5. Separation Theorems

5.1 The Hahn -Banach Theorem

Let X be a linear space over F. If $F = \mathbb{C}$, then by complex - liner functional on X. According to our first lemma, real-linear functionals can be characterized as the real parts of associated complex-linear functionals.

Lemma (6.1.1)

Let *X* be a complex linear space.

- (1) If f is a complex-linear functional on X and u is the real part of f, then u is the real linear functional on X and f(x) = u(x) iu(ix) ...(1) for all $x \in X$
- (2) If $u: X \to \mathbb{R}$ is real—linear on X and f is defined by the equation (1), then, f is a complex linear functional on X
- (3) If ... is a seminorm on X, f, u are related as in equation (1), then $|u(x)| \le ...(x)$ for all $x \in X$ iff $|f(x)| \le ...(x)$ for $x \in X$
- (4) If X is normed space, f, u are related as in equation (1) and either f or u is bounded, then both functionals are bounded and ||f|| = ||u||
- (5) If X is a complex topological linear space. A complex–linear functional on X is in X^* iff its real part is continuous, and that every real linear $u: X \to \mathbb{R}$ is the real part of a unique $f \in X^*$

Proof:

(1) Let v = Im(f)

Since
$$u = \text{Re}(f) \implies f(x) = u(x) + iv(x)$$
 for all $x \in X$

$$if(x) = iu(x) + i^{2}v(x) = -v(x) + iu(x) \text{ and } f(ix) = u(ix) + iv(ix) \implies if(x) = u(ix) + iv(ix)$$

$$\Rightarrow -v(x) + iu(x) = u(ix) + iv(ix) \Rightarrow u(ix) = -v(x), v(ix) = u(x)$$

$$\Rightarrow f(x) = u(x) + iv(x) = u(x) - iu(ix)$$

Let $x, y \in X$ and $r, s \in \mathbb{R}$

Since *f* is linear functionals

$$f(rx+sy)=rf(x)+sf(y)=r(u(x)-iu(ix))+s(u(y)-iu(iy))=ru(x)+su(y)-i(ru(ix)+su(iy))$$
Also $f(rx+sy)=u(rx+sy)-iu(i(rx+sy))) \Rightarrow u(rx+sy)=ru(x)+su(y) \Rightarrow u$ is

linear

(2) Let $x, y \in X$ and $r, s \in \mathbb{C}$

$$\Rightarrow f(rx + sy) = u(rx + sy) - iu(i(rx + sy)) = ru(x) + su(y) - i(iru(x) + isu(y))$$

$$= \Gamma(u(x) - iu(ix)) + S(u(y) - iu(iy)) = \Gamma f(x) + Sf(y)$$

 \Rightarrow f is a complex-linear functional on X

(3) Suppose that $|f(x)| \le ...(x)$ for $x \in X$

Since
$$u(x) = \text{Re}(f(x)) \implies u(x) \le |f(x)| \text{ for } x \in X \implies u(x) \le ...(x)$$

Since

$$-u(x) = u(-x) = \operatorname{Re}(f(-x)) \le |f(-x)| = |f(x)| \implies -u(x) \le ...(x) \implies u(x) \ge -...(x)$$

$$\Rightarrow -...(x) \le u(x) \le ...(x) \implies |u(x) \le ...(x)|$$

Conversely, If $|u(x)| \le ...(x)$ for all $x \in X$

Let
$$f(x) = re^{ix}$$
, $r \ge 0 \implies |f(x)| = |re^{ix}| = |r||e^{ix}| = r \times 1 = r$

Since
$$f(x) = re^{ix} \implies r = e^{-ix} f(x) = f(e^{-ix} x) \implies |f(x)| = f(e^{-ix} x)$$

Since
$$f(x) = u(x) - iu(ix) \implies r = f(e^{-ix}x) = u(e^{-ix}x) - iu(ie^{-ix}x)$$

Since r is real
$$\Rightarrow u(ie^{-ix}x) = 0 \Rightarrow r = u(e^{-ix}x) \Rightarrow |f(x)| = r = u(e^{-ix}x)$$

Since
$$u(x) \le ...(x) \implies u(e^{-i_x}x) \le ...(e^{-i_x}x)$$

$$\Rightarrow$$
 $|f(x)| \le p(e^{-ix}x) = ...(x)$ for $x \in X$

(4) If f is bounded, then as $|u(x)| \le |f(x)|$ for all $x \in X$, u is bounded and $||u|| \le ||f||$.

For each

 $x \in X$ there exists $\} \in \mathbb{C}$ such that $\|\}\| = 1$ and $f(\}x) = \}f(x) = |f(x)|$, then $f(\}x) \in \mathbb{R}$, so

$$|f(x)| = f(x) = \text{Re}(f(x)) = u(x) \le ||u|| ||x|| = ||u|| ||x||.$$
 Hence $||f|| \le ||u||$, and therefore $||f|| = ||u||$

Finally, if u is bounded, then for all $x \in X$ with $||x|| \le 1$ we have

$$|f(x)| \le |u(x)| + |u(ix)| \le |u| (||x|| + ||ix||) \le 2||u||$$
. So f is bounded. By the forgoing, $||f|| = ||u||$.

Theorem (5.1.2)

Let M be a proper subspace of a linear space X over F, and let $x_0 \in X$, $x_0 \notin M$.

Define
$$M_0 = [M \cup \{x_0\}] = \{m+\} x_0 : m \in M, \} \in F\}$$
, then

- $(1)M_0$ is a subspace of X
- (2) If $g \in M'$, then there exists $f_0 \in (M_0)'$ such that $f_0(x) = g(x)$ for all $x \in M$.

