دراسات عليا ـ ماجستير **Functional Analysis** تحليل دالي 3: 1: 3:

4. Continuous Linear Functions

4.1 Definitions and General Properties

Recall that a function f from a topological space X into topological space Y (i.e. $f: X \to Y$) is called continuous at a point $x \in X$ if for every neighborhood U of f(x) in Y there is a neighborhood V of x in X such that $f(V) \subseteq U$. If f is continuous at every point, it is called continuous. A function $f: X \to Y$ is continuous iff each open (rsp. closed) set U in Y the set $f^{-1}(U)$ is open (rsp. closed) set in X. A function $f: X \to Y$ from a linear space X into linear space Y is called a linear if f(rx + sy) = rf(x) + sf(y) for all $x, y \in X$ and $r, s \in F$.

- Linear function of a linear space X into its field F is called linear functional on X.
- Let C(X,Y) denote the set of all continuous linear functions from a topological linear space X into a topological linear space Y. Then C(X,Y) is a linear space. If Y = X, we write C(X) instead of C(X,X). The space of all continuous linear functionals defined on a topological linear space X is called the dual space and denoted by X^* , i.e. $X^* = C(X,F)$. If X is finite dimensional, then $X' = X^*$

Definition(4.1.1)

Let (X,d) and (Y,d^*) be metric spaces. A function $f:X\to Y$ is called an Isometry if (1) f is bijective, i.e. one —one and onto (2) $d^*(f(x),f(y)) = d(x,y)$ for all $x,y \in X$

Theorem(4.1.2) Completion theorem

Let (X,d) be an arbitrary metric space. There exists a complete metric space (X^*,d^*) in which (X,d) can be isometrically embedded in such a way that X is dense in X^* , i.e. (X,d) is isometric to a dense subspace of (X^*,d^*) .

Note that: All completions of metric space are isometric.

Definition(4.1.3)

Let *X* and *Y* be normed spaces, An isometric isomorphism of *X* into *Y* is a one-one linear function *f* of *X* into *Y* such that ||f(x)|| = ||x|| for every $x \in X$. Also we say that *X* is isometrically isomorphic (or congruent) to *Y* if there exists an isomorphism of *X* onto *Y*.

Remark

Let f be an isometric isomorphism of X into Y where X and Y are normed spaces. Let $x, y \in X$ Then ||f(x)-f(y)|| = ||f(x-y)|| = ||x-y||

Thus f preserves distances and so it is an Isometry.

Definition(4.1.4)

Let X and Y be normed spaces. A topological isomorphism of X into Y is a one-one linear function f of X into Y such that f and f^{-1} are continuous on their respective domains. Also

we say that X is topological isomorphic to Y if there exists a topological isomorphism of X onto Y. In other words, X and Y are topologically isomorphic provided there exists a homeomorphism of X onto which is also a linear function.

Remark

Topological isomorphism space need not be isometrically isomorphic. In fact there do exists examples of pairs op spaces which are topologically isomorphic but not congruent.

Theorem(4.1.5)

Let *X* and *Y* be normed spaces. Then *X* and *Y* are topologically isomorphic iff there exists a linear function of *X* onto *Y* and positive constants r, s such that $r ||x|| \le ||f(x)|| \le s ||x||$.

Proof:

Suppose X and Y are topologically isomorphic, then there exists a linear function f of X onto Y such that f and f^{-1} are continuous. But f is continuous iff there exists a positive constant f such that $||f(x)|| \le f ||x||$ for all $|x| \in X$.

Again f^{-1} is continuous iff there exists a positive constant r such that $r ||x|| \le ||f(x)||$ for all $x \in X$. It follows that X and Y are topologically isomorphic iff there exists a linear function of X onto Y and positive constants r, s such that $r ||x|| \le ||f(x)|| \le s ||x||$.

Theorem(4.1.6)

Let X and Y be topological linear spaces and let $f: X \to Y$ be a linear function. If f is continuous at 0, then it is continuous

Proof:

Let $x \in X$ and let U be a neighborhood of f(x) in Y, then U = f(x) + W, where W is a neighborhood of 0 in Y

Since f is continuous at 0 in X, then there exist a neighborhood V of 0 in X such that $f(V) \subset W \Rightarrow x+V$ is a neighborhood of x in X.

To show that $f(x+V) \subset U$

Let $z \in f(x+V) \implies \exists y \in x+V$ such that z = f(y)

Since $y \in x + V \implies y - x \in V \implies f(y - x) \in f(V)$

$$f(y) - f(x) \in f(V) \quad \Rightarrow \quad z - f(x) \in f(V) \quad \Rightarrow \quad z \in f(x) + f(V) \quad \Rightarrow \quad z \in U$$

 \Rightarrow f is continuous at x, then f is continuous.

Theorem(4.1.7)

Let X and Y be normed spaces and let $f: X \to Y$ be a linear function. Then f is continuous either at every point of X or at no point of X.

Proof:

Let x_1 and x_2 be any two points of X and suppose f is continuous at x_1 . Then to each v > 0 there exists u > 0 such that

دراسات علیا ۔ ماجستیر Functional Analysis

3: 1: 3:

$$||x - x_1|| < U \implies ||f(x) - f(x_1)|| < V$$

Now

$$||x - x_2|| < U \implies ||(x + x_1 - x_2) - x_1|| < U \implies ||f(x + x_1 - x_2) - f(x_1)|| < V$$

$$\Rightarrow ||f(x) + f(x_1) - f(x_2) - f(x_1)|| < V \implies ||f(x) - f(x_2)|| < V$$

 \Rightarrow f is continuous at x_2 , then f is continuous.

