5. Separation Theorems

5.1 The Hahn -Banach Theorem
Let X bealinear spaceover F.If F=C, then by complex - liner functional on
X . According to our first lemma, real-linear functionals can be characterized as the
real parts of associated complex-linear functionals.
Lemma (6.1.1)
Let X beacomplex linear space.
(1) If f isacomplex—linear functional on X and uistherea part of f ,thenu isthe
real linear functional on X and f (x) =u(x)-iu(ix) ---(@) foral x eX
(2) Ifu:X - R isrea —linear on X and f isdefined by the equation (1), then, f isa
complex linear functional on X
(@) If r isaseminormon X , f ,uu arerelated asin equation (1), thenju(x)|<r (x)for all
x e X iff [f (x)|<r (x) for x eX
(4) If X isnormed space, f ,u arerelated asin equation (1) and eitherf or uisbounded,
then both functionals are bounded and |f | = |u]|
(5) If X isacomplex topological linear space. A complex—linear functional on X is
in X * iff itsreal part is continuous, and that every real linear u: X — Ristherea part
of aunique f eX”~
Proof :
(1) Letv =Im(f )
Since u=Re(f) = f (x)=u(x)+iv(x) foral x eX
if (X)=iu(x)+iv(x)=vx)+iu(x) and f (ix)=u(ix)+iv(ix) = if x)=u(ix)+iv(ix)
= —-v(X)+iu(x)=u(ix)+iv(ix) = u(ix)=-v(x), v(ix)=u(x)
= f(X)=uXx)+iv(x)=u(x)—iu(ix)
Let x,yeX anda,beR
Since f islinear functionals
f@ax+by)=af (x)+bf (y)=au(x)—iu(ix))+bu(y)-iu(iy))=au(x)+bu(y)—i(@u(ix)+bu(y))
Also f ax +by)=u(@x +by)—iu(i(@x +by))) = u(@x+by)=au(x)+bu(y) = uis
linear
(2) Let x,yeX anda,beC
= f@ax+by)=u@x+by)-iu(i(@ax+by))=au(x)+bu(y)-i(iau(x)+ibu(y))
=aUu(x)—iu(ix))+bu(y)-iu(iy))=af (x)+bf (y)
= f isacomplex-linear functional on X
(3) Suppose that [f (x)|<r (x) for x e X
Sinceu(x)=Re(f (x)) = uX)<[f (x)] for xeX = u(x)<r(x)
Since
—u(x)=u(-x)=Re(f (-x))<[f (x)|=[f x)] = -uX)<r(x) = u(x)=-r(x)

= —r(x)<u(x)<r(x) = ux)<r(x)|
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Conversely , If ju(x)|<r (x) forall x eX

Let f (x)=re", r>0 = |f (x)|:‘re‘q‘=|r”e‘q‘=r><1:r

Since f (x)=re" = r=e"f (x)=f("x) = [f(x)=f (")

Since f (x)=u(x)-iu(ix) = r=f(@€"'9x)=u(e"'x)-iu(ie ?x)

Sincer isread = u(ie'x)=0 = r=u@E'x) = [f(x)=r=u(e"x)
Sinceu(x)<r(x) = u(ex)<r (%)

= [f x)|<pEe'x)=r(x) for x eX

(4) If £ isbounded, then as |u(x)|<|f (x)| for al x e X , u isbounded and |u <|f |.

For each
x eX thereexists | eC suchthat || |=1and f (I x)=1f (x)=|f (x)|, then

f(Ix)eR, SO

[f O)|=F (I x)=Re(f (I x))=u(l x) <|uf|l x| =|ul||x]| . Hence |f | <|u||, and therefore
1=l

Finaly, if u isbounded, then for al x e X with |x| <1 we have

[ OO <ue)|+udx)|<u[(x||+]ix[) < 2|u|.So f is bounded. By the forgoing, |f ||=] u]|.
Theorem (5.1.2)

Let M be aproper subspace of alinear space X over F,and let x,eX , x,¢M .
Define M, =M U{x,} |={m+l x,:meM,| eF}, then

(1) M, isasubspace of X

(2) If geM’, thenthereexists f,e(M,) suchthat f,(x)=g(x) foral xem.
Moreover if X isanormed space then |f | =|g]|

Proof :
Case(1): X isreal linear space, i.e. F=R
(1) Itisobvious
(2) Define f,: M, > R, by f(x)=f,(m+Ix,)=g(m)+lr,, r,eR. We mustto
prove
(i) f, islinear :

