تحليل دالي
 3: $\quad 1: \quad 3$:

7. Fundamental Theorems For Normed Spaces

7.1 Riesz Representation

Theorem(7.1.1) Riesz lemma
Let M be closed proper subspace of a normed space X, and let λ be a real number such that $0<\lambda<1$. Then there exists a vector $x_{\lambda} \in X$ such that $\left\|x_{\lambda}\right\|=1$ and $\left\|x-x_{\lambda}\right\| \geq \lambda$ for all $x \in M$.
Proof :
Since M be closed proper subspace of $X \Rightarrow M \neq X \quad \Rightarrow$ there exists $x_{0} \in X$ such that $x_{0} \notin M$
Let $d=d\left(x_{0}, M\right)$, i.e. $d=\inf \left\{\left\|x-x_{0}\right\|: x \in M\right\}$
Since $x_{0} \notin M \Rightarrow d>0$ (because if $d=0$, then $x_{0} \in M$), Since $0<\lambda<1 \Leftarrow \frac{d}{\lambda}>d$
By the definition of infimum, there exists $x_{1} \in M$ such that $d<\left\|x-x_{1}\right\| \leq \frac{d}{\lambda}$
Let $x_{\lambda}=k\left(x_{0}-x_{1}\right)$ where $k=\left\|x_{0}-x_{1}\right\|^{-1}>0$ (note that $x_{0} \neq x_{1}$)
Then $\left\|x_{\lambda}\right\|=\left\|k\left(x_{0}-x_{1}\right)\right\|=k\left\|\left(x_{0}-x_{1}\right)\right\|=k \times k^{-1}=1$
Now let $x \in M \Rightarrow k^{-1} x+x_{1} \in M$
$\Rightarrow\left\|x-x_{\lambda}\right\|=\left\|x-k\left(x_{0}-x_{1}\right)\right\|=k\left\|\left(k^{-1} x+x_{1}\right)^{2}-x_{0}\right\| \geq k d$
By (1), we have $\frac{1}{k} \leq \frac{d}{\lambda}$, so $k d \geq \lambda$, hence $\left\|x-x_{\lambda}\right\| \geq \lambda$ for all $x \in M$.

Theorem(7.1.2)

Let X be a normed space, and suppose the $A=\{x \in X:\|x\|=1\}$ is compact. Then X is finite dimensional.

Proof:

We know that in metric space, a subset is compact iff it is sequentially compact, i.e. iff every sequence has a convergent subsequence.
Suppose that X is not finite dimensional.
Choose $x_{1} \in A$, and let M_{1} be the subspace spanned by x_{1}, i.e. $M_{1}=\left[x_{1}\right]=\{\lambda x: \lambda \in F\}$
Then M_{1} is a proper subspace of X
Since M_{1} is finite dimensional $\Rightarrow M_{1}$ is complete, so that M_{1} is closed.
Hence by Reisz-lemma there exists a vector $x_{2} \in A$ such that $\left\|x_{2}-x_{1}\right\| \geq \frac{1}{2}$

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Let M_{2} be the closed proper subspace of X generated by $\left\{x_{1}, x_{2}\right\}$, then as before, there must exist $x_{3} \in A$ such that $\left\|x_{3}-x\right\| \geq \frac{1}{2}$ for all $x \in M_{2}$.
This sequence can therefore have no convergent subsequence. But this contradicts the hypothesis A compact. Hence X must be finite dimensional.
Theorem(7.1.3)
Let x_{0} be a fixed vector in a Hilbert space X and let $f_{x_{0}}: X \rightarrow F$ be a function defined by $f_{x_{0}}(x)=\left\langle x, x_{0}\right\rangle$ for all $x \in X$, then $f_{x_{0}} \in X^{*}$ and $\left\|f_{x_{0}}\right\|=\left\|x_{0}\right\|$

Proof :

Let $x, y \in X$ and $\alpha, \beta \in F$
$f_{x_{0}}(\alpha x+\beta y)=\left\langle\alpha x+\beta y, x_{0}\right\rangle=\alpha\left\langle x, x_{0}\right\rangle+\beta\left\langle y, x_{0}\right\rangle=\alpha f_{x_{0}}(x)+\beta f_{x_{0}}(y) \Rightarrow \hat{f}_{x_{0}} \in X^{\prime}$
To prove $f_{x_{0}}$ is continuous. For every $x \in X$, we have $f_{x_{0}}(x) \xi\left\{x, x_{0}\right\rangle$
$\Rightarrow\left|f_{x_{0}}(x)\right|=\left|\left\langle x, x_{0}\right\rangle\right| \leq\|x\|\left\|x_{0}\right\|$
Let $\left\|x_{0}\right\|=k \Rightarrow k>0$. Therefore we have $\left|f_{x_{0}}(x)\right| \leq k\|x\|$ for all $x \in X$
Therefore the function $f_{x_{0}}$ is bounded and every bounded function is continuous.
Hence $f_{x_{0}}$ is functional on X and so $f_{x_{0}} \in X^{*}$
Now we shall show that $\left\|f_{x_{0}}\right\|=\left\|x_{0}\right\|$. As shown above, for every $x \in X$ we have $\left|f_{x_{0}}(x)\right| \leq\|x\|\left\|x_{0}\right\|$
Now by definition, $\left\|f_{x_{0}}\right\|=\sup \left\{f_{x_{0}}(x) \mid ;\|x\| \leq 1\right\}$
If $\|x\| \leq 1 \Rightarrow\|x\|\left\|x_{0}\right\| \leq\left\|x_{0}\right\|$ and therefore (1) gives $\left|f_{x_{0}}(x)\right| \leq\left\|x_{0}\right\|$ for all $x \in X$ such that
$\|x\| \leq 1$
$\Rightarrow \sup \left\{\left|f_{x_{0}}(x)\right|:\|x\| \leq 1\right\} \leq\left\|x_{0}\right\| \Rightarrow\left\|f_{x_{0}}\right\| \leq\left\|x_{0}\right\|$
If $x_{0}=0 \Rightarrow\left\|x_{0}\right\|=0$. Also $f_{x_{0}}(x)=\left\langle x, x_{0}\right\rangle=\langle x, 0\rangle=0 \Rightarrow f_{x_{0}}(x)=0$ for all $x \in X$
Let us now take $x_{0} \neq 0 \Rightarrow X \neq\{0\}$, we have $\left\|f_{x_{0}}\right\|=\sup \left\{f_{x_{0}}(x):\|x\|=1\right\}$
$\left\|f_{x_{0}}\right\|=\sup \left\{f_{f_{8}}(x) \mid:\|x\|=1\right\}$
Put $z=\frac{x_{0}}{\left\|x_{0}\right\|} \Rightarrow\|z\|=1$
$f_{x_{0}}(z)=\left\langle z, x_{0}\right\rangle=\left\langle\frac{x_{0}}{\left\|x_{0}\right\|}, x_{0}\right\rangle=\frac{1}{\left\|x_{0}\right\|}\left\langle x_{0}, x_{0}\right\rangle=\frac{1}{\left\|x_{0}\right\|}\left\|x_{0}\right\|^{2}=\left\|x_{0}\right\|$
But $\left\|f_{x_{0}}\right\| \geq\left\|f_{x_{0}}(z)\right\| \Rightarrow\left\|f_{x_{0}}\right\| \geq\left\|x_{0}\right\|$
From (2),(3), we have $\left\|f_{x_{0}}\right\|=\left\|x_{0}\right\|$

تحليل دالي Functional Analysis
 3: 1: 3:

Remark

From this theorem we conclude that the function $\psi: X \rightarrow X^{*}$ such that $\psi\left(x_{0}\right)=f_{x_{0}}$ is a norm preserving function.

Theorem(7.1.4)

Let X be a Hilbert space, and let $f \in X^{*}$. Then there exists a unique vector x_{0} in X such that $f=f_{x_{0}}$, i.e. $f(x)=\left\langle x, x_{0}\right\rangle$

Proof :

If f is a zero functional, then $f(x)=0$ for $x \in X$, then $x_{0}=0$ is such that $f(x)=\left\langle x, x_{0}\right\rangle$ for all $x \in X$. Now suppose that f is not zero functional, i.e. $f(x) \neq 0$ for some $x \in X$.
Let $M=\operatorname{ker}(f) \Rightarrow M=\{x \in X: f(x)=0\}$, then M is a proper subspace of X.
Since f is continuous, then M is closed, hence M is a proper closed subspace of X.
Therefore there exists a non-zero vector $y_{0} \in X$ such that $y_{0} \perp M$
$\Rightarrow y_{0} \in M^{\perp} \Rightarrow y_{0} \notin M$ (if $y_{0} \in M$, then $y_{0}=0$ this contradiction) $\Rightarrow f\left(y_{0}\right)=0$
Put $x_{0}=\alpha y_{0}$ such that $\alpha=\frac{\overline{f\left(y_{0}\right)}}{\left\|y_{0}\right\|^{2}} \Rightarrow \bar{\alpha}=\frac{f\left(y_{0}\right)}{\left\|y_{0}\right\|^{2}}$, then
$f\left(y_{0}\right)=\bar{\alpha}\left\|y_{0}\right\|^{2}=\bar{\alpha}\left\langle y_{0}, y_{0}\right\rangle=\left\langle y_{0}, \alpha y_{0}\right\rangle=\left\langle y_{0}, x_{0}\right\rangle$
If $m \in M \Rightarrow f(m)=0$
Since $y_{0} \perp M \Rightarrow\left\langle m, y_{0}\right\rangle=0 \Rightarrow \bar{\phi}\left\langle m, y_{0}\right\rangle=0 \Rightarrow\left\langle m, \bar{\alpha} y_{0}\right\rangle=0$
$\Rightarrow\left\langle m, x_{0}\right\rangle=0 \Rightarrow f(m)=\left\langle m, x_{0}\right\rangle$
Now. If $x \in X$, then $f(x)=\frac{f(x)}{f\left(y_{0}\right)} f\left(y_{0}\right)=\beta f\left(y_{0}\right), \quad \beta=\frac{f(x)}{f\left(y_{0}\right)}$
$f(x)-\beta f\left(y_{0}\right)=0 \Rightarrow f\left(x-\beta y_{0}\right)=0 \Rightarrow x-\beta y_{0} \in M$
Put $m=x-\beta y_{0} \Rightarrow x=m+\beta y_{0}$
$f(x)=f\left(m+\beta y_{6}\right)=f(m)+\beta f\left(y_{0}\right)=\left\langle m, x_{0}\right\rangle+\beta\left\langle y_{0}, x_{0}\right\rangle=\left\langle m+\beta y_{0}, x_{0}\right\rangle=\left\langle x, x_{0}\right\rangle$
To prove unique.
Suppose $x_{1}, x_{2} \in X$ such that $f(x)=\left\langle x, x_{1}\right\rangle$ for all $x \in X$ and $f(x)=\left\langle x, x_{2}\right\rangle$ for all $x \in X$
$\Rightarrow\left\langle x, x_{1}\right\rangle=\left\langle x, x_{2}\right\rangle$ for all $x \in X \Rightarrow\left\langle x, x_{1}-x_{2}\right\rangle=0$ for all $x \in X$
Since $x_{1}-x_{2} \in X \quad \Rightarrow\left\langle x_{1}-x_{2}, x_{1}-x_{2}\right\rangle=0 \Rightarrow x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2}$.

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Theorem(7.1.5)

Let x_{0} be a fixed vector in a Hilbert space X, and let $f_{x_{0}}$ be a functional on X defined by $f_{x_{0}}=\left\langle x, x_{0}\right\rangle$ for all $x \in X$, then $f_{x_{0}}$ is continuous linear functional on X, and $\left\|x_{0}\right\|=\left\|f_{x_{0}}\right\|$ Proof: H.w

Theorem(7.1.6)

Let X be a Hilbert space, and let $\psi: X \rightarrow X^{*}$ defined by $\psi(f)=f_{y}$ such that $f, f=\langle x, y\rangle$ for all $x \in X$. Then ψ is one-to-one, onto, additive but not linear, and an Isometry.