Lemma (4.1.8)

Let X and Y be Banach spaces and $f: X \to Y$ a continuous, linear and onto function. Then the image of each open ball centered on the origin in X contains an open ball centered on the origin in Y.

Proof: H.W

Theorem(4.1.9) The open mapping theorem

Let X and Y be Banach spaces . If $f: X \to Y$ is a continuous, linear and onto function, then f is open

Proof:

Let G be open set in X. We want to show that f(G) is open in Y

Let $y \in f(G)$, then y = f(x) for some $x \in G$

Since G is open set in X, there exist r > 0 such that $s_r(x) \subseteq G \implies f(s_r(x)) \subseteq f(G)$

Since $S_r(x) = x + S_r(0) \implies x + S_r(0) \subseteq G$

By our lemma, there exists an open sphere $s'_r(0)$ in Y centered at origin such that $s'_r(0)_r \subseteq f(s_r(0))$

$$\Rightarrow y + S'_r(0) \subseteq y + f(S_r(0)) = f(x) + f(S_r(0)) = f(x + S_r(0)) = f(S_r(x)) \subseteq f(G)$$

Since $y + s'_r(0) = s'_r(y) \implies s'_r(y) \subseteq f(G) \implies f(G)$ is open, thus f is an open.

The following special case of the above theorem is very important.

Theorem(4.1.10)

Let X and Y be Banach spaces . If $f: X \to Y$ is a bijection continuous linear function, then f is homeomorphism.

Proof:

Since f is bijection continuous function, we need only prove that f is an open function.

Definition(4.1.11)

Let X and Y be any non-empty sets and let $f: X \to Y$ be a function. The set

$$\{(x,y) \in X \times Y \mid y = f(x)\} = \{(x,f(x)) : x \in X, f(x) \in Y\}$$

is called the graph of f. We shall denote the graph of f by f_G i.e.

$$f_G = \{(x, y) \in X \times Y \mid y = f(x)\} = \{(x, f(x)) : x \in X, f(x) \in Y\}.$$

In the case X and Y are normed spaces .Then $X \times Y$ is a normed spaces We will now generalize the above notion of graph

دراسات عليا - ماجستير تحليل دالي Functional Analysis : 1 : 3 :

3: 1: 3

Closed Linear Function

Definition(4.1.12)

Let X and Y be normed Spaces and let D be a subspace of X. The linear function $f: D \to Y$ is called closed if for every sequence $\{x_n\}$ in D such that $x_n \to x \in X$ and $f(x_n) \to y$, then $x \in D$ and y = f(x).

Theorem(4.1.13)

Let X and Y be normed Spaces and let D be a subspace of X. The linear function $f:D\to Y$ is closed iff its graph f_G is closed subspace.

Proof:

Suppose that $f: D \to Y$ is closed .to show that f_G is closed subspace.

Let (x, y) be any limit point of f_G , i.e. $(x, y) \in \overline{f_G}$, then there exists a sequence of points in f_G , $(x_n, f(x_n))$ where, $x_n \in D$ such that $(x_n, f(x_n)) \to (x, y)$

$$\Rightarrow (x_n, f(x_n)) - (x, y) \to 0 \Rightarrow \|(x_n, f(x_n)) - (x, y)\| \to 0 \Rightarrow \|(x_n - x, f(x_n) - y)\| \to 0$$
$$\|x_n - x\| + \|f(x_n) - y\| \to 0 \Rightarrow \|x_n - x\| \to 0 \text{ and } \|f(x_n) - y\| \to 0 \Rightarrow x_n \to x \text{ and } f(x_n) \to y$$

Since $f: D \to Y$ is closed, then $x \in D$ and $y = f(x) \Rightarrow (x, y) \in f_G \Rightarrow f_G$ is closed.

Conversely , let the graph f_G is closed. To show that The linear function $f:D\to Y$ is closed.

Let
$$\{x_n\}$$
 be a sequence in D such that $x_n \to x \in X$ and $f(x_n) \to y \Rightarrow (x_n, f(x_n)) \to (x, y)$
 $\Rightarrow (x, y) \in \overline{f_G}$, since f_G is closed $\Rightarrow \overline{f_G} = f_G \Rightarrow (x, y) \in f_G \Rightarrow x \in D$ and $y = f(x)$.

Therefore The linear function $f: D \rightarrow Y$ is closed.

Theorem(4.1.14) Closed Graph Theorem

Let X and Y be Banach spaces. If $f: X \to Y$ is a linear function, then f is continuous iff its graph is closed

Proof:

Suppose that f is continuous .To show that $f_G = \{(x, f(x)) : x \in X, f(x) \in Y\}$ is closed Let (x, y) be any limit point of f_G , i.e. $(x, y) \in \overline{f_G}$, then there exists a sequence $(x_n, f(x_n))$ in f_G such that $(x_n, f(x_n)) \to (x, y)$

$$\Rightarrow (x_n, f(x_n)) - (x, y) \to 0 \Rightarrow \|(x_n, f(x_n)) - (x, y)\| \to 0 \Rightarrow \|(x_n - x, f(x_n) - y)\| \to 0$$

$$\|x_n - x\| + \|f(x_n) - y\| \to 0 \Rightarrow \|x_n - x\| \to 0 \text{ and } \|f(x_n) - y\| \to 0 \Rightarrow x_n \to x \text{ and }$$

$$f(x_n) \to y$$

Since $f: X \to Y$ is continuous and $x_n \to x$, then $f(x_n) \to f(x)$

Since $f(x_n) \to y$, then $y = f(x) \Rightarrow (x, y) = (x, f(x)) \in f_G \Rightarrow f_G$ is closed.

Conversely , let $f_{\mathcal{G}}$ be closed. To show that f is continuous(H.w)

4.2 Boundedeness

Definition(4.2.1)

Let X and Y be topological linear spaces and let $f: X \to Y$ be a linear function. We say that f is bounded if f(A) is bounded subset of Y for every bounded subset A of X.

