5. Separation Theorems

5.1 The Hahn -Banach Theorem

Let X be a linear space over F. If $F=\mathbb{C}$, then by complex - liner functional on X. According to our first lemma, real-linear functionals can be characterized as the real parts of associated complex-linear functionals.

Lemma (6.1.1)

Let X be a complex linear space.
(1) If f is a complex-linear functional on X and u is the real part of f, then u is the real linear functional on X and $f(x)=u(x)-i u(i x)$
\cdots (1) for all $x \in X$
(2) If $u: X \rightarrow \mathbb{R}$ is real -linear on X and f is defined by the equation (1), then, f is a complex linear functional on X
(3) If ρ is a seminorm on $X, f, u u$ are related as in equation (1), then $|u(x)| \leq \rho(x)$ for all $x \in X$ iff $|f(x)| \leq \rho(x)$ for $x \in X$
(4) If X is normed space, f, u are related as in equation (1) and either f or u is bounded, then both functionals are bounded and $\|f\|=\|u\|$
(5) If X is a complex topological linear space. A complex-linear functional on X is in X^{*} iff its real part is continuous, and that every real linear $u: X \rightarrow \mathbb{R}$ is the real part of a unique $f \in X^{*}$

Proof :

(1) Let $v=\operatorname{Im}(f)$

Since $u=\operatorname{Re}(f) \Rightarrow f(x)=u(x)+i v(x)$ for all $x \in X$
if $(x)=i u(x)+i^{2} v(x)=-v(x)+i u(x)$ and $f(i x)=u(i x)+i v(i x) \Rightarrow \quad$ if $(x)=u(i x)+i v(i x)$
$\Rightarrow-v(x)+i u(x)=u(i x)+i v(i x) \Rightarrow u(i x)=-v(x), \quad v(i x)=u(x)$
$\Rightarrow f(x)=u(x)+i v(x)=u(x)-i u(i x)$
Let $x, y \in X$ and $\alpha, \beta \in \mathbb{R}$
Since f is linear functionals
$f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)=\alpha(u(x)-i u(i x))+\beta(u(y)-i u(i y))=\alpha u(x)+\beta u(y)-i(\alpha u(i x)+\beta u(i y))$
Also $f(\alpha x+\beta y)=u(\alpha x+\beta y)-i u(i(\alpha x+\beta y))) \Rightarrow u(\alpha x+\beta y)=\alpha u(x)+\beta u(y) \Rightarrow u$ is linear
(2) Let $x, y \in X$ and $\alpha, \beta \in \mathbb{C}$

$$
\begin{aligned}
& \Rightarrow f(\alpha x+\beta y)=u(\alpha x+\beta y)-i u(i(\alpha x+\beta y))=\alpha u(x)+\beta u(y)-i(i \alpha u(x)+i \beta u(y)) \\
& =\alpha(u(x)-i u(i x))+\beta(u(y)-i u(i y))=\alpha f(x)+\beta f(y)
\end{aligned}
$$

$\Rightarrow f$ is a complex-linear functional on X
(3) Suppose that $|f(x)| \leq \rho(x)$ for $x \in X$

Since $u(x)=\operatorname{Re}(f(x)) \Rightarrow u(x) \leq|f(x)|$ for $x \in X \Rightarrow u(x) \leq \rho(x)$
Since

$$
\begin{aligned}
& -u(x)=u(-x)=\operatorname{Re}(f(-x)) \leq|f(-x)|=|f(x)| \Rightarrow-u(x) \leq \rho(x) \Rightarrow u(x) \geq-\rho(x) \\
& \quad \Rightarrow-\rho(x) \leq u(x) \leq \rho(x) \Rightarrow|u(x) \leq \rho(x)|
\end{aligned}
$$

Conversely, If $|u(x)| \leq \rho(x)$ for all $x \in X$
Let $f(x)=r e^{i \theta}, \quad r \geq 0 \Rightarrow|f(x)|=\left|r e^{i \theta}\right|=|r|\left|e^{i \theta}\right|=r \times 1=r$
Since $f(x)=r e^{i \theta} \Rightarrow r=e^{-i \theta} f(x)=f\left(e^{-i \theta} x\right) \Rightarrow|f(x)|=f\left(e^{-i \theta} x\right)$
Since $f(x)=u(x)-i u(i x) \Rightarrow r=f\left(e^{-i \theta} x\right)=u\left(e^{-i \theta} x\right)-i u\left(i e^{-i \theta} x\right)$
Since r is real $\Rightarrow u\left(i e^{-i \theta} x\right)=0 \Rightarrow r=u\left(e^{-i \theta} x\right) \Rightarrow|f(x)|=r=u\left(e^{-i \theta} x\right)$
Since $u(x) \leq \rho(x) \Rightarrow u\left(e^{-i \theta} x\right) \leq \rho\left(e^{-i \theta} x\right)$
$\Rightarrow|f(x)| \leq p\left(e^{-i \theta} x\right)=\rho(x)$ for $x \in X$
(4) If f is bounded, then as $|u(x)| \leq|f(x)|$ for all $x \in X, u$ is bounded and $\|u\| \leq\|f\|$.

For each
$x \in X$ there exists $\lambda \in \mathbb{C}$ such that $\|\lambda\|=1$ and $f(\lambda x)=\lambda f(x)=|f(x)|$, then $f(\lambda x) \in \mathbb{R}$, so
$|f(x)|=f(\lambda x)=\operatorname{Re}(f(\lambda x))=u(\lambda x) \leq\|u\|\|\lambda x\|=\|u\|\|x\|$. Hence $\|f\| \leq\|u\|$, and therefore $\|f\|=\|u\|$
Finally, if u is bounded, then for all $x \in X$ with $\|x\| \leq 1$ we have
$|f(x)| \leq|u(x)|+|u(i x)| \leq\|u\|(\|x\|+\|i x\|) \leq 2\|u\|$. So f is bounded. By the forgoing, $\|f\|=\|u\|$.

Theorem (5.1.2)

Let M be a proper subspace of a linear space X over F, and let $x_{0} \in X, x_{0} \notin M$.
Define $M_{0}=\left[M \cup\left\{x_{0}\right\}\right]=\left\{m+\lambda x_{0}: m \in M, \lambda \in F\right\}$, then
(1) M_{0} is a subspace of X
(2) If $g \in M^{\prime}$, then there exists $f_{0} \in\left(M_{0}\right)^{\prime}$ such that $f_{0}(x)=g(x)$ for all $x \in M$.

