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7. Fundamental Theorems For Normed Spaces
7.1 Riesz Representation

Theorem(7.1.1) Riesz lemma
 Let M be closed proper subspace of a normed space X , and let   be a real number
such that 10   . Then there exists a vector Xx   such that 1x    and x x   

for all Mx .
Proof :
Since M be closed proper subspace of X M X   there exists 0x X such that

0x M

 Let 0( , )d d x M , i.e.  Mxxxd  :inf 0

Since 0 0x M d   ( because if 0d , then Mx 0 ),  Since 0 1
d

d


   

By the definition of infimum, there exists Mx 1  such that 1 (1)
d

d x x


   

Let )( 10 xxkx   where 0
1

10  
xxk  (note that 10 xx  )

Then 1
0 1 0 1( ) ( ) 1x k x x k x x k k

      

Now  let 1
1x M k x x M   

1
0 1 1 0( ) ( ) (2)x x x k x x k k x x x k d

         

By (1), we have

d

k


1 , so kd  , hence   xx  for all x M .

Theorem(7.1.2)
Let X  be a normed space, and suppose the  1:  xXxA   is compact .Then X is
finite dimensional.
Proof :
We know that in metric space, a subset is compact iff it is sequentially compact, i.e. iff
every sequence has a convergent subsequence.
Suppose that X is not finite dimensional.
Choose Ax 1 ,and let 1M  be the subspace spanned by 1x , i.e.  1 1[ ] :M x x F   

Then 1M  is a proper subspace of X

Since 1M  is finite dimensional 1M  is complete , so that 1M  is closed.

Hence by Reisz-lemma there exists a vector Ax 2  such that
2

1
12  xx
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Let 2M  be the closed proper subspace of X  generated by  21 , xx , then as before, there

must exist Ax 3  such that
2

1
3  xx  for all 2Mx .

This sequence can therefore have no convergent subsequence. But this contradicts the
hypothesis A  compact. Hence X  must be finite dimensional.
Theorem(7.1.3)
Let 0x  be a fixed vector in a Hilbert space X and let FXf x :

0
 be a function defined

by 0,)(
0

xxxf x   for all Xx , then
0

*
xf X  and

0 0xf x

Proof :
Let ,x y X  and , F  

0 0 00 0 0( ) , , , ( ) ( )x x xf x y x y x x x y x f x f y             
0xf X  

To prove
0xf  is continuous . For  every Xx , we have 0,)(

0
xxxf x 

0 0 0( ) ,xf x x x x x  

Let 0 0x k k   . Therefore we have xkxf x )(
0

 for all Xx

Therefore the function
0xf  is bounded and every bounded function is continuous.

Hence
0xf is functional on X  and so

0

*
xf X

Now we  shall show that 00
xf x  . As shown above, for every Xx  we have

)1()( 00
xxxf x 

Now by definition,  1:)(sup
00

 xxff xx

If 0 01x x x x    and therefore (1) gives 0)(
0

xxf x   for all Xx  such that

1x 

 0 00 0sup ( ) : 1 (2)x xf x x x f x     

If 0 00 0x x   . Also
0 0( ) , ,0 0xf x x x x  

0
( ) 0xf x   for all Xx

Let us now take 0 0 {0}x X   , we have  1:)(sup
00

 xxff xx

 1:)(sup
00

 xxff xx

Put 0

0

1
x

z z
x

  

0

20
0 0 0 0 0 0

0 0 0

1 1
( ) , , ,x

x
f z z x x x x x x

x x x
    

But
0 0

( )x xf f z  )3(00
xf x 

From (2),(3), we have 00
xf x 
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Remark
From this theorem we conclude that the function *: XX   such that

0
)( 0 xfx   is a

norm preserving function.
Theorem(7.1.4)
Let X  be a Hilbert space, and let *Xf  . Then there exists a unique vector 0x  in X

such that
0xff  , i.e. 0,)( xxxf 

Proof :
If f  is a zero functional , then 0)( xf  for Xx , then 00 x  is such that 0,)( xxxf 

for all Xx .  Now suppose that f  is not zero functional, i.e. 0)( xf  for some Xx .
Let  ker( ) : ( ) 0M f M x X f x     , then M  is a proper subspace of X .

Since f  is  continuous , then M  is closed, hence M  is a proper closed subspace of
X .
Therefore there exists a non-zero vector 0y X  such that My 0

0 0y M y M    ( if My 0 , then 00 y this contradiction) 0( ) 0f y 

Put 00 yx   such that 0 0
2 2

0 0

( ) ( )f y f y

y y
    , then

2

0 0 0 0 0 0 0 0( ) , , ,f y y y y y y y x     

If ( ) 0m M f m  

Since 0 0 0 0, 0 , 0 , 0y M m y m y m y       

0 0, 0 ( ) ,m x f m m x   

Now .  If Xx  , then 0 0
0 0

( ) ( )
( ) ( ) ( ),

( ) ( )

f x f x
f x f y f y

f y f y
   

0 0 0( ) ( ) 0 ( ) 0f x f y f x y x y M         

Put 0 0m x y x m y     

0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) , , , ,f x f m y f m f y m x y x m y x x x           

To prove  unique .
Suppose 1 2,x x X  such that 1,)( xxxf   for all Xx  and 2,)( xxxf    for all Xx

1 2, ,x x x x   for all Xx 1 2, 0x x x    for all Xx

Since 1 2 1 2 1 2 1 2 1 2, 0 0x x X x x x x x x x x           .
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Theorem(7.1.5)
Let 0x  be a fixed vector in a Hilbert space X , and let

0xf be a functional on X defined by

0 0,xf x x  for all x X , then
0xf  is continuous linear functional on X , and

00 xx f

Proof : H.w
Theorem(7.1.6)
  Let X  be a Hilbert space, and let *: XX   defined by yff )(  such that yxf y ,

for all Xx  . Then   is one-to-one, onto, additive but not linear, and an Isometry.
Proof :
    (1)   is one-one : Let Xyy 21,  such that

1 21 2( ) ( ) y yy y f f   

1 2
( ) ( )y yf x f x  for all 1 2, ,x X x y x y    for all x X 2, 0x y y  

for all Xx
Since 1 2 1 2 1 2 1 2 1 1, 0 0y y X y y y y y y y y             is one-one

   (2)   is onto : Let *Xf   by theorem(7.1.4), there exists a unique vector 0x in X such
that 0,)( xxxf   for all Xx , i.e.