Proof :

(1) ψ is one-one : Let $y_{1}, y_{2} \in X$ such that $\psi\left(y_{1}\right)=\psi\left(y_{2}\right) \Rightarrow f_{y_{1}}=f_{y_{2}}$.

$$
\left.\Rightarrow f_{y_{1}}(x)=f_{y_{2}}(x) \text { for all } x \in X \quad \Rightarrow\left\langle x, y_{1}\right\rangle=\left\langle x, y_{2}\right\rangle \text { for all } x \in X^{2}\right\rangle \Rightarrow\left\langle x, y-y_{2}\right\rangle=0
$$

for all $x \in X$
Since $y_{1}-y_{2} \in X \quad \Rightarrow\left\langle y_{1}-y_{2}, y_{1}-y_{2}\right\rangle=0 \Rightarrow y_{1}-y_{2}=0 \Rightarrow y_{1}=y_{1} \Rightarrow \psi$ is one-one
(2) ψ is onto : Let $f \in X^{*}$ by theorem(7.1.4), there exists a unique vector x_{0} in X such that $f(x)=\left\langle x, x_{0}\right\rangle$ for all $x \in X$, i.e. $f=f_{x_{0}}$ this mean $\psi\left(x_{0}\right)=f_{x_{0}}=f \Rightarrow \psi$ is onto, so that ψ is bijective
(3) ψ is additive : Let $y_{1}, y_{2} \in X \Rightarrow \psi\left(y_{1}+y\right)=f_{y_{1}+y_{2}}$

Now for every $x \in X$, we have $f_{y_{1}+y_{2}}(x)=\left\langle x, y_{1}+y_{2}\right\rangle=\left\langle x, y_{1}\right\rangle+\left\langle x, y_{2}\right\rangle=f_{y_{1}}(x)+f_{y_{2}}(x)=\left(f_{y_{1}}+f_{y_{2}}\right)(x)$
$\Rightarrow f_{y_{1}+y_{2}}=f_{y_{1}}+f_{y_{2}} \Rightarrow \psi\left(y_{1}+y_{2}\right)=\psi\left(y_{1}\right)+\psi\left(y_{2}\right) \Rightarrow \psi$ is additive.
(4) ψ is not linear : Let $y \in X, \alpha \in F$
$\psi(\alpha y)=f_{\alpha y}, \quad f_{\alpha y}(x)=\langle x, y)-\bar{\alpha}\langle x, y\rangle=\bar{\alpha} f_{y}(x) \Rightarrow f_{\alpha y}=\bar{\alpha} f_{y} \Rightarrow \psi(\alpha y)=\bar{\alpha} \psi(y)$
$\Rightarrow \psi$ is not linear
(5) ψ is an Isometry Let $y_{1}, y_{2} \in X$
$\left\|\psi\left(y_{1}\right)-\psi\left(y_{2}\right)\right\| f=\left\|f_{y_{1}}-f_{y_{2}}\right\|=\left\|f_{y_{1}}+f_{-y_{2}}\right\|=\left\|f_{y_{1}+\left(-y_{2}\right)}\right\|=\left\|f_{y_{1}-y_{2}}\right\|=\left\|y_{1}-y_{2}\right\|$
By theorem(8.14), we have $\|y\|=\left\|f_{y}\right\| \Rightarrow \psi$ is an Isometry.

Remark

In our further discussion we shall represent the functionals in X^{*} by $f_{x}, f_{y}, f_{z}, \cdots$ where x, y, z, \cdots are their corresponding vectors in X.

Theorem(7.1.7)

If X is a Hilbert space, then X^{*} is also a Hilbert space with respect to the inner product defined by $\left\langle f_{x}, f_{y}\right\rangle=\langle y, x\rangle$.

Proof :

(1) To prove X^{*} is a pre-Hilbert space

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

(i) let $f_{x} \in X^{*}$, then $\left\langle f_{x}, f_{x}\right\rangle=\langle x, x\rangle=\|x\|^{2} \geq 0$
(ii) $\left\langle f_{x}, f_{y}\right\rangle=0 \Leftrightarrow\|x\|^{2}=0 \Leftrightarrow\left\|f_{x}\right\|^{2}=0 \Leftrightarrow f_{x}=0$
(iii) let $f_{x}, f_{y} \in X^{*}$, then $\overline{\left\langle f_{x}, f_{y}\right\rangle}=\overline{\langle y, x\rangle}=\langle x, y\rangle=\left\langle f_{y}, f_{x}\right\rangle$
(iv) let $f_{x}, f_{y}, f_{z} \in X^{*}$ and let $\alpha, \beta \in F$, then
$\left\langle\alpha f_{x}+\beta f_{y}, f_{z}\right\rangle=\left\langle f_{\bar{\alpha} x}+f_{\bar{\beta} y}, f_{z}\right\rangle=\left\langle f_{\bar{\alpha} x+\bar{\beta} y}, f_{z}\right\rangle=\langle z, \bar{\alpha} x+\bar{\beta} y\rangle=\alpha\langle z, x\rangle+\beta\langle z, y\rangle=\alpha\left\langle f_{x}, f_{z}\right\rangle+\beta\left\langle f_{y}, f_{z}\right\rangle$
$\Rightarrow X^{*}$ is a pre-Hilbert space
(2) To prove X^{*} is complete

Since X is a Hilbert space, then X is a normed space, so X^{*} is complete.
$\Rightarrow \quad X^{*}$ is a Hilbert space.

Corollary(7.1.8)

If we denote the elements of $X^{* *}$ by F_{f}, G_{g}, \cdots where f, g are their corresponding elements in X^{*}, then by theorem(), we conclude that $X^{* *}$ is also a Hilbert space with respect to the inner product defined by $\left\langle F_{f}, G_{g}\right\rangle=\langle g, f\rangle$.

7.2 Strong and Weak Convergence

Convergence of sequence of elements in a normed space was defined in section 3, from now on, will be called strong convergence, to distinguish it from " weak convergence" to be introduced shortly. Hence we first state

Definition(7.2.1)

A sequence $\left\{x_{n}\right\}$ in a normed space X is said to be Strongly convergent (or convergent in the norm) if there is an $x \in X$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. This is written $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$.
The element x is called the strong limit of $\left\{x_{n}\right\}$, and we say that $\left\{x_{n}\right\}$ converges strongly to x. Weak convergence is defined in terms of bounded linear functionals on X as follows.
Definition(7.2.2)
A sequence $\left\{x_{n}\right\}$ in a normed space X is said to be Weakley Convergent if there is an $x \in X$ such that for every $f \in X^{*}$, we have $f\left(x_{n}\right) \rightarrow f(x)$. This is written $x_{n} \xrightarrow{w} x$. The element x is called the weak limit of $\left\{x_{n}\right\}$, and we say that $\left\{x_{n}\right\}$ converges weakly to x.

Theorem(7.2.3)

Let $\left\{x_{n}\right\}$ be a weakly convergent sequence in a normed space X, say $x_{n} \xrightarrow{w} x$
(1) The weak limit x of $\left\{x_{n}\right\}$ is unique.
(2) Every subsequence of $\left\{x_{n}\right\}$ converges weakly to x.
(3) The sequence $\left\{\left\|x_{n}\right\|\right\}$ is bounded.

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

Proof :

(1) Suppose that $x_{n} \xrightarrow{w} x, y_{n} \xrightarrow{w} y$. To prove that $x=y$

$$
\text { Let } f \in X^{*} \Rightarrow f\left(x_{n}\right) \rightarrow f(x), \quad f\left(x_{n}\right) \rightarrow f(y)
$$

Since the limit is unique, we have $f(x)=f(y)$ for all $f \in X^{*}$
$\Rightarrow f(x-y)=0$ for all $f \in X^{*} x-y=0 \Rightarrow x=y$.
(2) Since $\left\{f\left(x_{n}\right)\right\}$ is convergent sequence in F for all $f \in X^{*}$, so that every subsequence of $\left\{f\left(x_{n}\right)\right\}$ converges and has the same limit as the sequence.
(3) Since $\left\{f\left(x_{n}\right)\right\}$ is convergent sequence in F for all $f \in X^{*} \Rightarrow\left\{f\left(x_{n}\right)\right\}$ is bounded
\Rightarrow there exists $M_{f}>0$ such that $\left|f\left(x_{n}\right)\right| \leq M_{f}$ for all n, where M_{f} is a coinstant
depending of f but not on n. Using the canonical function $\psi: X \rightarrow X^{* * *}$, we can define $g_{n} \in X^{* *}$ by $g_{n}(f)=f\left(x_{n}\right)$ for all $f \in X^{*}$. Then for all $n,\left|g_{n}(f)\right|=\left|f\left(x_{n}\right)\right| \leq M_{g}$ that is, the sequence $\left.\left\{\mid g_{n}(f)\right\}\right\}$ is bounded for every $f \in X^{*}$.
Since X^{*} is complete (X^{*} is Banach space $) \Rightarrow\left\{\left\|g_{n}\right\|\right\}$ is bounded.
Now since $\left\|g_{n}\right\|=\left\|x_{n}\right\| \Rightarrow\left\{\left\|x_{n}\right\|\right\}$ is bounded.
Theorem (7.2.4)
If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequence in a normed space X such that $x_{n} \xrightarrow{w} x, y_{n} \xrightarrow{w} y$, then
(1) $x_{n}+y_{n} \xrightarrow{w} x+y$
(2) $\lambda x_{n} \xrightarrow{w} x+y$ for all $\lambda \in F$.

Proof : obvious
Theorem(7.2.5)
Let $\left\{x_{n}\right\}$ be a sequence in a normed space X such that $x_{n} \rightarrow x$, then $x_{n} \xrightarrow{w} x$ and the converse not true.

Proof:

Since $x_{n} \rightarrow x \Rightarrow\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$
Let $f \in X^{*} \Rightarrow\left|f^{*}\left(x_{n}\right)-f(x)\right|=\left|f\left(x_{n}-x\right)\right| \leq\|f\|\left\|x_{n}-x\right\|$
$\Rightarrow\left|f\left(x_{n}\right)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty \quad \Rightarrow x_{n} \xrightarrow{w} x$.
Example for the converse : Let X be a Hilbert space over F and let $f \in X^{*}$. By using
Riesz representation, there exists $x_{0} \in X$ such that $f(x)=\left\langle x, x_{0}\right\rangle$ for all $x \in X$.
Let $\left\{x_{n}\right\}$ be an orthonormal sequence in $X \Rightarrow f\left(x_{n}\right)=\left\langle x_{n}, x_{0}\right\rangle$.
Now the Bessel inequality is $\sum_{i=1}^{\infty}\left|\left\langle x_{n}, x_{0}\right\rangle\right| \leq\left\|x_{0}\right\|^{2}$
Hence the series on the left converges, so that its terms must approach zero as $n \rightarrow \infty$.
i.e. $\left|\left\langle x_{n}, x_{0}\right\rangle\right| \rightarrow 0$ as $n \rightarrow \infty$. This implies $f\left(x_{n}\right)=\left\langle x_{n}, x_{0}\right\rangle \rightarrow 0$
since $f \in X^{*} \Rightarrow x_{n} \xrightarrow{w} 0$, but $\left\{x_{n}\right\}$ does not converge to zero. because

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

$\left\|x_{n}-x_{m}\right\|^{2}=\left\langle x_{n}-x_{m}, x_{n}-x_{m}\right\rangle=\left\|x_{n}\right\|^{2}+\left\|x_{m}\right\|^{2}=1+1=2, \quad n \neq m$.
Theorem(7.2.6)
Let $\left\{x_{n}\right\}$ be a sequence in a finite dimensional normed space X such that $x_{n} \xrightarrow{w} x$, then $x_{n} \rightarrow x$.

Proof :

Let $\operatorname{dim} X=m$ and let $\left\{x_{1}, \cdots, x_{m}\right\}$ be any basis for X
Since $x \in X \quad \Rightarrow \quad x$ has unique representation $x=\sum_{i=1}^{m} \lambda_{i} x_{i}, \quad \lambda_{i} \in F$
Also $x_{n} \in X \quad \Rightarrow \quad x_{n}$ has unique representation $x_{n}=\sum_{i=1}^{m} \lambda_{i n} x_{i}, \quad \lambda_{i n} \in F$
Define $f_{i}: X \rightarrow F$ by $f_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}0 & i \neq j \\ 1 & i=j\end{array}\right.$. It is clear to show that $f_{i} \in X^{*}$ for all $i=1, \cdots, n$
since $x_{n} \xrightarrow{w} x \Rightarrow f_{i}\left(x_{n}\right) \rightarrow f_{i}(x)$ as $n \rightarrow \infty$
since $f_{i}(x)=\lambda_{i}, f_{i}\left(x_{n}\right)=\lambda_{i n} \Rightarrow \lambda_{i n} \rightarrow \lambda_{i}$ as $n \rightarrow \infty \Rightarrow\left|\lambda_{i n}-\lambda_{i}\right| \rightarrow 0$ as $n \rightarrow \infty$
$\left\|x_{n}-x\right\|=\left\|\sum_{i 1}^{m} \lambda_{i n} x_{i}-\sum_{i 1}^{m} \lambda_{i} x_{i}\right\|=\left\|\sum_{i 1}^{m}\left(\lambda_{i n}-\lambda_{i}\right) x_{i}\left|\leq \sum_{z i=1}^{m}\right| \lambda_{i n}-\lambda_{i}\right\|\left\|x_{i}\right\|$
$\Rightarrow\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty \Rightarrow x_{n} \rightarrow x$ äs $n \rightarrow \infty$.

Definition(7.27)

Let X and Y be normed spaces over F, and let $\left\{f_{n}\right\}$ be a sequence in $B(X, Y)$. A sequence $\left\{f_{n}\right\}$ is said to be
(1) Uniformly Convergent if $\left\{f_{n}\right\}$ converges in the norm on $B(X, Y)$. i.e.

If there exists $f \in \mathcal{L}(X, Y)$ such that $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$
(2) Strongly Convergent if $\left\{f_{n}(x)\right\}$ converges strongly in Y for every $x \in X$, i.e.

If there exists $f \in L(X, Y)$ such that $\left\|f_{n}(x)-f(x)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for every $x \in X$.
(3) Weakly Convergent if $\left\{f_{n}(x)\right\}$ converges weakly in Y for every $x \in X$, i.e.