Moreover if X is a normed space then $\left\|f_{0}\right\|=\|g\|$

Proof :

Case (1) : X is real linear space, i.e. $F=\mathbb{R}$
(1) It is obvious
(2) Define $f_{0}: M_{0} \rightarrow R$, by $f_{0}(x)=f_{0}\left(m+\lambda x_{0}\right)=g(m)+\lambda r_{0}, r_{0} \in \mathbb{R}$. We must to prove
(i) f_{0} is linear :

Let $x, y \in M_{0}$ and $\alpha, \beta \in R$, then $x=m_{1}+\lambda_{1} x_{0}, \quad y=m_{2}+\lambda_{2} x_{0}$

$$
\alpha x+\beta y=\alpha\left(m_{1}+\lambda_{1} x_{0}\right)+\beta\left(m_{2}+\lambda_{2} x_{0}\right)=\left(\alpha m_{1}+\beta m_{2}\right)+\left(\alpha \lambda_{1}+\beta \lambda_{2}\right) x_{0}
$$

$$
f_{0}(\alpha x+\beta y)=g\left(\alpha m_{1}+\beta m_{2}\right)+\left(\alpha \lambda_{1}+\beta \lambda_{2}\right) r_{0}=\alpha g\left(m_{1}\right)+\beta g\left(m_{2}\right)+\alpha\left(\lambda_{1} r_{0}\right)+\beta\left(\lambda_{2} r_{0}\right)
$$

$$
=\alpha\left(g\left(m_{1}\right)+\lambda_{1} r_{0}\right)+\beta\left(g\left(m_{2}\right)+\lambda_{2} r_{0}\right)=\alpha f_{0}(x)+\beta f_{0}(y)
$$

$\Rightarrow f_{0}$ is linear $\Rightarrow f_{0} \in\left(M_{0}\right)^{\prime}$
(ii) $f_{0}(x)=g(x)$ for all $x \in M$

Let $x \in M \Rightarrow x=x+(0) x_{0} \Rightarrow f_{0}(x)=f_{0}\left(x+(0) x_{0}\right)=g(x)+(0) r_{0}=g(x)$
Now if X is a normed space, we now prove that $\left\|f_{0}\right\|=\|g\|$
Now $\left\|f_{0}\right\|=\sup \left\{\left|f_{0}(x)\right|: x \in M_{0},\|x\| \leq 1\right\}$
since $M \subseteq M_{0} \Rightarrow \sup \left\{\left|f_{0}(x)\right|: x \in M_{0},\|x\| \leq 1\right\} \geq \sup \left\{\left|f_{0}(x)\right|: x \in M,\|x\| \leq 1\right\}$
$\Rightarrow\left\|f_{0}\right\| \geq \sup \left\{\left|f_{0}(x)\right|: x \in M,\|x\| \leq 1\right\}$
Since $f_{0}(x)=g(x)$ for all $x \in M$
$\Rightarrow \sup \left\{\left|f_{0}(x)\right|: x \in M,\|x\| \leq 1\right\}=\sup \left\{|g(x)|: x \in M_{0},\|x\| \leq 1\right\}=\|g\|$
$\Rightarrow\left\|f_{0}\right\| \geq\|g\|$
Let $x_{1}, x_{2} \in M$, then
$g\left(x_{2}\right)-g\left(x_{1}\right)=g\left(x_{2}-x_{1}\right) \leq\left|g\left(x_{2}-x_{1}\right)\right| \leq\|g\|\left\|x_{2}-x_{1}\right\|=\|g\|\left\|\left(x_{2}+x_{0}\right)-\left(x_{1}+x_{0}\right)\right\|$
$\Rightarrow \quad g\left(x_{2}\right)-g\left(x_{1}\right) \leq\|g\|\left\|x_{2}+x_{0}\right\|+\|g\|\left\|-\left(x_{1}+x_{0}\right)\right\|=\|g\|\left\|x_{2}+x_{0}\right\|+\|g\|\left\|x_{1}+x_{0}\right\|$
Thus $-g\left(x_{1}\right)-\|g\|\left\|x_{1}+x_{0}\right\| \leq-g\left(x_{2}\right)+\|g\|\left\|x_{2}+x_{0}\right\|$. . Since this inequality holds for arbitrary $x_{1}, x_{2} \in M$, we see that $\sup _{y \in M}\left\{-g(y)-\|g\|\left\|y+x_{0}\right\|\right\} \leq \inf _{y \in M}\left\{-g(y)+\|g\|\left\|y+x_{0}\right\|\right\}$
Choose r_{0} to be real number such that
$\sup _{y \in M}\left\{-g(y)-\|g\|\left\|y+x_{0}\right\|\right\} \leq r_{0} \leq \inf _{y \in M}\left\{-g(y)+\|g\|\left\|y+x_{0}\right\|\right\}$
It follows that $-g(y)-\|g\|\left\|y+x_{0}\right\| \leq r_{0} \leq-g(y)+\|g\|\left\|y+x_{0}\right\|$ for all $y \in M$
Putting $y=\frac{x}{\alpha}$, we have $-g\left(\frac{x}{\alpha}\right)-\|g\|\left\|\frac{x}{\alpha}+x_{0}\right\| \leq r_{0} \leq-g\left(\frac{x}{\alpha}\right)+\|g\|\left\|\frac{x}{\alpha}+x_{0}\right\|$
If $\alpha>0$, then right hand inequality in (1) gives $r_{0} \leq-g\left(\frac{x}{\alpha}\right)+\|g\|\left\|\frac{x}{\alpha}+x_{0}\right\|$
$\Rightarrow \quad r_{0} \leq-\frac{1}{\alpha} g(x)+\frac{1}{\alpha}\|g\|\left\|x+\alpha x_{0}\right\| \Rightarrow g(x)+\alpha r_{0} \leq\|g\|\left\|x+\alpha x_{0}\right\| \Rightarrow f_{0}\left(x+\alpha x_{0}\right) \leq\|g\|\left\|x+\alpha x_{0}\right\|$
$\Rightarrow f_{0}(z) \leq\|g\|\|z\|$, where $z=x+\alpha x_{0}$
If $\alpha<0$, then left hand inequality in (1) gives $-g\left(\frac{x}{\alpha}\right)-\|g\| \frac{x}{\alpha}+x_{0} \| \leq r_{0}$
$\Rightarrow-\frac{1}{\alpha} g(x)-\left|\frac{1}{\alpha}\right|\|g\|\left\|x+\alpha x_{0}\right\| \geq r_{0} \Rightarrow-\frac{1}{\alpha} g(x)+\frac{1}{\alpha}\|g\|\left\|x+\alpha x_{0}\right\| \geq r_{0} \Rightarrow \alpha r_{0} \leq-g(x)+\|g\|\left\|x+\alpha x_{0}\right\|$
$\Rightarrow g(x)+\alpha r_{0} \leq\|g\|\left\|x+\alpha x_{0}\right\| \Rightarrow f_{0}(z) \leq\|g\|\|z\|$, where $z=x+\alpha x_{0}$
Thus we have show that when $\alpha \neq 0$, then $f_{0}(z) \leq\|g\|\|z\|$ for all $z \in M_{0}$
Since g is bounded, then f_{0} is bounded linear functional
Since $\left\|f_{0}\right\|=\sup \left\{\left|f_{0}(x)\right|: x \in M_{0},\|x\| \leq 1\right\}$, then $\left\|f_{0}\right\| \leq\|g\|$. It follows that $\left\|f_{0}\right\|=\|g\|$
Case (2): X is complex linear space, i.e. $F=\mathbb{C}$
Let u be real part of g, by lemma(5.1.1), we have $u \in M^{\prime}$ and $g(x)=u(x)-i u(i x)$ for all $x \in M$. Moreover $\|g\|=\|u\|$.By case(1), there exists $u_{0} \in X^{\prime}$ such that $u_{0}(x)=u(x)$ for all $x \in M$ and $\left\|u_{0}\right\|=\|u\|$, so $\|g\|=\left\|u_{0}\right\|$, put $f_{0}(x)=u_{0}(x)-i u_{0}(i x)$ for $x \in X$, by lemma (6.2), we have $f_{0} \in X^{\prime}$ and $\left\|f_{0}\right\|=\left\|u_{0}\right\|$. Since $\|g\|=\left\|u_{0}\right\| \Rightarrow\left\|f_{0}\right\|=\|g\|$