0xff   this mean ffx x 
0

)( 0   is onto, so

that   is bijective
  (3)   is additive : Let Xyy 21 ,

1 21 2( ) y yy y f   

Now for every Xx ,we have

1 2 1 2 1 21 2 1 2( ) , , , ( ) ( ) ( )( )y y y y y yf x x y y x y x y f x f x f f x        

1 2 1 2 1 2 1 2( ) ( ) ( )y y y yf f f y y y y           is additive.

(4)   is not linear : Let ,y X F 

( ) , ( ) , , ( )y y yy f f x x y x y f x        ( ) ( )y yf f y y       

  is not linear
(5)   is an Isometry : Let Xyy 21 ,

1 2 1 2 1 2 1 21 2 ( ) 1 2( ) ( ) y y y y y y y yy y f f f f f f y y             

By theorem(8.14), we have yy f   is an Isometry.

Remark
 In our further discussion we shall represent the functionals in *X  by , , ,x y zf f f 
where , , ,x y z   are their corresponding vectors in X .

Theorem(7.1.7)
  If X is a Hilbert space, then *X  is also a Hilbert space with  respect to the inner
product defined by xyff yx ,,  .

Proof :
  (1) To prove *X  is a  pre-Hilbert space
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       (i) let *Xf x  , then 2
, , 0x xf f x x x  

       (ii) 2 2
, 0 0 0 0x y x xf f x f f      

      (iii) let *, Xff yx   , then , , , ,x y y xf f y x x y f f  

      (iv) let *,, Xfff zyx   and let F , , then

, , , , , , , ,x y z z z x z y zx y x y
f f f f f f f f z x y z x z y f f f f

   
                

*X  is a  pre-Hilbert space
(2) To prove *X  is complete
   Since X  is a Hilbert space, then X  is a normed space , so *X  is complete.

*X  is a  Hilbert space.

Corollary(7.1.8)
If we denote the elements of **X  by , ,f gF G   where ,f g are their corresponding
elements in *X , then by theorem(), we conclude that **X  is also a Hilbert space with
respect to the inner product defined by fgGF gf ,,  .

7.2 Strong and Weak Convergence
Convergence of sequence of elements in a normed space was defined in section 3, from now
on, will be called strong convergence, to distinguish it from " weak convergence"  to be
introduced shortly. Hence we first state
Definition(7.2.1)
A sequence nx in a normed space X  is said to be Strongly convergent(or convergent
in the norm) if  there is an x X  such that 0nx x   as n  .  This is written

lim n
n

x x


  or nx x .

The element x  is called the strong limit of nx , and we say that  nx converges strongly to x .
 Weak convergence is defined in terms of bounded linear functionals on X  as follows.
Definition(7.2.2)
A sequence nx in a normed space X  is said to be Weakley Convergent if there is an x X

such that  for every *f X , we have ( ) ( )nf x f x . This is written xx w
n  . The element x

is called the weak limit of  nx , and we say that  nx  converges weakly to x .

Theorem(7.2.3)
 Let  nx  be a weakly convergent sequence in a normed space X , say xx w

n 

(1) The weak limit x of  nx is unique.
(2) Every subsequence of  nx  converges weakly to x .
(3) The sequence  nx  is bounded.
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Proof :
        (1) Suppose that ,w w

n nx x y y  . To prove that x y

             Let * ( ) ( ) , ( ) ( )n nf X f x f x f x f y   

         Since the limit is unique , we have ( ) ( )f x f y  for all *Xf 
( ) 0f x y    for all *Xf  0x y x y    .

    (2) Since  )( nxf  is convergent sequence in F  for all *Xf  ,so that every subsequence of
 )( nxf  converges and has the same limit as the sequence.
  (3) Since  )( nxf  is convergent sequence in F  for all *Xf   ( )nf x  is bounded

  there exists 0fM  such that fn Mxf )(  for all n , where fM  is a constant

depending of f  but not on n . Using the canonical function **: XX  , we can
define **Xg n   by )()( nn xffg   for all *Xf  . Then for all n , gnn Mxffg  )()(  that

is, the sequence  ( )ng f  is bounded for every *Xf  .

Since *X  is complete ( *X  is Banach space )  ng  is bounded.

Now  since  n n ng x x   is bounded.

Theorem (7.2.4)
If  nx  and  ny  are sequence in a normed space X  such that ,w w

n nx x y y  , then
  (1) yxyx w

nn     (2) yxx w
n   for all F .

 Proof : obvious
Theorem(7.2.5)
Let nx  be a sequence in a normed space X  such that xxn  , then xx w

n   and the
converse not true.
Proof :
Since 0n nx x x x     as n

Let *Xf  ( ) ( ) ( )n n nf x f x f x x f x x     

( ) ( ) 0nf x f x     as n w
nx x  .

Example for the converse : Let X  be a Hilbert space over F  and let *Xf  . By using
Riesz representation, there exists Xx 0  such that 0,)( xxxf   for all Xx  .

Let  nx  be an orthonormal sequence in X 0( ) ,n nf x x x  .

Now the Bessel inequality is 2

0 0
1

,n
i

x x x





Hence the series on the left converges, so that its terms must approach zero as n .
i.e. 0, 0nx x   as n . This implies 0( ) , 0n nf x x x 

since * 0w
nf X x   , but  nx  does not converge to zero. because
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2 2 2
, 1 1 2,n m n m n m n mx x x x x x x x n m          .

Theorem(7.2.6)
Let nx be a sequence in a finite dimensional normed space X such that xx w

n  , then

nx x  .
Proof :
Let mX dim  and let  1, , mx x  be any basis for X

Since x X x   has unique representation
1

,
m

i i i
i

x x F 


 

Also n nx X x   has unique representation
1

,
m

n in i in
i

x x F 


 

Define FXf i :  by








ji

ji
xf ji 1

0
)(   .  It is  clear to show that *Xf i   for all

1, ,i n 
since ( ) ( )w

n i n ix x f x f x    as n

since inniii xfxf   )(,)( in i    as n 0in i      as n

1 1 1 1

( )
m m m m

n in i i i in i i im i i
i i i i

x x x x x x     


         

0nx x   as n nx x   as n  .
Definition(7.27)
Let X and Y be normed spaces over F , and let nf  be a sequence in ),( YXB . A
sequence  nf is said to be
(1) Uniformly Convergent if  nf converges in the norm on ),( YXB . i.e.
        If there exists ( , )f L X Y  such that 0 ff n  as n

(2) Strongly Convergent if  ( )nf x  converges strongly in Y for every Xx , i.e.

        If there exists ( , )f L X Y  such that 0)()(  xfxf n  as n  for every Xx .

 (3) Weakly Convergent  if  ( )nf x  converges weakly in Y for every Xx , i.e.