Moreover if *X* is a normed space then $||f_0|| = ||g||$

Proof:

Case (1): *X* is real linear space, i.e. $F = \mathbb{R}$

- (1) It is obvious
- (2) Define $f_0: M_0 \to R$, by $f_0(x) = f_0(m + x_0) = g(m) + r_0$, $r_0 \in \mathbb{R}$. We must to prove
- (i) f_0 is linear:

Let
$$x, y \in M_0$$
 and $r, s \in R$, then $x = m_1 + \frac{1}{2}x_0$, $y = m_2 + \frac{1}{2}x_0$
 $rx + sy = r(m_1 + \frac{1}{2}x_0) + s(m_2 + \frac{1}{2}x_0) = (rm_1 + sm_2) + (r\frac{1}{2} + s\frac{1}{2})x_0$
 $f_0(rx + sy) = g(rm_1 + sm_2) + (r\frac{1}{2} + s\frac{1}{2})r_0 = rg(m_1) + sg(m_2) + r(\frac{1}{2}r_0) + s(\frac{1}{2}r_0)$
 $= r(g(m_1) + \frac{1}{2}r_0) + s(g(m_2) + \frac{1}{2}r_0) = rf_0(x) + sf_0(y)$

 \Rightarrow f_0 is linear \Rightarrow $f_0 \in (M_0)'$

(ii) $f_0(x) = g(x)$ for all $x \in M$

Let
$$x \in M \implies x = x + (0)x_0 \implies f_0(x) = f_0(x + (0)x_0) = g(x) + (0)r_0 = g(x)$$

Now if *X* is a normed space, we now prove that $||f_0|| = ||g||$

Now
$$||f_0|| = \sup\{|f_0(x)| : x \in M_0, ||x|| \le 1\}$$

since
$$M \subseteq M_0 \implies \sup\{|f_0(x)| : x \in M_0, ||x|| \le 1\} \ge \sup\{|f_0(x)| : x \in M, ||x|| \le 1\}$$

$$\Rightarrow \|f_0\| \ge \sup\{|f_0(x)| : x \in M, \|x\| \le 1\}$$

Since $f_0(x) = g(x)$ for all $x \in M$

$$\Rightarrow \sup\{|f_0(x)|: x \in M, ||x|| \le 1\} = \sup\{|g(x)|: x \in M_0, ||x|| \le 1\} = ||g||$$

$$\Rightarrow \|f_0\| \ge \|g\|$$

Let $x_1, x_2 \in M$, then

$$g(x_2) - g(x_1) = g(x_2 - x_1) \le |g(x_2 - x_1)| \le |g| ||x_2 - x_1|| = ||g|| ||(x_2 + x_0) - (x_1 + x_0)||$$

$$\Rightarrow g(x_2) - g(x_1) \le ||g|| ||x_2 + x_0|| + ||g|| ||-(x_1 + x_0)|| = ||g|| ||x_2 + x_0|| + ||g|| ||x_1 + x_0||$$

Thus $-g(x_1) - \|g\| \|x_1 + x_0\| \le -g(x_2) + \|g\| \|x_2 + x_0\|$. Since this inequality holds for

arbitrary
$$x_1, x_2 \in M$$
, we see that $\sup_{y \in M} \{-g(y) - \|g\| \|y + x_0\| \} \le \inf_{y \in M} \{-g(y) + \|g\| \|y + x_0\| \}$

Choose r_0 to be real number such that

$$\sup_{y \in M} \{-g(y) - \|g\| \|y + x_0\| \} \le r_0 \le \inf_{y \in M} \{-g(y) + \|g\| \|y + x_0\| \}$$

It follows that $-g(y) - \|g\| \|y + x_0\| \le r_0 \le -g(y) + \|g\| \|y + x_0\|$ for all $y \in M$

Putting
$$y = \frac{x}{r}$$
, we have $-g(\frac{x}{r}) - \|g\| \|\frac{x}{r} + x_0\| \le r_0 \le -g(\frac{x}{r}) + \|g\| \|\frac{x}{r} + x_0\|$ (1)

If r > 0, then right hand inequality in (1) gives $r_0 \le -g(\frac{x}{r}) + \|g\| \frac{x}{r} + x_0\|$

$$\Rightarrow r_0 \le -\frac{1}{\Gamma}g(x) + \frac{1}{\Gamma}\|g\|\|x + \Gamma x_0\| \Rightarrow g(x) + \Gamma r_0 \le \|g\|\|x + \Gamma x_0\| \Rightarrow f_0(x + \Gamma x_0) \le \|g\|\|x + \Gamma x_0\|$$

$$\Rightarrow f_0(z) \le ||g|| ||z||$$
, where $z = x + rx_0$

If r < 0, then left hand inequality in (1) gives $-g(\frac{x}{r}) - \|g\| \|\frac{x}{r} + x_0\| \le r_0$

$$\Rightarrow -\frac{1}{\Gamma}g(x) - \left|\frac{1}{\Gamma}\right| \|g\| \|x + \Gamma x_0\| \ge r_0 \quad \Rightarrow \quad -\frac{1}{\Gamma}g(x) + \frac{1}{\Gamma} \|g\| \|x + \Gamma x_0\| \ge r_0 \quad \Rightarrow \quad \Gamma r_0 \le -g(x) + \|g\| \|x + \Gamma x_0\| \ge r_0$$

$$\Rightarrow g(x) + \Gamma r_0 \le ||g|| ||x + \Gamma x_0|| \Rightarrow f_0(z) \le ||g|| ||z||, \text{ where } z = x + \Gamma x_0$$