Theorem (5.1.3)

Let M be a subspace of linear space X and let $g \in M^{\prime}$, then there exists $f \in X^{\prime}$ such that $f(x)=g(x)$ for all $x \in M$.Moreover if X is a normed space then $\|f\|=\|g\|$

Proof :

Let \mathcal{G} be the collection of all ordered pairs $\left(f_{\gamma}, M_{\gamma}\right)$ such that
(i) M_{γ} is a subspace of X and $M \subset M_{\gamma}$ (ii) $f_{\gamma} \in\left(M_{\gamma}\right)^{\prime}$ such that $f_{\gamma}(x)=g(x)$ for $x \in M$ $\Rightarrow \quad G$ is non-empty and partially ordered by
$\left(f_{\gamma}, M_{\gamma}\right) \leq\left(f_{\alpha}, M_{\alpha}\right) \Leftrightarrow M_{\gamma} \subset M_{\alpha} \& f_{\gamma}(x)=f_{\alpha}(x) \quad \forall x \in M_{\gamma}$
Let $\Phi=\left\{\left(f_{\gamma}, M_{\gamma}\right)\right\}$ be a totally ordered set in G. then it is easy to see that Φ has an upper bound $\left(\Psi, \cup M_{\alpha}\right)$ where $\Psi(x)=f_{\alpha}(x)$ for all $x \in M_{\alpha}$.By using Zorn's Lemma, there exists a maximal element (f, H) in G. To complete the proof, we must show that $H=X$.
Suppose that $H \neq X$, then there exists $a \in X$ such that $a \notin H$
Put $H_{0}=[H \cup\{a\}]$ by using first part in this proof, we have $h \in H_{0}^{\prime}$ such that $h(x)=f(x)$ for all $x \in H_{0}$. But contradicts the maximally of $(f, H)(f, H)$.
Consequently, we must have $H=X$ and the proof is complete.

Theorem(5.1.4)

Let M be a proper subspace of a real linear space X, and let $x_{0} \notin M$, then there exists $f \in X^{\prime}$ such that $f\left(x_{0}\right)=1$ and $f(x)=0$ for all $x \in M$.

Proof :

Let $M_{0}=\left[M \cup\left\{x_{0}\right\}\right]=\left\{m+\lambda x_{0}: m \in M, \lambda \in \mathbb{R}\right\}$, then M_{0} is a subspace of X.
Define $g: M_{0} \rightarrow \mathbb{R}$, by $g(x)=g\left(m+\lambda x_{0}\right)=\lambda$ for all $x \in M_{0}$. We must to prove
(1) g is linear : let $x, y \in M_{0}$ and $\alpha, \beta \in \mathbb{R}, \quad x=m_{1}+\lambda_{1} x_{0}$ and $y=m_{2}+\lambda_{2} x_{0}$
$\alpha x+\beta y=\alpha\left(m_{1}+\lambda_{1} x_{0}\right)+\beta\left(m_{2}+\lambda_{2} x_{0}\right)=\left(\alpha m_{1}+\beta m_{2}\right)+\left(\alpha \lambda_{1}+\beta \lambda_{2}\right) x_{0}$
$g(\alpha x+\beta y)=\left(\alpha \lambda_{1}+\beta \lambda_{2}\right)=\alpha g(x)+\beta g(y) \quad \Rightarrow \quad g \in M_{0}^{\prime}$
(2) $g\left(x_{0}\right)=1$ and $g(x)=0$ for all $x \in M$
since $x_{0}=0+(1) x_{0} \Rightarrow g\left(x_{0}\right)=1$
Let $x \in M \Rightarrow x=x+(0) x_{0} \quad \Rightarrow \quad g(x)=0$
If $M_{0}=X$, then we finish; either if $M_{0} \neq X$, then M_{0} is a proper subspace of X and $g \in M_{0}^{\prime}$, by using theorem (5.1.3), there exists $f \in X^{\prime}$ such that $f(x)=g(x)$ for all $x \in M$. Hence $f\left(x_{0}\right)=1$ and $f(x)=0$ for all $x \in M$.

Corollary (5.1.5)

Let X be a real linear space. If $x_{0} \in X$ such that $f\left(x_{0}\right)=0$ for all $f \in X^{\prime}$, then $x_{0}=0$
Proof :
Let $x_{0} \neq 0$
Put $M=\{0\} \Rightarrow M$ is a subspace of X and $x_{0} \notin M$.By using theorem (5.1.4), there exists $f \in X^{\prime}$ such that $f\left(x_{0}\right)=1$. This contradiction $\Rightarrow x_{0}=0$

Definition(5.1.6)

Let X be a linear space over F. The function $p: X \rightarrow \mathbb{R}$ is called sub-linear functional on X if
(1) $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$ (Sub-additivity)
(2) $p(\lambda x)=\lambda p(x)$ for all $x \in X$ and for all $\lambda \geq 0$ (Positive homogeneity)

If in addition, P satisfies the condition
(3) $P(x) \geq 0$ for all $x \in X$, then P is called a convex functional

A convex functional P is said to be symmetric if we have $p(\lambda x)=|\lambda| p(x)$ for all $x \in X$ and $\lambda \in \mathbb{R}$.