If there exists $f \in L(X, Y)$ such that $\left\|g\left(f_{n}(x)\right)-g(f(x))\right\| \rightarrow 0$ as $n \rightarrow \infty$ for every $x \in X$, and for every $g \in X^{*}$.
Itis not difficult to show that (1) \Rightarrow (2) \Rightarrow (3), but the converse is not generally true, as can be seen from the following examples.
Example (7.2.8)
(1) In the space ℓ^{2} we consider a sequence $\left\{f_{n}\right\}$, where $f_{n}=\ell^{2} \rightarrow \ell^{2}$ is defined by

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

$$
f_{n}(x)=\left(0,0, \cdots, 0, x_{n+1}, x_{n+2}, \cdots\right)
$$

where $x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2} \Rightarrow f_{n} \in B\left(\ell^{2}\right)$ for all n.
$\left\{f_{n}\right\}$ is strongly convergent to 0 . (because $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$), but $\left\{f_{n}\right\}$ is not uniformly convergent (because $\left\|f_{n}-0\right\|=\left\|f_{n}\right\|=1$)
(2)) In the space ℓ^{2} we consider a sequence $\left\{f_{n}\right\}$, where $f_{n}=\ell^{2} \rightarrow \ell^{2}$ is defined by

$$
f_{n}(x)=\left(0,0, \cdots, 0, x_{1}, x_{2}, \cdots\right)
$$

where $x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2} \Rightarrow f_{n} \in B\left(\ell^{2}\right)$ for all n.
We show that $\left\{f_{n}\right\}$ is weakly convergent to 0 , but not strongly convergent
Let $g \in\left(\ell^{2}\right)^{*} \Rightarrow g$ is bounded linear functional on ℓ^{2}. By Riesz representation there is $y \in \ell^{2}$ such that $g(x)=\langle x, z\rangle$ where $x \in \ell^{2}$.
$\Rightarrow g(x)=\sum_{i=1}^{\infty} x_{i} \bar{y}_{i}$ where $x=\left(x_{1}, x_{2}, \cdots, 1, y_{1}, y_{2}, 0\right) \in \ell^{2}$
$g\left(f_{n}(x)\right)=\sum_{i=n+1}^{\infty} x_{i-n} \bar{y}_{i}=\sum_{k=1}^{\infty} x_{k} y_{n+k}$. by the Cauchy-Schwarz inequality, we have $\mid g\left(\left.f_{n}(x)\right|^{2}=\left|\sum_{k=1} x_{n} y_{n+k}\right|^{2} \leq\left(\sum_{k=1}\left|x_{k}\right|^{2}\right)\left(\sum_{m=n+1}\left|y_{m}\right|^{2}\right)\right.$
The last series is the remainder of a convergent series. Hence the right-hand side approaches 0 as $n \rightarrow \infty$. Thus $g\left(f_{n}(x)\right) \longrightarrow 0 \Rightarrow\left\{f_{n}\right\}$ is weakly convergent to 0 .
However $\left\{f_{n}\right\}$ is not strongly convergent because for $x=(1,0,0, \cdots)$ we have $\left\|f_{m}(x)-f_{n}(x)\right\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}, \quad n \neq m$.

Definition(7.2.9)

Let X be normed space oyer F, and let $\left\{f_{n}\right\}$ be a sequence in X^{*}. A sequence $\left\{f_{n}\right\}$ is said to be
(1) Strong Convergent, if there is an $f \in X^{*}$ such that $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$. This written $f_{n} \rightarrow f$. The function f is called the strong limit of $\left\{f_{n}\right\}$
(2) Weak* Convergence, if there is an $f \in X^{*}$ such that $f_{n}(x) \rightarrow f(x)$ for all $x \in X$. This written $: f_{n} \xrightarrow{W^{*}} f$. The function f is called the Weak* limit of $\left\{f_{n}\right\}$

Example (7.2.10)

The space X of all sequences $x=\left(x_{n}\right)$ in ℓ^{2} with only finitely many nonzero terms, taken with metric on ℓ^{2} is not complete. A function $f_{n}: X \rightarrow X$ is defined by $f_{n}(x)=\left(x_{1}, 2 x_{2}, 3 x_{3}, \cdots, n x_{n}, x_{n+1}, x_{n+2}, \cdots\right)$
So that $f_{n}(x)$ has terms $m x_{m}$ if $m \leq n$ and x_{m} if $m>n$.

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

This sequence $\left\{f_{n}\right\}$ converges strongly to the unbounded linear function f defined by $f(x)=\left(y_{i}\right)$ where $y_{i}=i x_{i}$.

Theorem(7.2.11)

Let X and Y be normed spaces over F, and let $\left\{f_{n}\right\}$ be a sequence in $B(X, Y)$. If X is a Banach and the X is bounded in Y for all $x \in X$, then the sequence $\left\{\mid f_{n} \|\right\}$ is bounded.
Proof:
Let k be natural number. Define A_{k} by $A_{k}=\left\{x \in X:\left\|f_{n}(x)\right\|<k\right\}$
First : To prove A_{k} is closed
Let $x \in \bar{A}_{k} \Rightarrow$ there exists a sequence $\left\{x_{n}\right\}$ in A_{k} such that $x_{m} \rightarrow \dot{x}$ as $m \rightarrow \infty$
Since $x_{m} \in A_{k} \Rightarrow$ for all n, we have $\left\|f_{n}\left(x_{m}\right)\right\|<k$
Since f_{n} is continuous, then for all n, we have $\left\|f_{n}(x)\right\|<k^{\prime} \circ{ }^{*} x \in A_{k} \Rightarrow \bar{A}_{k} \subset A$
But $A_{k} \subseteq \bar{A}_{k} \Rightarrow \subset \bar{A}_{k}=A_{k} \Rightarrow A_{k}$ is closed
Since $\left\{f_{n}(x)\right\}$ is bounded in Y for all $x \in X$., then for all n, there exists k_{x} such that $\left\|f_{n}(x)\right\| \leq k_{x}$
For all $n \Rightarrow x \in A_{k}$ for some k, so that $X=\bigcup_{k=1}^{\infty} A_{k}{ }^{2}$
Since X is complete, by Baires theorem, A_{k} contain open ball, say $B_{r}\left(x_{0}\right) \subset A_{k_{0}}$
Let x be non zero element in X.
Put $\lambda=\frac{r}{2\|x\|}, y=x_{0}+\lambda x \quad\left\|y-x_{0}\right\|<r \Rightarrow y \in \beta_{r}\left(x_{0}\right) \Rightarrow y \in A_{k} \Rightarrow\left\|f_{n}(y)\right\| \leq k$
Since $x_{0} \in \beta_{r}\left(x_{0}\right) \Rightarrow\left\|f_{n}\left(x_{0}\right)\right\| \leq k$
Since $x=\frac{1}{\lambda}\left(y-x_{0}\right)$. for all n,
$f_{n}(x)=\frac{1}{\lambda} f\left(y-x_{0}\right)=\frac{1}{\lambda}\left[\left(f(y)-f\left(x_{0}\right)\right)\right]$
$\left\|f_{n}(x)\right\|=\left\|\frac{1}{\lambda}\left(f(y)-f\left(x_{0}\right)\right)\right\| \leq \frac{1}{\lambda}\left(\left\|f\left((y)\|-\| f\left(x_{0}\right) \|\right) \leq \frac{2}{\lambda} k_{0}=\frac{4}{r}\right\| x \| k_{0}\right.$
So that for all $n,\left\|f_{n}\right\|=\sup \left\{\left|f_{n}(x)\right|: x \in X,\|x\|=1\right\}$, then $\left\|f_{n}\right\| \leq \frac{4}{r} k_{0}$. Hence $\left\{\mid f_{n} \|\right\}$ is bounded.

دراسـات

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

7.3 Adjoint Operator

Recall that a function $T: X \rightarrow Y$ is called an operator form X into Y if X and Y are linear space over the same field F. A linear operator T is an operator such that $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in X$ and for all $\alpha, \beta \in F$. Let X and Y be normed spaces over $F, B(X, Y)$ is the space of bounded linear operator from X into Y, $B(X, Y)$ is a normed space with respect to the norm defined by
$\|T\|=\sup \{| | T(x)\|: x \in X\|, x \| \leq 1\}$ for all $T \in B(X, Y)$, (see section 5.)

Definition(7.3.1)

Let X and Y be normed spaces over F, and let $T \in B(X, Y)$. An operator $T^{*}: Y^{*} \rightarrow X^{*}$ which is defined by $\left(T^{*}(g)\right)(x)=g(T(x))$ for all $g \in Y^{*}$ is called an adjoint (or conjugate) of T.
It is clear to show T^{*} is unique .

Theorem(7.3.2)

Let X and Y be normed spaces over F, and let $T \in B(X X Y)$. Then T^{*} is bounded linear operator and $\left\|T^{*}\right\|=\|T\|$

Proof :

(1) let $f, g \in Y^{*}$ and let $\alpha, \beta \in F$

$$
\begin{align*}
& T^{*}(\alpha f+\beta g)(x)=(\alpha f+\beta g)(T(x))=(\alpha f)\left(T_{T}(x)\right)+(\beta g)(T(x))=\alpha(f(T(x))+\beta(g(T(x))) \\
& =\alpha f(T(x))+\beta g(T(x))=\alpha T^{*}(f)(x)+\beta T^{*}(g)(x)=\left(\alpha T^{*}(f)+\beta T^{*}(g)\right)(x) \\
& \left.T^{*}(\alpha f+\beta g)=\alpha T^{*}(f)+\beta T^{*}(g) \Rightarrow T\right) \text { is linear } \tag{2}
\end{align*}
$$

$\left\|T^{*}\right\|=\sup \left\{\left\|T^{*}(f)\right\|: f \in Y^{*},\|f\| \leq 1\right\}=\sup \left\{T^{*}(f)(x) \mid: f \in Y^{*},\|f\| \leq 1,\|x\| \leq 1\right\}$
$=\sup \left\{|f(T(x))|: f \in Y^{*},\|f\| \leq 1,\|x\| \leq 1\right\} \leq \sup \left\{\|f\|\|T\|\|x\|: f \in Y^{*},\|f\| \leq 1,\|x\| \leq 1\right\} \leq \mid T \|$
$\Rightarrow\left\|T^{*}\right\| \leq\|T\|$ Since T is bounded, then T^{*} is bounded.
(3) We must prove $\left\|T^{*}\right\| \geq\|T\|$

Since, for each nonzero vector $x \in X$, there exists $f \in Y^{*}$ such that $\|f\|=1$ and $f(T(x))=\|T(x)\|$

$$
\begin{aligned}
& \|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\}=\sup \left\{\frac{\mid f(T(x) \mid}{\|x\|}: f \in Y^{*},\|f\|=1, x \neq 0\right\}=\sup \left\{\frac{T^{*}(f)(x) \mid}{\|x\|}: f \in Y^{*},\|f\|=1, x \neq 0\right\} \\
& \leq \sup \left\{\frac{T^{*}(f) \|}{\|x\|}: f \in Y^{*},\|f\|=1, x \neq 0\right\} \leq \sup \left\{\left\|T^{*}(f)\right\| \mid T\| \| x\left\|: f \in Y^{*},\right\| f \|=1\right\}=\left\|T^{*}\right\| \\
& \Rightarrow\|T\| \leq\left\|T^{*}\right\| \Rightarrow\left\|T^{*}\right\|=\|T\|
\end{aligned}
$$

تحيل دالي
 3: 1: 3:

Remark

Let X and Y be normed spaces over F, and let $B\left(Y^{*}, X^{*}\right)$ denote the set of all adjoint operator of T, where $T \in B(X, Y)$, i.e. $T^{*} \in B\left(Y^{*}, X^{*}\right)$, iff T^{*} is an adjoint operator of T. It is clear to show that $B\left(Y^{*}, X^{*}\right)$ is normed space.

