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4. ContinuousLinear Functions

4.1 Definitions and General Properties

Recall that afunction f from atopological space X into topological space Y (i.e. f: X —Y)
iscalled continuous at apoint xe X if for every neighborhood U of f(x) inY thereisa
neighborhood v of x in X suchthat f(v)cuU.If f iscontinuous at every point,itiscalled
continuous. A function f: X —Y is continuousiff each open (rsp. closed) set U” in Y the
set f*(U) isopen (rsp. closed) setin X . A function f : X —Y from alinear space X into
linear space Y iscaled alinear if f(ax+by)=af(x)+bf(y) foral x,yeX anda,beF.

e Linear function of alinear space X intoitsfield F iscalled linear functional on X .

e LetC(X,Y)denotethe set of all continuous linear functions from atopological linear space X
into atopological linear space Y. Then C(X,Y) isalinear space/If Y = X, we writeC(X)
instead of C(X,X). The space of al continuous linear functionals defined on a topological
linear space X is called the dual space and denoted by X *,i.e. X" =C(X,F).If X isfinite
dimensional, then X'= X"

Definition(4.1.1)

Let (X ,d)and (v ,d*) bemetric spaces. A function f : X —Y iscaled an Isometry if

() f ishijective, i.e.one—oneand onto (2) d*(f (x),f (y))=d(x,y) foral x,y eX
Theorem(4.1.2) Completion theorem

Let (X ,d) bean arbitrary metric space .There exists a complete metric space
(X *,d")inwhich (X ,d)can beisometrically embedded in such away that X isdensein
X, .e (X,d) isisometric to-adense subspace of (X *,d").

Notethat : All completions of metric space are isometric.
Definition(4.1.3)

LetX andY benormed spaces, Anisometric isomorphism of X intoY isaone-onelinear
function f of X intoy suchthat |f (x)|=|x]| for every x eX . Alsowe say that X is
isometrically isomorphic (or congruent) to Y if there exists anisomorphism of X ontoy .
Remark
Let f be anisometric isomorphismof X intoy where X andY are normed spaces. Let x,y e X
Then [ ()~ ()] =If <=y =x -]

Thus f preservesdistances and so it is an |sometry.
Definition(4.1.4)

LetX andY be normed spaces. A topological isomorphism of X intoY isaone-one linear

function f of X intoy suchthat f and f * are continuous on their respective domains. Also
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we say that X istopological isomorphictoY if there exists atopological isomorphism of
X ontoY . In other words, X and Y are topologically isomorphic provided there exists a
homeomorphism of X onto which isalso alinear function.
Remark
Topological isomorphism space need not be isometrically isomorphic . In fact there do-exists
examples of pairs op spaces which are topologically isomorphic but not congruent.
Theorem(4.1.5)

Letx andY benormed spaces. Then X andY aretopologically isomorphiciff there exists a
linear function of X ontoy and positive constants a,b such that a |x || < (x)||<b|x].
Proof :

Suppose X and Y are topologically isomorphic, then there exists alinear function f

of X ontoY suchthat f and f * are continuous. But f is continuous iff there exists a positive
constant b such that |f (x)|<b|x| foral x eXx .

Again f * iscontinuousiff there exists a positive constanta such that a |x || <|f (x)| foral x e X .

It followsthat X and Y aretopologically isomorphic iff there exists alinear function of X onto
Y and positive constants a, b such that a ||x || <||f (x)[<b]x|-