 If there exists ( , )f L X Y  such that 0))(())((  xfgxfg n  as n  for every Xx ,

      and for every *Xg  .
It is not difficult to show that (1) (2) (3)  , but the converse is not generally
true , as can be seen from the following examples.
Example (7.2.8)
(1) In the space 2  we consider a sequence  nf , where 22  nf  is defined by
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1 2
0

( ) (0,0, ,0, , , )n n n
n

f x x x 


  

   where 2
21 ),,(   xxx 2( )nf B    for all n .

 nf  is strongly convergent to 0. (because 0)( xf n  as n  ), but  nf is not
uniformly convergent (because 10  nn ff  )

(2) ) In the space 2  we consider a sequence  nf , where 22  nf  is defined by
),,,0,,0,0()( 21

'0
 xxxf

sn
n




   where 2
21 ),,(   xxx 2( )nf B    for all n .

We show that  nf  is weakly convergent to 0, but not strongly convergent
Let 2 *( )g g   is bounded linear functional on 2 . By Riesz representation there
is 2y  such that zxxg ,)(   where 2x .

1

( ) i i
i

g x x y




     where 2
2121 )0,,,1,,,(   yyxxx

1 1

( ( ))n i n k n ki
i n k

g f x x y x y
 

 
  

    . by the Cauchy-Schwarz inequality , we have

2
22 2

1 1 1

( ( )n n n k k m
k k m n

g f x x y x y
   

  
    

  
  

The last series is the remainder of a convergent series. Hence the right-hand side
approaches 0 as n  . Thus  ( ( )) 0n ng f x f   is weakly convergent to 0.

However  nf  is not strongly convergent because for ),0,0,1( x  we have
2 2( ) ( ) 1 1 2,m nf x f x n m     .

Definition(7.2.9)
Let X be normed space over F , and let nf  be a sequence in *X . A sequence  nf is said to be

(1) Strong Convergent, if there is an *Xf   such that 0 ff n  as n . This written

ff n  . The function f is called the strong limit of  nf

 (2) Weak*  Convergence, if there is an *Xf   such that )()( xfxf n   for all Xx . This

      written ff W
n 

*

.  The function f is called the Weak* limit of  nf

Example (7.2.10)
The space X of all sequences )( nxx  in 2  with only finitely many nonzero terms,
taken with metric on 2 is not complete . A function XXf n :  is defined by

),,,,,3,2,()( 21321   nnnn xxnxxxxxf

So that ( )nf x  has terms mmx  if nm   and mx  if nm  .
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This sequence  nf  converges strongly to the unbounded linear function f  defined by
)()( iyxf   where ii ixy  .

Theorem(7.2.11)
Let X and Y be normed spaces over F , and let nf  be a sequence in ),( YXB . If X  is a
Banach and the X is bounded in Y  for all Xx  , then  the sequence  nf  is
bounded.
Proof :
    Let k  be natural number. Define kA  by  kxfXxA nk  )(:

First : To prove kA  is closed

Let kx A   there exists a sequence  nx  in kA  such that xxm   as m

Since m kx A   for all n , we have kxf mn )(

Since nf  is continuous , then for all n , we have ( )n kf x k x A   kA A 

But k kk k kA A A A A      is closed
Since  )(xf n is bounded in Y for all Xx ., then for all n , there exists xk such that xn kxf )(

For all n kx A   for some k , so that 





1k

kAX

Since X  is complete, by Baires theorem, kA  contain open ball, say
0

)( 0 kr AxB 

Let x be non zero element in X .

Put 0,
2

r
y x x

x
    0 0( ) ( )r k ny x r y x y A f y k       

Since 0 0 0( ) ( )r nx x f x k  

Since  0

1
xyx 


 . for all n  ,

 

   

0 0

0 0 0 0

1 1
( ) ( ) ( ) ( )

1 1 2 4
( ) ( ) ( ) (( ) ( )

n

n

f x f y x f y f x

f x f y f x f y f x k x k
r

 

  

     

     

So that for all n ,  sup ( ) : , 1n nf f x x X x    , then 0

4
k

r
f n   . Hence  nf is bounded.
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7.3 Adjoint Operator
Recall that a function :T X Y is called an operator form X  into Y if X and Y are
linear space over the same field F . A linear operator T is an operator such that

( ) ( ) ( )T x y T x T y       for all ,x y X  and for all , F   . Let X and Y be normed
spaces over F , ( , )B X Y is the space of bounded linear operator from X  into Y ,

( , )B X Y  is a normed space with respect to the norm defined by
sup{ ( ) : , 1}T T x x X x    for all ( , )T B X Y , (see section 5.)

Definition(7.3.1)
Let X and Y be normed spaces over F , and let ( , )T B X Y . An operator :T Y X  
which is defined by ( ( ))( ) ( ( ))T g x g T x   for all g Y    is  called an adjoint (or
conjugate) of T .
It is clear to show T   is unique .
Theorem(7.3.2)
Let X and Y be normed spaces over F , and let ( , )T B X Y . Then T   is bounded linear
operator and T T 

Proof :
             (1) let ,f g Y   and let , F  

( )( ) ( )( ( )) ( )( ( )) ( )( ( )) ( ( ( )) ( ( ( )))

( ( )) ( ( )) ( )( ) ( )( ) ( ( ) ( ))( )

T f g x f g T x f T x g T x f T x g T x

f T x g T x T f x T g x T f T g x

       

     



   

      

     
( ) ( ) ( )T f g T f T g        T    is linear

            (2)
sup{ ( ) : , 1} sup{ ( )( ) : , 1, 1}

sup{ ( ( )) : , 1, 1} sup{ : , 1, 1}

T T f f Y f T f x f Y f x

f T x f Y f x f T x f Y f x T

    

 

      

        

T T   Since T  is bounded, then T  is bounded.

 (3)  We must prove T T 

Since , for each nonzero vector x X , there exists f Y   such that 1f   and ( ( )) ( )f T x T x

( )( )( ) ( ( )
sup{ : 0} sup{ : , 1, 0} sup{ : , 1, 0}

( )
sup{ : , 1, 0} sup{ ( ) : , 1}

T f xT x f T x
T x f Y f x f Y f x

x x x

T f
f Y f x T f T x f Y f T

x


 


   

         

       

T T T T    
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Remark
Let X and Y be normed spaces over F ,and let ( , )B Y X   denote the set of all adjoint
operator of T , where ( , )T B X Y , i.e. ( , )T B Y X   , iff T   is an adjoint operator of
T . It is clear to show that ( , )B Y X   is normed space.

