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5. Separation Theorems

5.1 The Hahn -Banach Theorem
Let X  be a linear space over F . If F   , then by complex - liner functional on

X . According to our first lemma, real-linear functionals can be characterized as the
real parts of associated complex-linear functionals.
Lemma (6.1.1)
 Let X  be a complex linear space.
(1) If f is a complex–linear functional on X and u is the real part of f ,then u  is the

real linear functional on X  and ( ) ( ) ( ) (1)f x u x iu ix    for all x X
(2) If :u X    is real –linear on X and f is defined by the equation (1), then, f is a

 complex linear functional on X
(3) If   is a seminorm on X , ,f u u  are related as in equation (1), then ( ) ( )u x x for all

x X  iff ( ) ( )f x x  for x X

(4) If X is normed space , ,f u  are related as in equation (1) and either f or u is bounded,
     then both functionals are bounded and f u

(5) If X is a complex topological linear space. A complex–linear functional on X is
in X  iff its real part is continuous, and that every real linear :u X   is the real part
of a unique f X 

Proof :
  (1) Let Im( )v f
  Since Re( ) ( ) ( ) ( )u f f x u x iv x     for all x X

2( ) ( ) ( ) ( ) ( )if x iu x i v x v x iu x      and ( ) ( ) ( ) ( ) ( ) ( )f ix u ix iv ix if x u ix iv ix    
( ) ( ) ( ) ( ) ( ) ( ), ( ) ( )v x iu x u ix iv ix u ix v x v ix u x        

( ) ( ) ( ) ( ) ( )f x u x iv x u x iu ix    
Let ,x y X  and ,  
Since f  is linear functionals

( ) ( ) ( ) ( ( ) ( )) ( ( ) ( )) ( ) ( ) ( ( ) ( ))f x y f x f y u x iu ix u y iu iy u x u y i u ix u iy                   
Also ( ) ( ) ( ( )))f x y u x y iu i x y          ( ) ( ) ( )u x y u x u y u         is
linear
(2) Let ,x y X  and ,  

( ) ( ) ( ( )) ( ) ( ) ( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ( ) ( )

f x y u x y iu i x y u x u y i i u x i u y

u x iu ix u y iu iy f x f y

         
   
         
     

f is a complex–linear functional on X

(3) Suppose that ( ) ( )f x x  for x X

     Since ( ) Re( ( )) ( ) ( )u x f x u x f x    for x X ( ) ( )u x x 

    Since
( ) ( ) Re( ( )) ( ) ( ) ( ) ( ) ( ) ( )u x u x f x f x f x u x x u x x              

( ) ( ) ( ) ( ) ( )x u x x u x x       
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Conversely , If ( ) ( )u x x  for all x X

Let ( ) , 0 ( ) 1i i if x re r f x re r e r r         

Since ( ) ( ) ( ) ( ) ( )i i i if x re r e f x f e x f x f e x          

Since ( ) ( ) ( ) ( ) ( ) ( )i i if x u x iu ix r f e x u e x iu ie x         
Since r  is  real ( ) 0 ( ) ( ) ( )i i iu ie x r u e x f x r u e x          

Since ( ) ( ) ( ) ( )i iu x x u e x e x     
( ) ( ) ( )if x p e x x     for x X

(4) If f  is bounded, then as ( ) ( )u x f x  for all x X , u  is bounded and u f .

For each
x X there exists   such that 1   and ( ) ( ) ( )f x f x f x   , then

( )f x  , so
( ) ( ) Re( ( )) ( )f x f x f x u x u x u x        . Hence f u , and therefore

f u

Finally, if u  is bounded, then for all x X with 1x   we have

( ) ( ) ( ) ( ) 2f x u x u ix u x ix u     .So f is bounded. By the forgoing, f u .

Theorem (5.1.2)
Let M be a proper subspace of a linear space X over F , and let 0x X , 0x M .