Let x,yeM, and a,b eR,then x=m +1,x,, y=m,+I,X,
ax+by=a(m +1,%)+b(m,+1,x)=@m +bm,)+ (@l +bl ,)x
fol@x+by)=glam +bm, )+ (@l , +bl ,)r, =ag(m) +bg(m,) +a (I 1) + b (I ,r,)

:a(g(ml)‘H 1ro)+ b(g(mz)"‘I zro) =af0(X)+ bfo(y)
= f,islinear = f,e(M,)
(ii) f,(x)=g(x) foral xeMm

Let xeM = x=x+(0)x, = f,(x)= f,(x+(0)x,)=g(x)+(0)r, = g(x)
Now if X isanormed space, we now prove that |f | =|g]|
Now |f o = supf[f o(x)|:x e M, [x[|<T
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sinceM cM, = supf{[f,(x)|:x eM,|x|<T=sup{[f,(x)]:x eM,|x||<T

= |fof| = supf[f ,(x)|:x eM ,|x| <3

Since f,(x)=g(x) foral xeMm

= sup{|f ;(x)|:x eM x| < =sup{|g(X)|:x eM,,[x|<T =|g|

= o> ]g]

Let x,,x,eM , then

g(xz)_g(xl): g(Xz—Xl)S|g(X2—Xl)|S||g||||X2—Xl||=||g||||(X2+XO)—(X1+X0)||

= 9(x;)=g0) <gx; +xo] +[al-0c+x0)] =g [x2 + %o+ g ¢ + %]

Thus —g(x,)—||g]|[x, + %o < =g (x,) +|g|[x, +x%,| -Since thisinequality holds for

arbitrary x,,x, e M , we see that sukﬁ){—g(y)—”g””y + X} < )ilg&{—g(y)+||g||||y +Xo|f
ye

Choose r, to be rea number such that
sup{-g (¥) ~[lgly +xo[} < 1o < inf {-g (y)+[g]ly +xq[}
ye

It followsthat —g(y)—||g]||y +Xo|<ro<-g(y)+|g](ly +x,| foral yem

Putting y :g, we have —g(g)—”g” D

X+X
a 0

sto<-a )+l <+x,

If a >0, then right hand inequality in (1) gives r, S—g(§)+||g||H§+x0

1 1
= rog—gg(x)+§||g||||x+ax0|| = gx)+ar, <|g||x +ax,]| = fo(x+ax,)<|gl|x +ax,|

= fo(z)<|9||z||, where z =x +ax,

<,

If a <0, then left hand inequality in (1) gives —g(g)—||g||H§+xo

1 1 1 1
= —59(X>—;‘|Igllllx+axo||2ro = —=90)+—[gx +ax =1 = ar<-g(x)+|g]lx+ax|

= g(x)+ar, <|g|||x +ax,| = f(z)<|g]|lz|, where z =x +ax,

Thus we have show that when a =0, then f(z) <||g|||z| foral zeMm,

Since g isbounded , then f, is bounded linear functional

Since |f,|=sup{|f,(x)]:x e M,||x| <3 then |f,|<|g]. It followsthat |f,|=]g]|
Case(2) : X iscomplex linear space, i.e. F =C

Let ubereal part of g, by lemma(5.1.1), wehaveu eM 'and g(x)=u(x)—iu(ix) for

al x eM . Moreover |g|=|u.By case(1), there exists u, e X * such that u,(x) =u(x)

foral x eM and |u,|=|u], S0 |g]=|uo|, Put f,(x)=uy(x)—iuy(ix) for x e X , by

lemma (6.2), we have f, e X" and |f,| = |u,|. Since |g|=|u.| = |[fo]=]9]
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Theorem (5.1.3)
Let M be asubspace of linear space X andletgeM’, then there exists f € X’ such that

f(x)=g(x) for all xeM .Moreover if X isanormed spacethen |f ||=|g]|
Proof :
Leto bethe collection of all ordered pairs (f,,M, ) such that
(i) M, isasubspaceof X and M <=M, (ii) f, e(M,)" suchthat f,(x)=g(x) for xe M
= G isnon-empty and partially ordered by
(f,,M,)<(f, M) oM, cM, & f,(0)=f,(x) VxeM,
Let @ ={(f,,M, )jbea totally ordered setin G . thenit iseasy to seethat ® hasan
upper bound (¥,uM, ) where¥(x)= f_(x) for all xe M, .By using Zorn's Lemma,
there exists amaximal element (f,H) in G. To complete the proof, we must show

that H = X.
Supposethat H = X , thenthereexists ae X suchthat ag¢H

Put H, =[H u{a}] by using first part in this proof, we have he H;, such that
h(x)= f(x) for all xe H,. But contradicts the maximally of (f,H) (f,H).
Consequently, we must have H = X and the proof is complete.