Theorem(7.3.3)
 Let , ,X Y Z  be  normed spaces over F . Then
(1) ( )S T S T         for all , ( , )S T B X Y  and for all , F   .
(2) If ( , )T B X Y , ( , )S B Y Z . Then ( )S T T S   
(3) If ( )B X , then     , where   is identity operator
(4) Let ( , )T B X Y . If 1T   exists and 1 ( , )T B Y X  . Then 1( )T   also exists ,

1( ) ( , )T B X Y    ,
1 1( ) ( )T T     and

Proof :
(1) Let , ( , )S T B X Y  and let , F  

(( ) ( ))( ) (( ))( ) ( ( ) ( )) ( ( )) ( ( ))

( ( ))( ) ( ( ))( )

S T f x f S T x f S x T x f S x f T x

S f x T f x

       

 



 

      

 
( ) ( ) ( ( )) ( ( )) ( )( ) ( )S T f S f T f S T f S T S T                        

(2) Let ( , )T B X Y , ( , )S B Y Z
(( ) ( ))( ) (( )( )) ( ( ( ))) ( ( )( ( )) ( ( ( )))( ) (( )( ))( )S T f x f S T x f S T x S f T x T S f x T S f x           
    Hence ( )S T T S   
(3) ( ( ))( ) ( ( )) ( ) ( ( )) ( ( ))( )f x f x f x f x f x           

Theorem(7.3.4)
Let X and Y be normed spaces over F . Define : ( , ) ( , )B X Y B Y X    by ( )T T 
for all ( , )T B X Y . Then   is an is an isometric isomorphism
Proof :
(1)   is one-one : let ( ) ( )S T 

0 ( ) 0 0S T S T S T S T S T                

  is one-one
(2)   is linear : let , ( , )S T B X Y  and , F  

( ) ( ) ( ) ( )S T S T S T S T                   is linear
(3)   is preserves norm  : Let ( , )T B X T

( )T T T    is preserves norm
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Definition(7.3.5)
Let X and Y be linear spaces over F . A function :h X Y F   is called a sesquilinear
form (or sesquilinear functional) if
(1) 1 2 1 2( , ) ( , ) ( , )h x x y h x y h x y       for all 1 2, ,x x X y Y   and , F  

(2) 1 2 1 2( , ) ( , ) ( , )h x y y h x y h x y       for all 1 2, ,x X y y Y   and , F  

     Hence h  is linear in the first argument and conjugate linear in the second one.
Let X and Y be normed spaces over F . A sesquilinear form :h X Y F   is called bounded ,
if  there is a real number k  such that for all ,x X y Y   such that ( , )h x y k x y .
 and the number

( , )
sup{ : , , 0, 0} sup{ ( , ) : , , 1, 1}

h x y
h x X y Y x y h x y x X y Y x y

x y
            is

called the norm of G .
Theorem(7.3.6) Riesz representation
Let X and Y be Hilbert  spaces over F , and let :h X Y F   be a bounded sesquilinear
form. Then h  has a representation ( , ) ( ),h x y S x y  where :S X Y is bounded linear

operator. S  is uniquely determined by h  and has norm S h .
Proof :
Definition(7.3.7)
Let X and Y be Hilbert spaces over F , and let ( , )T B X Y .  The Hilbert adjoint operator
T  of T  is the operator :T Y X  such that for all x X  and y Y , ( ), , ( )T x y x T y .

Theorem(7.3.8)
Let X and Y be Hilbert spaces over F , and let ( , )T B X Y .  The Hilbert adjoint

operator T  of T  is unique and is bounded linear operator with norm T T 

Proof :
            Define :h Y X F   by ( , ) , ( )h y x y T x   for all x X  and y Y

(1) G  is conjugate linear : let 1 2,x x X  and , F  

1 2 1 2 1 2 1 2 1 2( , ) , ( ) , ( ) ( ) , ( ) , ( ) ( , ) ( , )h y x x y T x x y T x T x y T x y T x h y x h y x                 

(2) h  is bounded
    By the Schwarz inequality, we have ( , ) , ( ) ( )h y x y T x y T x T x y  

This also implies h T . Moreover we have h T  from

, ( ) , ( )
sup{ : 0, 0} sup{ : 0, 0}

( )

y T x y T x
h x y x y T

y x T x x
      

  Together, h T
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By using theorem (7.3.6) for h ; writing T   for S , we have ( , ) ( ),h y x T y x  and we

know from that theorem that :T Y X   is a uniquely determined bounded linear
operator with norm T h T   .

Theorem(7,3.9) Properties of Hilbert adjoint operator
  Let X and Y be Hilbert spaces over F , and let , ( , )S T B X Y .
(1) ( ), , ( )T y x y T x   for all ,x X y Y    (2) ( )S T S T         for all , F  

(3) ( )T T    (4) 2
T T T T T      (5) 0T T   iff 0T  (6)

( )S T T S    (assuming X Y )
(7)Let ( , )T B X Y . If T  is bijective  , then T   is also bijective and 1 1( ) ( )T T   
Proof :
Definition(7.3.10)
Let X  be a Hilbert space over F , and let ( )T B X  . T  is said  to be Self-adjoint or

Hermitian if TT   .
The Hilbert –adjoint operator T   of T  is defined by ( ), , ( )T x y x T y  . If T  is self

–adjoint, we have ( ), , ( )T x y x T y .

Theorem(7.3.11) (Self-adjointness of product)
The product of two bounded self-adjoint linear operators S and T  on a Hilbert space X  is
self-adjoint iff the operators commute (i.e.,S T T S   )
  Proof :
             Since S  and T  are self –adjoint , then ,S S T T  
Since ( )S T T S     , then ( )S T T S   .
Hence ( )S T S T    iff S T T S  .

Theorem(7.3.12)
Let X be a Hilbert space over F , and let , ( )nT T B X  such that nT T . If nT  is self-adjoint
for all n , then T  is self-adjoint.
Proof :
Since 0n nT T T T      as n 

Since nT  is self-adjoint  for all n , n nT T   for all n

( ) ( ) ( ) ( ) 0 ( ) ( ) ( )n n n n n n n nT T T T T T T T T T T T T T T T T T                       

( ) ( ) ( ) 2n n n n n n nT T T T T T T T T T T T T T T T                 

Since 0nT T    as n  , then 0T T    as n  .

Hence 0T T T T T        is self-adjoint.
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Theorem(7.3.13)
Let X be a Hilbert space over F . If ( )S X denotes the set of all self-adjoint in ( )B X ,then

( )S X  is a closed subspace of ( )B X , and  therefore a real Banach space which contains the
identity linear operator.
Proof :

( ) { ( ) :S X T B X T   is self-adjoint}

Since 0 0 0 ( ) ( )S X S X      
Let , ( ) ,S T S X S S T T     

Let ,    , then ( ) ( ) ( )S T S T S T S T S T                       
( )S T S X    , so that )(XS  is a  real subspace of )(XB .