Theorem(4.2.2)

Let X be a topological linear spaces over F. Then $f: X \to F$ is continuous at 0 in X. If for every r > 0, there exists a neighborhood V at 0 in X such that |f(x)| < r for all $x \in V$.

Theorem(4.2.3)

Let X be a Hausdorff topological linear spaces over F and $f \in X'$. Assume $f(x) \neq 0$ for some $x \in X$. Then the following statements are equivalent

- (1) f is continuous
- (2) ker(f) is closed
- (3) ker(f) is not dense in X.
- (4) f is bounded in some neighborhood V of 0 in X.

Proof:

$$(1) \Rightarrow (2)$$

Since $\{0\}$ is closed in F and $f: X \to F$ is continuous, then $f^{-1}(\{0\})$ is closed in $X \Rightarrow \ker(f) = f^{-1}(\{0\})$ is closed in X

$$(2) \Rightarrow (3)$$

Since $\ker(f)$ is closed in $X \Rightarrow \overline{\ker(f)} = \ker(f)$

Since $f(x) \neq 0$ for some $x \in X$, then $x \notin \ker(f) \implies \ker(f) \neq X \implies \ker(f)$ is not dense in X

$$(3) \Rightarrow (4)$$

Let $A = X \mid \overline{\ker(f)}$. Since $\overline{\ker(f)} \neq X \implies A \neq W$

Since $\overline{\ker(f)}$ is closed in X, then A is open set in $X \Rightarrow \operatorname{int}(A) = A \neq W$, then there is $x \in \operatorname{int}(A) \Rightarrow x + V \subseteq A$ for some balanced neighborhood V of is 0 in X, since f is a linear, then f(V) is balanced set in $F \Rightarrow$ either f(V) is bounded or f(V) = F.

If f(V) = F, then there is $y \in V$ such that $f(y) = -f(x) \Rightarrow f(x+y) = 0 \Rightarrow x+y \in \ker(f)$ $\Rightarrow (x+V) \cap \ker(f) \neq w$. This contradiction, so that f(V) is bounded $(4) \Rightarrow (1)$

Since f is bounded in some neighborhood V of 0 in X.

 $\exists M > 0$, such that |f(x)| < M for all $x \in V$

Let r > 0, take $W = \frac{r}{M}V \implies W$ is a neighborhood of 0 in X

Let $y \in W \implies y = \frac{r}{M}x$ where $x \in V$

$$|f(y)| = \left| f\left(\frac{r}{M}x\right) \right| = \left| \frac{r}{M}f(x) \right| = \frac{r}{M}|f(x)| < \frac{r}{M}M = r$$

|f(y)| < r for all $y \in W$ \Rightarrow f is continuous at 0 in X, then f is continuous.

Example(4.2.4)

Let X and Y be normed spaces and let $f: X \to Y$ be a linear function. If f is continuous, then ker(f) is closed, but the converse is not true.

Ans:

Since $\{0\}$ is closed in Y and $f: X \to Y$ is continuous, then $f^{-1}(\{0\})$ is closed in $X \Rightarrow \ker(f) = f^{-1}(\{0\})$ is closed in X

The counter example

Let $X = C^{1}[0,1]$ and Y = C[0,1] with the same norm $\|\Psi\| = \sup \{\Psi(x) : 0 \le x \le 1\}$

Define
$$f: X \to Y$$
 by $f(\Psi) = \frac{d\Psi}{dx}$

Then $\ker(f)$ is the set of all constant functions, then $\ker(f)$ is closed, but f is not continuous because, if $\Psi_n(x) = x^n$ for all $x \in [0,1]$, then $\|\Psi_n\| = 1$, but $\|f(\Psi_n)\| = \|nx^{n-1}\| = n$ for all $n = 0,1,2,\cdots$

Theorem(4.2.5)

Let X and Y be topological linear spaces and let $f: X \to Y$ be a linear function. Among the following four properties of f, the implications $(1) \Rightarrow (2) \Rightarrow (3)$ hold, If X is metrizable, then also $(3) \Rightarrow (4) \Rightarrow (1)$

So that all four properties are equivalent.

- (1) f is continuous
- (2) f is bounded
- (3) If $x_n \to 0$, then $\{f(x_n)\}$ is bounded
- (4) If $x_n \to 0$, then $f(x_n) \to 0$

Proof:

$$(1) \Rightarrow (2)$$

Let A be a bounded set in X and let W be a neighborhood of 0 in Y (since (f(0) = 0)) Since f is continuous, then f is continuous at 0, there is a neighborhood V of 0 in X such that $f(V) \subset W$.

Since A is bounded, then there is $\} > 0$ such that $A \subset \}V$ $\Rightarrow f(A) \subset f(\}V) = \}f(V) \subset \}W \Rightarrow f(A)$ is bounded in $Y \Rightarrow f$ is bounded.

3: 1: 3:

$$(2) \Rightarrow (3)$$

Since $x_n \to 0 \implies \{x_n\}$ is bounded (because every converge sequence is bounded) Since f is bounded $\Rightarrow \{f(x_n)\}$ is bounded.

$$(3) \Rightarrow (4)$$

Since X is metrizable and $x_n \to 0$, by theorem () there are positive scalar r_n such that $r_n \to \infty$ and $r_n x_n \to 0$, we have $\{f(r_n x_n)\}$ is bounded

Since
$$\Gamma_n \to \infty \implies \}_n = \frac{1}{\Gamma_n} \to 0$$
, then $f(x_n) = \}_n f(\Gamma_n x_n) \to 0$ as $n \to \infty$

$$(4) \Rightarrow (1)$$

Assume f is not continuous

There exists a neighborhood W of 0 in Y such that $f^{-1}(W)$ contains no neighborhood of 0 in X.