Theorem(5.1.4)
Let M beaproper subspace of area linear space X ,and let x, ¢ M ,then there

existsf e X' suchthat f(x,)=1and f(x)=0 forall xeM.
Proof :
Let M,=[MU{x,}|={m+l x,:meM,| eR}, then M, isasubspace of X .
Define g:M, >R, by g(x)=g(m+1x,)=1 foral xeM, .Wemust to prove
(1) gislinear:let x,yeM, and a,beR, x=m +l,x, and y=m, +1,x,
ax+by=a(m +1,%)+b(m, +1,x)=(@m +bm,)+(@l, +bl,)x,
glax+by)=(al,+bl ,)=ag(x)+bg(y) = geM;
(2) g(x,)=1and g(x)=0 for al xeM
since x, =0+(1)x, = g(x,)=1
Let xeM = x=x+(0)x, = g9g(X)=0
If M, =X, thenwefinish; either if M, = X, then M, isaproper subspace of X and
ge M/, by using theorem (5.1.3), there exists f € X’ suchthat f(x)=g(x) for all
xeM .Hence f(x,)=1and f(x)=0 foral xeM .
Corollary (5.1.5)
Let X bearea linear space. If x, e X suchthat f(x,)=0foral feX’,then x,=0

Proof :
Let x, =0

Put M ={0} = M isasubspaceof X and x, ¢ M .By using theorem (5.1.4), there
exists f e X’ suchthat f(x,)=1.Thiscontradiction = x,=0
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Definition(5.1.6)

Let X bealinear space over F. Thefunction p:X — R iscalled sub-linear

functional on X if

(1) p(x+y)< p(x)+ p(y) foral x,ye X (Sub-additivity)

(2) p(l x)=1p(x) foral xe X and foral | >0 (Positive homogeneity)

If in addition, P satisfies the condition

(3) P(x)>0 foral xe X, then P iscalled aconvex functional

A convex functional Pis said to be symmetric if we havep(l x)=|I |p(x) for all xe Xand | eR.

Example (5.1.7)
Let X =R" . Define P:X —»R by P(x):zn:|xi| forall x =(x,,---,x,)eR". Then P

is asub-linear functional on X and Convex Functiondl .

Theorem(5.1.8) Generalized Hahn-Banach Theorem

Suppose
(1) M isasubspace of a redl linear space X (2) P isasublinear functional on X
(3) ge M’ suchthat g(x)< p(x) for al xe M . Thenthereexists f e X' such that

(i) f(x)=g(x) foral xewm (ii) f(x)< p(x) foral xe X
Proof :

Letx, e M and M,=[M uU{x,}|={m+l x,:meM,| R}, then M, isasubspace of X.
Define f,:M, >R, by f (x)=f,(m+I x,)=g(m)+Ir,, r,eR
Itiseasy to seethat f, islinear and f,(x)=g(x) foral xeM
Now to prove: f,(x)< p(x) for al xe M,

Let m,m, eM

g(m,)-g(m) = g(m, —m) < p(m, —m;) = p((M, +X,) + (=M, =%,)) < P(M, + %) + P(=1M, — X,)
~g(m) - p(=m, - x,)<-g(m,)+ p(m, +x,) for &l m,m, e M

sothat supl-g(y)- pl-y -, )i <inf - g(y)+ p(y-+ )

Choose r, such that sup{- g(y)- p(- y—x,)}<r, < inf {~a(y)+ ply+x,)}
yeM (S

It followsthat —g(y)- p(-y-x,)<r, <—g(y)+ p(y+x,) (x) fordl yeM
Let xeM, = x=m+l X,
If 1 =0 = x=m, then f,(x)=g(m)< p(m)= p(x)