Theorem(4.1.6)
Let X and Y be topological linear spacesand let’ f : X —Y bealinear function. If f iscontinuous
a 0, thenit is continuous
Proof :
Let xe X and let U beaneighborhood of f(x) inY,thenu = f(x)+W, wherewisa
neighborhood of 0 inY
Since f iscontinuousat 0in- X, then there exist a neighborhood v of 0in X such that
f(V)cW = x+V isaneghborhood of xin X.
To show that f(x+V)cU
Let ze f(x+V) =r3Fyex+V suchthat z= f(y)
Since yex+V. = y-xeV = f(y-x)e f(V)
f(y)-f(X)efV) = z-f()eflV) = zef(X+f(V) = zeU
= f iscontinuousat x, then f iscontinuous.
Theorem(4.1.7)
Let X and Y benormed spacesand let f: X — Y bealinear function. Then f iscontinuous
either at every point of X or at no point of X .
Proof :
Let x, and x,be any two pointsof X and suppose f is continuous at x,. Then to each
e > Othere exists d > 0 such that
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[x=x]<d = |f(x)-f(x)<e
Now
[x=%[<d = |(x+x-%)-x|<d = [f(x+x-%)-f(x)]|<e
= [f()+ f(x)-f(x)-f(x)]<e = [f(x)-f(x)|<e
= f iscontinuousat x,, then f iscontinuous.
Lemma (4.1.8)
Let X andY be Banach spaces and f : X —Y acontinuous, linear and onto function.
Then the image of each open ball centered on the origin inX contains an open ball

centered on theorigininy .
Proof : HW

Theorem(4.1.9) The open mapping theorem
Let X andyY beBanach spaces. If f :X —Y isacontinuous, linear and onto function,
then f isopen
Proof :
Let G beopensetin X . Wewant to show that f(G) isopeniny

Letyef (G),then y =f (x) for some x G

Since G isopensetin X thereexist r >0 suchthat b, (x)cG = f (b, (x))cf (G)
Since b, (x)=x+b (0) = x+b, (0)c=G

By our lemma, there exists an open sphere’b’(0) inY centered at origin such that
b, (0), =f (b, (0)

= y+b/(0cy+f (b (0)=f (x)+f(b, (0)=Ff (x+b (0)=f (b, (x))=f G)

Sincey +b/(0)=b/(y) = b/(y)cf(@G) = f(G) isopen,thusf isan open.
The following special case of the above theorem is very important.

Theorem(4.1.10)

Let X andY beBanach spaces. If f :X —Y isabijection continuouslinear function,
then f is homeomorphism.

Proof :

Since f ishijection continuous function, we need only provethat f isan open function.

Definition(4.1.11)
Let X and Y beany non-empty setsand let f : X — Y beafunction. The set

{(x,y)eX xY y=f (x)} ={(x,f (x)):xeX,f(x)eY}
iscalled the graph of f . We shall denote the graph of f by f.i.e.
fo ={(X,y)eX xY y=f (x)} ={(x,f (x)):xeX f(x)eY}.
Inthe case X andY are normed spaces.Then X xY isanormed spaces
We will now generalize the above notion of graph
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Closed Linear Function

Definition(4.1.12)
Let X andY be normed Spacesand let D be a subspace of X .Thelinear function f :D —Y
iscalled closed if for every sequence {x } in Dsuchthat x, ->xeX and f (x,) -y, then

xeDand y =f (x).
Theorem(4.1.13)

Let X andY benormed Spacesand let D be a subspace of X . Thelinear function
f :D Y isclosediff itsgraph f, isclosed subspace.

Pr oof:
Supposethat f :D —»Y isclosed .to show that f isclosed subspace.

Let (x,y) beany limit point of f, ,i.e. (x,y)ef, , then there exists a sequence of points
inf,, (x,.f(x,) where, x, eD suchthat (x,,f(x,))—(X,y)

= X,.f (X )-(x,y) >0 = |(x,.f (x,)-(x,y)|>0 = |(x,-x.f(x,)-y)|—>0

X, =x[|+[f x,)-y|=>0 = |x,-x|—>0and|f (x,)-y[>0 = x,—>x andf(x,)>y
Sincef :D —»Y isclosed,then xeDand y =f (x) = (x,y)ef, = f, isclosed.
Conversely , let the graph f isclosed. To show that The linear function f :D —Y isclosed.
Let {x } beasequencein Dsuchthat x, > xeX andf (x,)—>y = (x,.f (x,)—>(X,y)

= (x,y)ef,,sincef, isclosed = f,=f, = (x,y)ef, = xeDandy=f(x).
Therefore The linear function f :D Y ‘isclosed.