Define  0 0 0{ : , }M M x m x m M F         , then

(1) 0M is a subspace of X

(2) If Mg  , then there exists 0 0( )f M   such that    0f x g x  for all Mx .

Moreover if X  is a normed space then 0f g

Proof :
Case (1) : X is real linear space , i.e. F  

(1) It is obvious
(2) Define RMf 00 : , by    0 0 0 0 0( ) ,f x f m x g m r r      .  We  must to

prove
(i) 0f  is linear :
     Let 0, Myx   and R , , then 022011 , xmyxmx  

    02121022011 )()( xmmxmxmyx  
     

)()())(())((

)()()()(

00022011

020121021210

yfxfrmgrmg

rrmgmgrmmgyxf







0f  is linear )( 00  Mf

(ii)    xgxf 0  for all Mx

      Let   00 xxxMx        )()0()(0 0000 xgrxgxxfxf 

Now if X  is a normed space, we now prove that 0f g

Now 0 0 0sup{ ( ) : , 1}f f x x M x  
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since 0 0 0 0sup{ ( ) : , 1} sup{ ( ) : , 1}M M f x x M x f x x M x      

0 0sup{ ( ) : , 1}f f x x M x   

Since    0f x g x  for all Mx

0 0sup{ ( ) : , 1} sup{ ( ) : , 1}f x x M x g x x M x g      

0f g 

Let 1 2,x x M , then

2 1 2 1 2 1 2 1 2 0 1 0( ) ( ) ( ) ( ) ( ) ( )g x g x g x x g x x g x x g x x x x          

2 1 2 0 1 0 2 0 1 0( ) ( ) ( )g x g x g x x g x x g x x g x x          

Thus 1 1 0 2 2 0( ) ( )g x g x x g x g x x       .Since this inequality holds for

arbitrary 1 2,x x M , we see that 0 0sup{ ( ) } inf { ( ) }
y My M

g y g y x g y g y x


      

Choose 0r  to be real number such that

0 0 0sup{ ( ) } inf { ( ) }
y My M

g y g y x r g y g y x


       

It follows that 0 0 0( ) ( )g y g y x r g y g y x          for all y M

Putting x
y


 , we have 0 0 0( ) ( ) (1)

x x x x
g g x r g g x

   
       

If 0  , then right hand inequality in (1) gives 0 0( )
x x

r g g x
 

   

0 0 0 0 0 0 0

1 1
( ) ( ) ( )r g x g x x g x r g x x f x x g x x    

 
            

0 ( )f z g z  , where 0z x x 

If 0  , then left hand inequality in (1) gives 0 0( )
x x

g g x r
 

   

0 0 0 0 0 0

1 1 1 1
( ) ( ) ( )g x g x x r g x g x x r r g x g x x   

   
              

0 0 0( ) ( )g x r g x x f z g z       , where 0z x x 

Thus we have show that when 0  , then 0 ( )f z g z  for all 0z M

Since g is bounded , then 0f  is bounded linear functional
Since 0 0 0sup{ ( ) : , 1}f f x x M x   ,then 0f g . It follows that 0f g

Case (2) : X is complex linear space , i.e. F  
Let u be real part of g , by lemma(5.1.1), we have u M  and ( ) ( ) ( )g x u x iu ix   for
all x M . Moreover g u .By case(1), there exists 0u X   such that 0 ( ) ( )u x u x

for all x M  and 0u u , so 0g u , put 0 0 0( ) ( ) ( )f x u x iu ix   for x X , by

lemma (6.2), we have 0f X   and 0 0f u . Since 0g u 0f g 
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Theorem (5.1.3)
 Let M  be a subspace of linear space X  and let Mg  , then there exists Xf   such that
   xgxf   for all Mx .Moreover if X  is a normed space then f g

Proof :
   Let  be the collection of all ordered pairs   Mf ,  such that

(i) M  is a subspace of X  and MM  (ii) )(   Mf  such that    xgxf   for Mx

G  is non-empty and partially ordered by
     MxxfxfMMMfMf  )()(&,,

Let    Mf , be a  totally ordered set in G  . then it is easy to see that   has an

upper bound  M,  where    xfx   for all Mx .By using Zorn's Lemma,
there exists a maximal element  Hf ,  in G . To complete the proof, we must show
that XH  .
Suppose that XH   , then there exists Xa  such that Ha

Put   aHH 0  by using first part in this proof, we have 0Hh   such that
   xfxh   for all 0Hx . But contradicts the maximally of  Hf ,  Hf , .