Thus we have show that when $r \neq 0$, then $f_0(z) \leq ||g|| ||z||$ for all $z \in M_0$

Since g is bounded, then f_0 is bounded linear functional

Since
$$||f_0|| = \sup\{|f_0(x)| : x \in M_0, ||x|| \le 1\}$$
, then $||f_0|| \le ||g||$. It follows that $||f_0|| = ||g||$

Case (2): X is complex linear space, i.e. $F = \mathbb{C}$

Let u be real part of g, by lemma(5.1.1), we have $u \in M'$ and g(x) = u(x) - iu(ix) for all $x \in M$. Moreover ||g|| = ||u||. By case(1), there exists $u_0 \in X'$ such that $u_0(x) = u(x)$

for all $x \in M$ and $||u_0|| = ||u||$, so $||g|| = ||u_0||$, put $f_0(x) = u_0(x) - iu_0(ix)$ for $x \in X$, by

lemma (6.2), we have $f_0 \in X'$ and $||f_0|| = ||u_0||$. Since $||g|| = ||u_0|| \Rightarrow ||f_0|| = ||g||$

Theorem (5.1.3)

Let M be a subspace of linear space X and let $g \in M'$, then there exists $f \in X'$ such that f(x) = g(x) for all $x \in M$. Moreover if X is a normed space then ||f|| = ||g||

Proof:

Let \mathcal{G} be the collection of all ordered pairs (f_x, M_x) such that

(i) M_x is a subspace of X and $M \subset M_x$ (ii) $f_x \in (M_x)'$ such that $f_x(x) = g(x)$ for $x \in M$ $\Rightarrow G$ is non-empty and partially ordered by

$$(f_{x}, M_{x}) \le (f_{r}, M_{r}) \Leftrightarrow M_{x} \subset M_{r} \& f_{x}(x) = f_{r}(x) \quad \forall x \in M_{x}$$

Let $\Phi = \{(f_x, M_x)\}$ be a totally ordered set in G. then it is easy to see that Φ has an upper bound $(\Psi, \cup M_r)$ where $\Psi(x) = f_r(x)$ for all $x \in M_r$. By using Zorn's Lemma, there exists a maximal element (f, H) in G. To complete the proof, we must show that H = X.

Suppose that $H \neq X$, then there exists $a \in X$ such that $a \notin H$

Put $H_0 = [H \cup \{a\}]$ by using first part in this proof, we have $h \in H'_0$ such that h(x) = f(x) for all $x \in H_0$. But contradicts the maximally of (f, H) (f, H).

Consequently, we must have H = X and the proof is complete.

Theorem(**5.1.4**)

Let M be a proper subspace of a real linear space X, and let $x_0 \notin M$, then there exists $f \in X'$ such that $f(x_0) = 1$ and f(x) = 0 for all $x \in M$.

Proof:

Let $M_0 = \lceil M \cup \{x_0\} \rceil = \{m+\} x_0 : m \in M, \} \in \mathbb{R}$, then M_0 is a subspace of X.

Define $g: M_0 \to \mathbb{R}$, by $g(x) = g(m+x_0) = 1$ for all $x \in M_0$. We must to prove

(1)
$$g$$
 is linear: let $x, y \in M_0$ and $r, s \in \mathbb{R}$, $x = m_1 + \frac{1}{2}x_0$ and $y = m_2 + \frac{1}{2}x_0$
 $rx + sy = r(m_1 + \frac{1}{2}x_0) + s(m_2 + \frac{1}{2}x_0) = (rm_1 + sm_2) + (r\frac{1}{2} + s\frac{1}{2})x_0$

$$g(rx+sy)=(r)_1+s)_2=rg(x)+sg(y) \Rightarrow g \in M'_0$$

(2) $g(x_0) = 1$ and g(x) = 0 for all $x \in M$

since
$$x_0 = 0 + (1)x_0 \implies g(x_0) = 1$$

Let
$$x \in M \implies x = x + (0)x_0 \implies g(x) = 0$$

If $M_0 = X$, then we finish; either if $M_0 \neq X$, then M_0 is a proper subspace of X and $g \in M_0'$, by using theorem (5.1.3), there exists $f \in X'$ such that f(x) = g(x) for all $x \in M$. Hence $f(x_0) = 1$ and f(x) = 0 for all $x \in M$.

Corollary (5.1.5)

Let X be a real linear space. If $x_0 \in X$ such that $f(x_0) = 0$ for all $f \in X'$, then $x_0 = 0$ **Proof:**

Let
$$x_0 \neq 0$$

Put $M = \{0\} \implies M$ is a subspace of X and $x_0 \notin M$. By using theorem (5.1.4), there exists $f \in X'$ such that $f(x_0) = 1$. This contradiction $\implies x_0 = 0$

Definition(5.1.6)

Let X be a linear space over F. The function $p: X \to \mathbb{R}$ is called sub-linear functional on X if

- (1) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$ (Sub-additivity)
- (2) p(x) = p(x) for all $x \in X$ and for all $x \in X$ and for all $x \in X$ and for all $x \in X$

If in addition, P satisfies the condition

(3) $P(x) \ge 0$ for all $x \in X$, then P is called a convex functional

A convex functional *P* is said to be symmetric if we have p(x) = |x| = |x| = |x| = 1 for all $x \in X$ and $x \in$

Example (5.1.7)

Let
$$X = \mathbb{R}^n$$
. Define $P: X \to \mathbb{R}$ by $P(x) = \sum_{i=1}^n |x_i|$ for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Then P

is a sub-linear functional on X and Convex Functional.