If1 =0, put y:lr—n = yeM in(x)to obtain

_g(lmj_p[_lm—onSros—gilmj+ p[|m+xoj (x) foral meMm

if | >0, then the right hand inequality in (++) gives r, < _lig(m)+|1 p(m+1%,) =
Ity <—g(m)+ p(m+1x,) = glm)+lr,<pm+ix) = f,(x)< p(x)
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and if | >0, then the right hand inequality in (=) gives _Ilg(m)+|1p(m+| X,)< T,

since | <0 ,then —g(m)+ p(m+1x,)>1r, = g(m)+1r, < p(m+1x,)
thuswhen | =0, obtain f,(x)< p(x) for all xeM . Thus f,eM; and f,(x)=g(x) for all
xe M . Hence f,(x)< p(x) foral xeM,.If M, =X complete proof, either if M, = X
Let G bethe collection of all ordered pairs (f,,M,) such that
(i) M, isasubspaceof X and M =M, (ii) f, (M) suchthat f (x)=g(x) for xe M
(iii) f,(x)< p(x) forall xeM, .

= G isnon-empty and partially ordered by
(f, M )<(f. M) oM, M, & f (x)=1f,(x) VxeM,
Let @ ={(f,,M,)bea totaly ordered setin G . then it is easy to see that ® hasan
upper bound (¥,uM, ) where¥(x)= f, (x) for all xe M, .By using Zorn's Lemma,
there exists amaximal element (f,H) in G. To complete the proof, we must show

that H = X .
Supposethat H = X , then thereexists ae X suchthat ag¢H

Put H, =[H u{aj] by using first part in this proof, we have he H; such that
h(x)= f(x) for all xe H,. But contradicts the maximally of (f,H) (f,H).

Consequently, we must have H = X and the proof is complete.
Remark

Let M beasubspace of a complex linear space X, such that
(1) Thefunction p:X — R satisfiesthe conditions

(i) p(x+y) < p(x)+ p(y) for al x,ye X (i) p(I x)=|l |p(x)foral xe Xandforall | eC
(2) geM’ suchthat g(x)<p(x) foral xem,
Then thereexists f e X’ such that
(i) f(x)=g(x) forall xem (i) |f (x)|<p(x) forall xe X
5.2 Minkowski' Functional
Definition(5.2.1)

Let A bean absorbing subset of alinear spaceX over F. The functional
m X >R, m(x)=inf{l >0:xel A foral xe X is called the Minkowski’s

functional of A.
It clear to show that
(1) m(x) <o foralxe X, becausethat A isan absorbing

(2) If xel A, then m,(x)<I .Ingspecia caseif y em,(x), then m,(y) < m,(x)

(3) If xel A forsomel >0, then m,(x)>1|

(4) If A isopenintopological linear space X, then | A={xe X . m,(x) <!}
Theorem(5.2.2)

Suppose P isaseminormon alinear space X over F.If A={xe X:P(x)<Z,then P=m,
Proof :
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Since A isconvex , absorbing, balanced set x e X
Since A is absorbing, thereexists | >0 suchthat xel A = m,(x) <I

ad|*xeA = p(l X<l = px<I| ,sothat m, <P
since P semi-norm, then P(x) >0, thereexist a such that 0<a < P(x)

= P@'X)>1 = a'xgA,sotha Px)<m(x) = P<m,. Hence P=m,
Theorem(5.2.3)

Suppose A isaconvex absorbing set in alinear space X over F . Define
H,(X)={l >0:xel A foral xeX.lfaeH,(x),thenbeH,(x) foral b >a.

Proof :
SinceaeH,(X) = xeaA = a'xeA

Since A isaconvex and 0,a *xe A,then b 'x=b™*(b-a)(0)+b"a(@*x)e A
= XebA = beH,(X
Theorem(5.2.4)

Suppose A isaconvex absorbing set in alinear space X over F. Then
(1) m, isasublinear functional.

(2) If B={xeX:m((X)<Zand C={xeX:m,(x)<},then Bc AcC and my=m, =m,
(3) If A isbaanced, then m, isaseminorm.