Now to show that )(XS is closed subset of )(XB

Let ( )T S X   there exists a sequence }{ nT in )(XS  such that TTn 
*( ) ( ) ( ) ( )n n n n n nT T T T T T T T T T T T             

* * * *0 ( ) 2n n n n n n n n nT T T T T T T T T T T T T T T T                

Since 0n nT T T T     as n

0 0T T T T T T           .so T  is self-adjoint

( ) ( ) ( )T S X S X S X  
( )S X  is closed subset of )(XB ( )S X  is a real closed subspace  of )(XB

Since )(XB  is complete ( )S X  is a real Banach space .
Since * ( )I I I S X   .

Theorem(7.3.14)
Let X be a Hilbert space over F , and )(XBT  .Then 0T  iff 0),( yxT  foe all

Xyx , .
Proof :
           Suppose 0 ( ) 0T T x    for all x X , we have ( ), 0, 0T x y y 

Conversely : suppose that 0),( yxT  foe all Xyx , .

Since XxT )( . Taking )(xTy  ( ), ( ) 0T x T x   for all x X

( ) 0T x   for all x X 0T  .

Theorem(7.3.15)
Let X be a Hilbert space over F , and )(XBT  .Then 0T  iff ( ), 0T x x   foe all x X .

Proof :
Suppose 0 ( ) 0T T x    for all x X , we have ( ), 0, 0T x x x 
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Conversely : suppose that ( ), 0T x x   foe all x X . Then to prove 0T

If Xyx ,  and , F   , then we have
( ), ( ) ( ), ( ), ( ),T x y x y T x T y x y T x x y T y x y                     

( ), ( ), ( ), ( ), ( ),T x y x y T x x T x y T y x T y y              
2 2

( ), ( ), ( ), ( ), ( ),T x y x y T x x T x y T y x T y y             
2 2

( ), ( ), ( ), ( ), ( ), (1)T x y x y T x x T y y T x y T y x             

But by hypothesis ( ), 0T x x   for all x X . Therefore the left hand side of (1)is also

equal to zero. Thus we have ( ), ( ), 0 (2)T x y T y x     for all Xyx , and , F  

Put 1, 1   in (2), we give ( ), ( ), 0 (3)T x y T y x 

Again putting , 1i    in (2), we get ( ), ( ), 0 (4)i T x y i T y x 

Multiplying (3) by i  and adding to (4), we get 2 ( ), 0i T x y   for all Xyx ,

( ), 0T x y   for all Xyx , . Taking )(xTy  ( ), ( ) 0T x T x   for all x X

( ) 0T x   for all x X 0T  .

Theorem(7.3.16)
Let X  be a Hilbert space over F , and let ( )T B X .T  is self-adjoint iff ( ),T x x  is real for all

x X .
Proof :
    Suppose that T  is self-adjoint
Let x X *( ), , ( ) , ( ) ( ),T x x x T x x T x T x x   

Thus xxT ),(  is equal to its own conjugate and is therefore real

Conversely : suppose that ( ),T x x  is real for all x X
* *( ), ( ), , ( ) ( ),T x x T x x x T x T x x   

From this, we get 0),(),( *  xxTxxT  for all x X
*( ) ( ), 0T x T x x    for all x X

*( )( ), 0T T x x   for all x X * 0T T T T T      is self-adjoint.

Definition(7.3.17)
Let X  be a Hilbert space over F . We define a relation   on )(XS  as  follows :

If )(, XSTS  , then we write TS   if xxTxxS ),(),(   for all x X

In the following theorem we shall prove that the relation   defined on the set of all
self-adjoint operators is a partial order relation.
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Theorem(7.3.18)
Let X be a Hilbert space over F . Then )(XS  is a partially ordered.
Proof :
Let )(, XSTS  , if TS   then xxTxxS ),(),(   for all x X

(1) reflexive : let )(XST 
      Since xxTxxT ),(),(   for all x X ( ), ( ),T x x T x x  for all x X

T T    therefore the relation   on )(XS  is reflexive.
 (2) transitive : let )(,, XSTSR  such that R S S T  

( ), ( ),R x x S x x   for all x X  and xxTxxS ),(),(   for all x X

( ), ( ),R x x T x x   for all x X

R T    therefore the relation   on )(XS  is transitive.
(3) Anti-symmetric : let , ( )S T S X such that S T T S  

( ), ( ),S x x T x x   for all x X  and ( ), ( ),T x x S x x  for all x X

( ), ( ),S x x T x x   for all x X ( ( ), 0S x T x x     for all x X

( )( ), 0S T x x      for all x X

0S T S T      therefore the relation   on )(XS  is Anti-symmetric.
Hence   is a partial order relation on )(XS .

Remark
Let X be a Hilbert space over F , and let )(,, XSTSR  , 0  .
(1) If TS  , then RTRS   (2) If TS  , then TS  
  Proof :
  (1) Since ( ), ( ),S T S x x T x x    for all x X

( ), ( ), ( ), ( ),S x x R x x T x x R x x     for all x X

( )( ), ( )( ),S R x x T R x x     for all x X S R T R    .

(2) Since ( ), ( ),S T S x x T x x    for all x X

( ), ( ),S x x T x x    for all x X

( )( ), ( )( ),S x x T x x    for all x X S T   .

Definition(7.3.19)
Let X be a Hilbert space over F , and let )(XST  . We say thatT  is positive if 0T ,i.e.

0),( xxT for all x X .

Example(7.3.20)
 (1) Identity and zero operators are both positive operators.
 (2)Let X be a Hilbert space over F , and let )(XBT  . Show that * *,T T T T  are positive.
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Ans :
(1) 0,),(  xxxxI  for all x X and 0,0),(0  xxx   for all x X .

(2) * * * * * *( ) ( )T T T T T T    * ( )T T S X 
2* * * * *( )( ), ( ( ), ( ), ( ) ( ) 0T T x x T T x x T x T x T x    *T T   is positive

Also * * *( ) ( )T T T T T T      ( )T T S X 
2*( )( ), ( ( ), ( ), ( ) ( ), ( ) ( ) 0T T x x T T x x T x T x T x T x T x       T T   is positive.