Theorem(4.1.14) Closed Graph Theorem

Let X andY beBanach spaces.If f :X —Y isalinear function, then f iscontinuous
iff its graph is closed

Proof :

Suppose that f is continuous . To show that f_ ={(x,f (x)):x e X ,f (x)eY }isclosed

Let (x,y) beany limit point of f,,i.e. (x,y)ef, , then there exists a sequence(x .. (x,))
in f, suchthat (x,,f (x,))— (X,y)
= X, f X N-(x,y)>0 = [(x,.f x,)-x,y)|=>0 = |[(x,-x.f(x,)-y)|—>0
X, =x|+[f (x)-y|>0 = |x,-x|—>0and|f (x,)-y|>0 = x,—>x and
f(x,)=>y
Sincef :X —Y iscontinuousandx, —x ,then f (x,) —>f (x)
Sincef (x,)—>y,theny =f (x)= (x,y)=(.f (x))ef, = f, isclosed.
Conversely , let f, beclosed. To show that f is continuous(H.w)
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4.2 Boundedeness
Definition(4.2.1)
Let X and Y betopological linear spacesand let f : X — Y bealinear function. We say
that f isbounded if f(A) isbounded subset of Y for every bounded subset A of X.
Theorem(4.2.2)

Let X beatopological linear spacesover F.Then f: X — Fiscontinuousat 0inX . If
for every r >0, there exists aneighborhood v at 0inX such that |f(x)|<r foral xeV.

Theorem(4.2.3)
Let X be aHausdorff topological linear spacesover Fand f e X' . Assume f(x) =0 for
some x e X . Then the following statements are equivalent
(1) t iscontinuous
(2) ker(f)isclosed
(3) ker(f) isnotdensein X.
(4) f isbounded in some neighborhood v of 0 in X
Proof :
D=0
Since {0} isclosedinF and f : X — F iscontinuous, then f *({0}) isclosedin X
= ker(f)=f*({0}) isclosedin X
2= © .
Since ker(f)isclosedinX = ker(f)= ker(f)
Since f(x) =0 for some xe X, then'xe ker(f) = ker(f)=X = ker(f) isnotdensein

X
(3 = (@) 7

Let A= X |ker(f). SInceker(f)= X = A=f
Since ker(f) isclosedin X, then A isopensetin X = int(A) = A=f , thenthereis
xeint(A) = x+V.c A for some balanced neighborhood Vv of is0 in X, since f isa
linear, then f(v)isbalanced setin F = either f(v) isboundedor f(V)=F.
If f(v)=F;,thenthereis yevsuchthat f(y)=-f(x) = f(x+y)=0 = x+yeker(f)
= (x+V)nker(f)=f . Thiscontradiction, so that f(v) isbounded

@ = ()
Since f isbounded in some neighborhood v of 0 in X.
3M >0, suchthat |f (x)|<M foral xeV

Let r>0,takewzﬁv = W isaneghborhood of 0 in X
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Let yeW = yzﬁx where xeV

r
f =|f| —Xx
10l= 1%
[f(y)<r foral yew = f iscontinuousat 0in X,then f iscontinuous.

Example(4.2.4)
Let X and Y be normed spacesand let f: X —Y bealinear function. If f iscontinuous,

then ker( f) isclosed, but the converseis not true.
Ans:
Since {0} isclosediny and f : X — Yiscontinuous, then f *({0}) isclosedin X
= ker(f)=f*({0}) isclosed in X
The counter example
Let X =c'[0o1] and Y =c[01] with the same norm ||| = sup{¥(x): 0< x<1}

Define f: X - Y by f(?):‘i—\i

r r r
ﬁf(X)‘—ﬁ|f(X)|<VM =TI

Then ker(f) isthe set of al constant functions, thenker(f) isclosed, but f isnot
continuous because, if ¥, (x)=x" for dl xe[01]/then ¥, =1, but | (¥, )= nx"
al n=012,---
Theorem(4.2.5)
Let X and Y betopological linear spacesand let f : X — Y bealinear function. Among
the following four properties of . f-,theimplications (1) = (2) = (3) hold, If X is
metrizable, thenalso (3) = (4) = (1)
So that all four properties are equivalent.
(1) f iscontinuous
(2) f isbounded
(3) If x, » 0, then {f(x,)} isbounded
(4 1f x. ->0,then f(x,)—>0
Proof :
@)=

Let A’beabounded setin X and let w be aneighborhood of 0 in Y (since (f(0)=0)
Since f iscontinuous, then f iscontinuousato, thereisaneghborhood v of 0in X
suchthat f(V)cW.
Since A isbounded, then thereis| >0 suchthat AclVv

= fAcflV)=IfV)cIW = f(A) isboundediny = f isbounded.