If X has a countable local base, there is a sequence $\{x_n\}$ in X, so that $x_n \to 0$ but $f(x_n) \notin W$ (i.e. $f(x_n) \to 0$). Thus (4) fails, so that f is continuous.

Remark

Recall that, a subset A of a normed space X is bounded iff there is k > 0 such that $||x|| \le k$ for all $x \in A$.

Theorem(4.2.6)

Let X and Y be normed spaces and let $f: X \to Y$ be a linear function. Then f is bounded iff there is k > 0 such that $||f(x)|| \le k||x||$ for all $x \in X$.

Proof:

Suppose that f is bounded, since $A = \{x \in X : ||x|| \le 1\}$ is bounded in $X \Rightarrow A$ is bounded in X. Since, then f is bounded, then f(A) is bounded in Y

There is k > 0 such that $||f(x)|| \le k$ for all $x \in A$.

Let $x \in X$

If
$$x \neq 0$$
, put $y = \frac{x}{\|x\|}$ \Rightarrow $\|y\| = 1$ \Rightarrow $y \in A$

$$||f(y)|| \le k \implies ||f\left(\frac{x}{||x||}\right)|| \le k \implies \frac{1}{||x||}||f(x)|| \le k \implies ||f(x)|| \le k||x||$$

either if x = 0, then f(x) = f(0) = 0, so $||f(x)|| \le k||x||$ for all $x \in X$

Conversely

There is k > 0 such that $||f(x)|| \le k||x||$ for all $x \in X$.

Let A be a bounded set in X, then there is $k_1 > 0$ such that $||x|| \le k_1$ for all $x \in A$ $\Rightarrow k||x|| \le kk_1 = k_2$ for all $x \in A$

در اسات علیا ۔ ماجستیر تحلیل دالی Functional Analysis 3: 3: 1:

Since $||f(x)|| \le k||x||$ for all $x \in X$, then $||f(x)|| \le k||x||$ for all $x \in A$ \Rightarrow $||f(x)|| \le k$, for all $x \in A \Rightarrow f(A)$ is bounded in Y, then f is bounded.

Theorem(4.2.7)

Let X and Y be normed spaces and let $f: X \to Y$ be a linear function. Then f is bounded iff it is continuous.

Proof:

Let f be a bounded, then there is k > 0 such that $||f(x)|| \le k||x||$ for all $x \in X$.

Let
$$x_0 \in X$$
. For any $v > 0$, choose $u = \frac{v}{k}$

 $||x - x_0|| < u$, we have $||f(x) - f(x_0)|| = ||f(x - x_0)|| \le k||x - x_0|| \implies ||f(x) - f(x_0)|| < k.u = v$, hence f is continuous at x_0 . Since x_0 is arbitrary $\Rightarrow f$ is continuous

Conversely: Assume that f is unbounded

For each positive integer n, we can find a vector x_n such that $||f(x_n)|| > n||x_n||$

$$\Rightarrow \frac{1}{n \|x_n\|} \|f(x_n)\| > 1 \Rightarrow \|f\left(\frac{x_n}{n \|x_n\|}\right)\| > 1$$

Put
$$y_n = \frac{x_n}{n||x_n||}$$
 \Rightarrow $||y_n|| = \frac{1}{n}$ \Rightarrow $||y_n|| \to 0$ as $n \to \infty$ \Rightarrow $y_n \to 0$ as $n \to \infty$

Since f is continuous, then $f(y_n) \rightarrow f(0) =$

 \Rightarrow $||f(y_n)|| \to 0$. This contradiction, because $||f(y_n)|| > 1$, then f is bounded.

Theorem(4.2.8)

Let X and Y be normed spaces and let $f: X \to Y$ be a linear function. If X is finite dimensional, then f is bounded (continuous).

Proof:

Let dim X = n, and let $\{x_1, ..., x_n\}$ be a basis for X, then every $x \in X$ has a unique representation,

$$x = \sum_{i=1}^{n} \}_{i} x_{i}, \}_{i} \in F, \quad i = 1, 2, \dots, n$$

$$x = \sum_{i=1}^{n} \}_{i} x_{i}, \quad \}_{i} \in F, \qquad i = 1, 2, \dots, n$$

$$f(x) = \sum_{i=1}^{n} \}_{i} f(x_{i}) \quad \Rightarrow \quad \|f(x)\| = \left\| \sum_{i=1}^{n} \}_{i} f(x_{i}) \right\| \leq \sum_{i=1}^{n} |\}_{i} \|f(x_{i})\|$$
Put $k = \max\{\|f(x_{1})\|, \dots, \|f(x_{n})\|\}$, then $\|f(x)\| \leq k \sum_{i=1}^{n} |\}_{i} | \cdots$ (1)

Put
$$k = \max\{\|f(x_1)\|,...,\|f(x_n)\|\}$$
, then $\|f(x)\| \le k \sum_{i=1}^{n} |f(x)| \le k \sum_{i=1}^{n} |f(x)|$ (1)

Since the set $\{x_1,...,x_n\}$ is linear independent, by lemma of combination, there is c>0

such that
$$||x|| = \left\| \sum_{i=1}^{n} \}_{i} x_{i} \right\| \ge c \sum_{i=1}^{n} |\}_{i} \implies \sum_{i=1}^{n} |\}_{i} | \le \frac{1}{C} ||x|| \quad \cdots \quad (2)$$

From (1), (2), we have $||f(x)|| \le \frac{k}{C} ||x||$, so that f is bounded.

4.3 Spaces of Bounded Linear Functions

Let B(X,Y) denote the set of all bounded linear functions from a normed space X into a normed space Y.