Theorem(7.3.3)

Let X, Y, Z be normed spaces over F. Then
(1) $(\alpha S+\beta T)^{*}=\alpha S^{*}+\beta T^{*}$ for all $S, T \in B(X, Y)$ and for all $\alpha, \beta \in F$.
(2) If $T \in B(X, Y), S \in B(Y, Z)$. Then $(S \circ T)^{*}=T^{*} \circ S^{*}$
(3) If $\mathrm{I} \in B(X)$, then $\mathrm{I}^{*}=\mathrm{I}$, where I is identity operator
(4) Let $T \in B(X, Y)$. If T^{-1} exists and $T^{-1} \in B(Y, X)$. Then $\left(T^{*}\right)^{-1}$ also exists, $\left(T^{*}\right)^{-1} \in B\left(X^{*}, Y^{*}\right)$,

$$
\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*} \text { and }
$$

Proof :

(1) Let $S, T \in B(X, Y)$ and let $\alpha, \beta \in F$

$$
\begin{aligned}
&\left((\alpha S+\beta T)^{*}(f)\right)(x)=f((\alpha S+\beta T))(x)=f(\alpha S(x)+\beta T(x))=\alpha f(S(x))+\beta f(T(x)) \\
&=\alpha\left(S^{*}(f)\right)(x)+\beta\left(T^{*}(f)\right)(x) \text {. } \\
&(\alpha S+\beta T)^{*}(f)=\alpha\left(S^{*}(f)\right)+\beta\left(T^{*}(f)\right)=\left(\alpha S^{*}+\beta T^{*}\right)(f) \Rightarrow(\alpha S+\beta T)^{*}=\alpha S^{*}+\beta T^{*}
\end{aligned}
$$

(2) Let $T \in B(X, Y), S \in B(Y, Z)$
$\left((S \circ T)^{*}(f)\right)(x)=f((S \circ T)(x))=f(S(T(x)))=\left(S^{*}(f)(T(x))=\left(T^{*}\left(S^{*}(f)\right)\right)(x)=\left(\left(T^{*} \circ S^{*}\right)(f)\right)(x)\right.$
Hence $(S \circ T)^{*}=T^{*} \circ S^{*}$
(3) $\left(\mathrm{I}^{*}(f)\right)(x)=f(\mathrm{I}(x))=f(x)=\mathrm{I}\left(f\left(x^{*}\right)\right)=(\mathrm{I}(f))(x) \Rightarrow \mathrm{I}^{*}=\mathrm{I}$

Theorem(7.3.4)

Let X and Y be normed spaces over F. Define $\varphi: B(X, Y) \rightarrow B\left(Y^{*}, X^{*}\right)$ by $\varphi(T)=T^{*}$ for all $T \in B(X, Y)$. Then φ is an is an isometric isomorphism
Proof:
(1) φ is one-one: let $\varphi(S)=\varphi(T)$
$\Rightarrow S^{*}=T^{*} \Rightarrow\left\|S^{*}-T^{*}\right\|=0 \Rightarrow\left\|(S-T)^{*}\right\|=0 \Rightarrow\|S-T\|=0 \Rightarrow S=T$
$\Rightarrow \varphi$ is one-one
(2) φ is linear: let $S, T \in B(X, Y)$ and $\alpha, \beta \in F$

$$
\varphi(\alpha S+\beta T)=(\alpha S+\beta T)^{*}=\alpha S^{*}+\beta T^{*}=\alpha \varphi(S)+\beta \varphi(T) \Rightarrow \varphi \text { is linear }
$$

(3) φ is preserves norm : Let $T \in B(X, T)$
$\|\varphi(T)\|=\left\|T^{*}\right\|=\|T\| \Rightarrow \varphi$ is preserves norm

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

Definition(7.3.5)

Let X and Y be linear spaces over F. A function $h: X \times Y \rightarrow F$ is called a sesquilinear form (or sesquilinear functional) if
(1) $h\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha h\left(x_{1}, y\right)+\beta h\left(x_{2}, y\right)$ for all $x_{1}, x_{2} \in X, y \in Y$ and $\alpha, \beta \in F$
(2) $h\left(x, \alpha y_{1}+\beta y_{2}\right)=\bar{\alpha} h\left(x, y_{1}\right)+\bar{\beta} h\left(x, y_{2}\right)$ for all $x \in X, y_{1}, y_{2} \in Y$ and $\alpha, \beta \in F$

Hence h is linear in the first argument and conjugate linear in the second one,
Let X and Y be normed spaces over F. A sesquilinear form $h: X \times Y \rightarrow F$ is called bounded, if there is a real number k such that for all $x \in X, y \in Y$ such that $\mid h(x, y)] \leq k\|x\|\|y\|$. and the number

$$
\|h\|=\sup \left\{\frac{h(x, y) \mid}{\|x\|\|y\|}: x \in X, y \in Y, x \neq 0, y \neq 0\right\}=\sup \{|h(x, y)|: x \in X, y \in Y,\|x\|=1,\|y\|=1\} \text { is }
$$

called the norm of G.
Theorem(7.3.6) Riesz representation
Let X and Y be Hilbert spaces over F, and let $h: X \times Y \nrightarrow F$ be a bounded sesquilinear form. Then h has a representation $h(x, y)=\langle S(x), y\rangle$ where $S: X \rightarrow Y$ is bounded linear operator. S is uniquely determined by h and has norm $\|S\|=\|h\|$.
Proof :

Definition(7.3.7)

Let X and Y be Hilbert spaces over F, and let $T \in B(X, Y)$. The Hilbert adjoint operator T^{*} of T is the operator $T^{*}: Y \rightarrow X$ such that for all $x \in X$ and $y \in Y,\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$.

Theorem(7.3.8)

Let X and Y be Hilbert spaces over F, and let $T \in B(X, Y)$. The Hilbert adjoint operator T^{*} of T is unique and is bounded linear operator with norm $\left\|T^{*}\right\|=\|T\|$
Proof :
Define $h: Y^{\gamma} \times X \rightarrow F$ by $h(y, x)=\langle y, T(x)\rangle$ for all $x \in X$ and $y \in Y$
(1) G is conjugate linear : let $x_{1}, x_{2} \in X$ and $\alpha, \beta \in F$
$h\left(y, \alpha x_{1}+\beta x_{2}\right)=\left\langle y, T\left(\alpha x_{1}+\beta x_{2}\right)\right\rangle=\left\langle y, \alpha T\left(x_{1}\right)+\beta T\left(x_{2}\right)\right\rangle=\bar{\alpha}\left\langle y, T\left(x_{1}\right)\right\rangle+\bar{\beta}\left\langle y, T\left(x_{2}\right)\right\rangle=\bar{\alpha} h\left(y, x_{1}\right)+\bar{\beta} h\left(y, x_{2}\right)$
(2) h is bounded

By the Schwarz inequality, we have $|h(y, x)|=|\langle y, T(x)\rangle| \leq\|y\|\|T(x)\| \leq\|T\|\|x\| y \|$
This also implies $\|h\| \leq\|T\|$. Moreover we have $\|h\| \geq\|T\|$ from

$$
\|h\|=\sup \left\{\frac{|\langle y, T(x)\rangle|}{\|y\|\|x\|}: x \neq 0, y \neq 0\right\} \geq \sup \left\{\frac{\mid\langle y, T(x)\rangle}{\|T(x)\|\|x\|}: x \neq 0, y \neq 0\right\}=\|T\|
$$

Together, $\|h\|=\|T\|$

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

By using theorem (7.3.6) for h; writing T^{*} for S, we have $h(y, x)=\left\langle T^{*}(y), x\right\rangle$ and we know from that theorem that $T^{*}: Y \rightarrow X$ is a uniquely determined bounded linear operator with norm $\left\|T^{*}\right\|=\|h\|=\|T\|$.
Theorem $(7,3.9)$ Properties of Hilbert adjoint operator
Let X and Y be Hilbert spaces over F, and let $S, T \in B(X, Y)$.
$\begin{array}{ll}\text { (1) }\left\langle T^{*}(y), x\right\rangle=\langle y, T(x)\rangle \text { for all } x \in X, y \in Y & \text { (2) }(\alpha S+\beta T)^{*}=\bar{\alpha} S^{*}+\bar{\beta} T^{*} \text { for all } \alpha ; \beta \in F\end{array}$
(3) $\left(T^{*}\right)^{*}=T$
(4) $\left\|T^{*} \circ T\right\|=\left\|T \circ T^{*}\right\|=\|T\|^{2}$
(5) $T^{*} \circ T=0$ iff $T=0(6)$
$(S \circ T)^{*}=T^{*} \circ S^{*}$ (assuming $X=Y$)
(7)Let $T \in B(X, Y)$. If T is bijective, then T^{*} is also bijective and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$

Proof :

Definition(7.3.10)

Let X be a Hilbert space over F, and let $T \in B(X) . T$ is said to be Self-adjoint or Hermitian if $T^{*}=T$.
The Hilbert -adjoint operator T^{*} of T is defined by $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$. If T is self -adjoint, we have $\langle T(x), y\rangle=\langle x, T(y)\rangle$.

Theorem(7.3.11) (Self-adjointness of product)

The product of two bounded self-adjoint finear operators S and T on a Hilbert space X is self-adjoint iff the operators commute (i.e., $S \circ T=T \circ S$)

Proof :

Since S and T are self adjoint, then $S^{*}=S, T^{*}=T$
Since $(S \circ T)^{*}=T^{*} \circ S^{*}$, then $(S \circ T)^{*}=T \circ S$.
Hence $(S \circ T)^{*}=S \circ T$ iff $S \circ T=T \circ S$.

Theorem(7.3.12)

Let X be a Hilbert space over F, and let $T, T_{n} \in B(X)$ such that $T_{n} \rightarrow T$. If T_{n} is self-adjoint for all n, then T is self-adjoint.

Proof :

Since $T_{n}{ }_{n} \rightarrow T \Rightarrow\left\|T_{n}-T\right\| \rightarrow 0$ as $n \rightarrow \infty$
Since T_{n} is self-adjoint for all $n, \Rightarrow T_{n}^{*}=T_{n}$ for all n
$T-T)^{*}=\left(T-T_{n}\right)+\left(T_{n}-T_{n}^{*}\right)+\left(T_{n}^{*}-T^{*}\right)=\left(T-T_{n}\right)+0+\left(T-T_{n}\right)^{*} \Rightarrow T-T^{*}=\left(T-T_{n}\right)+\left(T-T_{n}\right)^{*}$
$\Rightarrow\left|T-T^{*}\|=\|\left(T-T_{n}\right)+\left(T-T_{n}\right)^{*}\left\|\leq\left|T-T_{n}\|+\|\left(T-T_{n}\right)^{*}\left\|=\left|T-T_{n}\left\|+\left|T-T_{n}\left\|=2 \mid T-T_{n}\right\|\right.\right.\right.\right.\right.\right.\right.$
Since $\left\|T_{n}-T\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|T-T^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Hence $\left\|T-T^{*}\right\|=0 \rightarrow T^{*}=T \Rightarrow T$ is self-adjoint.

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Theorem(7.3.13)

Let X be a Hilbert space over F. If $S(X)$ denotes the set of all self-adjoint in $B(X)$, then $S(X)$ is a closed subspace of $B(X)$, and therefore a real Banach space which contains the identity linear operator.
Proof:

$$
S(X)=\{T \in B(X): T \text { is self-adjoint }\}
$$

Since $0^{*}=0 \Rightarrow 0 \in S(X) \Rightarrow S(X) \neq \phi$
Let $\Rightarrow S, T \in S(X) \Rightarrow S^{*}=S, \quad T^{*}=T$
Let $\alpha, \beta \in \mathbb{R}$, then $(\alpha S+\beta T)^{*}=(\alpha S)^{*}+(\beta T)^{*}=\bar{\alpha} S^{*}+\bar{\beta} T^{*}=\alpha S^{*}+\beta T^{*}=\alpha S+\beta T$
$\Rightarrow \alpha S+\beta T \in S(X)$, so that $S(X)$ is a real subspace of $B(X)$.
Now to show that $S(X)$ is closed subset of $B(X)$
Let $T \in \overline{S(X)} \Rightarrow$ there exists a sequence $\left\{T_{n}\right\}$ in $S(X)$ such that $T_{n} \rightarrow T$
$\left\|T-T^{*}\right\|=\left\|\left(T-T_{n}\right)+\left(T_{n}-T^{*}\right)\right\| \leq\left\|T-T_{n}\right\|+\left\|\left(T_{n}-T_{n}^{*}\right)+\left(T_{n}^{*}-T^{*}\right)\right\|$
$\leq\left\|T-T_{n}\right\|+\left\|T_{n}-T_{n}^{*}\right\|+\left\|T_{n}^{*}-T^{*}\right\|=\left\|T-T_{n}\right\|+\|0\|+\left\|\left(T_{n}-T\right)^{*}\right\|=\left\|T_{n}-T\right\|+\left\|T_{n}-T\right\|=2\left\|T_{n}-T\right\|$
Since $T_{n} \rightarrow T \Rightarrow\left\|T_{n}-T\right\| \rightarrow 0$ as $n \rightarrow \infty$
$\left\|T-T^{*}\right\|=0 \Rightarrow T-T^{*}=0 \Rightarrow T=T^{*}$.so T is self-adjoint
$T \in S(X) \Rightarrow \overline{S(X)}=S(X)$
$\Rightarrow S(X)$ is closed subset of $B(X) \Rightarrow S(X)$ is a real closed subspace of $B(X)$
Since $B(X)$ is complete $\Rightarrow S(X)$ is a real Banach space.
Since $I^{*}=I \Rightarrow I \in S(X)$.

Theorem(7.3.14)

Let X be a Hilbert space over F, and $T \in B(X)$.Then $T=0$ iff $\langle T(x), y\rangle=0$ foe all $x, y \in X$.