Proof :
(1) Let x,ye X.Forall e>0, thereexists |1, eH,(x) and | , e H,(y) such that

l,<m(x)+e and | , <m,(x)+e, then
(M) +€) e H, () and (my(y)+e) eH,(y), xe(m(x)+e)Aand ye(m,(y)+e)A
(m(x)+e)*xe A and (m,(y)+e)'ye A

Put | =(m,(x)+e)(m(x)+m(y)+2e)" = 0<I <1
since A isconvex
I (M(X)+e) ' x+@-1)(m(y)+e)'ye A = (M(X)+m(y)+2e) (x+y)eA
Itisclear to show that m,(0)=0. Let xe X and a >0, then
m,(@ x) =inf{l >0:a xel A} =inf{l >0:xea 'l AA=ainf{a 'l :xea 1 Al >0=am,(x)

(3) since A isabalanced set , then b *A=A for all b e F such that |b|=1
SO {I >0:axel AA={l >0:ja|xel A = m,(ax)=[a|m(x)= m, isasemi-normon X.
5.3 Separation Theorems For Nor med Spaces

theorem(5.3.1)
Let M beasubspace of anormed space X .if geM ", thenthereexists f € X * such that

f(x)=g(x) forall xeMand |f |=|g|

Proof :
Case (1): consider gisarea —linear functional on M

Define p:X — R by p(x)=|g]|x| foral x ex . Then pisasub linear .We also observe
la)|<|g|x|=p(x) foral x em . By theorem (5.1.8) , thereexists f X' such that (i)
f(x)=g(x) forall xem (ii) f(x)< p(x) foral xe X = f (x)<]|g||x]| foral xe X
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= [ (x)]=max{f (x),~f (x)} <|g||x|| foral xe X = f isboundedand |f |[<|g| = f eX"
Since f extends g ,so |f ||>]g| and therefore |f ||=||g] .
Case (2) : when gisacomplex —linear functional on M

Let uberea part of g, by lemma(5.1.1), wehaveueM "and g(x) =u(x)—iu(ix)
for all x eM . Moreover |g|=|u|.By case(1), there exists u, € X * such that
uy(x) =u(x) foral x em and |uy|=[u|, SO ||g|/=|u,|, Ut fo(x)=us(x)—iu,(ix) for
x eX , by lemma(5.1.2), wehave f,e X * and |f,| = |u,|. Since |g|=|u.| = |fo|=]9]
Theorem (5.3.2)
If x,isanon zero eement of anormed spaceX over F, thenthereexists f e X~
suchthat f (x,)=|x,| and ||f |=1. In particular X * separated pointson X , i.e. if
x,y eX suchthat x =y , thenthereexistsan f X * suchthatf (x)=f (y).

Proof :
Let M =[x,]={l x,:I eF}, then M, is asubspace of X .

Define g:M —F, by g(x)=g(l x,)=I |x,| foralx em
(1) gislinear: let x,,x,eM anda,beF = x,=1x, X,=1,X,
g@x,+bx,)=g(@l x,+bl x,)=g(@l ,+bl ,)x,) = (@l ,+bl ,)|x,|=al .o+ bl .%o
=ag(l xo)+bg(l x,)=ag(x,)+bg(x,)
= g islinear
(2) gisbounded: let xeM = x=Ix, = |[}x]|=| =] [[Xo]
|90)[=[g(t xo)|=[1 o] = [Ixo =[x [ <2[x| = g isbounded
(3) [oll=1: gl =suptlg (x)]:x e M ] <3
Since [g(x)| =[x = [g]=sup{fx[:x eM [x]<B =1
By corollary (5.3.1) exists f X * suchthat f(x)=g(x) foral xeMand |f |=|g]|
Since g (I xo)=1|x | forall eF .Putl =1 = g(x,)=|x,|
sincefg=1 = ff[-1
Now let x,y eX suchthat x #y = x,=x-y =0, then by above theorem, there
exists f e X suchthat f (x,)=|x,|
f(x-y)=x-y[|#0 = fX)-f(y)=0 = fx)=f(y).
Corollary (5.3.3)

LetX be anormed space and suppose f (x)=0 foral f eX ", then x =0

Proof :
Suppose x = 0. Then by theorem(6.11), there exists f € X * such that

f (x)=|jx|>0 which contradicts the hypothesis that f (x) =0 for all f eX *. Hence

we must have x =0.

Corollary (5.3.4)
LetX be anormed space and suppose, |x || =sup{|f (x)|:f eX " |f [=1 forall xeX .
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Proof :
If x =0, theconclusionistrivial. If x =0, thenfor al f X" with |f |=1 we
have
[F ool <[ N[ =[]
Since, by theorem(5.3.2), there exists f X * such that |f |=1and f (x) =|x||, the
result follows.