Definition(4.3.1)

Let *X* and *Y* be normed spaces over *F* and let $f: X \to Y$ be a linear function. We define the norm of *f* by $||f|| = \sup \{||f(x)|| : x \in X, ||x|| \le 1\}$

Theorem(4.3.2)

Let X and Y be normed spaces over F and let $f: X \to Y$ be a linear function. If

$$a = \sup\{\|f(x)\| : x \in X, \|x\| = 1\}, b = \sup\{\frac{\|f(x)\|}{\|x\|} : x \in X, x \neq 0\},$$

$$c = \inf\{\} > 0: \|f(x)\| \le \} \|x\| \quad \forall x \in X\}. \text{ Then } \|f\| = a = b = c \text{ and } \|f(x)\| \le \|f\| \|x\| \text{ for all } x \in X\}.$$

Proof:

By definition of norm $||f|| = \sup \{||f(x)|| : x \in X, ||x|| \le 1\}$, by definition of c, we have $||f(x)|| \le c||x||$ for $x \in X$

if
$$||x|| \le 1 \implies c ||x|| \le c$$
 for $x \in X \implies ||f(x)|| \le c$ for $x \in X$ and $||x|| \le 1$
 $\implies \sup\{||f(x)|| : x \in X, ||x|| \le 1\} \le c \implies ||f|| \le c \cdots (1)$

Also by definition of b, we have $||f(x)|| \le b||x||$ for all $x \ne 0$

Since
$$c = \inf \{ \} > 0 : ||f(x)|| \le \} ||x|| \quad \forall x \in X \}$$
, we have $c \le b \quad \cdots (2)$

let $x \in X$, $x \neq 0$

$$\frac{\|f(x)\|}{\|x\|} = \frac{1}{\|x\|} \|f(x)\| = \left\| f\left(\frac{x}{\|x\|}\right) \right\|$$

Put
$$y = \frac{x}{\|x\|}$$
 \Rightarrow $\|y\| = 1$ \Rightarrow $y \in X$ \Rightarrow $b \le a$ \cdots (3)

It is clear to show that $a \le ||f||$, so that ||f|| = a = b = c.

Finally definition of b, shows that

$$b \ge \frac{\|f(x)\|}{\|x\|} \implies \|f(x)\| \le b \|x\| \quad \text{for all } x \in X$$

But
$$||f|| = b \implies ||f(x)|| \le ||f|| ||x||$$
 for all $x \in X$

دراسات عليا ـ ماجستير تحلیل دالی Functional Analysis

3: 1: 3:

Theorem(4.3.3)

Let X and Y be normed spaces over F. Then B(X,Y) is normed space with respect to the norm defined by $||f|| = \sup\{||f(x)|| : x \in X, ||x|| \le 1\}$ for all $f \in B(X,Y)$.

Proof:

- (1) Since $||f(x)|| \ge 0$ for all $x \in X$, then $||f|| \ge 0$ for all $x \in X$
- (2) $||f|| = 0 \Leftrightarrow \sup\{||f(x)|| : x \in X, ||x|| \le 1\} = 0$

$$\Leftrightarrow \sup\{\frac{\|f(x)\|}{\|x\|} : x \in X, \quad x \neq 0\} = 0 \quad \Leftrightarrow \frac{\|f(x)\|}{\|x\|} = 0 : x \in X, \quad x \neq 0 \quad \Leftrightarrow \|f(x)\| = 0 : x \in X$$

 $\Leftrightarrow f(x) = 0 : x \in X \Leftrightarrow f = 0$

(3) Let $f \in B(X,Y)$ and $f \in F$

$$|||f|| = \sup\{||(f)(x)|| : x \in X, \quad ||x|| \le 1\} = \sup\{|f|||f(x)|| : x \in X, \quad ||x|| \le 1\}$$
$$= ||f|||f(x)|| : x \in X, \quad ||x|| \le 1\} ||f||$$

(4) Let $f, g \in B(X, Y)$

$$||f + g|| = \sup\{||(f + g)(x)|| : x \in X, \quad ||x|| \le 1\}$$

$$= \sup\{||f(x) + g(x)|| : x \in X, \quad ||x|| \le 1\}$$

$$\le \sup\{||f(x)|| + ||g(x)|| : x \in X, \quad ||x|| \le 1\}$$

$$\le \sup\{||f(x)|| : x \in X, \quad ||x|| \le 1\} + \sup\{||g(x)|| : x \in X, \quad ||x|| \le 1\}$$

$$= ||f|| + ||g||$$

 $\Rightarrow B(X,Y)$ normed space

Theorem(4.3.4)

Let X and Y be normed spaces over F. If Y is Banach space, then B(X,Y) is also Banach space.

Proof:

B(X,Y) is a normed space (by above theorem)

Let $\{f_n\}$ be a Cauchy sequence in B(X,Y), then $||f_n - f_m|| \to 0$ as $n,m \to \infty$

For all $x \in X$, then $||f_n(x) - f_m(x)|| = ||(f_n - f_m)(x)|| \le ||f_n - f_m|| ||(x)||$

 \Rightarrow $||f_n(x) - f_m(x)|| \to 0$ as $n, m \to \infty \Rightarrow \{f_n(x)\}\$ is Cauchy sequence in Y for all $x \in X$ Since Y is complete, then $f(x) \in Y$ such that $f_n(x) \to f(x)$, then $f \in B(X,Y)$ why?, so that $\{f_n\}$ converge, then B(X,Y) is Banach

Corollary(4.3.5)

If X is a normed space over F, then X^* is a Banach space.