Example (5.1.7)

Let $X=\mathbb{R}^{n}$. Define $P: X \rightarrow \mathbb{R}$ by $P(x)=\sum_{i=1}^{n}\left|x_{i}\right|$ for all $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$. Then P is a sub-linear functional on X and Convex Functional .
Theorem(5.1.8) Generalized Hahn-Banach Theorem

Suppose

(1) M is a subspace of a real linear space X (2) P is a sublinear functional on X
(3) $g \in M^{\prime}$ such that $g(x) \leq p(x)$ for all $x \in M$. Then there exists $f \in X^{\prime}$ such that
(i) $f(x)=g(x)$ for all $x \in M$
(ii) $f(x) \leq p(x)$ for all $x \in X$

Proof :
Let $x_{0} \in M$ and $M_{0}=\left[M \cup\left\{x_{0}\right\}\right]=\left\{m+\lambda x_{0}: m \in M, \lambda \in \mathbb{R}\right\}$, then M_{0} is a subspace of X.
Define $f_{0}: M_{0} \rightarrow \mathbb{R}$, by $f_{0}(x)=f_{0}\left(m+\lambda x_{0}\right)=g(m)+\lambda r_{0}, \quad r_{0} \in \mathbb{R}$
It is easy to see that f_{0} is linear and $f_{0}(x)=g(x)$ for all $x \in M$
Now to prove : $f_{0}(x) \leq p(x)$ for all $x \in M_{0}$
Let $m_{1}, m_{2} \in M$
$g\left(m_{2}\right)-g\left(m_{1}\right)=g\left(m_{2}-m_{1}\right) \leq p\left(m_{2}-m_{1}\right)=p\left(\left(m_{2}+x_{0}\right)+\left(-m_{1}-x_{0}\right)\right) \leq p\left(m_{2}+x_{0}\right)+p\left(-m_{1}-x_{0}\right)$
$-g\left(m_{1}\right)-p\left(-m_{1}-x_{0}\right) \leq-g\left(m_{2}\right)+p\left(m_{2}+x_{0}\right)$ for all $m_{1}, m_{2} \in M$
so that $\sup _{y \in M}\left\{-g(y)-p\left(-y-x_{0}\right)\right\} \leq \inf _{y \in M}\left\{-g(y)+p\left(y+x_{0}\right)\right\}$
Choose r_{0} such that $\sup _{y \in M}\left\{-g(y)-p\left(-y-x_{0}\right)\right\} \leq r_{0} \leq \inf _{y \in M}\left\{-g(y)+p\left(y+x_{0}\right)\right\}$
It follows that $-g(y)-p\left(-y-x_{0}\right) \leq r_{0} \leq-g(y)+p\left(y+x_{0}\right) \quad$ (*) for all $y \in M$
Let $x \in M_{0} \Rightarrow x=m+\lambda x_{0}$
If $\lambda=0 \Rightarrow x=m$, then $f_{0}(x)=g(m) \leq p(m)=p(x)$
If $\lambda \neq 0$, put $y=\frac{m}{\lambda} \Rightarrow y \in M$ in(*) to obtain
$-g\left(\frac{m}{\lambda}\right)-p\left(-\frac{m}{\lambda}-x_{0}\right) \leq r_{0} \leq-g\left(\frac{m}{\lambda}\right)+p\left(\frac{m}{\lambda}+x_{0}\right)$
(**) for all $m \in M$
if $\lambda>0$, then the right hand inequality in (**) gives $r_{0} \leq-\frac{1}{\lambda} g(m)+\frac{1}{\lambda} p\left(m+\lambda x_{0}\right) \Rightarrow$ $\lambda r_{0} \leq-g(m)+p\left(m+\lambda x_{0}\right) \Rightarrow g(m)+\lambda r_{0} \leq p\left(m+\lambda x_{0}\right) \Rightarrow f_{0}(x) \leq p(x)$
and if $\lambda>0$, then the right hand inequality in (**) gives $-\frac{1}{\lambda} g(m)+\frac{1}{\lambda} p\left(m+\lambda x_{0}\right) \leq r_{0}$ since $\lambda<0$, then $-g(m)+p\left(m+\lambda x_{0}\right) \geq \lambda r_{0} \Rightarrow g(m)+\lambda r_{0} \leq p\left(m+\lambda x_{0}\right)$ thus when $\lambda \neq 0$, obtain $f_{0}(x) \leq p(x)$ for all $x \in M$. Thus $f_{0} \in M_{0}^{\prime}$ and $f_{0}(x)=g(x)$ for all $x \in M$. Hence $f_{0}(x) \leq p(x)$ for all $x \in M_{0}$. If $M_{0}=X$ complete proof, either if $M_{0} \neq X$
Let G be the collection of all ordered pairs $\left(f_{\gamma}, M_{\gamma}\right)$ such that
(i) M_{γ} is a subspace of X and $M \subset M_{\gamma}$ (ii) $f_{\gamma} \in\left(M_{\gamma}\right)^{\prime}$ such that $f_{\gamma}(x)=g(x)$ for $x \in M$
(iii) $f_{\gamma}(x) \leq p(x)$ for all $x \in M_{\gamma}$.
$\Rightarrow G$ is non-empty and partially ordered by $\left(f_{\gamma}, M_{\gamma}\right) \leq\left(f_{\alpha}, M_{\alpha}\right) \Leftrightarrow M_{\gamma} \subset M_{\alpha} \& f_{\gamma}(x)=f_{\alpha}(x) \quad \forall x \in M_{\gamma}$
Let $\Phi=\left\{\left(f_{\gamma}, M_{\gamma}\right)\right\}$ be a totally ordered set in G. then it is easy to see that Φ has an upper bound $\left(\Psi, \cup M_{\alpha}\right)$ where $\Psi(x)=f_{\alpha}(x)$ for all $x \in M_{\alpha}$.By using Zorn's Lemma, there exists a maximal element (f, H) in G. To complete the proof, we must show that $H=X$.
Suppose that $H \neq X$, then there exists $a \in X$ such that $a \notin H$
Put $H_{0}=[H \cup\{a\}]$ by using first part in this proof, we have $h \in H_{0}^{\prime}$ such that $h(x)=f(x)$ for all $x \in H_{0}$. But contradicts the maximally of $(f, H)(f, H)$.
Consequently, we must have $H=X$ and the proof is complete.