Theorem (5.3.5)
LetMm bea closed subspace of anormed spaceX and x, e X , but x, M .Then there

exists f eX " suchthat f (x,)=0 and f(x)=0 forall xeM .
Proof :
Consider the natural function p:X - X /M by p(x)=x+M ,thenp is

continuous linear function.
Let xeM = px)=x+M =M =0 (0 denote the zero vector M of X /M )

Alsosince x,¢M , wehave p(x,)=x,+M =0
Hence by theorem(5.3.2), there exists g e (X /N )" suchthat g(x,+M )=|x,+M =0
We now define f by f (x)=g(p(x)) for alx eX
(1) f islinear: Let x,yeX anda,beF
f@x+by)=g(p@x+by))=g(@x+by)+M)=g@x+M)+b(y +M))
f@ax+by)=ag(x+M)+bg(y +M)=ag(p(x))+bg(P(y))=af (x)+bf (y)

= f islinear
(2) f isbounded

[t 0al=lg e e <[glllp Cl < gl fl]
Since |p||<1 = [f x)|<|g|x| = f isbounded = f eX"
AlSO f (Xo)=0(P (X)) =g (X, +M )=[x,+M |=0 and
f(x)=g@PXx)=g(x+M)=g(0)=0 forall xem.
Theorem (5.3.6)
L et A be a nonempty open convex subset of anormed space X , and x,e X , but x, ¢ A.
Thenthereexistsan f e X * suchthat f (x)<f (x,) foral x eA.
Proof :
By trandlation, we may assumethat 0< A
Define P:X - R by P(x)=inf{l >0:x el A} foral xe X.
It isclear to show that P issub-linear and P(x) <1 iff x eA.
Let M, =[x,],i.e. M,={l x,:| eR} = M, issubspaceof X.
Define g:M, >R by f(Ix,)=1 fordll eR = geM, and g(x)<P(x) fordl xeM,
by using theorem (5.1.8), thereexist f e X' suchthat f(x)=g(x)foral x eM, and
and f (x)<P(x) foral xe X.
SinceAcX = f((x)<P(x) fordl xeA
Since P(x)<1iff xeA= fx)<ifordl xeA
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Since x,=1x,eM = f(x,)=0(%)=91x)=1 = f(x)<f(x,) foral xeA

It isclear to show that ker(f ) isclosed , then f iscontinuous = f eX”

Theorem (5.3.7)

Let A be a nonempty closed convex subset of anormed space X , and x,e X , but x,2A.
Thenthereexistsan f eX* and | eR suchthat f (x)<I <f (x,) foral x eA.

Proof :
Choose r >0 such that b, (x,) A =f

Let D=A+b,(0)

Since b, (0) isopen, then D isopen

Since A and b, (0) are convex , then D isconvex

Since x,eb, (x,) = X,2A

By theorem(5.3.6), there existsan f e X * such that f (x)<f (x,) foral xeD .
Since f isnot identically O, f (b) >0 for some b e b, (0)

Taking | =f (x,)-f (b), weseethat forall x eA, f (x)=f (x +b)—f (b) < <f (x,).
Theorem (5.3.8)

Let Aand B be convex sets of real normed X . If A iscompactin X and B is closed, then
thereis f e X'and | ,I ,eR suchthat f (x)<I,<l,<f(y) foral xe Aandforal yeB.

Pr oof :

Theorem (5.3.9)
Let Aand B be digoint, nonempty, convex sets of normed X suchthat A iscompact in
X and B isclosed, thenthereis f e X andl R suchthat f (x)>1 foral xe A and

f(y)<! fordl yeB.

5.4 Separation Theorems For Topological Linear Spaces

Theorem(5.4.1)
Let X beatopological linear space, x,e X.If VvV isaneghborhood of 0 in X such

that x, ¢V, thenthereis f e X" suchthat f(x,)=1and f(x)<1foral xeV.

Proof :
Since every neighborhood of 0 isabsorbing set, then v is absorbing convex set.
Define P:X - R by P(x)=inf{l >0:xelV} foral xe X.

Itisclear to show that P issub-linear and P(x)>0 for all xe X.

Let M, =[x,],i.e. M,={l x,:| eR} = M, issubspaceof X.

Define g:M, >R by f(Ix,)=1 fordll eR = geM, and g(x)<P(x) fordl xeMm,
by using theorem (5.1.8), there exist f € X’ such that f(x) = g(x)for al x em, and
~-P(-x)< f(x)<P(x) foral xeX.