Theorem(**5.1.8**) Generalized Hahn-Banach Theorem Suppose

- (1) M is a subspace of a real linear space X (2) P is a sublinear functional on X
- (3) $g \in M'$ such that $g(x) \le p(x)$ for all $x \in M$. Then there exists $f \in X'$ such that

(i)
$$f(x) = g(x)$$
 for all $x \in M$ (ii) $f(x) \le p(x)$ for all $x \in X$

Proof:

Let $x_0 \in M$ and $M_0 = \lceil M \cup \{x_0\} \rceil = \{m+\} x_0 : m \in M, \} \in \mathbb{R}$, then M_0 is a subspace of X.

Define
$$f_0: M_0 \to \mathbb{R}$$
, by $f_0(x) = f_0(m+ x_0) = g(m) + r_0$, $r_0 \in \mathbb{R}$

It is easy to see that f_0 is linear and $f_0(x) = g(x)$ for all $x \in M$

Now to prove : $f_0(x) \le p(x)$ for all $x \in M_0$

Let
$$m_1, m_2 \in M$$

$$g(m_2) - g(m_1) = g(m_2 - m_1) \le p(m_2 - m_1) = p((m_2 + x_0) + (-m_1 - x_0)) \le p(m_2 + x_0) + p(-m_1 - x_0)$$

$$- g(m_1) - p(-m_1 - x_0) \le -g(m_2) + p(m_2 + x_0) \text{ for all } m_1, m_2 \in M$$

so that
$$\sup_{y \in M} \{-g(y) - p(-y - x_0)\} \le \inf_{y \in M} \{-g(y) + p(y + x_0)\}$$

Choose
$$r_0$$
 such that $\sup_{y \in M} \{-g(y) - p(-y - x_0)\} \le r_0 \le \inf_{y \in M} \{-g(y) + p(y + x_0)\}$

It follows that
$$-g(y)-p(-y-x_0) \le r_0 \le -g(y)+p(y+x_0)$$
 (*) for all $y \in M$

Let
$$x \in M_0 \implies x = m + \} x_0$$

If
$$\} = 0 \implies x = m$$
, then $f_0(x) = g(m) \le p(m) = p(x)$

If
$$y \neq 0$$
, put $y = \frac{m}{y}$ \Rightarrow $y \in M$ in (*) to obtain

$$-g\left(\frac{m}{s}\right)-p\left(-\frac{m}{s}-x_0\right) \le r_0 \le -g\left(\frac{m}{s}\right)+p\left(\frac{m}{s}+x_0\right) \qquad (**) \quad \text{for all } m \in M$$

if
$$\} > 0$$
, then the right hand inequality in (**) gives $r_0 \le -\frac{1}{\beta} g(m) + \frac{1}{\beta} p(m+\beta x_0) \Rightarrow$
 $\} r_0 \le -g(m) + p(m+\beta x_0) \Rightarrow g(m) + \} r_0 \le p(m+\beta x_0) \Rightarrow f_0(x) \le p(x)$

and if $\} > 0$, then the right hand inequality in (**) gives $-\frac{1}{\}}g(m) + \frac{1}{\}}p(m + \}x_0) \le r_0$ since $\} < 0$, then $-g(m) + p(m + \}x_0) \ge \}$ $r_0 \Rightarrow g(m) + \}r_0 \le p(m + \}x_0)$ thus when $\} \ne 0$, obtain $f_0(x) \le p(x)$ for all $x \in M$. Thus $f_0 \in M'_0$ and $f_0(x) = g(x)$ for all $x \in M$. Hence $f_0(x) \le p(x)$ for all $x \in M_0$. If $M_0 = X$ complete proof, either if $M_0 \ne X$ Let G be the collection of all ordered pairs (f_x, M_x) such that

(i) M_x is a subspace of X and $M \subset M_x$ (ii) $f_x \in (M_x)'$ such that $f_x(x) = g(x)$ for $x \in M$ (iii) $f_x(x) \le p(x)$ for all $x \in M_x$.

 \Rightarrow G is non-empty and partially ordered by $(f_x, M_x) \le (f_r, M_r) \Leftrightarrow M_x \subset M_r \& f_x(x) = f_r(x) \quad \forall x \in M_x$

Let $\Phi = \{(f_x, M_x)\}$ be a totally ordered set in G. then it is easy to see that Φ has an upper bound $(\Psi, \cup M_r)$ where $\Psi(x) = f_r(x)$ for all $x \in M_r$. By using Zorn's Lemma, there exists a maximal element (f, H) in G. To complete the proof, we must show that H = X.

Suppose that $H \neq X$, then there exists $a \in X$ such that $a \notin H$

Put $H_0 = [H \cup \{a\}]$ by using first part in this proof, we have $h \in H'_0$ such that h(x) = f(x) for all $x \in H_0$. But contradicts the maximally of (f, H) (f, H).

Consequently, we must have H = X and the proof is complete.