Theorem(7.3.21)
Let X be a Hilbert space over F , and let )(XST  . If T  is positive, then TI   is s non singular.
Proof :
In order to show that TI   is s non singular is one-one and onto function from X onto
itself.
(1) TI   is one –one : To prove }0{)ker( TI

     Let ker( ) ( )( ) 0x I T I T x    

2

( ) ( ) 0 ( ) 0 ( )

( ), , ,

I x T x x T x T x x

T x x x x x x x

       

     

Since 2 2
( ), 0 0 0T x x x x      , but 2 2

0 0 0x x x    

0x I T     is one –one.
(2) we shall show that TI   is onto. Let M be the range of TI  . Then TI  will be
onto if
we show that M X .
First we shall show that M is closed. Let x X , we have

2 2
( )( ) ( ) ( ), ( ) , , ( ) ( ), ( ), ( )I T x x T x x T x x T x x x x T x T x x T x T x         

2 2 2
( )( ) ( ) ( ), ( ),I T x x T x T x x T x x    

Since T  is positive, then T  is self-adjoint ( ),T x x  is real for all x X

( ), ( ),T x x T x x   for all x X 2 2 2
( )( ) ( ) 2 ( ),I T x x T x T x x    

Since T  is positive, then ( ), 0T x x  2 2
( )( )I T x x  

Thus ( )( )x I T x   for all x X

Now let {( )( )}nI T x  be a Cauchy sequence in M . For any two positive integers ,n m ,
we have ( )( ) ( )( ) ( )( )n m n m n mx x I T x x I T x I T x       

Since {( )( )}nI T x  be a Cauchy sequence in M , then ( )( ) ( )( ) 0n mI T x I T x   

0n mx x  . This mean that { }nx  is a Cauchy sequence in X . But X  is complete .

Therefore the Cauchy sequence { }nx  in X  is converges to x X . Now
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Since T  is continuous I T   is continuous
Since nx x  and I T  is continuous, then ( )( ) ( )( )nI T x I T x  

Thus the Cauchy sequence {( )( )}nI T x in M converges to ( )( )I T x  in M .Therefore
M  is complete . But every complete subspace of a complete space is closed. Hence
M  is closed.
Now we show that M X . Suppose M X . Then M  is a proper closed subspace of
X . Therefore there exists a non zero 0x X  such that 0x M  .
Since

0 0 0 0 0 0 0 0 0 0( )( ) ( )( ), 0 ( ), 0 , ( ), 0I T x M I T x x x T x x x x T x x          

2 2

0 0 0 0 0 0( ), 0 ( ),x T x x x T x x     

Since T  is positive 2 2

0 0 0 0( ), 0 0 0T x x x x      

Since 2 2

0 0 00 0 0x x x    

But this contradicts the fact that 0 0x  .Hence we must have M X  and so I T  is onto.

Corollary(7.3.22)
Let X be a Hilbert space over F , and let ( )T S B .then the operators *I T T   and

*I T T   are    non singular.
Proof :
Since * *,T T T T  are positive. (see example 8.50), then by theorem (8.51), we have

*I T T   and *I T T   are non singular.
Normal and Unitary operators
Definition(7.3.23)
Let X  be a Hilbert space over F ,and let )(XBT  . T  is said  to be Normal if T T T T  
Example(7.3.24)
 Every self-adjoint operator is normal, but the converse is not true
Ans :
Let X  be a Hilbert space over F ,and let ( )T S X .i.e.T  is self-adjoint

*T T T T T T T        is normal
The converse, for example
  Let X be a Hilbert space over F , if : X X  is the identity operator, then 2T i  is normal

Because 2T i     and 4T T T T      but T T   as well as 1 1

2
T T i     .

Remark
Let X be a Hilbert space over F , we denotes the set of all normal in ( )B X by )(XN .
From above example we have )()( XNXS  , but not ( ) ( )S X N X in general.
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Theorem(7.3.25)
Let X be a Hilbert space over F .
(1) )(XN is closed  subset of ( )B X

(2) If ( )T N X  and F , then ( )T N X  , i.e. ( )S X  is a closed under scalar
multiplication.
Proof :
(1) ( )T N X   there exist a sequence }{ nT  in )(XN  such that TTn   . We have

* * * * * * *( ) 0 0n n n n nT T T T T T T T T T          

Now

* * * * * * * * * *

* * * * * * * * * * * *

* * * *

( ) ( )

( ) ( )

n n n n n n n n

n n n n n n n n n n n n n n

n n n n

T T T T T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T T T T T T T T T

T T T T T T T T

        

          

   

         

           

   

Since * *,n nT T T T  , then 0**  TTTT  * *T T T T T     is a normal

( )T N X  ( ) ( )N X N X  ( )N X  is closed.
(2) * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T T T T T T T                  

( )T N X Is normalT

Theorem(7.3.26)
Let X be a Hilbert space over F ,and let , ( )S T N X  such that STTS  **   or TSST  **  .
Then )(, xNTSTS  
Proof :
 Since * *, ( )S T N X S S S S     and TTTT  ** 

* * * * * * * * * * *

* * * * *

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

S T S T S T S T S S S T T S T T S S T S S T T T

S S T T S T S T S T S T S T

            

         

         
   

S T   is normal ( )S T X  
* * * * * * * *

* * * * * * * * *

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

S T S T S T T S S T T S S T T S S T T s

T S S T T S S T T S S T T S S T S T S T

   

    

              
              

S T   is normal ( )S T X 
Definition(7.3.27)
Let X be a Hilbert space over F ,and let )(XBT  . T is said  to be Unitary if 1T T 
(i.e. ITTTT   **  )
It is clear to show that
(1) every unitary  operator is normal, but the converse is not true
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(2) Let X be a Hilbert space over F ,and let )(XBT  . Then T is unitary iff it is bijective.

Theorem(7.3.28)
Let X be a Hilbert space over F ,and let )(XBT  . The following statements are equivalents.
(1) 1* TT    (2) yxyTxT ,)(),(    for all Xyx ,  (3) xxT )(  for all Xx

Proof :
(1 ) ( 2 )

Let Xyx , , we have *( ), ( ) , ( ( )) , ( ) ,T x T y x T T y x I y x y  

(2) (3)

Let x X , by (2), we have 2 2
( ), ( ) , ( ) ( )T x T x x x T x x T x x    

(3) (1)
Let x X , by (3), we have

2 2 *( ) ( ), ( ) , ( )( ), ,T x x T x T x x x T T x x x x    
* * *( )( ), 0 0 1T T I x x T T I T T         

7.4 Projections

Definition(7.4.1)
Let X  be a linear space over F . A linear operator :P X X  is called projection(مسقط)
on X  if 2P P , i.e. p  is an idempotent ( القوىمتساوي ).