Proof:

Suppose $T=0 \Rightarrow T(x)=0$ for all $x \in X$, we have $\langle T(x), y\rangle=\langle 0, y\rangle=0$
Conversely : suppose that $\langle T(x), y\rangle=0$ foe all $x, y \in X$.
Since $T(x) \in X$. Taking $y=T(x) \Rightarrow\langle T(x), T(x)\rangle=0$ for all $x \in X$
$\Rightarrow T(x)=0$ for all $x \in X \Rightarrow T=0$.
Theorem(7.3.15)
Let X be a Hilbert space over F, and $T \in B(X)$.Then $T=0$ iff $\langle T(x), x\rangle=0$ foe all $x \in X$.
Proof :
Suppose $T=0 \Rightarrow T(x)=0$ for all $x \in X$, we have $\langle T(x), x\rangle=\langle 0, x\rangle=0$

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

Conversely : suppose that $\langle T(x), x\rangle=0$ foe all $x \in X$. Then to prove $T=0$
If $x, y \in X$ and $\alpha, \beta \in F$, then we have
$\langle T(\alpha x+\beta y), \alpha x+\beta y\rangle=\langle\alpha T(x)+\beta T(y), \alpha x+\beta y\rangle=\alpha\langle T(x), \alpha x+\beta y\rangle+\beta\langle T(y), \alpha x+\beta y\rangle$
$\langle T(\alpha x+\beta y), \alpha x+\beta y\rangle=\alpha \bar{\alpha}\langle T(x), x\rangle+\alpha \bar{\beta}\langle T(x), y\rangle+\beta \bar{\alpha}\langle T(y), x\rangle+\beta \bar{\beta}\langle T(y), y\rangle$
$\langle T(\alpha x+\beta y), \alpha x+\beta y\rangle=|\alpha|^{2}\langle T(x), x\rangle+\alpha \bar{\beta}\langle T(x), y\rangle+\beta \bar{\alpha}\langle T(y), x\rangle+|\beta|^{2}\langle T(y), y\rangle$
$\langle T(\alpha x+\beta y), \alpha x+\beta y\rangle-|\alpha|^{2}\langle T(x), x\rangle-|\beta|^{2}\langle T(y), y\rangle=\alpha \bar{\beta}\langle T(x), y\rangle+\beta \bar{\alpha}\langle T(y), x\rangle \quad(1)$
But by hypothesis $\langle T(x), x\rangle=0$ for all $x \in X$. Therefore the left hand side of (1)is also equal to zero. Thus we have $\alpha \bar{\beta}\langle T(x), y\rangle+\beta \bar{\alpha}\langle T(y), x\rangle=0$ (2) for all $x, y \in X$ and $\alpha, \beta \in F$ Put $\alpha=1, \quad \beta=1$ in (2), we give $\langle T(x), y\rangle+\langle T(y), x\rangle=0$
Again putting $\alpha=i, \beta=1$ in (2), we get $i\langle T(x), y\rangle-i\langle T(y), x\rangle=0)$ (4)
Multiplying (3) by i and adding to (4), we get $2 i\langle T(x), y\rangle=0$ for all $x, y \in X$
$\Rightarrow\langle T(x), y\rangle=0$ for all $x, y \in X$. Taking $y=T(x) \Rightarrow\langle T(x), T(x)\rangle=0$ for all $x \in X$
$\Rightarrow T(x)=0$ for all $x \in X \Rightarrow T=0$.

Theorem(7.3.16)

Let X be a Hilbert space over F, and let $T \in B(X) \cdot T$ is self-adjoint iff $\langle T(x), x\rangle$ is real for all $x \in X$.

Proof :

Suppose that T is self-adjoint
Let $x \in X \Rightarrow\langle T(x), x\rangle=\left\langle x, T^{*}(x)\right\rangle_{i}=\langle x, T(x)\rangle=\langle\overline{T(x), x}\rangle$
Thus $\langle T(x), x\rangle$ is equal to its own conjugate and is therefore real
Conversely : suppose that $\langle T(x), x\rangle$ is real for all $x \in X$
$\Rightarrow\langle T(x), x\rangle=\langle\overline{T(x), x}\rangle=\left\langle\overline{x, T^{*}(x)}\right\rangle=\left\langle T^{*}(x), x\right\rangle$
From this, we get $\langle T(x), x\rangle-\left\langle T^{*}(x), x\right\rangle=0$ for all $x \in X$
$\Rightarrow\left\langle T(x)-T_{j}(x), x\right\rangle=0$ for all $x \in X$
$\Rightarrow\langle(T-T)(x), x\rangle=0$ for all $x \in X \quad \Rightarrow T-T^{*}=0 \Rightarrow T^{*}=T \quad \Rightarrow \quad T$ is self-adjoint.

Definition(7.3.17)

Let X be a Hilbert space over F. We define a relation \leq on $S(X)$ as follows :
If $S, T \in S(X)$, then we write $S \leq T$ if $\langle S(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
In the following theorem we shall prove that the relation \leq defined on the set of all self-adjoint operators is a partial order relation.

دراسات عليا ـ ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3 :

Theorem(7.3.18)

Let X be a Hilbert space over F. Then $S(X)$ is a partially ordered.

Proof :

Let $S, T \in S(X)$, if $S \leq T$ then $\langle S(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
(1) reflexive : let $T \in S(X)$

Since $\langle T(x), x\rangle=\langle T(x), x\rangle$ for all $x \in X \Rightarrow\langle T(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
$\Rightarrow \quad T \leq T$ therefore the relation \leq on $S(X)$ is reflexive.
(2) transitive : let $R, S, T \in S(X)$ such that $R \leq S \wedge S \leq T$
$\Rightarrow\langle R(x), x\rangle \leq\langle S(x), x\rangle$ for all $x \in X$ and $\langle S(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
$\Rightarrow \quad\langle R(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
$\Rightarrow R \leq T$ therefore the relation \leq on $S(X)$ is transitive.
(3) Anti-symmetric : let $S, T \in S(X)$ such that $S \leq T \wedge T \leq S$
$\Rightarrow\langle S(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$ and $\langle T(x), x\rangle \leq\langle S(x), x\rangle$ for all $x \in X$
$\Rightarrow\langle S(x), x\rangle=\langle T(x), x\rangle$ for all $x \in X \Rightarrow\langle S(x-T(x), x\rangle=0$ for all $x \in X$
$\Rightarrow \quad\langle(S-T)(x), x\rangle=0$ for all $x \in X$
$\Rightarrow S-T=0 \quad \Rightarrow \quad S=T$ therefore the relation \leq on $S(X)$ is Anti-symmetric.
Hence \leq is a partial order relation on $S(X)$

Remark

Let X be a Hilbert space over F, and let $R, S, T \in S(X), \lambda \geq 0$.
(1) If $S \leq T$, then $S+R \leq T+R$ (2) If $S \leq T$, then $\lambda S \leq \lambda T$

Proof :
(1) Since $S \leq T \Rightarrow\left\langle S(x), x^{2}\right\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
$\Rightarrow\langle S(x), x\rangle+\langle R(x), x\rangle \leq\langle T(x), x\rangle+\langle R(x), x\rangle$ for all $x \in X$
$\Rightarrow\langle(S+R)(x), x\rangle \leq\langle(T+R)(x), x\rangle$ for all $x \in X \Rightarrow S+R \leq T+R$.
(2) Since $S \leq T \Rightarrow\langle S(x), x\rangle \leq\langle T(x), x\rangle$ for all $x \in X$
$\Rightarrow \lambda\langle S(x), x\rangle \leq \lambda\langle T(x), x\rangle$ for all $x \in X$
$\Rightarrow \quad\langle(\lambda S)(x), x\rangle \leq\langle(\lambda T)(x), x\rangle$ for all $x \in X \Rightarrow \lambda S \leq \lambda T$.

Definition(7.3.19)

Let X be a Hilbert space over F, and let $T \in S(X)$. We say that T is positive if $T \geq 0$,i.e. $\langle T(x), x\rangle \geq 0$ for all $x \in X$.

Example(7.3.20)

(1) Identity and zero operators are both positive operators.
(2)Let X be a Hilbert space over F, and let $T \in B(X)$. Show that $T \circ T^{*}, T^{*} \circ T$ are positive.

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Ans :

(1) $\langle I(x), x\rangle=\langle x, x\rangle \geq 0$ for all $x \in X$ and $\langle 0(x), x\rangle=\langle 0, x\rangle=0$ for all $x \in X$.
(2) $\left(T \circ T^{*}\right)^{*}=\left(T^{*}\right)^{*} \circ T^{*}=T \circ T^{*} \Rightarrow T \circ T^{*} \in S(X)$ $\left\langle\left(T \circ T^{*}\right)(x), x\right\rangle=\left\langle T\left(T^{*}(x), x\right\rangle=\left\langle T^{*}(x), T^{*}(x)\right\rangle=\left\|T^{*}(x)\right\|^{2} \geq 0 \Rightarrow T \circ T^{*}\right.$ is positive
Also $\left(T^{*} \circ T\right)^{*}=T^{*} \circ\left(T^{*}\right)^{*}=T^{*} \circ T \Rightarrow T^{*} \circ T \in S(X)$
$\left\langle\left(T^{*} \circ T\right)(x), x\right\rangle=\left\langle T^{*}(T(x), x\rangle=\left\langle T(x), T^{* *}(x)\right\rangle=\langle T(x), T(x)\rangle=\|T(x)\|^{2} \geq 0 \Rightarrow T^{*} \circ T\right.$ is positive.

Theorem(7.3.21)

Let X be a Hilbert space over F, and let $T \in S(X)$. If T is positive, then $I+T$ is s non singular.

Proof :

In order to show that $I+T$ is s non singular is one-one and onto fünction from X onto itself.
(1) $I+T$ is one -one : To prove $\operatorname{ker}(I+T)=\{0\}$

Let $x \in \operatorname{ker}(I+T) \Rightarrow(I+T)(x)=0$
$I(x)+T(x)=0 \Rightarrow x+T(x)=0 \Rightarrow T(x)=-x$
$\langle T(x), x\rangle=\langle-x, x\rangle=-\langle x, x\rangle=-\|x\|^{2}$
Since $\langle T(x), x\rangle \geq 0 \Rightarrow-\|x\|^{2} \geq 0 \Rightarrow\|x\|^{2} \leq 0$, but $\|x\|^{2} \geq 0 \Rightarrow\|x\|^{2}=0 \Rightarrow\|x\|=0$
$\Rightarrow x=0 \Rightarrow I+T$ is one -one.
(2) we shall show that $I+T$ is onto. Let M be the range of $I+T$. Then $I+T$ will be onto if
we show that $M=X$.
First we shall show that M is člosed. Let $x \in X$, we have

$$
\begin{aligned}
& \|(I+T)(x)\|^{2}=\|x+T(x)\|^{2}=\langle x+T(x), x+T(x)\rangle=\langle x, x\rangle+\langle x, T(x)\rangle+\langle T(x), x\rangle+\langle T(x), T(x)\rangle \\
& \|(I+T)(x)\|^{2}=\|x\|^{2}+\|T(x)\|^{2}+\overline{\langle T(x), x\rangle}+\langle T(x), x\rangle
\end{aligned}
$$

Since T is positive, then T is self-adjoint $\Rightarrow\langle T(x), x\rangle$ is real for all $x \in X$
$\Rightarrow \overline{\langle T(x), x\rangle}+\langle T(x), x\rangle$ for all $x \in X \Rightarrow\|(I+T)(x)\|^{2}=\|x\|^{2}+\|T(x)\|^{2}+2\langle T(x), x\rangle$
Since T is positive, then $\langle T(x), x\rangle \geq 0 \Rightarrow\|(I+T)(x)\|^{2} \geq\|x\|^{2}$
Thus $\|x\| \leq\|(I+T)(x)\|$ for all $x \in X$
Nowlet $\left\{(I+T)\left(x_{n}\right)\right\}$ be a Cauchy sequence in M. For any two positive integers n, m, we have $\left\|x_{n}-x_{m}\right\| \leq\left\|(I+T)\left(x_{n}-x_{m}\right)\right\|=\left\|(I+T)\left(x_{n}\right)-(I+T)\left(x_{m}\right)\right\|$
Since $\left\{(I+T)\left(x_{n}\right)\right\}$ be a Cauchy sequence in M, then $\left\|(I+T)\left(x_{n}\right)-(I+T)\left(x_{m}\right)\right\| \rightarrow 0$ $\left\|x_{n}-x_{m}\right\| \rightarrow 0$. This mean that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. But X is complete . Therefore the Cauchy sequence $\left\{x_{n}\right\}$ in X is converges to $x \in X$. Now

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

Since T is continuous $\Rightarrow I+T$ is continuous
Since $x_{n} \rightarrow x$ and $I+T$ is continuous, then $(I+T)\left(x_{n}\right) \rightarrow(I+T)(x)$
Thus the Cauchy sequence $\left\{(I+T)\left(x_{n}\right)\right\}$ in M converges to $(I+T)(x)$ in M.Therefore M is complete. But every complete subspace of a complete space is closed. Hence M is closed.
Now we show that $M=X$. Suppose $M \neq X$. Then M is a proper closed subspace of X. Therefore there exists a non zero $x_{0} \in X$ such that $x_{0} \perp M$.
Since

$$
\begin{aligned}
& (I+T)\left(x_{0}\right) \in M \Rightarrow\left\langle(I+T)\left(x_{0}\right), x_{0}\right\rangle=0 \Rightarrow\left\langle x_{0}+T\left(x_{0}\right), x_{0}\right\rangle=0 \Rightarrow\left\langle x_{0}, x_{0}\right\rangle+\left\langle T\left(x_{0}\right), x_{0}\right\rangle=0 \\
& \Rightarrow\left\|x_{0}\right\|^{2}+\left\langle T\left(x_{0}\right), x_{0}\right\rangle=0 \Rightarrow-\left\|x_{0}\right\|^{2}=\left\langle T\left(x_{0}\right), x_{0}\right\rangle
\end{aligned}
$$

Since T is positive $\Rightarrow\left\langle T\left(x_{0}\right), x_{0}\right\rangle \geq 0 \Rightarrow-\left\|x_{0}\right\|^{2} \geq 0 \Rightarrow\left\|x_{0}\right\|^{2} \leq 0$
Since $\left\|x_{0}\right\|^{2} \geq 0 \Rightarrow\left\|x_{0}\right\|^{2}=0 \Rightarrow x_{0}=0$
But this contradicts the fact that $x_{0} \neq 0$. Hence we must have $M=X$ and so $I+T$ is onto.
Corollary(7.3.22)
Let X be a Hilbert space over F, and let $T \in S(B)$.then the operators $I+T \circ T^{*}$ and $I+T^{*} \circ T$ are non singular.