Remark

Let M be a subspace of a complex linear space X, such that

(1) The function $p: X \to \mathbb{R}$ satisfies the conditions

(i) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$ (ii) p(x) = |y| p(x) for all $x \in X$ and for all $y \in \mathbb{C}$ (2) $y \in M'$ such that $|y| \le p(x)$ for all $x \in M$,

Then there exists $f \in X'$ such that

(i) f(x) = g(x) for all $x \in M$ (ii) $|f(x)| \le p(x)$ for all $x \in X$

5.2 Minkowski' Functional

Definition(**5.2.1**)

Let *A* be an absorbing subset of a linear space *X* over *F*. The functional $\sim_A : X \to \mathbb{R}$, $\sim_A (x) = \inf\{\} > 0 : x \in \}A\}$ for all $x \in X$ is called the Minkowski's functional of *A*.

It clear to show that

- (1) $\sim_A(x) < \infty$ for all $x \in X$, because that A is an absorbing
- (2) If $x \in A$, then $A(x) \le A$. In special case if $y \in A(x)$, then $A(y) \le A(x)$
- (3) If $x \notin A$ for some $\} > 0$, then $\sim_A(x) \ge \}$
- (4) If A is open in topological linear space X, then $A = \{x \in X : \neg_A(x) < \}$

Theorem(**5.2.2**)

Suppose *P* is a seminorm on a linear space *X* over *F* . If $A = \{x \in X : P(x) < 1\}$, then $P = {}^{\sim}_A$

Since *A* is convex, absorbing, balanced set $x \in X$ Since *A* is absorbing, there exists $\} > 0$ such that $x \in \}A \Rightarrow {}^{-}_{A}(x) \le \}$ and $\}^{-1}x \in A \Rightarrow p(\}^{-1}x) < 1 \Rightarrow p(x) < \}$, so that ${}^{-}_{A} \le P$ since *P* semi-norm, then $P(x) \ge 0$, there exist Γ such that $0 < \Gamma \le P(x)$ $\Rightarrow P(\Gamma^{-1}x) \ge 1 \Rightarrow \Gamma^{-1}x \notin A$, so that $P(x) \le {}^{-}_{A}(x) \Rightarrow P \le {}^{-}_{A}$. Hence $P = {}^{-}_{A}(x) = P(x)$

Theorem(5.2.3)

Suppose A is a convex absorbing set in a linear space X over F. Define $H_A(x) = \{\} > 0 : x \in \}A\}$ for all $x \in X$. If $r \in H_A(x)$, then $s \in H_A(x)$ for all s > r.

Proof:

Since $r \in H_A(x) \implies x \in rA \implies r^{-1}x \in A$ Since A is a convex and $0, r^{-1}x \in A$, then $s^{-1}x = s^{-1}(s-r)(0) + s^{-1}r(r^{-1}x) \in A$ $\implies x \in SA \implies S \in H_A(x)$

Theorem(**5.2.4**)

Suppose A is a convex absorbing set in a linear space X over F. Then

- (1) \sim_A is a sublinear functional.
- (2) If $B = \{x \in X : {}^{\sim}_{A}(x) < 1\}$ and $C = \{x \in X : {}^{\sim}_{A}(x) \le 1\}$, then $B \subset A \subset C$ and ${}^{\sim}_{B} = {}^{\sim}_{A} = {}^{\sim}_{C}$
- (3) If A is balanced, then \sim_A is a seminorm.

Proof:

(1) Let $x, y \in X$. For all v > 0, there exists $\}_1 \in H_A(x)$ and $\}_2 \in H_A(y)$ such that $\}_1 < \sim_A(x) + v$ and $\}_2 < \sim_A(x) + v$, then $(\sim_A(x) + v) \in H_A(x)$ and $(\sim_A(y) + v) \in H_A(y)$, $x \in (\sim_A(x) + v)A$ and $y \in (\sim_A(y) + v)A$ $(\sim_A(x) + v)^{-1}x \in A$ and $(\sim_A(y) + v)^{-1}y \in A$

Put
$$\} = (\sim_A(x) + V)(\sim_A(x) + \sim_A(y) + 2V)^{-1} \implies 0 < \} < 1$$

since A is convex

$$\{({}^{\sim}_{A}(x) + {\mathsf{V}})^{-1}x + (1 - \{\})({}^{\sim}_{A}(y) + {\mathsf{V}})^{-1}y \in A \implies ({}^{\sim}_{A}(x) + {}^{\sim}_{A}(y) + 2{\mathsf{V}})^{-1}(x + y) \in A$$

It is clear to show that $\sim_A(0) = 0$. Let $x \in X$ and r > 0, then

$${}^{\sim}_{A}(\Gamma x) = \inf\{\} > 0: \Gamma x \in A\} = \inf\{\} > 0: x \in \Gamma^{-1}\} = \Gamma \inf\{\Gamma^{-1}\} : x \in \Gamma^{-1}\} = \Lambda, \} > 0\} = \Gamma {}^{\sim}_{A}(x) = \Gamma {}^{-1}\{A\} = \Gamma {}$$

(3) since A is a balanced set, then $s^{-1}A = A$ for all $s \in F$ such that |s| = 1

so
$$\{\}>0: rx \in \}A\} = \{\}>0: |r|x \in \}A\}$$
 \Rightarrow $\sim_A (rx) = |r|\sim_A (x) \Rightarrow$ $\sim_A \text{ is a semi-norm on } X$.