Remark

Let M be a subspace of a complex linear space X, such that
(1) The function $p: X \rightarrow \mathbb{R}$ satisfies the conditions
(i) $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$ (ii) $p(\lambda x)=|\lambda| p(x)$ for all $x \in X$ and for all $\lambda \in \mathbb{C}$
(2) $g \in M^{\prime}$ such that $|g(x)| \leq p(x)$ for all $x \in M$,

Then there exists $f \in X^{\prime}$ such that
(i) $f(x)=g(x)$ for all $x \in M$
(ii) $|f(x)| \leq p(x)$ for all $x \in X$

5.2 Minkowski' Functional

Definition(5.2.1)

Let A be an absorbing subset of a linear space X over F. The functional $\mu_{A}: X \rightarrow \mathbb{R}, \quad \mu_{A}(x)=\inf \{\lambda>0: x \in \lambda A\}$ for all $x \in X$ is called the Minkowski's functional of A.
It clear to show that
(1) $\mu_{A}(x)<\infty$ for all $x \in X$, because that A is an absorbing
(2) If $x \in \lambda A$, then $\mu_{A}(x) \leq \lambda$. In special case if $y \in \mu_{A}(x)$, then $\mu_{A}(y) \leq \mu_{A}(x)$
(3) If $x \notin \lambda A$ for some $\lambda>0$, then $\mu_{A}(x) \geq \lambda$
(4) If A is open in topological linear space X, then $\lambda A=\left\{x \in X: \mu_{A}(x)<\lambda\right\}$

Theorem(5.2.2)

Suppose P is a seminorm on a linear space X over F. If $A=\{x \in X: P(x)<1\}$, then $P=\mu_{A}$ Proof:

Since A is convex, absorbing, balanced set $x \in X$
Since A is absorbing, there exists $\lambda>0$ such that $x \in \lambda A \Rightarrow \mu_{A}(x) \leq \lambda$ and $\lambda^{-1} x \in A \Rightarrow p\left(\lambda^{-1} x\right)<1 \Rightarrow p(x)<\lambda$, so that $\mu_{A} \leq P$
since P semi-norm, then $P(x) \geq 0$, there exist α such that $0<\alpha \leq P(x)$
$\Rightarrow P\left(\alpha^{-1} x\right) \geq 1 \Rightarrow \alpha^{-1} x \notin A$, so that $P(x) \leq \mu_{A}(x) \Rightarrow P \leq \mu_{A}$. Hence $P=\mu_{A}$

Theorem(5.2.3)

Suppose A is a convex absorbing set in a linear space X over F. Define $H_{A}(x)=\{\lambda>0: x \in \lambda A\}$ for all $x \in X$.If $\alpha \in H_{A}(x)$, then $\beta \in H_{A}(x)$ for all $\beta>\alpha$.
Proof:
Since $\alpha \in H_{A}(x) \Rightarrow x \in \alpha A \Rightarrow \alpha^{-1} x \in A$
Since A is a convex and $0, \alpha^{-1} x \in A$, then $\beta^{-1} x=\beta^{-1}(\beta-\alpha)(0)+\beta^{-1} \alpha\left(\alpha^{-1} x\right) \in A$
$\Rightarrow x \in \beta A \Rightarrow \beta \in H_{A}(x)$

Theorem(5.2.4)

Suppose A is a convex absorbing set in a linear space X over F. Then
(1) μ_{A} is a sublinear functional.
(2) If $B=\left\{x \in X: \mu_{A}(x)<1\right\}$ and $C=\left\{x \in X: \mu_{A}(x) \leq 1\right\}$, then $B \subset A \subset C$ and $\mu_{B}=\mu_{A}=\mu_{C}$
(3) If A is balanced, then μ_{A} is a seminorm.

Proof :

(1) Let $x, y \in X$. For all $\varepsilon>0$, there exists $\lambda_{1} \in H_{A}(x)$ and $\lambda_{2} \in H_{A}(y)$ such that $\lambda_{1}<\mu_{A}(x)+\varepsilon$ and $\lambda_{2}<\mu_{A}(x)+\varepsilon$, then
$\left(\mu_{A}(x)+\varepsilon\right) \in H_{A}(x)$ and $\left(\mu_{A}(y)+\varepsilon\right) \in H_{A}(y), \quad x \in\left(\mu_{A}(x)+\varepsilon\right) A$ and $y \in\left(\mu_{A}(y)+\varepsilon\right) A$

$$
\left(\mu_{A}(x)+\varepsilon\right)^{-1} x \in A \text { and }\left(\mu_{A}(y)+\varepsilon\right)^{-1} y \in A
$$

Put $\lambda=\left(\mu_{A}(x)+\varepsilon\right)\left(\mu_{A}(x)+\mu_{A}(y)+2 \varepsilon\right)^{-1} \Rightarrow 0<\lambda<1$
since A is convex
$\lambda\left(\mu_{A}(x)+\varepsilon\right)^{-1} x+(1-\lambda)\left(\mu_{A}(y)+\varepsilon\right)^{-1} y \in A \Rightarrow\left(\mu_{A}(x)+\mu_{A}(y)+2 \varepsilon\right)^{-1}(x+y) \in A$
It is clear to show that $\mu_{A}(0)=0$. Let $x \in X$ and $\alpha>0$, then $\mu_{A}(\alpha x)=\inf \{\lambda>0: \alpha x \in \lambda A\}=\inf \left\{\lambda>0: x \in \alpha^{-1} \lambda A\right\}=\alpha \inf \left\{\alpha^{-1} \lambda: x \in \alpha^{-1} \lambda A, \lambda>0\right\}=\alpha \mu_{A}(x)$
(3) since A is a balanced set, then $\beta^{-1} A=A$ for all $\beta \in F$ such that $|\beta|=1$
so $\{\lambda>0: \alpha x \in \lambda A\}=\{\lambda>0:|\alpha| x \in \lambda A\} \Rightarrow \mu_{A}(\alpha x)=|\alpha| \mu_{A}(x) \Rightarrow \mu_{A}$ is a semi-norm on X.