Example (4.3.6)

The dual space of \mathbb{R}^n is \mathbb{R}^n , i.e. $(\mathbb{R}^n)^* \approx \mathbb{R}^n$

دراسات علیا ۔ ماجستیر Functional Analysis تحلیل دالی

3: 1: 3:

Ans:

Since \mathbb{R}^n is finite dimensional, then $(\mathbb{R}^n)^* = (\mathbb{R}^n)'$

let $\{x_1, \dots, x_n\}$ be a basis for \mathbb{R}^n , then every $x \in \mathbb{R}^n$ has a unique representation,

$$x = \sum_{i=1}^{n} \}_{i} x_{i}, \}_{i} \in \mathbb{R}, \quad i = 1, 2, \dots, n$$

$$f(x) = f(\sum_{i=1}^{n} \}_{i} x_{i}) = \sum_{i=1}^{n} \}_{i} f(x_{i}) = \sum_{i=1}^{n} \}_{i} y_{i}, \qquad y_{i} = f(x_{i}), \qquad i = 1, \dots, n$$

By using the Cauchy- Schwarz inequality, we have

$$|f(x)| \le \sum_{i=1}^{n} |y_i| \le ((\sum_{i=1}^{n} |y_i|^2)^{\frac{1}{2}})((\sum_{i=1}^{n} |y_i|^2)^{\frac{1}{2}}) \implies |f(x)| \le ||x|| (\sum_{i=1}^{n} y_i^2)^{\frac{1}{2}}$$

$$||f|| = \sup\{|f(x)| : x \in \mathbb{R}^n, ||x|| = 1\} \implies ||f|| \le \left(\sum_{i=1}^n y_i^2\right)^{\frac{1}{2}}$$

This proves that the norm of f is the norm of \mathbb{R}^n , i.e. $||f|| = (\sum_{i=1}^n y_i^2)^{\frac{1}{2}}$

 \Rightarrow ||f|| = ||y||, where $Y = (y_1, ..., y_n) \in \mathbb{R}^n$. Hence the function $\mathbb{E}: (\mathbb{R}^n)' \to \mathbb{R}^n$ defined by $\mathbb{E}(f) = y = (y_1, ..., y_n)$ where $y_i = f(x_i)$ it is linear and bijective, it is an isomorphism. So that $(\mathbb{R}^n)^* \approx \mathbb{R}^n$.

Example (4.3.7)

The dual space of ℓ^1 is ℓ^{∞}

Ans:

Let $\{e_k\}$ be a natural basis for ℓ^1 where $e_k = (\mathsf{u}_{ki})$, i.e.

$$e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots), e_3 = (0, 0, 1, \dots), \dots$$

Then every $x \in \ell^1$ has a unique representation, $x = \sum_{k=1}^{\infty} \}_k e_k$ where $\}_k \in F$

We consider any $f \in (\ell^1)^* \implies f$ is bounded linear functional on ℓ^1

$$f(x) = f(\sum_{k=1}^{\infty} \}_k e_k) = \sum_{k=1}^{\infty} \}_k f(e_k) = \sum_{k=1}^{\infty} \}_k y_k, \quad , \quad y_k = f(e_k)$$

Where $y_k = f(e_k)$ has a unique representation by f. Also $||e_k|| = 1$ and

$$|y_k| = |f(e_k)| \le ||f|| ||e_k|| = ||f|| \quad \Rightarrow \quad \sup_{k} |y_k| \le ||f|| \quad \Rightarrow \quad y = (y_k) \in \ell^{\infty}$$

On the other hand, let $Z = (Z_k) \in \ell^{\infty}$, define $g : \ell^1 \to F$ by $g(x) = \sum_{k=1}^{\infty} \{x_k\}_k$ where

 $x = (x_k) \in \ell^1 \implies g$ is bounded linear

$$|g(x)| \le \sum_{k=1}^{\infty} |x_k z_k| \le \sup_{j} |z_k| \sum_{k=1}^{\infty} |x_k| = ||x|| \sup_{j} |z_k| \implies g \in (\ell^1)^*$$

دراسات علیا ـ ماج تحلیل دالی Functional Analysis 1: 3:

3:

We finally to show that $||f|| = \sup |y_j|$

$$|f(x)| = \left|\sum_{k=1}^{\infty} \}_k y_k\right| \le \sup_j |y_j| \sum_{k=1}^{\infty} |\}_k = ||x|| \sup_j |y_j| \implies ||f|| \le \sup_j |y_j|, \text{ so that } ||f|| = \sup_j |y_j|$$

Hence the function $\Psi = (\ell^1)^* \to \ell^\infty$ defined by $\Psi(f) = (y_j)$ where $y_j = f(e_j)$ it is linear and bijective, it is an isomorphism.

Example (4.3.8)

The dual space of, ℓ^p , $1 is <math>\ell^q$ where $\frac{1}{p} + \frac{1}{q} = 1$

Ans:

Let $\{e_k\}$ be a natural basis for ℓ^p where $e_k = (\mathsf{u}_{ki})$, i.e.

$$e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots), e_3 = (0, 0, 1, \dots), \dots$$

Then every $x \in \ell^p$ has a unique representation, $x = \sum_{k=1}^{\infty} \{x_k \in \ell^p\}$ where $\{x_k \in \ell^p\}$

We consider any $f \in (\ell^p)^* \implies f$ is bounded linear functional on ℓ^p

$$f(x) = f(\sum_{k=1}^{\infty} \}_k e_k) = \sum_{k=1}^{\infty} \}_k f(e_k) = \sum_{k=1}^{\infty} \}_k y_k, \quad , \quad y_k = f(e_k)$$