Proof :

Since $T \circ T^{*}, T^{*} \circ T$ are positive. (see example 8.50), then by theorem (8.51), we have $I+T \circ T^{*}$ and $I+T^{*} \circ T$ are non singular.

Normal and Unitary operators

Definition(7.3.23)

Let X be a Hilbert space over F, and let $T \in B(X) . T$ is said to be Normal if $T \circ T^{*}=T \circ T^{*}$

Example(7.3.24)

Every self-adjoint operator is normal, but the converse is not true
Ans:
Let X be a Hilbert space over F, and let $T \in S(X)$.i.e. T is self-adjoint
$\Rightarrow T^{*}=T^{*} \Rightarrow T \circ T^{*}=T \circ T^{*} \Rightarrow T$ is normal
The converse, for example
Let X be a Hilbert space over F, if $\mathrm{I}: X \rightarrow X$ is the identity operator, then $T=2 i \mathrm{I}$ is normal
Because $T^{*}=-2 i \mathrm{I}$ and $T \circ T^{*}=T \circ T^{*}=4 \mathrm{I}$ but $T^{*} \neq T$ as well as $T^{*} \neq T^{-1}=-\frac{1}{2} i \mathrm{I}$.

Remark

Let X be a Hilbert space over F, we denotes the set of all normal in $B(X)$ by $N(X)$. From above example we have $S(X) \subset N(X)$, but not $S(X) \neq N(X)$ in general.

دراسات عليا - ماجستير
 تحليل دالي
 3: $\quad 1: \quad 3$:

Theorem(7.3.25)

Let X be a Hilbert space over F.
(1) $N(X)$ is closed subset of $B(X)$
(2) If $T \in N(X)$ and $\lambda \in F$, then $\lambda T \in N(X)$, i.e. $S(X)$ is a closed under scalar multiplication.

Proof :

(1) $T \in \overline{N(X)} \Rightarrow$ there exist a sequence $\left\{T_{n}\right\}$ in $N(X)$ such that $T_{n} \rightarrow T$. We have

$$
\left\|T_{n}^{*}-T^{*}\right\|=\left\|\left(T_{n}-T\right)^{*}\right\|=\left\|T_{n}-T\right\| \rightarrow 0 \Rightarrow\left\|T_{n}^{*}-T^{*}\right\| \rightarrow 0 \Rightarrow T_{n}^{*} \rightarrow T^{*}
$$

Now

$$
\begin{aligned}
& \left.\left\|T \circ T^{*}-T^{*} \circ T\right\|=\left\|\left(T \circ T^{*}-T_{n} \circ T_{n}^{*}\right)+\left(T_{n} \circ T_{n}^{*}-T^{*} \circ T\right)\right\| \leq\left\|T^{*} \circ T-T_{n} \circ T_{n}^{*}\right\|+\| T_{n} \circ T_{n}^{*}\right) T^{*} \circ T \| \\
& =\left\|T \circ T^{*}-T_{n} \circ \circ \circ_{n}^{*}\right\|\left\|\left(T_{n} \circ T_{n}^{*}-T^{*} \circ T\right)+\left(T_{n}^{*} \circ T_{n}-T^{*} \circ T\right)\right\| T \circ T^{*}-T_{n} \circ T_{n}^{*}\|+\| T_{n} \circ T_{n}^{*}-T_{n}^{*} \circ T_{n}\|+\| T_{n}^{*} \circ T_{n}-T^{*} \circ T \| \\
& =\left\|T \circ T^{*}-T_{n} \circ T_{n}^{*}\right\|\| \| T_{n}^{*} \circ T_{n}-T^{*} \circ T \|
\end{aligned}
$$

Since $T_{n} \rightarrow T, T_{n}^{*} \rightarrow T^{*}$, then $\left\|T \circ T^{*}-T^{*} \circ T\right\| \rightarrow 0 \Rightarrow T^{\circ} \circ T^{*}=T^{*} \circ T \quad \Rightarrow \quad T$ is a normal $\Rightarrow T \in N(X) \Rightarrow \overline{N(X)}=N(X) \Rightarrow N(X)$ is closed.
(2) $\left.(\lambda T) \circ(\lambda T)^{*}=(\lambda T) \circ\left(\bar{\lambda} T^{*}\right)=\lambda \bar{\lambda}\left(T \circ T^{*}\right)=\bar{\lambda} \lambda\left(T \circ T^{*}\right)=\overline{(\lambda} T^{*}\right) \circ(\lambda T)=(\lambda T)^{*} \circ(\lambda T)$

$$
\Rightarrow \lambda T \text { Is normal } \Rightarrow \lambda T \in N(X)
$$

Theorem(7.3.26)

Let X be a Hilbert space over F and let $S, T \in N(X)$ such that $S \circ T^{*}=T^{*} \circ S$ or $T \circ S^{*}=S^{*} \circ T$. Then $S+T, \quad S \circ T \in N(x)$

Proof :

Since $S, T \in N(X) \Rightarrow S \circ S^{*}=S^{*} \circ S$ and $T \circ T^{*}=T^{*} \circ T$

$$
(S+T) \circ(S+T)^{*}=(S+T) \circ\left(S^{*}+T^{*}\right)=S \circ S^{*}+S \circ T^{*}+T \circ S^{*}+T \circ T^{*}=S^{*} \circ S+T^{*} \circ S+S^{*} \circ T+T^{*} \circ T
$$

$$
=S^{\circ} \circ(S+T)+T^{*} \circ(S+T)=\left(S^{*}+T^{*}\right) \circ(S+T)=(S+T)^{*} \circ(S+T)
$$

$\Rightarrow S+T$ is normal $\Rightarrow S+T \in \mathrm{~N}(X)$
$(S \circ T) \circ\left(S \circ T_{*}^{*}\right)^{*}=(S \circ T) \circ\left(T^{*} \circ S^{*}\right)=S \circ\left(T \circ T^{*}\right) \circ S^{*}=S \circ\left(T^{*} \circ T\right) \circ S^{*}=\left(S \circ T^{*}\right) \circ\left(T \circ S^{*}\right)$
$=\left(T^{* *} \circ S\right) \circ\left(S^{*} \circ T\right)=T^{*} \circ\left(S \circ S^{*}\right) \circ T=T^{*} \circ\left(S^{*} \circ S\right) \circ T=\left(T^{*} \circ S^{*}\right) \circ(S \circ T)=(S \circ T)^{*} \circ(S \circ T)$
$\Rightarrow S \circ T$ is normal $\Rightarrow S \circ T \in \mathrm{~N}(X)$

Definition(7.3.27)

Let X be a Hilbert space over F, and let $T \in B(X) . T$ is said to be Unitary if $T^{*}=T^{-1}$ (i.e. $T \circ T^{*}=T^{*} \circ T=I$)

It is clear to show that
(1) every unitary operator is normal, but the converse is not true

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

(2) Let X be a Hilbert space over F, and let $T \in B(X)$. Then T is unitary iff it is bijective.

Theorem(7.3.28)

Let X be a Hilbert space over F, and let $T \in B(X)$. The following statements are equivalents.
(1) $T^{*} \circ T=1$
(2) $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in X$
(3) $\|T(x)\|=\|x\|$ for all $x \in X$

Proof :
(1) \Rightarrow (2)

Let $x, y \in X$, we have $\langle T(x), T(y)\rangle=\left\langle x, T^{*}(T(y))\right\rangle=\langle x, I(y)\rangle=\langle x, y\rangle$
(2) $\Leftarrow(3)$

Let $x \in X$, by (2), we have $\langle T(x), T(x)\rangle=\langle x, x\rangle \Rightarrow\|T(x)\|^{2}=\|x\|^{2} \Rightarrow\left\|\mathbb{K}^{\circ}(x)\right\|=\|x\|$ (3) $\Leftarrow(1)$

Let $x \in X$, by (3), we have

$$
\begin{aligned}
& \|T(x)\|^{2}=\|x\|^{2} \Rightarrow\langle T(x), T(x)\rangle=\langle x, x\rangle \Rightarrow\left\langle\left(T^{*} \circ T\right)(x), x\right\rangle=\left\langle x, x_{i}\right\rangle \\
& \Rightarrow\left\langle\left\langle T^{*} \circ T-I\right)(x), x\right\rangle=0 \Rightarrow T^{*} \circ T-I=0 \Rightarrow T^{*} \circ T=1
\end{aligned}
$$

7.4 Projections

Definition(7.4.1)

Let X be a linear space over F. A linear operator $P: X \rightarrow X$ is called projection() on X if $P^{2}=P$, i.e. p is an idempotent (

Theorem (7.4.2)

Let M_{1} and M_{2} be two subspaces of a vector space over F such that $X=M_{1} \oplus M_{2}$ (then every $x \in X$ can be uniquely written as $x=x_{1}+x_{2}$ where , $x_{1} \in M_{1}$ and $x_{2} \in M_{2}$). Define $P: X \rightarrow X$ by $P(x)=x_{1}$, then P is a projection on X.

Proof:

(1) Let $x, y \in X$ and $\alpha, \beta \in F$

$$
\begin{aligned}
& x=x_{1}+x_{2}, \quad x_{1} \in M_{1}, x_{2} \in M_{2}, \quad y=y_{1}+y_{2}, \quad y_{1} \in M_{1}, y_{2} \in M_{2} \\
& \alpha x+\beta y=\alpha\left(x_{1}+x_{2}\right)+\beta\left(y_{1}+y_{2}\right)=\left(\alpha x_{1}+\beta y_{1}\right)+\left(\alpha x_{2}+\beta y_{2}\right) \\
& P(\alpha x+\beta y)=\alpha x_{1}+\beta y_{1}=\alpha P(x)+\beta P(y) \Rightarrow P \text { is linear function } \\
& (2) \text { Let } x \in X \Rightarrow \quad x=x_{1}+x_{2} \text { where, } x_{1} \in M_{1} \text { and } x_{2} \in M_{2} \\
& p^{2}(x)=P(P(x))=P\left(x_{1}\right)=P\left(x_{1}+0\right)=x_{1}=P(x) \quad\left(x_{1} \in M_{1}, 0 \in M_{2}\right) \Rightarrow P^{2}=P
\end{aligned}
$$

So that P is a projection on X.

Theorem(7.4.3)

A linear operator P on a linear space X is a projection on some subspace iff it is idempotent, i.e. $P^{2}=P$.

Proof :

دراسات عليا ـ ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

Let $X=M_{1} \oplus M_{2}$ and let P be the projection on M_{1} along M_{2}. To prove $P^{2}=P$
Let $x \in X \quad \Rightarrow \quad x=x_{1}+x_{2}, \quad x_{1} \in M_{1}, \quad x_{2} \in M_{2} \quad \Rightarrow \quad p(x)=x_{1}$
$P^{2}(x)=P(P(x))=P\left(x_{1}\right)=P\left(x_{1}+0\right)=x_{1}=P(x)$ for all $x \in X \quad \Rightarrow \quad p^{2}=p$
Conversely, let $P^{2}=P$. To prove P is projection
Let $M_{1}=\{x \in X: P(x)=x\}$, and $M_{2}=\{x \in X: P(x)=0\}$
$\Rightarrow \quad M_{1}, M_{2}$ are subspace of X. To prove $X=M_{1} \oplus M_{2}$
Let $x \in X \quad \Rightarrow \quad x=p(x)-[x-p(x)]$
Put $x_{1}=P(x), \quad x_{2}=x-P(x)$
$P\left(x_{1}\right)=P(P(x))=P^{2}(x)=P(x)=x_{1} \quad \Rightarrow \quad x_{1} \in M_{1}$
$P\left(x_{2}\right)=P(x-P(x))=P(x)-P(P(x))=P(x)-P(x)=0 \quad \Rightarrow \quad x_{2} \in M_{2}$
$x=x_{1}+x_{2}$, where $x_{1} \in M_{1}, x_{2} \in M_{2} \Rightarrow X=M_{1}+M_{2}$
Let $x \in M_{1} \cap M_{2} \Rightarrow x \in M_{1}, x \in M_{2}$
$P(x)=0, x=P(x) \Rightarrow x=0 \Rightarrow M_{1} \cap M_{2}=\{0\} \Rightarrow X=M_{1} \oplus M_{2}$
Let $x \in X \quad \Rightarrow \quad x=x_{1}+x_{2}, \quad x_{1} \in M_{1}, x_{2} \in M_{2}$
$P(x)=P\left(x_{1}+x_{2}\right)=P\left(x_{1}\right)+P\left(x_{2}\right)=x_{1}+0=x_{1}$

Theorem(7.4.4)

Let P be a projection on a linear space X over F. Then the range of P is the set of all vectors which are fixed under P, i.e. $R_{p} \neq\{x \in X: P(x)=x\}$
Proof:
Take $A=\{x \in X: P(x)=x\}$. To prove $R_{p}=A$
Let $x \in R_{p} \Rightarrow$ there exists $y \in X$ such that $P(y)=x$
$P(P(y))=P(x) \Rightarrow P^{2}(y) \geqslant P(x) \Rightarrow P(y)=P(x) \quad$ (because $\left.P^{2}=P\right)$
But $P(y)=x \quad \Rightarrow \quad P(x)=x \quad \Rightarrow \quad x \in A \quad \Rightarrow \quad R_{p} \subseteq A$
Now let $x \in A \quad \Rightarrow \quad P(x)=x$
Since $x \in X \Rightarrow P(x) \in R_{p}$
But $x=P(x) \Rightarrow x \in R_{p} \quad \Rightarrow A \subseteq R_{p} \quad \Rightarrow \quad R_{p}=A$.