5.3 Separation Theorems For Normed Spaces theorem(**5.3.1**)

Let M be a subspace of a normed space X . if $g \in M^*$, then there exists $f \in X^*$ such that f(x) = g(x) for all $x \in M$ and ||f|| = ||g||

Proof:

Case (1): consider g is a real –linear functional on M

Define $p: X \to \mathbb{R}$ by $p(x) = \|g\| \|x\|$ for all $x \in X$. Then p is a sub linear .We also observe $|g(x)| \le \|g\| \|x\| = p(x)$ for all $x \in M$. By theorem (5.1.8), there exists $f \in X'$ such that (i) f(x) = g(x) for all $x \in M$ (ii) $f(x) \le p(x)$ for all $x \in X$ $\Rightarrow f(x) \le \|g\| \|x\|$ for all $x \in X$

 $\Rightarrow |f(x)| = \max\{f(x), -f(x)\} \le ||g|| ||x|| \text{ for all } x \in X \Rightarrow f \text{ is bounded and } ||f|| \le ||g|| \Rightarrow f \in X^*$ Since f extends g, so $||f|| \ge ||g||$ and therefore ||f|| = ||g||.

Case (2): when g is a complex –linear functional on M

Let *u* be real part of *g* , by lemma(5.1.1), we have $u \in M^*$ and g(x) = u(x) - iu(ix) for all $x \in M$. Moreover ||g|| = ||u||. By case(1), there exists $u_0 \in X^*$ such that $u_0(x) = u(x)$ for all $x \in M$ and $||u_0|| = ||u||$, so $||g|| = ||u_0||$, put $f_0(x) = u_0(x) - iu_0(ix)$ for $x \in X$, by lemma (5.1.2), we have $f_0 \in X^*$ and $||f_0|| = ||u_0||$. Since $||g|| = ||u_0|| \Rightarrow ||f_0|| = ||g||$

Theorem (5.3.2)

If x_0 is a non zero element of a normed space X over F, then there exists $f \in X^*$ such that $f(x_0) = ||x_0||$ and ||f|| = 1. In particular X^* separated points on X, i.e. if $x, y \in X$ such that $x \neq y$, then there exists an $f \in X^*$ such that $f(x) \neq f(y)$.

Proof:

Let $M = [x_0] = \{\}x_0:\} \in F\}$, then M_0 is a subspace of X.

Define $g: M \to F$, by $g(x) = g(x_0) = \|x_0\|$ for all $x \in M$

(1) g is linear: let $x_1, x_2 \in M$ and $r, s \in F \Rightarrow x_1 = \}_1 x_0, x_2 = \}_2 x_0$ $g(rx_1 + sx_2) = g(r)_1 x_0 + s \}_2 x_0) = g((r)_1 + s \}_2 x_0) = (r)_1 + s \}_2 \|x_0\| = r \}_1 \|x_0\| + s \}_2 \|x_0\| = r g()_1 x_0) + s g()_2 x_0) = r g(x_1) + s g(x_2)$

 \Rightarrow g is linear

(2) g is bounded: let $x \in M \implies x = \{x_0 \implies ||x|| = ||x_0|| = ||x|| = ||x_0|| = ||x|| = ||x||$

(3) ||g|| = 1: $||g|| = \sup\{|g(x)| : x \in M, ||x|| \le 1\}$ Since $|g(x)| = ||x|| \implies ||g|| = \sup\{||x|| : x \in M, ||x|| \le 1\} = 1$

By corollary (5.3.1) exists $f \in X^*$ such that f(x) = g(x) for all $x \in M$ and ||f|| = ||g||

Since $g(x_0) = \|x_0\|$ for all $\{x_0 \in F : Put \} = 1 \implies g(x_0) = \|x_0\|$

Since $||g|| = 1 \implies ||f|| = 1$

Now let $x, y \in X$ such that $x \neq y \implies x_0 = x - y \neq 0$, then by above theorem, there exists $f \in X^*$ such that $f(x_0) = ||x_0||$

$$f(x-y) = ||x-y|| \neq 0 \implies f(x)-f(y) \neq 0 \implies f(x) \neq f(y).$$

Corollary (5.3.3)

Let X be a normed space and suppose f(x) = 0 for all $f \in X^*$, then x = 0

Proof:

Suppose $x \ne 0$. Then by theorem(6.11), there exists $f \in X^*$ such that f(x) = ||x|| > 0 which contradicts the hypothesis that f(x) = 0 for all $f \in X^*$. Hence we must have x = 0.

Corollary (5.3.4)

Let X be a normed space and suppose, $||x|| = \sup\{|f(x)|: f \in X^*, ||f|| = 1\}$ for all $x \in X$.

Proof:

If x = 0, the conclusion is trivial. If $x \neq 0$, then for all $f \in X^*$ with ||f|| = 1 we have

$$|f(x)| \le ||f|| ||x|| = ||x||$$

Since, by theorem(5.3.2), there exists $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||, the result follows.

Theorem (5.3.5)

Let M be a closed subspace of a normed space X and $x_0 \in X$, but $x_0 \notin M$. Then there exists $f \in X^*$ such that $f(x_0) \neq 0$ and f(x) = 0 for all $x \in M$.

Proof:

Consider the natural function $f: X \to X / M$ by f(x) = x + M, then f is continuous linear function.

