,and let  nxx ,...,1  be a basis for X , then every Xx  has a unique
representation,

niFxx ii

n

i
i ,,2,1,,

1






   i
n

i
i xfxf 




1

       i
n

i
i

n

i
ii xfxfxf 




11



Put     nxfxfk ,...,max 1 , then   )1(
1





n

i
ikxf 
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Since the set  nxx ,...,1  is linear independent, by lemma of combination, there is 0c

such that 



n

i
i

n

i
ii cxx

11

  )2(
1

1
x

C

n

i
i 




From (1), (2), we have   x
C

k
xf  , so that f  is bounded.

4.3 Spaces of Bounded Linear Functions
Let ),( YXB  denote the set of all bounded linear functions from a normed space X into

a normed space Y .
Definition(4.3.1)
 Let X and Y be normed spaces over F and let YXf :  be a linear function. We define
the norm of f  by   1,:sup  xXxxff

Theorem(4.3.2)
  Let X and Y be normed spaces over F and let YXf :  be a linear function. If

  1,:sup  xXxxfa ,
 













 0,:sup xXx
x

xf
b ,

  Xxxxfc   :0inf . Then cbaf   and   xfxf   for all Xx

Proof :
    By definition of norm   1,:sup  xXxxff , by definition of c , we have

  xcxf   for Xx

if cxcx  1  for Xx   cxf  for Xx  and 1x

   cxXxxf  1,:sup )1(cf 

Also by definition of b , we have   xbxf   for all 0x

Since   Xxxxfc   :0inf , we have )2(bc 

let 0,  xXx

    











x

x
fxf

xx

xf 1

Put Xyy
x

x
y  1 )3(ab 

It is clear to show that fa  , so that cbaf  .

Finally definition of b , shows that
 
x

xf
b    xbxf      for all Xx

But bf    xfxf    for all Xx
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Theorem(4.3.3)
Let X and Y be normed spaces over F .Then ),( YXB  is normed space with respect to

the norm defined by }1,:)(sup{  xXxxff  for all ),( YXBf  .

Proof :
          (1) Since 0)( xf  for all Xx , then 0f  for all Xx

 (2) 0}1,:)(sup{0  xXxxff

0}0,:
)(

sup{  xXx
x

xf
0,:0

)(
 xXx

x

xf
Xxxf  :0)(

0:0)(  fXxxf

   (3) Let ),( YXBf    and F
}1,:))((sup{  xXxxff  }1,:)(sup{  xXxxf

}1,:)(sup{  xXxxf f

 (4) Let ),(, YXBgf 
}1,:))((sup{  xXxxgfgf

}1,:)()(sup{  xXxxgxf

}1,:)()(sup{  xXxxgxf

}1,:)(sup{}1,:)(sup{  xXxxgxXxxf

gf 

),( YXB   normed space

Theorem(4.3.4)
 Let X and Y be normed spaces over F .If Y  is Banach space, then ),( YXB is also Banach
space.
Proof :

),( YXB  is a normed space (by above theorem)
Let }{ nf  be a Cauchy sequence in ),( YXB , then 0 mn ff  as mn,

For all Xx , then )())(()()( xffxffxfxf mnmnmn 

0)()(  xfxf mn  as mn, )}({ xf n  is Cauchy sequence in Y  for all Xx

Since Y  is complete, then Yxf )(  such that )()( xfxf n  , then ),( YXBf   why? , so
that }{ nf  converge , then ),( YXB  is Banach

Corollary(4.3.5)
      If X  is a normed space over F , then X  is a Banach space.
Example (4.3.6)
           The dual space of n  is n , i.e. ( )n n  
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Ans :
         Since n  is finite dimensional, then ( ) ( )n n  
let  1, , nx x  be a basis for n , then every nx   has a unique representation,

1

, , 1, 2, ,
n

i i i
i

x x i n 


    

 
 


n

i
ii

n

i
iiii

n

i
ii nixfyyxfxfxf

1 11

,,1),(,)()()( 

By using the Cauchy- Schwarz inequality, we have

)))(()(()(
1

2

1
2

1 1

2

1
2  

 


n

i
i

n

i

n

i
iii yyxf  




n

i
iyxxf

1

2

1
2 )()(

}1,:)(sup{  xRxxff n  



n

i
iyf

1

2

1
2 )(

This proves that the norm of f  is the norm of n , i.e. 



n

i
iyf

1

2

1
2 )(

yf  , where n
n RyyY  ),...,( 1  .Hence the function nn RR )(:  defined by

),...,()( 1 nyyyf   where )( ii xfy   it is linear and bijective, it is an isomorphism. So
that ( )n n   .