Consequently, we must have XH   and the proof is complete.
Theorem(5.1.4)
Let M  be a proper subspace of a real linear space X ,and let Mx 0 ,then there

exists Xf  such that   10 xf  and   0xf  for all Mx .
Proof :
    Let  0 0 0{ : , }M M x m x m M          , then 0M  is a subspace of X .

Define 0:g M   , by       0xmgxg  for all 0Mx  .We must to prove
(1) g  is linear : let 0, Myx   and ,   , 011 xmx   and 022 xmy 

    02121022011 )()( xmmxmxmyx  
    )()(21 ygxgyxg   0Mg 

(2)   10 xg  and   0xg  for all Mx

since   1)(10 000  xgxx

Let 0)()0( 0  xgxxxMx

If XM 0 , then we finish ; either if XM 0 , then 0M  is a proper subspace  of X  and

0Mg  ,  by using theorem (5.1.3), there exists Xf   such that    xgxf   for all
Mx . Hence   10 xf  and   0xf  for all Mx .

Corollary (5.1.5)
Let X  be a real linear space. If Xx 0  such that   00 xf  for all Xf  , then 00 x

Proof :
            Let 00 x

Put   MM  0  is a subspace of X  and Mx 0 .By using theorem (5.1.4), there
exists Xf   such that   10 xf .This contradiction 00  x
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Definition(5.1.6)
Let X be a linear space  over F . The function :p X     is called sub-linear
functional  on X  if
(1)      ypxpyxp   for all Xyx ,  (Sub-additivity)
(2)    xpxp    for all Xx  and  for all 0  (Positive homogeneity)
If in addition, P  satisfies the condition
(3) 0)( xP   for all Xx ,   then P  is called a convex functional
A convex functional P is said to be symmetric if we have    xpxp    for all Xx and  .

Example (5.1.7)

Let nX    . Define :P X    by   



n

i
ixxP

1

  for all 1( , , ) n
nx x x   . Then P

is a sub-linear functional on X and Convex Functional .
Theorem(5.1.8) Generalized Hahn-Banach Theorem
       Suppose
(1) M  is a subspace of a  real linear space X (2) P  is a sublinear functional on X
(3) Mg    such that    xpxg   for all Mx . Then there exists Xf   such that
    (i)    xgxf   for all Mx         (ii)    xpxf   for all Xx
Proof :
  Let Mx 0 and  0 0 0{ : , }M M x m x m M          , then 0M  is a subspace of X .

Define 0 0:f M  , by    0 0 0 0 0( ) ,f x f m x g m r r     
It is easy to see that 0f  is linear  and    xgxf 0  for all Mx

Now to prove :    xpxf 0  for all 0Mx

Let Mmm 21 ,
      )()())()(()( 01020102121212 xmpxmpxmxmpmmpmmgmgmg 

       022011 xmpmgxmpmg   for all Mmm 21 ,

so that          00 infsup xypygxypyg
MyMy




Choose 0r  such that          000 infsup xypygrxypyg
MyMy




It follows that         )(000  xypygrxypyg  for all My

Let 00 xmxMx 

If mx  0 , then        xpmpmgxf 0

If 0  , put My
m

y 


 in )( to obtain

)(000 





 













 






 x

m
p

m
grx

m
p

m
g


  for all Mm

if 0 , then the right hand inequality in )(  gives    00

11
xmpmgr 


 