5.3 Separation Theorems For Normed Spaces theorem(5.3.1)

Let M be a subspace of a normed space X. if $g \in M^{*}$, then there exists $f \in X^{*}$ such that $f(x)=g(x)$ for all $x \in M$ and $\|f\|=\|g\|$

Proof :

Case (1): consider g is a real -linear functional on M
Define $p: X \rightarrow \mathbb{R}$ by $p(x)=\|g\|\|x\|$ for all $x \in X$. Then p is a sub linear .We also observe $|g(x)| \leq\|g\|\|x\|=p(x)$ for all $x \in M$. By theorem (5.1.8), there exists $f \in X^{\prime}$ such that (i) $f(x)=g(x)$ for all $x \in M$ (ii) $f(x) \leq p(x)$ for all $x \in X \Rightarrow f(x) \leq\|g\|\|x\|$ for all $x \in X$
$\Rightarrow|f(x)|=\max \{f(x),-f(x)\} \leq\|g\|\|x\|$ for all $x \in X \Rightarrow f$ is bounded and $\|f\| \leq\|g\| \Rightarrow f \in X^{*}$ Since f extends g,so $\|f\| \geq\|g\|$ and therefore $\|f\|=\|g\|$.

Case (2) : when g is a complex -linear functional on M
Let u be real part of g, by lemma(5.1.1), we have $u \in M^{*}$ and $g(x)=u(x)-i u(i x)$ for all $x \in M$. Moreover $\|g\|=\|u\|$.By case(1), there exists $u_{0} \in X^{*}$ such that $u_{0}(x)=u(x)$ for all $x \in M$ and $\left\|u_{0}\right\|=\|u\|$, so $\|g\|=\left\|u_{0}\right\|$, put $f_{0}(x)=u_{0}(x)-i u_{0}(i x)$ for $x \in X$, by lemma (5.1.2), we have $f_{0} \in X^{*}$ and $\left\|f_{0}\right\|=\left\|u_{0}\right\|$. Since $\|g\|=\left\|u_{0}\right\| \Rightarrow\left\|f_{0}\right\|=\|g\|$

Theorem (5.3.2)

If x_{0} is a non zero element of a normed space X over F, then there exists $f \in X^{*}$ such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\|f\|=1$. In particular X^{*} separated points on X, i.e. if $x, y \in X$ such that $x \neq y$, then there exists an $f \in X^{*}$ such that $f(x) \neq f(y)$.

Proof :

Let $M=\left[x_{0}\right]=\left\{\lambda x_{0}: \lambda \in F\right\}$, then M_{0} is a subspace of X.
Define $g: M \rightarrow F$, by $g(x)=g\left(\lambda x_{0}\right)=\lambda\left\|x_{0}\right\|$ for all $x \in M$
(1) g is linear : let $x_{1}, x_{2} \in M$ and $\alpha, \beta \in F \Rightarrow x_{1}=\lambda_{1} x_{0}, \quad x_{2}=\lambda_{2} x_{0}$
$g\left(\alpha x_{1}+\beta x_{2}\right)=g\left(\alpha \lambda_{1} x_{0}+\beta \lambda_{2} x_{0}\right)=g\left(\left(\alpha \lambda_{1}+\beta \lambda_{2}\right) x_{0}\right)=\left(\alpha \lambda_{1}+\beta \lambda_{2}\right)\left\|x_{0}\right\|=\alpha \lambda_{1}\left\|x_{0}\right\|+\beta \lambda_{2}\left\|x_{0}\right\|$
$=\alpha g\left(\lambda_{1} x_{0}\right)+\beta g\left(\lambda_{2} x_{0}\right)=\alpha g\left(x_{1}\right)+\beta g\left(x_{2}\right)$
$\Rightarrow \quad g$ is linear
(2) g is bounded : let $x \in M \Rightarrow x=\lambda x_{0} \Rightarrow\|x\|=\left\|\lambda x_{0}\right\|=|\lambda|\left\|x_{0}\right\|$
$|g(x)|=\left|g\left(\lambda x_{0}\right)\right|=\left|\lambda\left\|x_{0}\right\|=|\lambda|\left\|x_{0}\right\|=\|x\|<2\|x\| \Rightarrow \quad g\right.$ is bounded
(3) $\|g\|=1:\|g\|=\sup \{|g(x)|: x \in M,\|x\| \leq 1\}$

Since $|g(x)|=\|x\| \Rightarrow\|g\|=\sup \{\|x\|: x \in M,\|x\| \leq 1\}=1$
By corollary (5.3.1) exists $f \in X^{*}$ such that $f(x)=g(x)$ for all $x \in M$ and $\|f\|=\|g\|$
Since $g\left(\lambda x_{0}\right)=\lambda\left\|x_{0}\right\|$ for all $\lambda \in F$. Put $\lambda=1 \Rightarrow g\left(x_{0}\right)=\left\|x_{0}\right\|$
Since $\|g\|=1 \Rightarrow\|f\|=1$
Now let $x, y \in X$ such that $x \neq y \Rightarrow x_{0}=x-y \neq 0$, then by above theorem, there exists $f \in X^{*}$ such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$
$f(x-y)=\|x-y\| \neq 0 \Rightarrow f(x)-f(y) \neq 0 \Rightarrow f(x) \neq f(y)$.

Corollary (5.3.3)

Let X be a normed space and suppose $f(x)=0$ for all $f \in X^{*}$, then $x=0$

Proof :

Suppose $x \neq 0$. Then by theorem(6.11), there exists $f \in X^{*}$ such that $f(x)=\|x\|>0$ which contradicts the hypothesis that $f(x)=0$ for all $f \in X^{*}$. Hence we must have $x=0$.

Corollary (5.3.4)

Let X be a normed space and suppose, $\|x\|=\sup \left\{|f(x)|: f \in X^{*},\|f\|=1\right\}$ for all $x \in X$.

Proof :

If $x=0$, the conclusion is trivial. If $x \neq 0$, then for all $f \in X^{*}$ with $\|f\|=1$ we have

$$
|f(x)| \leq\|f\|\|x\|=\|x\|
$$

Since, by theorem(5.3.2), there exists $f \in X^{*}$ such that $\|f\|=1$ and $f(x)=\|x\|$, the result follows.

Theorem (5.3.5)

Let M be a closed subspace of a normed space X and $x_{0} \in X$, but $x_{0} \notin M$.Then there exists $f \in X^{*}$ such that $f\left(x_{0}\right) \neq 0$ and $f(x)=0$ for all $x \in M$.