Example (4.3.7)
      The dual space of 1  is 
Ans :
    Let  ke be a natural basis for 1  where )( kike  , i.e.

1 2 3(1,0,0, ), (0,1,0, ), (0,0,1, ),e e e     

Then every 1x  has a unique representation, k
k

k ex 





1

  where Fk 

We consider any ff  *1)(   is bounded linear functional on 1

)(,,)()()(
111

kk
k

kk
k

kk
k

kk efyyefefxf  














Where )( kk efy   has a unique representation by f  .Also 1ke  and

fefefy kkk  )(  )(sup kk
k

yyfy

On the other hand, let  )( kZZ , define Fg 1:   by 





1

)(
k

kk zxg   where

1( )kx x  g  is bounded linear

k
jk

kk
jk

kk zxxzzxxg supsup)(
11

 








*1)( g
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We finally  to show that j
j

yf sup

j
jk

kj
jk

kk yxyyxf supsup)(
11

 








 j
j

yf sup  , so that j
j

yf sup

Hence the function   *1 )(  defined by )()( jyf   where )( jj efy   it is linear
and bijective, it is an isomorphism.
Example (4.3.8)

The dual space of  pp 1,,   is q  where 1
11


qp

Ans :
Let  ke  be a natural basis for p  where )( kike  , i.e.

1 2 3(1,0,0, ), (0,1,0, ), (0,0,1, ),e e e     

Then every px   has a unique representation, k
k

k ex 





1

  where Fk 

We consider any ff p  *)(   is bounded linear functional on p

)(,,)()()(
111

kk
k

kk
k

kk
k

kk efyyefefxf  














Let q  , where 1
11


qp

Put )(
nknx  , where










wo

ynk
y

y
n

k

q

k

kn

.,0

0,,

qn

k
k

k
knn yyxf 








11

)( 

   pq

k
ppq

k
pp

knnn yfyffxfxf
11

)1(
1

)()()()( 

pq

k

q

kn yfyxf
1

)()(    fyy q
qn

k
k

p
qn

k
k  







1

1

1
1

1

)()(

Since n  is arbitrary, letting n , we obtain fy q
q

k
k 





1

1

)( q
ky  )(

On the other hand, let  )( kZZ , define Fg 1:   by 





1

)(
k

kk zxg   where ( ) p
kx  

g  is bounded linear

q
q

k
k

q
q

k
k

p
p

k
kkk yxyyxf

1

1

1

1

1

1

)()()()( 












 
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q
q

k
kyf

1

1

)(




  so that q
q

k
kyf

1

1

)(






Hence the function qp   )(:  defined by )()( kyf   where )( kk efy   it is linear
and bijective, it is an isomorphism.
Definition(4.3.9)
   Let X be a normed Space over a filed F .We define X   as :

( ) { : ,X X G X F G      is bounded linear functional }

X   is called the second dual space.
Theorem(4.3.10)
   Let X be a normed Space over a filed F .
(1) If Xx  and FXTx *:  defined as )()( xffTx   for all *Xf  , then **XTx   and xTx 

(2) If : X X   defined as xTx )(  for all Xx , then   is one-one linear function.
Proof :
(1) xT  is linear (see theorem8.1)

* *( ) ( )
sup : , 0 sup : , 0x

x

T f f x
T f X f f X f x

f f

               
      

(2) (see theorem1.3.4)
Definition(4.3.11)
Let X be a normed Space over a filed F . We say that X  is Reflexive space if   is onto,
where   is canonical function defined in theorem (4.3.10).
It is clear to show that
(1) If X is reflexive space, then **X X    (2) Every finite dimensional normed space is reflexive.

Theorem(4.3.12)
  Let X be a normed space. If X  is reflexive, then X is complete, and hence it is Banach space.
Proof :
     Since *X  is normed space **X  is complete space
         Since X  is reflexive **X X  X  is complete space.