   00 xmpmgr       00 xmprmg       xpxf 0
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 and if 0 , then the right hand inequality in )(  gives     00

11
rxmpmg  


since 0  , then     00 rxmpmg       00 xmprmg  

thus when 0 , obtain    xpxf 0  for all Mx . Thus 00 Mf   and    xgxf 0  for all
Mx . Hence    xpxf 0  for all 0Mx . If XM 0  complete proof, either if XM 0

Let G  be the collection of all ordered pairs   Mf ,  such that

(i) M  is a subspace of X  and MM  (ii) )(   Mf  such that    xgxf   for Mx

(iii)    xpxf   for all Mx  .

G  is non-empty and partially ordered by
     MxxfxfMMMfMf  )()(&,,

Let    Mf , be a  totally ordered set in G  . then it is easy to see that   has an

upper bound  M,  where    xfx   for all Mx .By using Zorn's Lemma,
there exists a maximal element  Hf ,  in G . To complete the proof, we must show
that XH  .
Suppose that XH   , then there exists Xa  such that Ha

Put   aHH 0  by using first part in this proof, we have 0Hh   such that
   xfxh   for all 0Hx . But contradicts the maximally of  Hf ,  Hf , .

Consequently, we must have XH   and the proof is complete.
Remark
Let M be a subspace of a  complex  linear space X , such that
(1) The function :p X     satisfies the conditions
    (i)      ypxpyxp   for all Xyx ,  (ii)    p x p x  for all Xx and for all 

(2) Mg    such that    g x p x  for all Mx ,

Then there exists Xf   such that
    (i)    xgxf   for all Mx         (ii)    f x p x  for all Xx

5.2 Minkowski' Functional
Definition(5.2.1)
Let A  be an absorbing subset of a linear space X  over F . The functional

:A X   , }:0inf{)( AxxA    for all Xx  is called the Minkowski’s
functional of A .
It clear to show that
(1) )(xA  for all Xx , because that A  is an absorbing
(2) If Ax  , then  )(xA . In special case if ( )Ay x , then )()( xy AA  

(3) If Ax   for some 0 , then  )(xA

(4) If A  is open in topological linear space X , then })(:{   xXxA A

Theorem(5.2.2)
 Suppose P  is a seminorm on a linear space X over F . If }1)(:{  xPXxA , then AP 
Proof :
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       Since A  is convex , absorbing, balanced set Xx
Since A  is  absorbing, there exists 0  such that Ax    )(xA

and    )(1)( 11 xpxpAx  , so that PA 
since P  semi-norm, then 0)( xP , there exist    such that )(0 xP

  1)( 1xP  Ax1  , so that AA PxxP   )()( .  Hence AP 

Theorem(5.2.3)
 Suppose A  is a convex absorbing set in a linear space X  over F . Define

}:0{)( AxxH A    for all Xx .If )(xH A , then )(xH A  for all   .
Proof :
           Since AxAxxH A  1)( 
Since A  is a convex and Ax1,0  , then Axx   )()0)(( 1111 

)(xHAx A 

Theorem(5.2.4)
  Suppose A  is a convex absorbing set in a linear space X  over F . Then
(1) A  is a sublinear functional.
(2) If }1)(:{  xXxB A and }1)(:{  xXxC A , then CAB   and CAB  

(3) If A  is balanced, then A  is a seminorm.
Proof :
     (1) Let Xyx , . For all 0 , there exists )(1 xH A  and )(2 yH A  such that

  )(1 xA  and   )(2 xA ,  then
)())(( xHx AA   and )())(( yHy AA   , Axx A ))((    and Ayy A ))((  

AxxA  1))((   and AyyA  1))(( 
Put 10)2)()()()(( 1    yxx AAA

since A  is convex
AyxyxAyyxx AAAA   )()2)()(())()(1())(( 111 

It is clear to show that 0)0( A . Let Xx  and 0  , then
)(}0,:inf{}:0inf{}:0inf{)( 111 xAxAxAxx AA   

(3) since A  is a balanced set , then AA 1  for all F  such that 1

so AAA xxAxAx   )()(}:0{}:0{  is a semi-norm on X .