Let $x \in M \implies f(x) = x + M = M = 0$ (0 denote the zero vector M of X / M)

Also since $x_0 \notin M$, we have $f(x_0) = x_0 + M \neq 0$

Hence by theorem(5.3.2), there exists $g \in (X/N)^*$ such that $g(x_0 + M) = ||x_0 + M|| \neq 0$

We now define f by f(x) = g(f(x)) for all $x \in X$

(1) f is linear: Let $x, y \in X$ and $r, s \in F$

$$f(rx+sy) = g(f(rx+sy)) = g((rx+sy)+M) = g(r(x+M)+s(y+M))$$

 $f(rx+sy) = rg(x+M)+sg(y+M) = rg(f(x))+sg(f(y)) = rf(x)+sf(y)$

 $\Rightarrow f$ is linear

(2) f is bounded

$$|f(x)| = |g(f(x))| \le ||g|| ||f(x)|| \le ||g|| ||f|| ||x||$$

Since $||f|| \le 1 \implies |f(x)| \le ||g|| ||x|| \implies f$ is bounded $\implies f \in X^*$

Also
$$f(x_0) = g(f(x_0)) = g(x_0 + M) = ||x_0 + M|| \neq 0$$
 and

$$f(x) = g(f(x)) = g(x + M) = g(0) = 0 \text{ for all } x \in M.$$

Theorem (5.3.6)

Let A be a nonempty open convex subset of a normed space X , and $x_0 \in X$, but $x_0 \notin A$.

Then there exists an $f \in X^*$ such that $f(x) < f(x_0)$ for all $x \in A$.

Proof:

By translation, we may assume that $0 \in A$

Define $P: X \to \mathbb{R}$ by $P(x) = \inf\{\} > 0: x \in A\}$ for all $x \in X$.

It is clear to show that P is sub-linear and P(x) < 1 iff $x \in A$.

Let $M_0 = [x_0]$, i.e. $M_0 = \{\}x_0 : \} \in \mathbb{R}\} \implies M_0$ is subspace of X.

Define $g: M_0 \to \mathbb{R}$ by $f(\{x_0\}) = \{\}$ for all $\{\} \in \mathbb{R} \implies g \in M_0'$ and $g(x) \le P(x)$ for all $x \in M_0$ by using theorem (5.1.8), there exist $f \in X'$ such that f(x) = g(x) for all $x \in M_0$ and and $f(x) \le P(x)$ for all $x \in X$.

Since $A \subseteq X \implies f(x) \le P(x)$ for all $x \in A$

Since P(x) < 1 iff $x \in A \Rightarrow f(x) \le 1$ for all $x \in A$

Since $x_0 = 1.x_0 \in M \implies f(x_0) = g(x_0) = g(1.x_0) = 1 \implies f(x) \le f(x_0)$ for all $x \in A$

It is clear to show that ker(f) is closed, then f is continuous $\Rightarrow f \in X^*$

Theorem (5.3.7)

Let *A* be a nonempty closed convex subset of a normed space *X* , and $x_0 \in X$, but $x_0 \notin A$. Then there exists an $f \in X^*$ and $g \in \mathbb{R}$ such that $g(x) < g(x_0)$ for all $g \in A$.

Proof:

Choose r > 0 such that $s_r(x_0) \cap A = W$

Let $D = A + S_r(0)$

Since $s_r(0)$ is open, then D is open

Since A and $s_{x}(0)$ are convex, then D is convex

Since $x_0 \in S_r(x_0) \implies x_0 \notin A$

By theorem(5.3.6), there exists an $f \in X^*$ such that $f(x) < f(x_0)$ for all $x \in D$.

Since f is not identically 0, f(b) > 0 for some $b \in S_r(0)$

Taking $= f(x_0) - f(b)$, we see that for all $x \in A$, $f(x) = f(x+b) - f(b) < <math>f(x_0)$.

Theorem (5.3.8)

Let *A* and *B* be convex sets of real normed *X*. If *A* is compact in *X* and *B* is closed, then there is $f \in X^*$ and $\}_1, \}_2 \in \mathbb{R}$ such that $f(x) \leq \}_1 < \}_2 \leq f(y)$ for all $x \in A$ and for all $y \in B$.

Proof:

Theorem (5.3.9)

Let *A* and *B* be disjoint, nonempty, convex sets of normed *X* such that *A* is compact in *X* and *B* is closed, then there is $f \in X^*$ and f(y) < f for all f(x) > f for all

5.4 Separation Theorems For Topological Linear Spaces Theorem(**5.4.1**)

Let X be a topological linear space, $x_0 \in X$. If V is a neighborhood of 0 in X such that $x_0 \notin V$, then there is $f \in X^*$ such that $f(x_0) = 1$ and f(x) < 1 for all $x \in V$.

Proof:

Since every neighborhood of 0 is absorbing set, then V is absorbing convex set.

Define $P: X \to \mathbb{R}$ by $P(x) = \inf\{\} > 0: x \in \}V\}$ for all $x \in X$.

It is clear to show that *P* is sub-linear and $P(x) \ge 0$ for all $x \in X$.

Let $M_0 = [x_0]$, i.e. $M_0 = \{\}x_0 : \} \in \mathbb{R}\} \implies M_0$ is subspace of X.

Define $g: M_0 \to \mathbb{R}$ by $f(x_0) = for all \in \mathbb{R}$ $\Rightarrow g \in M'_0$ and $g(x) \leq P(x)$ for all $x \in M_0$ by using theorem (5.1.8), there exist $f \in X'$ such that f(x) = g(x) for all $x \in M_0$ and $f(x) \leq f(x) \leq f(x)$ for all $x \in X$.

Since $x_0 = 1.x_0 \in M \implies f(x_0) = g(x_0) = g(1.x_0) = 1$

Since V is open set \Rightarrow $V = \{x \in X : P(x) < \}\}$

If $\} = 1 \implies V = \{x \in X : P(x) < 1\}$, so $f(x) \le P(x) < 1$ for all $x \in V$.