=n for
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2) = (3
Sincfa 1 —>(o) = {x,} isbounded (because every converge sequence is bounded)
Since f isbounded = {f(x,)} isbounded.
B = 4
Since X ismetrizableand x, — 0, by theorem () there are positive scalar a, such
that a, -« and a,x, >0, wehave {f(a,x,)} isbounded

Sincea, >0 = In:i—>o,then f(x,)=1,f@,x,)—>0an->wx
a

4) = (1)
Assume f isnot continuous
There exists aneighborhood wof 0 in Y suchthat f*(w) containsno neighborhood of
oin X.
If X hasacountable local base, thereisasequence {x,} in X/, SOthat x, — 0 but
f(x,)eW (i.e. f(x,)-»0 ). Thus(4) fals, sothat f iscontinuous.
Remark
Recall that, a subset A of anormed space X isbounded iff thereis k >0 such that
|¥| <k foral xeA.

Theorem(4.2.6)
Let X and Y be normed spacesand let f: X — Y bealinear function. Then f is
bounded iff thereis k >0 such that |f(x)| <k|x| forall xeX.

Proof :
Suppose that f isbounded, sinceA= {xe X :|¥| <1} isbounded in X = A isboundedin X .

Since, then f isbounded, then f(A)isboundedin Y
Thereis k>0 such that | f(x) <k forall xeA.

Let xe X
If x=0, put y:ﬁ = |y=1 = yeA
1
[fly) <k = f{ﬁjsk = M||f(x)||gk = [f)|<K|¥

eitherif x=0,then f(x)=f(0)=0,s0 |f(x)<k|x foral xe X
Conversely
Thereis k>0 suchthat |[f(x)<k|x| foral xeX.

Let A be a bounded set in X, then there is k, >0 such that |x|<k, for all xeA
= kx| <kk, =k, foral xe A
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Since |f(x)| < K| for @l xe X, then |f(x)|<k|x| for all xe A
= |f(x)<k, foral xe A= f(A)isboundedin Y, then f isbounded.

Theorem(4.2.7)
Let X and Y be normed spaces and let f:X —Y be a linear function. Then f is

bounded iff it is continuous.
Proof :
Let f be abounded, then thereis k>0 such that |f(x)| <k|x| for al xe X.

Let xoex.Foranye>0,choosed:E

[x=x,||<d, we have |f(x)- f(x,)=]f(x=x)<k[x=%] = [f(x)-f(x)<kd=e, hence
f iscontinuousat x,. Since x, isarbitrary = f iscontinuous

Conversely : Assumethat f isunbounded

For each positive integer n, we can find avector x, suchthat | f(x,)|> njx,|

X
f | —n
(nllxnllJ

n|| ” ”yn":% = ||yn||—>035n—>00 = y,~0a8 no>wo

= >1

1
— |If (x
. ||H ‘
PUt yn_

Since f iscontinuous, then f(y,)— f(0)=0

= |f(y,)]— 0. Thiscontradiction, because | f(y,) >1, then f isbounded.
Theorem(4.2.8)

Let X and Y be normed spacesand let f : X — Y bealinear function. If X isfinite
dimensional, then f isbounded (continuous).

Proof :
Let dimX =n,and let {x,...., x,} beabasisfor X , then every xe X hasaunique

representation,

x:znllixi, . eF, i=12---,n
0-30 0000 = 91316 <316
Pt max( ). ()} then [FGoJ<kEh | - @
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Sincethe set {x,,...,x,} islinear independent, by lemma of combination, thereis c¢>0
n n 1
sinthat =[S x| = Thilsg - @

From (1), (2), we have ||f(x)||s%||x||, sothat f isbounded.