5.3 Separation Theorems For Normed Spaces
theorem(5.3.1)
 Let M  be a subspace of a normed space X  . if g M  , then there exists f X   such that
   xgxf   for all Mx and f g

Proof :
Case (1): consider g is a real –linear functional on M

  Define :p X    by ( )p x g x  for all x X . Then p is a sub linear .We also observe

( ) ( )g x g x p x   for all x M . By theorem (5.1.8) , there exists Xf   such that (i)

   xgxf   for all Mx    (ii)    xpxf   for all Xx  f x g x   for all Xx
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( ) max{ ( ), ( )}f x f x f x g x     for all Xx f is bounded and f g f X  

Since f  extends g ,so f g  and therefore f g .

Case (2) : when g is a complex –linear functional on M

Let u be real part of g , by lemma(5.1.1), we have u M  and ( ) ( ) ( )g x u x iu ix 
for all x M . Moreover g u .By case(1), there exists 0u X   such that

0 ( ) ( )u x u x  for all x M  and 0u u , so 0g u , put 0 0 0( ) ( ) ( )f x u x iu ix   for

x X , by lemma (5.1.2), we have 0f X   and 0 0f u . Since 0g u 0f g 

Theorem (5.3.2)
If 0x is a non zero element of  a normed space X  over F , then there exists f X 

such that  0 0f x x  and 1f  . In particular X   separated points on X , i.e. if

,x y X such that x y , then there exists an f X   such that ( ) ( )f x f y .
Proof :
Let  0 0{ : }M x x F    , then 0M  is a subspace of X .

Define :g M F , by    0 0g x g x x    for all x M

(1) g is linear : let 1 2,x x M and , F   1 1 0 2 2 0,x x x x   

1 2 1 0 2 0 1 2 0 1 2 0 1 0 2 0

1 0 2 0 1 2

( ) ( ) (( ) ) ( )

( ) ( ) ( ) ( )

g x x g x x g x x x x

g x g x g x g x

         

     

        

   

g  is linear
(2) g is bounded : let 0 0 0x M x x x x x       

0 0 0( ) ( ) 2g x g x x x x x       g  is bounded

(3) 1g  : sup{ ( ) : , 1}g g x x M x  

      Since ( )g x x sup{ : , 1} 1g x x M x    

By corollary (5.3.1) exists f X   such that    xgxf   for all Mx and f g

Since  0 0g x x  for all F  . Put  0 01 g x x   

Since 1 1g f  

Now let ,x y X such that 0 0x y x x y     , then by above theorem, there
exists f X   such that  0 0f x x

( ) 0 ( ) ( ) 0 ( ) ( )f x y x y f x f y f x f y         .

Corollary (5.3.3)
Let X be a normed space and suppose ( ) 0f x   for all f X  , then 0x 
Proof :
            Suppose 0x  . Then by theorem(6.11), there exists f X   such that
  0f x x   which contradicts the hypothesis that ( ) 0f x   for all f X  . Hence

we must have 0x  .
Corollary (5.3.4)
Let X be a normed space and suppose , sup{ ( ) : , 1}x f x f X f    for all x X .
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Proof :
If 0x  , the conclusion is trivial. If 0x  , then for all f X   with 1f   we

have
( )f x f x x 

Since , by theorem(5.3.2), there exists f X   such that 1f  and ( )f x x , the

result follows.
Theorem (5.3.5)
 Let M  be a  closed subspace of a normed space X  and 0x X , but 0x M .Then there
exists f X   such that  0 0f x   and   0xf  for all Mx .