Since x,=1x,eM = f(x,)=09(x,)=9(lLx,)=1

SinceV isopenset = 1V ={xeX:P(X)<l}

Ifl =1 = V={xeX:P(X)<},s0 f(x)<P(x)<1foral xeV.
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Let ye-V = -yeV = f(-y)<1l = f(y)>-1

Foral ye-v = |f(x|<1foral xew=vVn(-V)

Since Vv isaneighborhood of 0 in X = W isaneghborhood of 0 in X, then f
Is bounded function for some neighborhood wof 0 in X, so that by using theorem
(), wehave f isbounded function = f e X’ .

Theorem(5.4.2)
Let Aand B be digoint, nonempty, convex setsin atopological linear space X . If Ais
openin X, thenthereis f e X’and | eR suchthat f(x)<!| < f(y) foral xe A and for dll

yeB.
Proof :
Let x,=h,—a, wherea, e A, b,eB
LetV=A-B+x, = V=(A-3a,)-(B-b,)
Since A and B are convex sets, then v isconvex set
Since A isopenset,then Vv isopen set
Sincea,cA = 0=a,-3,cA-a,,ddS0b,eB = 0=b,—-b,eB-h,
= 0eV = V isaconvex neighborhood of 0 in X
To prove x, ¢V :let x, eV
= X €A-B+x, = 0=x,-%X,€A-B
since0=0-0 = 0cA0eB = 0eAnB = ANnB=f
Thiscontradiction = x, ¢V
By using theorem (5.4.1), thereexist f e X* suchthat f(x,)=1and f(z)<1foral zev
Now
For al xe Aandforal yeB
= X-y+X, eV = f(x-y+x)<l = fX)-Ff(y)+f(x)<l = f(x)<f(y) For
al xeAandforal yeB
Since A and B are non-empty digoint convex sets, then f(A), f(B) are digoint convex sets
in R suchthat f(A) < f(B)
Since every non constant convex functional on X isopenand A isopenin X ,then
f(A) isopenin R
Let | bearightlimitof f(A),i.e f(x)<I foral xeA
= f(X) <l <f(y) foral xeAandforal yeB
Coroallary (5.4.3)
Let Aand B be digoint, nonempty, convex setsin alocally convex X . If A iscompact
in X and B isclosed, thenthereis f e X’and |, ,eR suchthat f(x)<I,<l,<f(y) foradl

xe Aandforadl yeB.
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Exer cises(5)

5.1LetM bea closed subspace of anormed spaceX and x, e X , but x, M .Then there
exists f eX " suchthat f (x,)=d ,|f|=1and f(x)=0 for al xeM whered =d(x,,M),
I.e. d isthedistancefrom x, to M .

5.2LetM bea closed subspace of anormed spacex and x,e X , but x, M .Then there

exists f e X * suchthat f (x,)=1,|f ||=di and f(x)=0 for al xeM ,whered =d(x,,M),

5.3 Let M be asubspace of alocally convex space X and x,eX . If x,M thenthere
exists f eX " suchthat f (x,)=1,but f (x)=0 foral xem.

54 1f X isalocally convex spacethen X * separated pointson X .

5,5Let M beasubspace of alocally convex space X and x,eX . If x,eM then f (x,)=0
for every continuous linear functional f on X that vanisheson M .

5.6 Let M be asubspace of alocally convex space X . If geM ", then there existsf e X~
Such that f(x)=g(x) foral xeM.

5.7 Suppose A isaconvex, balanced, closed set in alocally convex space X , x,e X , but
X, 2A. Thenthereexists f e X suchthat |f (x)|<1 forall x eA ,but f (x,)>1

5.8 Suppose b isaconvex balanced local base in atopological linear space X . Associate to
every vV eb itsMinkowski functional ny . Show that {my v eb} isaseparating family of
continuous seminormson X .

5.9 Suppose G isaseparating family of seminorms on alinear space X . Associate to each

P G and each positiveinteger nthesetv (P,n)={x e X :P(x)<%}. Let b bethe

collection of al finite intersections of al the setsv (P,n). Show that b isaconvex
balanced local base for topology t onX , which turnsinto alocally convex space such that
(1) Every P egiscontinuous, and (2) set Ac X isboundediff every P G isbounded on A .
5.10 Show that atopological linear space X isnormable iff its has origin has a convex
bounded neighborhood.
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