4.3 Spaces of Bounded Linear Functions
LetB(X,Y) denote the set of all bounded linear functions from a normed space X into
anormed space Y.
Definition(4.3.1)
Let X and Y be normed spacesover Fand let f: X — Y bealinear function. We define
thenormof f by |f]|=sup{|f(x):xe X, ¥ <1
Theorem(4.3.2)
Let X and Y benormed spacesover Fand let f: X — Y bealinear function. If

a=sup{|f(x)|:xe X, |¥=1}, b= sup{ I "ZXEX, x;to},

4

Zinf§ > 0:f(x)] <1 [¥| vxeX}.Then|f|=a=b=c and | f(x)|<|f|[x| forall xeX

Proof :
By definition of norm | f|=sup{|f (x)|: x&X, [x| <1}, by definition of c, we have

| f(x)| <c|x| for xe X
ifx|<1 = c|q<cfor xeX = | f(x)|<cfor xeX and|x|<1

= apffW:ixe X, [N<ilsc/ = [flsc @
Also by definition of b, we'have |f (x)|<b| x| foral x=0
Since c=inf{| >0 f(x)[=l |x| vxe x},wehave c<b (2
let xe X, x=0

[ £ &)

W M'“ (i)
Put y= = [y|=1 = yeX = b<a (3

||><||

Itisclear to show that a<|f|, sothat |f|=a=b=c.
Fi naIIy definition of b, shows that

o [T . .
S = ltlsoi forall xex

But [f|=b = [t(x)|<|f||x foral xeX
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Theorem(4.3.3)
Let X and Y be normed spaces over F.Then B(X,Y) isnormed space with respect to
the norm defined by || =sup{|[f(x)|:xe X, || <2 for all feB(X,Y).
Proof :
(1) Since |f (x>0 for &l xe X, then |f|>0 for &l xe X

(2) |f|=0< sup{|f(x)|:xe X, [¥|<B=0
[ [F )
|4 4

< f(X)=0:xe X< =0
(3) Let f eB(X,Y) and | eF
1| = supt|( )0 - xe X, <B =supfl | O] : xe X, [x|<3
= [l [sup{][f O9]: xe X, [ <[] f]
(4) Let f,geB(X,Y)
[+ gl =supf[[(f + 9)9]: xe X, [} <3
=sup{| f () + g(x)|: xe X, [x|<L
<supf{[[f ()| +[g(x): xe X, [x|<1
<supf|| f(¥)|: xe X, || <T+sup{|ax)|:xe X, [x<3
=[f+[gl
= B(X,Y) normed space
Theorem(4.3.4)
Let X and Y be normed spacesover F.If Y isBanach space, then B(X,Y)isaso Banach
space.
Proof :
B(X,Y) isanormed space (by above theorem)
Let {f} beaCauchy sequencein B(X.,Y), then ||[f, - f || >0 as nm-
Foral xe X, then |f,(x)—f ()| =|(f, - )| <|f, = fa] [
= |[f,()=f.(9|>0anm—>wo = {f (x} isCauchy sequencein Y foral xe X
Since Y iscomplete, then f(x)eY suchthat f (x) - f(x), then f e B(X,Y) why?, so
that { f } converge, then B(X,Y) isBanach
Corollary(4.3.5)
If X isanormed spaceover F, then X* isaBanach space.

Example (4.3.6)
The dual spaceof R" isR",i.e. (R")" ~R"

< supf xeX, xz0=0 < =0:xe X, x#0 <|f(x)|=0:xeX
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Ans:
Since R" isfinite dimensiond, then (R")" = (R")’
let {x,,---,x,} beabasisfor R", then every x e R" has aunique representation,

x=>1l,x, |, eR, i=12--n
i=1

(0= T x) =21 ) =Dy ¥ =f(X) i=Ln
By using the Cauchy- Schwarz inequality, we have
001 2wl Q1D = (160l v0)?