Proof :
Consider the natural function : /X X M   by ( )x x M   , then   is

continuous linear function.
Let ( ) 0x M x x M M       (0 denote the zero vector M of /X M )
Also since 0x M , we have 0 0( ) 0x x M   

Hence by theorem(5.3.2), there exists ( / )g X N   such that  0 0 0g x M x M   

We now define f  by ( ) ( ( ))f x g x  for all x X
(1) f  is linear : Let ,x y X  and , F  

( ) ( ( )) (( ) ) ( ( ) ( ))f x y g x y g x y M g x M y M                 
( ) ( ) ( ) ( ( )) ( ( )) ( ) ( )f x y g x M g y M g x g y f x f y                 

f  is linear
(2) f  is bounded

( ) ( ( )) ( )f x g x g x g x    

Since 1 ( )f x g x f      is bounded f X  

Also    0 0 0 0( ( )) 0f x g x g x M x M       and

  ( ( )) ( ) (0) 0f x g x g x M g      for all Mx .

Theorem (5.3.6)
Let A be a nonempty open convex subset of a normed space X , and 0x X , but 0x A .
Then there exists an f X   such that 0( ) ( )f x f x  for all x A .
Proof :
By translation, we may assume that 0 A
Define :P X    by ( ) inf{ 0 : }P x x A    for all Xx .
It is clear to show that P  is sub-linear and ( ) 1P x  iff x A .
Let 0 0[ ]M x , i.e. 0 0 0{ : }M x M      is subspace of X .

Define 0:g M    by  )( 0xf  for all 0g M     and )()( xPxg   for all 0x M

by using theorem (5.1.8), there exist Xf   such that )()( xgxf  for all 0x M  and
and ( ) ( )f x P x  for all Xx .
Since A X ( ) ( )f x P x   for all x A
Since ( ) 1P x  iff x A ( ) 1f x   for all x A
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Since 1).1()()(.1 00000  xgxgxfMxx 0( ) ( )f x f x   for all x A

It is clear to show that ker( )f  is closed , then f is continuous f X  

Theorem (5.3.7)
Let A be a nonempty closed convex subset of a normed space X , and 0x X , but 0x A .
Then there exists an f X   and  such that 0( ) ( )f x f x   for all x A .
Proof :
             Choose 0r   such that 0( )r x A  

Let (0)rD A  

Since (0)r  is open, then D  is open
Since A and (0)r  are convex , then D  is convex
Since 0 0 0( )rx x x A  

By theorem(5.3.6), there exists an f X   such that 0( ) ( )f x f x  for all x D .
Since f is not identically 0, ( ) 0f b   for some (0)rb 

Taking 0( ) ( )f x f b   , we see that for all x A , 0( ) ( ) ( ) ( )f x f x b f b f x     .

Theorem (5.3.8)
Let A and B  be convex sets  of real normed X . If A  is compact in X and B  is closed, then
there is *Xf  and 1 2,    such that 1 2( ) ( )f x f y     for all Ax  and for all By .
Proof :
Theorem (5.3.9)
Let A and B  be disjoint, nonempty, convex sets of  normed X  such that A  is compact in
X and B  is closed, then there is *Xf  and  such that ( )f x   for all Ax  and

( )f y   for all By .

5.4  Separation Theorems For Topological Linear Spaces
Theorem(5.4.1)
 Let X  be a topological linear space, Xx 0 . If V  is a neighborhood of 0  in X  such
that Vx 0 , then there is *Xf   such that 1)( 0 xf  and 1)( xf  for all Vx .
Proof :
    Since every neighborhood of 0  is absorbing set, then V  is absorbing convex set.
Define :P X    by }:0inf{)( VxxP   for all Xx .
It is clear to show that P  is sub-linear and 0)( xP  for all Xx .
Let 0 0[ ]M x , i.e. 0 0 0{ : }M x M      is subspace of X .

Define 0:g M    by  )( 0xf  for all 0g M     and )()( xPxg   for all 0x M

by using theorem (5.1.8), there exist Xf   such that )()( xgxf  for all 0x M  and
)()()( xPxfxP   for all Xx .