Let $q \in \mathbb{R}$, where $\frac{1}{p} + \frac{1}{q} = 1$

Put
$$x_n = (\}_{k_n})$$
, where $\}_{kn} = \begin{cases} \frac{|y_k|^q}{y_k}, & k \le n, y_n \ne 0 \\ 0, & o.w \end{cases}$

$$f(x_n) = \sum_{k=0}^{\infty} \}_k y_k = \sum_{k=0}^{n} |y_k|^q$$

$$f(x_n) = \sum_{k=1}^{\infty} \}_n y_k = \sum_{k=1}^{n} |y_k|^q$$

$$f(x_n) \le ||f|| ||x_n|| = ||f|| \left(\sum |y_k|^p\right)^{\frac{1}{p}} = ||f|| \left(\sum |y_k|^{(q-1)p}\right)^{\frac{1}{p}} = ||f|| \left(\sum |y_k|^q\right)^{\frac{1}{p}}$$

$$f(x_n) = \sum |y_k|^q \le ||f|| (\sum |y_k|^q)^{\frac{1}{p}} \implies (\sum_{k=1}^n |y_k|^q)^{\frac{1-\frac{1}{p}}} = (\sum_{k=1}^n |y_k|^q)^{\frac{1}{q}} \le ||f||$$

Since *n* is arbitrary, letting $n \to \infty$, we obtain $(\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}} \le ||f|| \implies (y_k) \in \ell^q$

On the other hand, let $Z = (Z_k) \in \ell^{\infty}$, define $g : \ell^1 \to F$ by $g(x) = \sum_{k=1}^{\infty} \{x_k \}_k z_k$ where $x = (\{x_k\}_k) \in \ell^p$

 \Rightarrow g is bounded linear

$$|f(x)| = |\sum_{k=1}^{\infty} |y_{k}| \le \left(\sum_{k=1}^{\infty} |y_{k}|^{p}\right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} |y_{k}|^{q}\right)^{\frac{1}{q}} = ||x|| \left(\sum_{k=1}^{\infty} |y_{k}|^{q}\right)^{\frac{1}{q}}$$

دراسات عليا - ماجستير تحليل دالي Functional Analysis : 1 : 3 :

3: 1: 3

$$||f|| \le (\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}}$$
 so that $||f|| \le (\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}}$

Hence the function $\Psi: (\ell^p)^* \to \ell^q$ defined by $\Psi(f) = (y_k)$ where $y_k = f(e_k)$ it is linear and bijective, it is an isomorphism.

Definition(4.3.9)

Let X be a normed Space over a filed F. We define X^{**} as:

$$X^{**} = (X^{*})^{*} = \{G : X^{*} \rightarrow F, G \text{ is bounded linear functional } \}$$

 X^{**} is called the second dual space.

Theorem(4.3.10)

Let X be a normed Space over a filed F.

- (1) If $x \in X$ and $T_x : X^* \to F$ defined as $T_x(f) = f(x)$ for all $f \in X^*$, then $T_x \in X^{**}$ and $||T_x|| = ||x||$
- (2) If $\mathbb{E}: X \to X''$ defined as $\mathbb{E}(x) = T_x$ for all $x \in X$, then \mathbb{E} is one-one linear function.

Proof:

(1) T_x is linear (see theorem8.1)

$$||T_x|| = \sup \left\{ \frac{|T_x(f)|}{||f||} : f \in X^*, \quad f \neq 0 \right\} = \sup \left\{ \frac{|f(x)|}{||f||} : f \in X^*, \quad f \neq 0 \right\} = ||x||$$

(2) (see theorem 1.3.4)

Definition(4.3.11)

Let X be a normed Space over a filed F. We say that X is Reflexive space if \mathbb{C} is onto, where \mathbb{C} is canonical function defined in theorem (4.3.10).

It is clear to show that

(1) If X is reflexive space, then $X \simeq X^{**}$ (2) Every finite dimensional normed space is reflexive.

Theorem(4.3.12)

Let X be a normed space. If X is reflexive, then X is complete, and hence it is Banach space. **Proof**:

Since X^* is normed space $\Rightarrow X^{**}$ is complete space

Since X is reflexive \Rightarrow X \approx X is complete space.

4.4 Separable Spaces

Recall that a subset A of a topological space X is said to be dense in X if $\overline{A} = X$. and a topological space X is said separable if it has a countable subset which is dense in X .

Examples(**4.4.1**)

- (1) The space $\mathbb R$ is separable, because the set $\mathbb Q$ of rational numbers is countable and is dense in $\mathbb R$.
- (2) The space \mathbb{C} is separable, because a countable subset of \mathbb{C} is the set of all complex numbers whose real and imaginary parts both rational.
- (3) A discrete metric space is separable iff X is separable.

دراسات عليا ـ ماجستير

تحلیل دالی Functional Analysis

3: 1: 3:

Examples(4.4.2)

The space ℓ^{∞} is not separable

Ans:

Let A be a countable set in $\ell^{\infty} \Rightarrow A = \{x_1, x_2, \dots\}$ where $x_n = (x_{1n}, x_{2n}, \dots) \in \ell^{\infty}$

Let
$$y = (y_k) \in \ell^{\infty}$$
 where $y_k = \begin{cases} x_{kk} + 1 &, & |x_{kk}| \le 1 \\ 0 &, & |x_{kk}| > 1 \end{cases}$

The component k of $y - x_k$ is $y_k - x_{kk}$, $|y_k - x_{kk}| \ge 1$

 $\Rightarrow \|y - x_k\| \ge 1 \Rightarrow y \notin \overline{A} \Rightarrow \overline{A} \ne \ell^{\infty}$ for all countable subset A of ℓ^{∞} , $\Rightarrow \ell^{\infty}$ is not separable.