Theorem(7.4.5)

Let \bar{X} be a linear space over F, and let $P: X \rightarrow X$ be a linear operator. Then P is a projection on X iff $I-P$ is a projection on X
Proof:
Suppose P is a projection on X
First : To prove $I-P$ is linear function
Let $x, y \in X, \alpha, \beta \in F$

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

$(I-P)(\alpha x+\beta y)=I(\alpha x+\beta y)-P(\alpha x+\beta y)=\alpha I(x)+\beta I(y)-\alpha P(x)-\beta P(y)$
$=\alpha(I(x)-P(x))+\beta(I(y)-P(y))=\alpha(I-P)(x)+\beta(I-P)(y)$
$\Rightarrow \quad I-P$ is linear operator.
Second : To prove $(I-P)^{2}=I-P$
$(I-P)^{2}=(I-P)(I-P)=I-P-P+P^{2}=I-P \Rightarrow I-P$ is a projection on X
Conversely, let $I-P$ is a projection on X, then $(I-P)^{2}=I-P$
$\Rightarrow \quad(I-P)(I-P)=I-P \Rightarrow I-P-P+P^{2}=I-P \Rightarrow P^{2}=P \Rightarrow P$ is a projection on X.

Remark

From theorems (7.4.3) and (7.4.4), we have
(1)The Projection P on a linear space X, determines a pair of subspaces N, M such that $X=M \oplus N$ where M is the range of P, i.e. $M=\{P(x): x \in X\}$, and N is the kernel of P,

$$
\text { i.e. } N=\{x \in X: P(x)=0\}
$$

(2)The pair of subspace N, M of a linear space X such that $X=M \oplus N$, determines a Projection p on X whose range and kernel space are M and $N(p$ defined by $p(z)=x$, if $z=x+y$ is the unique representation of vector $z \in X$ as asum of vectors $x \in M, y \in N$
The above remark shows that the study of Projections on a linear space X is equivalent to the study of pair of disjoint subspaces of X generated X.

Recall that a projection P on a linear space X, is a linear operator $P: X \rightarrow X$ such that $P^{2}=P$. In the following definition

Definition(7.4.6)

Let X a normed space, and let $P \in B(X)$. We say that P is a projection on X, if $P^{2}=P$, i.e. a projection on a normed space X is continuous, linear and idempotent operator on X. Hence a projection on a normed space X is a projection on a linear space X with the additional property that it is continuous.

Theorem(7.4.7)

Let P be a projection on a normed space X and let M and N be its range and null space respectively. Then M and N are closed subspaces of X such that $X=M \oplus N$.

Proof :

Since P is linear function, then N, M are subspaces of X.
Since $P^{2}=P \quad \Rightarrow \quad X=M \oplus N$
Since P is continuous function, then N is closed,
Since $M=\{x \in X: P(x)=x\} \Rightarrow M=\{x \in X:(I-P)(x)=0\} \Rightarrow M$ is the kernel of $I-P$
Since $I-P$ is continuous function, then M is closed.

دراسات عليا - ماجستير

 تحليل دالي

 تحليل دالي
 3: $\quad 1: \quad 3$:

Theorem(7.4.8)

Let X be a normed space and suppose that M and N are closed subspaces of X such that $X=M \oplus N$. If $z=x+y$ is the unique representation of a vector in X as a sum of vectors in M and N, then the function P defined by $P(z)=x$ is a projection on X whose range and null spaces are M and N.

Proof :

Since $X=M \oplus N$. Thus P defined by $P(z)=x$
$z \in X$ has a unique representation as $z=x+y$ with $x \in M$ and $y \in N$.
Also the function defined by $P(z)=x$ is an idempotent function whose range and null space respectively in theorem(8.65).
Thus to prove that P is a Projection on a normed space X
If X^{\prime} denotes the linear space X equipped with the new norm $\left\|\|^{\prime}\right.$ defined by

$$
\|z\|^{\prime}=\|x\|+\|y\|
$$

is normed space . Further
$\|P(z)\|=\|P(x+y)\|=\|x\| \leq\|x\|+\|y\|=\|z\|^{\prime} \Rightarrow\|P(z)\| \leq\|z\|^{\prime} \Rightarrow P$ is bounded and hence continuous from X^{\prime} into X. It suffices to prove that X^{\prime} and X have the same topology.
Let T denote the identity function of X onto X, then
$\|T(z)\|=\|z\|=\|x+y\| \leq\|x\|+\|y\|=\|z\|^{\prime}$
$\Rightarrow \quad T$ is continuous from X 'into X. Moreover T is one-one
$\Rightarrow \quad T$ is homeomorphism and so X^{\prime} and X have the same topology.
Since P is continuous from X^{\prime} into $X \Rightarrow P$ is continuous from X^{\prime} into itself $\Rightarrow P$ is a projection.

Definition(7.4.9)

Let X be a Hilbert space over F, and let $P \in B(X)$. We say that P is a Perpendicular projection on X, if $P^{2}=P$ and $P^{*}=P$

Example (7.4.10)

Every zero and identity function are Perpendicular projection

Theorem(7.4.11)

Let X be a Hilbert space over F, and let P is a projection on X, then P is a Perpendicular projection on X iff the range and kernel of P are orthogonal Proof :
Let M is the range of P, and N is the kernel of P, i.e.

$$
M=\{P(x): x \in X\} \text { and } N=\{x \in X: P(x)=0\}
$$

$$
\Rightarrow \quad X=M \oplus N
$$

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

First : suppose P is a Perpendicular projection on $X \Rightarrow P^{*}=P$
Let $x \in M, y \in N \quad \Rightarrow \quad P(x)=x, \quad P(y)=0$
$\langle x, y\rangle=\langle P(x), y\rangle=\left\langle x, P^{*}(y)\right\rangle=\langle x, P(y)\rangle=\langle x, 0\rangle=0 \Rightarrow x \perp y \quad \Rightarrow \quad M \perp N$.
Second : suppose that $M \perp N$
Let $z \in X$, then z can be uniquely written as $z=x+y$ where
$x \in M, y \in N \quad \Rightarrow \quad P(z)=x$
$\langle p(z), z\rangle=\langle x, z\rangle=\langle x, x+y\rangle=\langle x, x\rangle+\langle x+y\rangle=\langle x, x\rangle \quad$ (because $\langle x, y\rangle=0$)
$\left\langle P^{*}(z), z\right\rangle=\langle z, P(z)\rangle=\langle z, x\rangle=\langle x+y, x\rangle=\langle x, x\rangle+\langle y, x\rangle=\langle x, x\rangle$
$\Rightarrow\langle P(z), z\rangle=\left\langle P^{*}(z), z\right\rangle$ for all $z \in X$
$\Rightarrow\langle P(z), z\rangle=\left\langle\left(P-P^{*}\right)(z), z\right\rangle=0$ for all $z \in X$
$\Rightarrow P-P^{*}=0 \Rightarrow P=P^{*} \Rightarrow P$ is a Perpendicular projection on X.

Remarks

(1) From the above theorem if $M \perp N$, we have $N=M \perp$, and hence $X=M \oplus M^{\perp}$.
(2) If P is a Perpendicular projection on a Hilbert space X over F with range M, then M is closed subspace of X.If N is kernel of p, then N is also closed subspace of X, and N nothing but M^{\perp}, i.e. $N=M^{\perp}$. Further if M is closed subspace of X, then $X=M \oplus M^{\perp}$. Therefore there exists a projection P on X with range M. This projection p is defined by $P(x+y)=x$, where $x \in M, y \in M^{\perp}$. Thus we see that in the case of a Hilbert space there exists one-to-one correspondence between projections on X and closed subspace of X.
(3) If P is a projection on a Hilbert space X over F with range M, then the(null space) kernel of P is uniquely determined and is always M^{\perp}. Thus will be one and only one projection on X with range M. Therefore instead of saying that P is a projection on X with range M, we shall simply say that P is the projection on M.

Theorem(7.4.12)

Let X be a Hilbert space over F, and let $P \in B(X)$. Then P is a Perpendicular projection on a closed subspace M of X iff $I-P$ is a Perpendicular projection on M^{\perp}.
Proof :
Suppose P is a Perpendicular projection on $X \quad \Rightarrow \quad P^{2}=P, \quad P^{*}=P$
$\Rightarrow \quad(1-P)^{*}=I^{*}-P^{*}=I-P$ and
$(I-P)^{2}=(I-P)(I-P)=I-P-P+P^{2}=I-P-P-P=I-P$
$\Rightarrow \quad I-P$ is a Perpendicular projection on X
Now we shall show that if M is the range of P, then M^{\perp} is the range of $I-P$.
Let N be the range of $I-P$. Then
$x \in N \quad \Rightarrow \quad(I-P)(x)=x \quad \Rightarrow \quad I(x)-P(x)=x \quad \Rightarrow \quad x-P(x)=x$

تحليل دالي
 3: 1: 3:

$\Rightarrow P(x)=0 \quad \Rightarrow x \in \operatorname{ker}(P) \Rightarrow x \in M^{\perp} \Rightarrow N \subset M^{\perp}$
Again
$x \in M^{\perp} \Rightarrow p(x)=0 \quad \Rightarrow \quad x-P(x)=x \quad \Rightarrow \quad(I-P)(x)=x \quad \Rightarrow \quad x \in N \quad \Rightarrow \quad M^{\perp} \subset N$
Hence $N=M^{\perp} \Rightarrow I-P$ is a Perpendicular projection on M^{\perp}
Conversely suppose $I-P$ is a Perpendicular projection on M^{\perp}.
$\Rightarrow I-(I-P)$ is a Perpendicular projection on $\left(M^{\perp}\right)^{\perp}$ (by first part)
$\Rightarrow \quad P$ is a Perpendicular projection on $\left(M^{\perp}\right)^{\perp}$
Since M is closed subspace, then $\left(M^{\perp}\right)^{\perp}=M \Rightarrow P$ is a Perpendicular projection on M.

Theorem(7.4.13)

Let X be a Hilbert space over F, and let P be a Perpendicular projection on the closed subspace M of X. Then $x \in M \Leftrightarrow P(x)=x \Leftrightarrow\|P(x)\|=\|x\|$,

Proof:

First : we shall prove that $x \in M \Leftrightarrow P(x)=x$
Suppose $x \in M$. Then to show that $x \in M$
Let $P(x)=y$. Then we must show that $y=x$. We have
$P(P(x))=P(y) \Rightarrow P^{2}(x)=P(y) \Rightarrow P(x)=P(y) \Rightarrow P(x-y)=0$
$\Rightarrow x-y \in \operatorname{ker}(P) \Rightarrow x-y \in M^{\perp} \Rightarrow z=x-y$ where $z \in M^{\perp} \Rightarrow x=y+z$
Since $y=P(x) \Rightarrow y$ in the range of P_{s}, i.e. $y \in M$. Thus we have $x=y+z$ where
$y \in M, z \in M^{\perp}$. But $x \in M$. So we can write $x=x+0$ where $x \in M, 0 \in M^{\perp}$.
Since $X=M \oplus M^{\perp}$. Therefore we must have $z=0, y=x$.
Conversely suppose $P(x)=x$
Since $p(x) \in M \quad \Rightarrow \quad x \in M$
Second : we shall prove that $P(x)=x \quad \Leftrightarrow \quad\|P(x)\|=\|x\|$
If $P(x)=x$, then obviously $\|P(x)\|=\|x\|$
Conversely suppose that $\|P(x)\|=\|x\|$. Then to show that $P(x)=x$
Since $x=P(x)+(I-P)(x) \Rightarrow\|x\|^{2}=\|p(x)+(I-p)(x)\|^{2}$
Now $P(x) \in M$. Also p is a Perpendicular projection on M
$\Rightarrow I-P^{\circ}$ is a Perpendicular projection on M^{\perp}. Therefore $(I-P)(x) \in M^{\perp}$
Therefore $P(x)$ and $(I-P)(x)$ are orthogonal vectors . then by Pythagorean theorem,
we have $\|P(x)+(I-P)(x)\|^{2}=\|P(x)\|^{2}+\|(I-P)(x)\|^{2}$
From (1) and(2), we get $\|x\|^{2}=\|P(x)\|^{2}+\|(I-P)(x)\|^{2}$
Since $\|P(x)\|=\|x\| \Rightarrow\|(I-P)(x)\|^{2}=0$
$\Rightarrow\|(I-P)(x)\|=0 \Rightarrow(I-P)(x)=0 \Rightarrow I(x)-P(x)=0 \Rightarrow x-P(x)=0 \Rightarrow P(x)=x$