Since 1).1()()(.1 00000  xgxgxfMxx

Since V  is open set })(:{   xPXxV

If }1)(:{1  xPXxV , so 1)()(  xPxf  for all Vx .
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Let 1)(1)(  yfyfVyVy

For all 1)(  xfVy  for all )( VVWx 

Since V  is a neighborhood of 0  in X W  is a neighborhood of 0  in X , then f

is bounded function for some neighborhood W of 0  in X , so that by using theorem
(), we have f   is bounded function *Xf  .

Theorem(5.4.2)
Let A and B  be disjoint, nonempty, convex sets in a topological linear space X . If A  is
open in X , then there is *Xf  and   such that )()( yfxf    for all Ax  and for all

By .
Proof :

  Let 000 abx   where BbAa  00 ,

Let 0xBAV  )()( 00 bBaAV 

Since A  and B  are convex sets, then V  is convex set
Since A  is open set , then V  is open set
Since 0000 0 aAaaAa  , also 0000 0 bBbbBb 

VV  0  is a convex  neighborhood of 0  in X

To prove Vx 0  : let Vx 0

BAxxxBAx  0000 0

since  BABABA 00,0000

This contradiction Vx  0

By using theorem (5.4.1), there exist  Xf  such that 1)( 0 xf  and 1)( zf  for all Vz

Now
       For all Ax  and for all By

)()(1)()()(1)( 000 yfxfxfyfxfxyxfVxyx   For
all Ax  and for all By
Since A  and B  are non-empty disjoint convex sets, then )(),( BfAf  are disjoint convex sets
in R  such that )()( BfAf 
Since every non constant convex functional on X  is open and A  is open in X  , then

)(Af  is open in 
Let   be a right limit of )(Af , i.e. )(xf  for all Ax

)()( yfxf    for all Ax  and for all By

Corollary (5.4.3)
    Let A and B  be disjoint, nonempty, convex sets in a locally convex X . If A  is compact
in X and B  is closed, then there is *Xf  and 1 2,    such that )()( 21 yfxf    for all

Ax  and for all By .
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Exercises(5)
5.1Let M  be a  closed subspace of a normed space X  and 0x X , but 0x M .Then there
     exists f X   such that  0f x d , 1f   and   0xf  for all Mx ,where 0( , )d d x M ,

i.e. d  is the distance from 0x  to M .
5.2Let M  be a  closed subspace of a normed space X  and 0x X , but 0x M .Then there

     exists f X   such that  0 1f x  , 1
f

d
  and   0xf  for all Mx ,where 0( , )d d x M ,

5.3 Let M be a subspace of a locally convex space X  and 0x X . If 0x M  then there
exists f X   such that 0( ) 1f x  , but   0f x   for all Mx .

5,4 If X is a locally convex space then X   separated points on X .
5,5 Let M be a subspace of a locally convex space X  and 0x X . If 0x M  then 0( ) 0f x 

 for every continuous linear functional f  on X that vanishes on M .
5.6 Let M be a subspace of a locally convex space X . If g M  , then there exists f X 

Such  that    xgxf   for all Mx .
5.7 Suppose A  is a convex, balanced, closed set in a locally convex space X , 0x X , but

0x A . Then there exists f X   such that ( ) 1f x   for all x A ,but 0( ) 1f x 

5.8 Suppose   is a convex balanced local base in a topological linear space X . Associate to
     every V   its Minkowski functional V  . Show that { : }V V   is a separating family of

 continuous seminorms on X .
5.9 Suppose   is a separating family of seminorms on a linear space X . Associate to each

P   and each positive integer n the set 1
( , ) { : ( ) }V P n x X P x

n
   . Let   be the

     collection of all finite intersections of all the sets ( , )V P n . Show that   is a convex
 balanced local base for topology   on X , which turns into a locally convex space such that

(1) Every P  is continuous, and (2) set A X  is bounded iff every P   is bounded on A .
5.10 Show that a topological linear space X  is normable iff its has origin has a convex

bounded  neighborhood.