Theorem (7.4.2)
 Let 1M and 2M  be two subspaces of a vector space over F  such that 21 MMX   ( then
every Xx  can be uniquely written as 21 xxx   where 11, Mx   and 22 Mx  ). Define

:P X X  by 1( )P x x , then P  is a projection on X .
Proof :
           (1) Let Xyx ,  and F ,

221121221121 ,,,,, MyMyyyyMxMxxxx 
)()()()( 22112121 yxyxyyxxyx  

1 1( ) ( ) ( )P x y x y P x P y          P  is linear function
        (2) Let 21 xxxXx  where 11, Mx   and 22 Mx 

2
1 1 1 1 1 2( ) ( ( )) ( ) ( 0) ( ) ( , 0 )p x P P x P x P x x P x x M M        2P P 

So that P  is a projection on X .
Theorem(7.4.3)
A linear operator P on a linear space X is a projection on some subspace iff it is idempotent ,
i.e. 2P P .

Proof :
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Let 1 2X M M   and let P be the projection on 1M  along 2M . To prove 2P P

Let 1 2 1 1 2 2 1, , ( )x X x x x x M x M p x x       
2

1 1 1( ) ( ( )) ( ) ( 0) ( )P x P P x P x P x x P x        for all 2x X p p  

Conversely, let 2P P . To prove P  is projection
Let 1 { : ( ) }M x X P x x   , and 2 { : ( ) 0}M x X P x  

1 2,M M  are subspace of X  . To prove 1 2X M M 

Let ( ) [ ( )]x X x p x x p x    
Put 1 2( ), ( )x P x x x P x  

2
1 1 1 1( ) ( ( )) ( ) ( )P x P P x P x P x x x M     

2 2 2( ) ( ( )) ( ) ( ( )) ( ) ( ) 0P x P x P x P x P P x P x P x x M        

1 2x x x  , where 1 1 2 2,x M x M  1 2X M M  

Let 1 2 1 2,x M M x M x M    

1 2 1 2( ) 0 , ( ) 0 {0}P x x P x x M M X M M         

Let 1 2x X x x x    , 1 1 2 2,x M x M 

1 2 1 2 1 1( ) ( ) ( ) ( ) 0P x P x x P x P x x x      

Theorem(7.4.4)
Let P be a projection on  a linear space X over F .Then the range of P is the set of all
vectors which are fixed under P , i.e. { : ( ) }pR x X P x x  

Proof :
Take { : ( ) }A x X P x x    . To prove ARp 

Let px R    there  exists Xy  such that ( )P y x
2( ( )) ( ) ( ) ( ) ( ) ( )P P y P x P y P x P y P x       ( because 2P P )

But ( ) ( ) pP y x P x x x A R A      

Now let ( )x A P x x  
Since ( ) px X P x R  

But ( ) p p px P x x R A R R A       .

Theorem(7.4.5)
Let X  be a linear space over F , and let :P X X  be a linear operator. Then P  is a
projection on X  iff I P  is a projection on X
Proof :
   Suppose P  is a projection on X
First : To prove I P  is linear function
Let , , ,x y X F  
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( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( )) ( )( ) ( )( )

I P x y I x y P x y I x I y P x P y

I x P x I y P y I P x I P y

         
   
         

       
I P   is linear operator.

Second : To prove 2( )I P I P  
2 2( ) ( ) ( )I P I P I P I P P P I P          I P   is a projection on X

Conversely, let I P  is a projection on X , then 2( )I P I P  
2 2( )( )I P I P I P I P P P I P P P             P  is a projection on X .

Remark
From theorems (7.4.3) and (7.4.4), we have
(1)The Projection P  on a linear space X , determines a pair of subspaces MN ,  such that

NMX   where M is the range of P , i.e. { ( ) : }M P x x X  , and N is the kernel of P ,
       i.e. { : ( ) 0}N x X P x  
(2)The  pair of subspace MN ,  of a linear space X such that NMX  , determines a Projection

p  on X  whose range and kernel space are M and N ( p defined by xzp )(  , if z x y   is
the unique representation of vector z X   as a sum of vectors ,x M y N 

The above remark shows that the study of Projections on a linear space X is equivalent to the
study of  pair of disjoint subspaces of X  generated X .

Recall that a projection P on a linear space X , is a linear operator :P X X  such that
2P P . In the following definition

Definition(7.4.6)
Let X  a normed space , and let ( )P B X . We say that P  is a projection on X , if

2P P , i.e.       a projection on a normed space X  is continuous, linear and idempotent
operator on X . Hence  a projection on a normed space X  is a projection on a linear
space X  with the additional property that it is continuous.

Theorem(7.4.7)
Let P be a projection on a normed space X and let M and N be its range and null space
respectively. Then M and N  are closed subspaces of X such that X M N  .
Proof :
           Since P  is linear function , then MN ,  are subspaces of X .
       Since 2P P X M N   
Since P  is continuous function, then N  is closed,
Since { : ( ) }M x X P x x   { : ( )( ) 0}M x X I P x     M is the kernel of
I P
Since I P  is continuous function, then M  is closed.
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Theorem(7.4.8)
Let X be a normed space and suppose that M and N  are closed subspaces of X  such that
X M N  . If z x y  is the unique representation of a vector in X as a sum of vectors in
M and N , then the function P  defined by ( )P z x  is a  projection on X whose range  and null
spaces are M and N .
Proof :
           Since X M N  . Thus P  defined by ( )P z x
z X  has a unique representation as z x y   with x M and y N .
Also the function defined by ( )P z x  is an idempotent function whose range and null
space respectively in theorem(8.65).
Thus to prove that P is a Projection on a normed space X

If X   denotes the linear space X  equipped with the new norm   defined by

z x y  

 is normed space . Further

( ) ( ) ( )P z P x y x x y z P z z         P  is bounded and hence
continuous from X  into X . It suffices to prove that X   and X  have the same
topology.
Let T denote  the identity function of X   onto X , then

( )T z z x y x y z      

T  is continuous from X  into X . Moreover T  is one-one
T is homeomorphism and  so X   and X  have the same topology.

Since P  is continuous from X  into X P is continuous from X  into  itself P  is a
projection.
Definition(7.4.9)
Let X  be a Hilbert space over F , and let ( )P B X . We say that P  is a Perpendicular
projection on X , if 2P P  and *P P
Example (7.4.10)
 Every zero and identity function are Perpendicular  projection
Theorem(7.4.11)
 Let X  be a Hilbert space over F , and let P  is a projection on X , then P  is a
Perpendicular projection on X  iff  the range and kernel of P  are orthogonal
Proof :
 Let M is the range of P ,and N is the kernel of P , i.e.