دراسـات

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Theorem(7.4.14)

If P is a Perpendicular projection on a Hilbert space X. Then
(1) P is a positive, i.e. $P \geq 0$
(2) $0 \leq P \leq I$
(3) $\|P(x)\| \leq\|x\|$ for all $x \in X$
(4) $\|P\| \leq 1$

Proof :
Since P is a Perpendicular projection on $X \Rightarrow P^{*}=P, P^{2}=P$
Let M be the range of P
(1) Let $\left.x \in X \quad \Rightarrow \quad\langle P(x), x\rangle=\left\langle P^{2}(x), x\right\rangle=\langle P(P(x)), x\rangle=\langle P(x), P(x)\rangle=\|P(x)\|^{2} \geqq 0\right)$
$\Rightarrow\langle P(x), x\rangle \geq 0$ for all $x \in X \quad \Rightarrow \quad P$ is positive .
(2) since P is a Perpendicular projection on X, then by part(1), we $I-P^{\circ} \geq 0 \Rightarrow P \leq I$

But $P \geq 0 \quad \Rightarrow \quad 0 \leq P \leq I$
(3) let $x \in X$, since M is the range of $P \Rightarrow M^{\perp}$ is the range of $Y P$

Since $P(x) \in M,(I-P)(x) \in M^{\perp} \Rightarrow P(x),(I-P)(x)$ are orthogonal vectors.
So by Pythagorean theorem we have $\|P(x)+(I-P)(x)\|^{2}=\|P(x)\|^{2}+\|(I-P)(x)\|^{2}$
Since

$$
P(x)+(I-P)(x)=0 \Rightarrow\|x\|^{2}=\|P(x)\|^{2}+\|(I-P)(x)\|^{2} \Rightarrow\|x\|^{2} \geq\|P(x)\|^{2} \Rightarrow\|P(x)\| \leq\|x\|
$$

(4) we have $\|P\|=\sup \{\|P(x)\|:\|x\| \leq 1\}$, but by part (3), $\|P(x)\| \leq\|x\|$ for all $x \in X$

$$
\Rightarrow \sup \{\|P(x)\|:\|x\| \leq 1\} \leq 1 \Rightarrow\|P\| \leq 1^{2}
$$

Invariance and Reducibility

Definition(7.4.15)

Let M be a subspace of a linear space X over a field F, and let $T \in L(X)$. We say that M is an invariant under T. If for all $x \in M$, then $T(x) \in M$ i.e. $T(M) \subset M$

Example(7.4.16)

Let X be a linear space over a field F, and let $T \in L(X)$. If M is a range of T, and N is the kernel of $T^{*},\{0\}, M$ and N are invariant under T.
Ans :
(1) since $\bar{T}(0)=0 \Rightarrow T(\{0\}) \subset\{0\} \Rightarrow\{0\}$ is an invariant under T.
(2) $M \neq\{T(x): x \in X\}$

Let $x \in M \quad \Rightarrow \quad x \in X \quad \Rightarrow \quad T(x) \in M \quad \Rightarrow \quad T$
so that M is an invariant under T.
(3) $N=\operatorname{ker}(T)$. Then $N=\{x \in X: T(x)=0\}$

Let $x \in N \Rightarrow T(x)=0$. Since N is a subspace of $X \Rightarrow 0 \in N \Rightarrow T(x) \in N$ so that N is an invariant under T.

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3 :

Theorem(7.4.17)

Let M be a closed subspace of a Hilbert space X over F, and let $T \in B(X)$. Then M is invariant under T iff M^{\perp} is invariant under T^{*}.

Proof :

Suppose M is invariant under T
Let $y \in M^{\perp}$. To prove that $T^{*}(y) \in M^{\perp}$ (i.e. $\left.T^{*}(y) \perp M\right)$
Let $x \in M$, since M is invariant under $T \Rightarrow T(x) \in M$
Since $y \in M^{\perp} \Rightarrow\langle T(x), y\rangle=0 \Rightarrow\left\langle x, T^{*}((y)\rangle=0\right.$. Thus $T^{*}(y) \perp M$
Conversely suppose that M^{\perp} is invariant under T^{*}.
Since M^{\perp} is closed subspace of X invariant under T^{*}, therefore by first case $\left(M^{\perp}\right)^{\perp}$ is invariant under $\left(T^{*}\right)^{*}$.
But $\left(M^{\perp}\right)^{\perp}=M^{\Perp}=M$ and $\left(T^{*}\right)^{*}=T^{* *}=T$. Therefore M is invariant under T.

Theorem(7.4.18)

Let M be a closed subspace of a Hilbert space X over E, and let $T \in B(X)$. If P is the projection on M, then M is invariant under T iff $\mathcal{T} \circ P=P \circ T \circ P$.

Proof :

Suppose M is invariant under T. Then to prove $T \circ P=P \circ T \circ P$
Let $x \in X$, then $P(x)$ is in the range of P, i.e. $P(x) \in M$
Since M is invariant under $T \Rightarrow T(P(x)) \in M$
Since P is the projection on $M \Rightarrow P(T(P(x)))=T(P(x)) \Rightarrow(P \circ T \circ P)(x)=(T \circ P)(x)$
We have $T \circ P=P \circ T \circ P$
Conversely : suppose that $T \circ P=P \circ T \circ P$. Then to prove M is invariant under T
Let $x \in M$
Since P is a Projection with rang M and $x \in M$, then $P(x)=x \Rightarrow T(P(x))=T(x)$
Since $(T \circ P)(x)=(P \circ T \circ P) x) \Rightarrow T(P(x))=P(T(P(x)))=P(T(x)) \Rightarrow T(x)=P(T(x))$
$\Rightarrow T(x) \in M$.But P is the projection on M
Since $x \in M \Rightarrow T(x) \in M$. Therefore M is invariant under T.

Definition(7.4.19)

Let M be a closed subspace of a Hilbert space X over F, and let $T \in B(X)$. We say that T is reduced by M if both M and M^{\perp} are invariant under T. If T is reduced by M, then sometimes we also say that M reduces T.
Theorem(7.4.20)
A closed subspace M of a Hilbert space X reduces an operator T iff M is invariant under both T and T^{*}
proof :

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Suppose M reduces. Then by the definition of reducibility both M and M^{\perp} are invariant under T.by theorem (8.75), if M^{\perp} is invariant under T, then $\left(M^{\perp}\right)^{\perp}$, i.e. M is invariant T^{*}. Thus M is invariant under both T and T^{*}
Conversely suppose that M is invariant under both T and T^{*}
Since M is invariant under T^{*},therefore by theorem (17), M^{\perp} is invariant under $\left(T^{*}\right)^{*}$, i.e. T. Thus both M and M^{\perp} are invariant under T. Therefore M reduces T.

Theorem(7.4.22)
Let M be a closed subspace of a Hilbert space X over F, and let $T \in B(X)$. If P is the projection on M, then M is reduces under T iff $T \circ P=P \circ T$.
Proof :
Suppose M is reduces under T. Then to prove $\left.T \circ P=P \circ T^{*}\right\rangle$
$\Rightarrow M$ is invariant under both T and $T^{*} . \Rightarrow T \circ P=P \circ T \circ P$ and $T^{*} \circ P=P \circ T^{*} \circ P$
$\Rightarrow T \circ P=P \circ T \circ P$ and $\left(T^{*} \circ P\right)^{*}=\left(P \circ T^{*} \circ P\right)^{*} \Rightarrow T \circ P=P \circ T \circ P$ and $P^{*} \circ T^{* *}=P^{*} \circ T^{* *} \circ P^{*}$
Since $T^{* *}=T$ and since P is a projection, then $P^{*}=P \leadsto T \circ P=P \circ T \circ P$ and $P \circ T=P \circ T \circ P$
We have $T \circ P=P \circ T$
Conversely : suppose that $T \circ P=P \circ T$. Multiplying both sides by P on the left and then on the right by P we get $T \circ P^{2}=P \circ T \% P$ and $P \circ T \circ P=P^{2} \circ T$
Since P is a projection, then $P^{2}=P \Rightarrow T \circ P=P \circ T \circ P$ and $P \circ T \circ P=P \circ T$
$\Rightarrow(P \circ T \circ P)^{*}=(P \circ T)^{*} \Rightarrow P^{*} \circ T * P^{2}=T^{*} \circ P^{*} \Rightarrow P \circ T^{*} \circ P=T^{*} \circ P$
$\Rightarrow T \circ P=P \circ T \circ P$ and $T^{*} \circ P=P \circ T \circ P \Rightarrow M$ is invariant under both T and T^{*}
$\Rightarrow M$ is reduces under T.
Orthogonal Projections
Definition(7.4.23)
Two perpendicular projection P and Q on a Hilbert space X are said to be orthogonal if $P \circ Q=0$.

Theorem(7.4.24)

If M and N closed subspaces of a Hilbert space X and P and Q are the perpendicular projections on M and N respectively, then P and Q are orthogonal iff $M \perp N$
Proof:
Since P and Q are the perpendicular projections on X, then $P^{*}=P$ and $Q^{*}=Q$
Suppose that P and Q are orthogonal, i.e. $P \circ Q=0$
Let $x \in M$ and $y \in N$
Since M is a range of P, then $P(x)=x$. Also since N is a range of Q, then $Q(y)=y$. We have

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

$\langle x, y\rangle=\langle P(x), Q(y)\rangle=\left\langle x, P^{*}(Q(y))\right\rangle$
Since $P^{*}=P \Rightarrow\langle x, y\rangle=\langle x, P(Q(y))\rangle=\langle x,(P \circ Q)(y)\rangle$
Since $P \circ Q=0 \Rightarrow\langle x, y\rangle=\langle x, 0(y)\rangle=\langle x, 0\rangle=0 \Rightarrow M \perp N$.
Conversely : suppose that $M \perp N$
Let $y \in N$, since $M \perp N \Rightarrow y \perp x$ for $x \in M \quad \Rightarrow \quad y \in M^{\perp} \Rightarrow N \subseteq M^{\perp}$
Let $z \in X \quad \Rightarrow \quad Q(z) \in N$, since $N \subseteq M^{\perp} \Rightarrow Q(z) \in M^{\perp}$ which is the null space of P. Therefore
$P(Q(z))=0$ for all $z \in X$, then $P \circ Q=0$.

دراسات عليا ـ ماجستير

 Functional Analysis تحليل دالي

 Functional Analysis تحليل دالي
 3: $\quad 1: \quad 3$:

Exercises(7)

7.1 If X is a Hilbert space, then X is reflexive. Prove that
7.2 Let X be a Hilbert space over F, and let $T \in B(X)$. Show that
(1) $\left\|T \circ T^{*}\right\|=\|T\|^{*}$
(2) $T=T_{1}+i T_{2}$ such that $T_{1}, T_{2} \in S(X)$
(3) If $\alpha, \beta \in F$, then $\alpha T+\beta T^{*} \in N(X)$
7.3 Let X be a Hilbert space over F, and let $T \in B(X)$. Show that
(1) $T \in N(X)$ iff $\left\|T^{*}(x)\right\|=\|T(x)\|$ for all $x \in X$
(2) If $T \in N(X)$, then $\|T \circ T\|=\|T\|^{2}$
(3) T can be uniquely expressed as $T=T_{1}+i T_{2}$ where $T_{1}, T_{2} \in S(X)$
(4) $T \in N(X)$ iff its real and imaginary parts commute.
(5) If $T \in N(X)$ and $\lambda \in F$, then $(T-\lambda I) \in N(X)$.
(6) If $T \in N(X)$ and f is a polynomial with coefficients. Then the operator $f(T)$ is normal.
7.4 Show that: An operator T on a Hilbert space X is unitary iff it is an isometric isomorphism of X onto itself.
7.5 Show that : If T is an arbitrary operator on a Hilbert space X, and if $\alpha, \beta \in F$ such that $|\alpha|=|\beta|$, then $\alpha T+\beta T^{*}$ is normal.
7.6 If X is a finite dimensional Hilbert space, show that every isometric isomorphism of X into itself is unitary.
7.7 Show that the unitary operators on a Hilbert space X form a group.
7.8 Show that an operator T on a Hilbert space X is the unitary iff $T\left(\left\{e_{n}\right\}\right)$ is complete orthonormal set whenever is.
7.9 If $P_{1}, P_{2}, \cdots, P_{n}$ are the projections on closed subspaces $M_{1}, M_{2}, \cdots, M_{n}$ of a Hilbert space X, then $P=P_{1}+P_{2}+\cdots+P_{n n}$ is a perpendicular projection iff $P_{i} \circ P_{j}=0$ whenever $i \neq j$. Also then P is a projection on $M=M_{1}+M_{2}+\cdots+M_{n}$.
7.10 If P and Q are the perpendicular projections on M and N respectively of a Hilbert space X. Show that $P \circ Q$ is a perpendicular projections iff $P \circ Q=Q \circ P$. In this case . Show that $P Q Q$ is a perpendicular projections on $M \cap N$.