Let
$$y \in -V \implies -y \in V \implies f(-y) < 1 \implies f(y) > -1$$

For all
$$y \in -V \implies |f(x)| < 1$$
 for all $x \in W = V \cap (-V)$

Since V is a neighborhood of 0 in $X \Rightarrow W$ is a neighborhood of 0 in X, then f is bounded function for some neighborhood W of 0 in X, so that by using theorem (), we have f is bounded function $\Rightarrow f \in X^*$.

Theorem(**5.4.2**)

Let *A* and *B* be disjoint, nonempty, convex sets in a topological linear space *X*. If *A* is open in *X*, then there is $f \in X^*$ and $f \in \mathbb{R}$ such that $f(x) < f \leq f(y)$ for all $f \in A$ and for all $f \in B$.

Proof:

Let
$$x_0 = b_0 - a_0$$
 where $a_0 \in A$, $b_0 \in B$

Let
$$V = A - B + x_0 \implies V = (A - a_0) - (B - b_0)$$

Since A and B are convex sets, then V is convex set

Since A is open set, then V is open set

Since
$$a_0 \in A \implies 0 = a_0 - a_0 \in A - a_0$$
, also $b_0 \in B \implies 0 = b_0 - b_0 \in B - b_0$

 $\Rightarrow 0 \in V \Rightarrow V$ is a convex neighborhood of 0 in X

To prove $x_0 \notin V$: let $x_0 \in V$

$$\Rightarrow \quad x_0 \in A - B + x_0 \quad \Rightarrow \quad 0 = x_0 - x_0 \in A - B$$

since
$$0 = 0 - 0 \implies 0 \in A, 0 \in B \implies 0 \in A \cap B \implies A \cap B \neq W$$

This contradiction $\Rightarrow x_0 \notin V$

By using theorem (5.4.1), there exist $f \in X^*$ such that $f(x_0) = 1$ and f(z) < 1 for all $z \in V$ Now

For all $x \in A$ and for all $y \in B$

$$\Rightarrow x - y + x_0 \in V \Rightarrow f(x - y + x_0) < 1 \Rightarrow f(x) - f(y) + f(x_0) < 1 \Rightarrow f(x) < f(y)$$
 For all $x \in A$ and for all $y \in B$

Since A and B are non-empty disjoint convex sets, then f(A), f(B) are disjoint convex sets in R such that $f(A) \subset f(B)$

Since every non constant convex functional on X is open and A is open in X, then f(A) is open in \mathbb{R}

Let $\}$ be a right limit of f(A), i.e. $f(x) < \}$ for all $x \in A$

 \Rightarrow $f(x) < \} \le f(y)$ for all $x \in A$ and for all $y \in B$

Corollary (5.4.3)

Let *A* and *B* be disjoint, nonempty, convex sets in a locally convex *X*. If *A* is compact in *X* and *B* is closed, then there is $f \in X^*$ and $\}_1, \}_2 \in \mathbb{R}$ such that $f(x) < \}_1 \le \}_2 \le f(y)$ for all $x \in A$ and for all $y \in B$.

Exercises(5)

- 5.1Let M be a closed subspace of a normed space X and $x_0 \in X$, but $x_0 \notin M$. Then there exists $f \in X^*$ such that $f(x_0) = d$, ||f|| = 1 and f(x) = 0 for all $x \in M$, where $d = d(x_0, M)$, i.e. d is the distance from x_0 to M.
- 5.2Let M be a closed subspace of a normed space X and $x_0 \in X$, but $x_0 \notin M$. Then there exists $f \in X^*$ such that $f(x_0) = 1$, $||f|| = \frac{1}{d}$ and f(x) = 0 for all $x \in M$, where $d = d(x_0, M)$,
- 5.3 Let M be a subspace of a locally convex space X and $x_0 \in X$. If $x_0 \notin \overline{M}$ then there exists $f \in X^*$ such that $f(x_0) = 1$, but f(x) = 0 for all $x \in M$.
- 5,4 If X is a locally convex space then X * separated points on X.
- 5,5 Let M be a subspace of a locally convex space X and $x_0 \in X$. If $x_0 \in \overline{M}$ then $f(x_0) = 0$ for every continuous linear functional f on X that vanishes on M.
- 5.6 Let M be a subspace of a locally convex space X. If $g \in M^*$, then there exists $f \in X^*$ Such that f(x) = g(x) for all $x \in M$.
- 5.7 Suppose A is a convex, balanced, closed set in a locally convex space X, $x_0 \in X$, but $x_0 \notin A$. Then there exists $f \in X^*$ such that $|f(x)| \le 1$ for all $x \in A$, but $f(x_0) > 1$
- 5.8 Suppose s is a convex balanced local base in a topological linear space X. Associate to every $V \in S$ its Minkowski functional \sim_V . Show that $\{\sim_V : V \in S\}$ is a separating family of continuous seminorms on X.
- 5.9 Suppose \mathcal{G} is a separating family of seminorms on a linear space X. Associate to each $P \in \mathcal{G}$ and each positive integer n the set $V(P,n) = \{x \in X : P(x) < \frac{1}{n}\}$. Let s be the collection of all finite intersections of all the sets V(P,n). Show that s is a convex balanced local base for topology t on X, which turns into a locally convex space such that
- (1) Every $P \in \mathcal{G}$ is continuous, and (2) set $A \subseteq X$ is bounded iff every $P \in \mathcal{G}$ is bounded on A.
- 5.10 Show that a topological linear space *X* is normable iff its has origin has a convex bounded neighborhood.