[f]=supf|f(Q): xeR", [{=3 = ”f”g(iyiz)z

n 1
This provesthat thenormof f isthenormof R",i.e. |[f|= (D y?)?
i=1

= | f||=[y|, where Y = (y,.... y,) e R" .Hencethe functiony :(R")' - R" defined by
y (f)=y=(y,...y,) Where y = f(x) itislinear andbijective, it isan isomorphism. So
that (R")" ~R".
Example (4.3.7)
The dua spaceof ¢ is ¢”

Ans:
Let {e }beanatural basisfor /* where e =(d,),i.e.

elz(l:O,O,"'),ez=(0,l0,-~~),63:(O,O,]_’...),...
Then every xe ¢* has aunigue representation, x:il & Wherel, eF

k=1

Weconsider any f (/) = f isbounded linear functional on ¢*

F00= Q@)=Y 1@) =Yy, Y =f(e)

Where ykki f(e,) hk;;aunique ;zelpresentation by f .Also |e =1 and

=t <[fllel=]t] = snyl<[t] = y=()er

On.the other hand, let z = (z,) e ¢, define g:¢* - F by g(x):il .Z. Where
=

x=(x.)elt = g isbounded linear

900/ 3.2 < spla] 3 = stz = g ()
k=1 J k=1 J
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Wefinaly to show that |f|=supy,|
j

|f(x)|=‘il Y

Hence the function ¥ = (¢)" —» ¢~ defined by Ww(f)=(y,) where y, = f(e,) it islinear
and bijective, it is an isomorphism.
Example (4.3.8)

1 1

Thedual spaceof ,¢?, 1<p<w is¢® Where =+==1
P q

S&fp\yj\gll | =[Xlsvrly,| = [f[<suply,[ . sothat [f]=supjy,|

Ans:
Let {e } beanatura basisfor ¢* where e, =(d, ), i.e.

e, =(10,0,---),e,=(0,1,0,---),&, = (0,0,1,--"), ;-

Then every xe ¢® hasaunique representation, x=i| & Wherel, eF

k=1

Weconsider any f e(¢?)’ = f isbounded linear functional on ¢°

0= F(21e) =21 1@ =X e+ Y%=1(&)

Let geR, where 1.1,

P qQ
i’

Put x,=(, ), where |, = ksn, y,#0

Yi
0, ow

© n q
f(xn) = kZ:::I nyk = kZ:;|yk|
1
p

F0) <l = LRIl ™ =T ) = I
f00) = 2l <P = Qlwl) " =) <l

q !l

Since n isarbitrary, letting n— «, we obtain (i|yk| Y <[f] = (y)el
k=1

On the other hand, let Z = (z,) < ¢*, define g: /* > F by g(x) =3I,z Where x =(I,)e
k=1

= g Isbounded linear

HSEN kyk\s%u N )p(;|yk| )9 =||x||(;|yk| )
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© q 1 w q 1

[f]= Qlnf )* sothat < fy. )*
Hence the function ¥ :(¢?)" — ¢* defined by w(f)=(y,) where y, = f(g,) it is linear
and bijective, it isan isomorphism.
Definition(4.3.9)

Let X be anormed Space over afiled F .Wedefine X as:

X" =(X*)={G:X"—>F,Gisbounded linear functiona }

X * is caled the second dual space.
Theorem(4.3.10)

Let X beanormed Space over afiled F.
(DIf xexandT,: X —>F definedas T (f)=f(x) foral feX',thenT eXx” and |T,| =]
2 Ify : X - X" definedasy (x) =T, foral xe X, theny isone-onelinear function.

Proof :
(1) T, islinear (see theorem8.1)

||TX||=sup{|T|>i§¢]|c|)|:feX*, f¢0}=sup{%:fex*, f¢0}=||x||
(2) (seetheoreml.3.4)

Definition(4.3.11)

Let X beanormed Space over afiled F-'We say that X isReflexive spaceif y isonto,
wherey iscanonical function defined in theorem (4.3.10).

It isclear to show that

(D) If X isreflexive space, then’x =X~ (2) Every finite dimensional normed space is reflexive.

Theorem(4.3.12)
Let X beanormed space. If X isreflexive, then X iscomplete, and henceit is Banach space.
Proof :
Since X' isnormed space = X is complete space

Since X ‘isreflexive = X =X" = X iscomplete space.

4.4 Separ.able Spaces

Recall that asubset A of atopologica space X issaidtobedensein X if A =X .and a
topologica space X issaid separableif it has a countable subset which isdensein X .
Examples(4.4.1)
(1) The space R is separable, because the set Q of rational numbersis countable and isdense inR .