4.4 Separable Spaces
Recall that a subset A of a topological space X is said to be dense in X if A X . and a

topological space X  is said separable if it has a countable subset which is dense in X .
Examples(4.4.1)
(1)The space  is separable, because the set of rational numbers is countable and is dense in .
(2)The space  is separable, because a countable subset of  is the set of all complex numbers
    whose real and imaginary parts both rational .
(3) A discrete metric space is separable iff X  is separable .
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Examples(4.4.2)
 The space  is not separable
Ans :
Let A  be a countable set in  1 2{ , , }A x x    where 1 2( , , )n n nx x x   

Let  )( kyy  where













1,0

1,1

kk

kkkk

k

x

xx

y

The component k of kxy   is k kky x , 1k kky x 

1ky x y A A           for all countable subset A of  .   is not separable.

Remark
An element p

nxx  )(  is called rational if
(1) nx   for all n , if F  
(2) both the real and imaginary parts are rationales, if F 
Example(4.4.3)
 The space p  with  p1  is separable
Ans :
           Let  1 2( , , , ,0,0, ) :p

nA x x x x x      is rational } A  is countable .

we shall to prove Ap   (since Ap  )

Let p
iyy  )(

1

p

i
i

y




 

Then for every 0  , there is an m  (depending on  ) such that
21

p
p

mi
iy






Hence we can find a 1 2( , , , ,0,0, )nx x x x A    satisfying
m

yx
p

p

ii 2


  , for all mi ,,2,1 

1 1 1 2 2

p p p p pm
p p

i i i i i
i i i m

x y x y x y x m
m

 


 

   

           
px y y A A        p   is separable .

Theorem(4.4.4)
A normed space X over F is separable if *X  is separable
Proof :
  Let }1:{ *  fXfM M  is subspace of *X

Since *X is separable , then M  is separable, M contains a countable dense subset ,
say MAfffA n  ,,...},...,,{ 21

since nA M f M    for all 1nn f   for all n .



ماجستیر-دراسات علیا 
Functional Analysisتحلیل دالي  

3: عدد الوحدات 1: ناقشة م3: نظري 

83

Since }1:)(sup{  xxff nn  for all n .there must exist some vector nx with 1nx   such

that 1
( )

2nf x   (If such nx did not exist, this would contradict the fact that 1f )

Let N be the closed subspace in X generated by the sequence }{ nx , i.e. }][{ nxN  . We
must prove XN  . Suppose that N X   there exists Xx 0 such that Nx 0  , by
theorem(6.13), there exists f X   such that  0 0f x  , 1f  and   0xf  for all x N .

Since 1f f M  

Since ( ) 0n nx N f x    for all n

ffxffxffxfxfxf nnnnnnnnnn  )())(()()()(
2

1   (because 1nx )

1

2nf f    for all n 1

2

( )f A     where 1

2

1
( ) { : }

2
f g g f    f A 

This contradiction (since MA  ) and so we must have XN  . It then follows that the set
of all linear combinations of the nx 's whose coefficients are rational. X is separable.

Remark
The converse of above theorem is not true , i.e. if the normed space X  is separable, then

*X  is not necessary separable , for example, if 1 *X X     and 1  is separable (see
example 4.4.2), but   is not separable (see example 4.4.3).
Theorem(4.4.5)
Let X be a normed space. If X is separable space and *X  is not separable, then X is not reflexive .
Proof :
    Suppose X  is reflexive **X X 
Since X  is separable space **X  is separable space *X  is separable space This
contradiction .
Remark
If X  is Banach then it is not necessary reflexive .for example 1  is Banach space, but not
reflexive . because 1  is separable and   *1 )(  is not separable.
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Exercises (4)
4.1Let ,X Y be linear space on a field F and let YXf :  be bijective linear function. Define

1
. : X   by

21 )(xfx   for all x X . Show that
1

.  is a norm on X  if
2

.  is a norm on Y

4.2 Let X be a normed space and f be nonzero linear functional on X . Show that either ker( )f is
 closed or ker( )f  is dense in X .

4.3 Show that : If X  is a locally convex space, then X  separate points on X .
4.4 let X  and Y  be topological linear spaces and :f X Y  be a bijection linear function .

 prove or disprove f  is continuous iff 1f   is also continuous
4.5 Suppose X  and Y  are topological vector spaces, Ydim  , YXf :  is linear and YXf )( .

 If )ker( f is closed. Prove that f  is continuous.