Remark

An element $x = (x_n) \in \ell^p$ is called rational if

- (1) $x_n \in \mathbb{Q}$ for all n, if $F = \mathbb{R}$
- (2) both the real and imaginary parts are rationales, if $F = \mathbb{C}$

Example(4.4.3)

The space ℓ^p with $1 \le p < \infty$ is separable

Ans:

Let $A = \{x = (x_1, x_2, \dots, x_n, 0, 0, \dots) \in \ell^p : x \text{ is rational } \} \Rightarrow A \text{ is countable }.$ we shall to prove $\ell^p \subset \overline{A}$ (since $\ell^p \subset \overline{A}$)

Let $y = (y_i) \in \ell^p \Rightarrow \sum_{i=1}^{\infty} |y_i|^p < \infty$

Let
$$y = (y_i) \in \ell^p \implies \sum_{i=1}^{\infty} |y_i|^p < \infty$$

Then for every v > 0, there is an $m \in \mathbb{Z}^+$ (depending on v) such that $\sum_{i=m+1} |y_i|^p < \frac{v^+}{2}$

Hence we can find a $x = (x_1, x_2, \dots, x_n, 0, 0, \dots) \in A$ satisfying $|x_i - y_i|^p < \frac{V^p}{2m}$, for all $i = 1, 2, \dots, m$

$$||x - y||^p = \sum_{i=1}^{\infty} |x_i - y_i|^p = \sum_{i=1}^{m} |x_i - y_i|^p + \sum_{i=m+1}^{\infty} |x_i|^p < m \cdot \frac{\mathsf{V}^p}{2m} + \frac{\mathsf{V}^p}{2} = \mathsf{V}^p$$

$$\Rightarrow ||x - y|| < \mathsf{V} \Rightarrow y \in \overline{A} \Rightarrow \overline{A} = \ell^p \Rightarrow \ell^p \text{ is separable }.$$

Theorem(4.4.4)

A normed space X over F is separable if X^* is separable

Proof:

Let $M = \{ f \in X^* : ||f|| = 1 \} \Rightarrow M$ is subspace of X^*

Since X^* is separable, then M is separable, M contains a countable dense subset,

say
$$A = \{f_1, f_2, ..., f_n, ...\}$$
, $\overline{A} = M$

since $A \subseteq M \implies f_n \in M$ for all $n \implies ||f_n|| = 1$ for all n.

دراسات عليا ـ ماجستير **Functional Analysis** تحليل دالي 3: 3:

Since $||f_n|| = \sup\{|f_n(x)| : ||x|| = 1\}$ for all *n* there must exist some vector x_n with $||x_n|| = 1$ such that $|f_n(x)| > \frac{1}{2}$ (If such x_n did not exist, this would contradict the fact that ||f|| = 1)

Let *N* be the closed subspace in *X* generated by the sequence $\{x_n\}$, i.e. $N = [\{x_n\}]$. We must prove N = X. Suppose that $N \neq X$ \Rightarrow there exists $x_0 \in X$ such that $x_0 \notin X$, by theorem(6.13), there exists $f \in X$ such that $f(x_0) \neq 0$, ||f|| = 1 and f(x) = 0 for all $x \in X$.

Since $||f|| = 1 \implies f \in M$

Since $x_n \in N \implies f(x_n) = 0$ for all n

$$\frac{1}{2} < |f_n(x_n)| = |f_n(x_n) - f(x_n)| = |(f_n - f)(x_n)| = |(f_n - f)| ||x_n|| = ||f_n - f|| \quad \text{(because } ||x_n|| = 1\text{)}$$

$$\Rightarrow \|f_n - f\| > \frac{1}{2} \text{ for all } n \Rightarrow s_{\frac{1}{2}}(f) \cap A = \text{w where } s_{\frac{1}{2}}(f) = \{g : \|g - f\| < \frac{1}{2}\} \Rightarrow f \notin \overline{A}$$

This contradiction (since $\overline{A} = M$) and so we must have N = X. It then follows that the set of all linear combinations of the x_n 's whose coefficients are rational. $\Rightarrow X$ is separable.

Remark

The converse of above theorem is not true, i.e. if the normed space X is separable, then X^* is not necessary separable, for example, if $X = \ell^1 \implies X^* = \ell^\infty$ and ℓ^1 is separable (see example 4.4.2), but ℓ^∞ is not separable (see example 4.4.3).

Theorem(4.4.5)

Let X be a normed space. If X is separable space and X^* is not separable, then X is not reflexive . **Proof :**

Suppose X is reflexive $\Rightarrow X \simeq X^{**}$

Since X is separable space $\Rightarrow X^*$ is separable space $\Rightarrow X$ is separable space This contradiction.

Remark

If *X* is Banach then it is not necessary reflexive .for example ℓ^1 is Banach space, but not reflexive . because ℓ^1 is separable and $(\ell^1)^* = \ell^{\infty}$ is not separable.

دراسات عليا ـ ماجستير **Functional Analysis** تحليل دالي 3: 3:

Exercises (4)

- 4.1Let X, Y be linear space on a field F and let $f: X \to Y$ be bijective linear function. Define $\|.\|_1: X \to \mathbb{R}$ by $\|x_1\| = \|f(x)\|_2$ for all $x \in X$. Show that $\|.\|_1$ is a norm on X if $\|.\|_2$ is a norm on Y
- 4.2 Let X be a normed space and f be nonzero linear functional on X. Show that either $\ker(f)$ is closed or $\ker(f)$ is dense in X.
- 4.3 Show that: If X is a locally convex space, then X^* separate points on X.
- 4.4 let X and Y be topological linear spaces and $f: X \to Y$ be a bijection linear function . prove or disprove f is continuous iff f^{-1} is also continuous
- Jakan 4.5 Suppose X and Y are topological vector spaces, $\dim Y < \infty$, $f: X \to Y$ is linear and f(X) = Y.