Proof :

Consider the natural function $\pi: X \rightarrow X / M$ by $\pi(x)=x+M$, then π is continuous linear function.
Let $x \in M \Rightarrow \pi(x)=x+M=M=0$ (0 denote the zero vector M of X / M)
Also since $x_{0} \notin M$, we have $\pi\left(x_{0}\right)=x_{0}+M \neq 0$
Hence by theorem(5.3.2), there exists $g \in(X / N)^{*}$ such that $g\left(x_{0}+M\right)=\left\|x_{0}+M\right\| \neq 0$
We now define f by $f(x)=g(\pi(x))$ for all $x \in X$
(1) f is linear: Let $x, y \in X$ and $\alpha, \beta \in F$
$f(\alpha x+\beta y)=g(\pi(\alpha x+\beta y))=g((\alpha x+\beta y)+M)=g(\alpha(x+M)+\beta(y+M))$
$f(\alpha x+\beta y)=\alpha g(x+M)+\beta g(y+M)=\alpha g(\pi(x))+\beta g(\pi(y))=\alpha f(x)+\beta f(y)$
$\Rightarrow f$ is linear
(2) f is bounded
$|f(x)|=|g(\pi(x))| \leq\|g\|\|\pi(x)\| \leq\|g\|\|\pi\|\|x\|$
Since $\|\pi\| \leq 1 \Rightarrow|f(x)| \leq\|g\|\|x\| f$ is bounded $\Rightarrow f \in X^{*}$
Also $f\left(x_{0}\right)=g\left(\pi\left(x_{0}\right)\right)=g\left(x_{0}+M\right)=\left\|x_{0}+M\right\| \neq 0$ and
$f(x)=g(\pi(x))=g(x+M)=g(0)=0$ for all $x \in M$.

Theorem (5.3.6)

Let A be a nonempty open convex subset of a normed space X, and $x_{0} \in X$, but $x_{0} \notin A$.
Then there exists an $f \in X^{*}$ such that $f(x)<f\left(x_{0}\right)$ for all $x \in A$.

Proof:

By translation, we may assume that $0 \in A$
Define $P: X \rightarrow \mathbb{R}$ by $P(x)=\inf \{\lambda>0: x \in \lambda A\}$ for all $x \in X$.
It is clear to show that P is sub-linear and $P(x)<1$ iff $x \in A$.
Let $M_{0}=\left[x_{0}\right]$, i.e. $M_{0}=\left\{\lambda x_{0}: \lambda \in \mathbb{R}\right\} \Rightarrow M_{0}$ is subspace of X.
Define $g: M_{0} \rightarrow \mathbb{R}$ by $f\left(\lambda x_{0}\right)=\lambda$ for all $\lambda \in \mathbb{R} \Rightarrow g \in M_{0}{ }^{\prime}$ and $g(x) \leq P(x)$ for all $x \in M_{0}$ by using theorem (5.1.8), there exist $f \in X^{\prime}$ such that $f(x)=g(x)$ for all $x \in M_{0}$ and and $f(x) \leq P(x)$ for all $x \in X$.
Since $A \subseteq X \Rightarrow f(x) \leq P(x)$ for all $x \in A$
Since $P(x)<1$ iff $x \in A \Rightarrow f(x) \leq 1$ for all $x \in A$

Since $x_{0}=1 . x_{0} \in M \Rightarrow f\left(x_{0}\right)=g\left(x_{0}\right)=g\left(1 . x_{0}\right)=1 \Rightarrow f(x) \leq f\left(x_{0}\right)$ for all $x \in A$
It is clear to show that $\operatorname{ker}(f)$ is closed, then f is continuous $\Rightarrow f \in X^{*}$

Theorem (5.3.7)

Let A be a nonempty closed convex subset of a normed space X, and $x_{0} \in X$, but $x_{0} \notin A$. Then there exists an $f \in X^{*}$ and $\lambda \in \mathbb{R}$ such that $f(x)<\lambda<f\left(x_{0}\right)$ for all $x \in A$.
Proof:
Choose $r>0$ such that $\beta_{r}\left(x_{0}\right) \cap A=\phi$
Let $D=A+\beta_{r}(0)$
Since $\beta_{r}(0)$ is open, then D is open
Since A and $\beta_{r}(0)$ are convex, then D is convex
Since $x_{0} \in \beta_{r}\left(x_{0}\right) \Rightarrow x_{0} \notin A$
By theorem(5.3.6), there exists an $f \in X^{*}$ such that $f(x)<f\left(x_{0}\right)$ for all $x \in D$.
Since f is not identically $0, f(b)>0$ for some $b \in \beta_{r}(0)$
Taking $\lambda=f\left(x_{0}\right)-f(b)$, we see that for all $x \in A, f(x)=f(x+b)-f(b)<\lambda<f\left(x_{0}\right)$.

Theorem (5.3.8)

Let A and B be convex sets of real normed X. If A is compact in X and B is closed, then there is $f \in X^{*}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $f(x) \leq \lambda_{1}<\lambda_{2} \leq f(y)$ for all $x \in A$ and for all $y \in B$.
Proof :

Theorem (5.3.9)

Let A and B be disjoint, nonempty, convex sets of normed X such that A is compact in X and B is closed, then there is $f \in X^{*}$ and $\lambda \in \mathbb{R}$ such that $f(x)>\lambda$ for all $x \in A$ and $f(y)<\lambda$ for all $y \in B$.

5.4 Separation Theorems For Topological Linear Spaces Theorem(5.4.1)

Let X be a topological linear space, $x_{0} \in X$. If V is a neighborhood of 0 in X such that $x_{0} \notin V$, then there is $f \in X^{*}$ such that $f\left(x_{0}\right)=1$ and $f(x)<1$ for all $x \in V$.

Proof :

Since every neighborhood of 0 is absorbing set, then V is absorbing convex set.
Define $P: X \rightarrow \mathbb{R}$ by $P(x)=\inf \{\lambda>0: x \in \lambda V\}$ for all $x \in X$.
It is clear to show that P is sub-linear and $P(x) \geq 0$ for all $x \in X$.
Let $M_{0}=\left[x_{0}\right]$, i.e. $M_{0}=\left\{\lambda x_{0}: \lambda \in \mathbb{R}\right\} \Rightarrow M_{0}$ is subspace of X.
Define $g: M_{0} \rightarrow \mathbb{R}$ by $f\left(\lambda x_{0}\right)=\lambda$ for all $\lambda \in \mathbb{R} \quad \Rightarrow g \in M_{0}{ }^{\prime}$ and $g(x) \leq P(x)$ for all $x \in M_{0}$ by using theorem (5.1.8), there exist $f \in X^{\prime}$ such that $f(x)=g(x)$ for all $x \in M_{0}$ and $-P(-x) \leq f(x) \leq P(x)$ for all $x \in X$.
Since $x_{0}=1 . x_{0} \in M \Rightarrow f\left(x_{0}\right)=g\left(x_{0}\right)=g\left(1 . x_{0}\right)=1$
Since V is open set $\Rightarrow \lambda V=\{x \in X: P(x)<\lambda\}$
If $\lambda=1 \Rightarrow V=\{x \in X: P(x)<1\}$, so $f(x) \leq P(x)<1$ for all $x \in V$.