(2)The space Cis separable, because a countable subset of Cisthe set of all complex numbers
whose real and imaginary parts both rational .
(3) A discrete metric space is separableiff X isseparable.
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Examples(4.4.2)
The space ¢~ is not separable
Ans:
Let A beacountablesetin ¢*= A ={x;,x,,-} Where x, =(x,, %,.+-) € £*

Xo +1 0 [Xe|<1
Let y=(y)er¢” wherey, =

0 x> 1

The component kof y—x, ISy, =X, |y, —Xq|>1

= |ly-x21 = yeA = A=z¢* forall countablesubset Aof ¢*, = ¢”isnot separable.
Remark

Anéeement x=(x,)e¢” iscaledrationa if

(1) x, eQ fordl n,if F=R

(2) both the real and imaginary parts are rationales, if F=C

Example(4.4.3)
The space ¢? withl1< p<« isseparable
Ans:
Let A={x=(x,X,,x,,0,0,)e(P:x istational } = A iscountable.

we shall to prove ¢° = A (since (° < A)
0 p

Let y=(y)el"= >y| <=
i=1

Then for every e >0, thereisan m e z* (depending on e) such that >’ |y’ <%

i=m+1
p
Hencewecanfind a x=(x,%,,-,%,,0,0,---) € A satisfying |x —y,|" <§—m , fordl i=12,---,m

p @ p m p © p ep ep ;
by =3l <=2 -]+ 3 ] <me S —e

i=m+1

= |x-y|l<e'= yeA = A=r"= (° isseparable.
Theorem(4.4.4)
A normed space X over Fisseparableif X' isseparable

Proof :

Let M ={feX :|f|=3= M issubspaceof X

Since X isseparable, thenM isseparable, M contains a countable dense subset ,
say A={f,f,...f..} , A=M
snceAcM = f eM foraln = |f |=1foral n.
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Since | f,| =sup{|f,(¥)|:[x| =3 for al n.there must exist some vector x, with |x,|=1 such
that |f , (x)] >% (If suchx, did not exist, this would contradict the fact that | f|=1)

Let N bethe closed subspacein X generated by the sequence {x.},i.e. N=[{x}]. We
must prove N = X . Supposethat N =X = thereexists x, e X such that x, ¢ N , by
theorem(6.13), thereexists f e X * suchthat f (x,)=0,|f [=1and f(x)=0 for al xeN .
Sincef|[=1 = f eM

Sincex,eN = f(x,)=0foraln

L 00 =180~ T =[C, = D06 =, = D] =1, ~ 1] (because | =1)

= [f,~f[>2 forall n= b,(t)nA=t whereb,(t)={g:|g-f[<3} = feA
2 2

This contradiction (since A=M ) and so we must have N = X. It then follows that the set
of all linear combinations of the x_'s whose coefficientsarerational. = X isseparable.

Remark
The converse of above theorem isnot true, i.e. if the normed space X is separable, then
X" isnot necessary separable, for example, if X =/t = X =/"and ¢* is separable (see
example 4.4.2), but ¢~ is not separable (see example 4.4.3).
Theorem(4.4.5)
Let X beanormed space. If X isseparable spaceand X” isnot separable, then X isnot reflexive.
Proof :

Suppose X isreflexive = X'=X"
Since X isseparable space’ = * X " issegparable space = X is separable space This
contradiction .
Remark
If X isBanach thenit is not necessary reflexive .for example ¢! is Banach space, but not
reflexive . because ¢* isseparableand (¢*)" = ¢~ isnot separable.
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Exercises (4)
4.1L et X Y belinear spaceon afield Fandlet f: X — Y be bijective linear function. Define
I-]l.:X >R by x| =|f(x)]|, foral x ex . Show that | .|, isanormon X if ||.|, isanormony
4.2 Let X beanormed space and f be nonzero linear functional on X . Show that either ker(f )is
closed or ker(f ) isdensein X .

4.3 Show that : If X isalocally convex space, then X* separate pointson X .
441et X and Y betopologica linear spacesand f: X —Y beabijection linear function .

prove or disprove f iscontinuousiff f isalso continuous
4.5 Suppose X and Y aretopological vector spaces, dimY <« , f: X > Y islinearand f(X)=Y.
If ker(f)isclosed. Provethat f iscontinuous.
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