Let $y \in-V \Rightarrow-y \in V \Rightarrow f(-y)<1 \Rightarrow f(y)>-1$
For all $y \in-V \Rightarrow|f(x)|<1$ for all $x \in W=V \cap(-V)$
Since V is a neighborhood of 0 in $X \Rightarrow W$ is a neighborhood of 0 in X, then f is bounded function for some neighborhood W of 0 in X, so that by using theorem (), we have f is bounded function $\Rightarrow f \in X^{*}$.

Theorem(5.4.2)

Let A and B be disjoint, nonempty, convex sets in a topological linear space X. If A is open in X, then there is $f \in X^{*}$ and $\lambda \in \mathbb{R}$ such that $f(x)<\lambda \leq f(y)$ for all $x \in A$ and for all $y \in B$.

Proof :

$$
\text { Let } x_{0}=b_{0}-a_{0} \text { where } a_{0} \in A, \quad b_{0} \in B
$$

Let $V=A-B+x_{0} \Rightarrow V=\left(A-a_{0}\right)-\left(B-b_{0}\right)$
Since A and B are convex sets, then V is convex set
Since A is open set, then V is open set
Since $a_{0} \in A \Rightarrow 0=a_{0}-a_{0} \in A-a_{0}$, also $b_{0} \in B \Rightarrow 0=b_{0}-b_{0} \in B-b_{0}$
$\Rightarrow 0 \in V \Rightarrow V$ is a convex neighborhood of 0 in X
To prove $x_{0} \notin V:$ let $x_{0} \in V$
$\Rightarrow x_{0} \in A-B+x_{0} \quad \Rightarrow \quad 0=x_{0}-x_{0} \in A-B$
since $0=0-0 \Rightarrow 0 \in A, 0 \in B \Rightarrow 0 \in A \cap B \Rightarrow A \cap B \neq \phi$
This contradiction $\Rightarrow x_{0} \notin V$
By using theorem (5.4.1), there exist $f \in X^{*}$ such that $f\left(x_{0}\right)=1$ and $f(z)<1$ for all $z \in V$ Now

For all $x \in A$ and for all $y \in B$
$\Rightarrow x-y+x_{0} \in V \Rightarrow f\left(x-y+x_{0}\right)<1 \Rightarrow f(x)-f(y)+f\left(x_{0}\right)<1 \Rightarrow f(x)<f(y)$ For
all $x \in A$ and for all $y \in B$
Since A and B are non-empty disjoint convex sets, then $f(A), f(B)$ are disjoint convex sets in R such that $f(A) \subset f(B)$
Since every non constant convex functional on X is open and A is open in X, then $f(A)$ is open in \mathbb{R}
Let λ be a right limit of $f(A)$, i.e. $f(x)<\lambda$ for all $x \in A$
$\Rightarrow f(x)<\lambda \leq f(y)$ for all $x \in A$ and for all $y \in B$

Corollary (5.4.3)

Let A and B be disjoint, nonempty, convex sets in a locally convex X. If A is compact in X and B is closed, then there is $f \in X^{*}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $f(x)<\lambda_{1} \leq \lambda_{2} \leq f(y)$ for all $x \in A$ and for all $y \in B$.

Exercises(5)

5.1Let M be a closed subspace of a normed space X and $x_{0} \in X$, but $x_{0} \notin M$.Then there exists $f \in X^{*}$ such that $f\left(x_{0}\right)=d,\|f\|=1$ and $f(x)=0$ for all $x \in M$, where $d=d\left(x_{0}, M\right)$, i.e. d is the distance from x_{0} to M.
5.2Let M be a closed subspace of a normed space X and $x_{0} \in X$, but $x_{0} \notin M$.Then there exists $f \in X^{*}$ such that $f\left(x_{0}\right)=1,\|f\|=\frac{1}{d}$ and $f(x)=0$ for all $x \in M$, where $d=d\left(x_{0}, M\right)$,
5.3 Let M be a subspace of a locally convex space X and $x_{0} \in X$. If $x_{0} \notin \bar{M}$ then there exists $f \in X^{*}$ such that $f\left(x_{0}\right)=1$, but $f(x)=0$ for all $x \in M$.
5,4 If X is a locally convex space then X^{*} separated points on X.
5,5 Let M be a subspace of a locally convex space X and $x_{0} \in X$. If $x_{0} \in \bar{M}$ then $f\left(x_{0}\right)=0$ for every continuous linear functional f on X that vanishes on M.
5.6 Let M be a subspace of a locally convex space X. If $g \in M^{*}$, then there exists $f \in X^{*}$ Such that $f(x)=g(x)$ for all $x \in M$.
5.7 Suppose A is a convex, balanced, closed set in a locally convex space $X, x_{0} \in X$, but $x_{0} \notin A$. Then there exists $f \in X^{*}$ such that $|f(x)| \leq 1$ for all $x \in A$, but $f\left(x_{0}\right)>1$
5.8 Suppose β is a convex balanced local base in a topological linear space X. Associate to every $V \in \beta$ its Minkowski functional μ_{v}. Show that $\left\{\mu_{v}: V \in \beta\right\}$ is a separating family of continuous seminorms on X.
5.9 Suppose \mathcal{G} is a separating family of seminorms on a linear space X. Associate to each $P \in \mathcal{G}$ and each positive integer n the set $V(P, n)=\left\{x \in X: P(x)<\frac{1}{n}\right\}$. Let β be the collection of all finite intersections of all the sets $V(P, n)$. Show that β is a convex balanced local base for topology τ on X, which turns into a locally convex space such that
(1) Every $P \in \mathcal{G}$ is continuous, and (2) set $A \subseteq X$ is bounded iff every $P \in \mathcal{G}$ is bounded on A.
5.10 Show that a topological linear space X is normable iff its has origin has a convex bounded neighborhood.