{ ( ) : }M P x x X   and { : ( ) 0}N x X P x  
X M N  
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First : suppose P  is a  Perpendicular projection on X *P P 
Let , ( ) , ( ) 0x M y N P x x P y    

*, ( ), , ( ) , ( ) ,0 0x y P x y x P y x P y x     x y M N    .
Second  : suppose that NM 
Let z X , then z  can be uniquely written as yxz   where

, ( )x M y N P z x   
xxyxxxyxxzxzzp ,,,,),(     (because 0, yx  )

*( ), , ( ) , , , , ,P z z z P z z x x y x x x y x x x      
*( ), ( ),P z z P z z   for all Xz

*( ), ( )( ), 0P z z P P z z     for all Xz
* *0P P P P P       is a  Perpendicular projection on X .

Remarks
(1) From the above theorem if NM  , we have  MN , and hence  MMX .
(2) If P is a  Perpendicular projection on  a Hilbert space X  over F  with range M , then M
    is closed subspace of X .If N  is kernel of p , then N  is also closed subspace of X , and N

     nothing but M   , i.e.  MN . Further if M  is closed subspace  of X , then
 MMX . Therefore there exists a  projection P on X  with range M . This

projection p is defined by ( )P x y x  , where ,x M y M   . Thus we see that in the
case of a Hilbert space there exists one-to-one correspondence between projections on
X and closed subspace of X .
(3) If P is a  projection on  a Hilbert space X  over F  with range M , then the(null space)
     kernel of P  is uniquely determined and is always M  . Thus will be one and only one
    projection on X with range M . Therefore instead of saying that P  is a projection on X
    with range M , we shall simply say that P is the projection on M .
Theorem(7.4.12)
Let X  be a Hilbert space over F , and let ( )P B X . Then P  is a  Perpendicular projection
on  a closed subspace M of X  iff I P  is a  Perpendicular projection on M .
Proof :
        Suppose P is a  Perpendicular projection on X 2 *,P P P P  

* * *(1 )P I P I P        and
2 2( ) ( )( )I P I P I P I P P P I P P P I P             

I P    is a  Perpendicular projection on X

Now we shall show that if M is the range of P , then M  is the range of I P .
Let N  be the range of I P . Then

( )( ) ( ) ( ) ( )x N I P x x I x P x x x P x x         
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( ) 0 ker( )P x x P x M N M        
Again

( ) 0 ( ) ( )( )x M p x x P x x I P x x x N M N             
Hence N M I P    is a  Perpendicular projection on M

Conversely suppose I P  is a  Perpendicular projection on M .
( )I I P    is a  Perpendicular projection on  )(M  (by first part)

P  is a  Perpendicular projection on  )(M

Since M  is closed subspace, then MM  )( P  is a  Perpendicular projection on M .

Theorem(7.4.13)
Let X  be a Hilbert space over F , and let P be  a  Perpendicular projection on the
closed subspace M  of X . Then ( ) ( )x M P x x P x x    

 Proof :
First : we shall prove that ( )x M P x x  
Suppose Mx . Then to show that Mx
Let ( )P x y . Then we must show that xy  . We have

2( ( )) ( ) ( ) ( ) ( ) ( ) ( ) 0P P x P y P x P y P x P y P x y       
ker( )x y P x y M z x y         where z M x y z   

Since ( )y P x y  in the range of P , i.e. My . Thus we have zyx   where
,y M z M   . But Mx . So we can write 0 xx  where ,0x M M   .

Since  MMX . Therefore we must have 0 ,z y x  .
Conversely suppose ( )P x x
Since ( )p x M x M  
Second : we shall prove that ( ) ( )P x x P x x  

If ( )P x x , then obviously ( )P x x

Conversely suppose that ( )P x x  . Then to show that ( )P x x

Since ( ) ( )( )x P x I P x    )1())(()(
22 xpIxpx 

Now ( )P x M . Also p is  a  Perpendicular projection on M

I P   is a  Perpendicular projection on M . Therefore ( )( )I P x M  
Therefore ( )P x  and ( )( )I P x are orthogonal vectors . then by Pythagorean theorem,

we have 2 2 2
( ) ( )( ) ( ) ( )( ) (2)P x I P x P x I P x     

From (1) and(2), we get 2 2 2
( ) ( )( )x P x I P x  

Since 2
( ) ( )( ) 0P x x I P x   

( )( ) 0 ( )( ) 0 ( ) ( ) 0I P x I P x I x P x         ( ) 0 ( )x P x P x x    
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Theorem(7.4.14)
If P  is a  Perpendicular projection on a Hilbert space X . Then
(1) P  is a positive , i.e. 0P     (2) 0 P I    (3) ( )P x x  for all Xx   (4) 1P 

Proof :
 Since P  is a  Perpendicular projection on X * 2,P P P P  

Let M  be the range of P

(1) Let 22( ), ( ), ( ( )), ( ), ( ) ( ) 0x X P x x P x x P P x x P x P x P x      

( ), 0P x x    for all x X P   is positive .

(2) since P is a  Perpendicular projection on X , then by part(1), we 0I P P I   
But 0 0P P I   
(3) let Xx , since M is the range of P M   is the range of I P
     Since ( ) , ( )( ) ( ), ( )( )P x M I P x M P x I P x      are orthogonal vectors.

So by Pythagorean theorem we have 2 2 2
( ) ( )( ) ( ) ( )( )P x I P x P x I P x    

Since
2 2 2 2 2

( ) ( )( ) 0 ( ) ( )( ) ( ) ( )P x I P x x P x I P x x P x P x x          

(4) we have  sup ( ) : 1P P x x  , but by part (3), ( )P x x  for all Xx

 sup ( ) : 1 1 1P x x P    

Invariance and Reducibility
Definition(7.4.15)
Let M be a subspace of a linear space X  over a field F , and let ( )T L X . We say
that M  is an invariant under T . If for all Mx , then MxT )(  i.e. MMT )(

Example(7.4.16)
Let X  be a linear space over a field F , and let ( )T L X . If M is a range of T ,and N

is the kernel of T , {0}, M  and N  are invariant under T .
Ans :
     (1) since     (0) 0 0 0T T    0 is an invariant under T .

    (2)  XxxTM  :)(

            Let ( )x M x X T x M T     
            so that M  is an invariant under T .
     (3) ker( )N T . Then  : ( ) 0N x X T x  

       Let ( ) 0x N T x   . Since N  is a subspace of X 0 ( )N T x N   
           so that N  is an invariant under T .
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Theorem(7.4.17)
Let M be a closed subspace of a Hilbert space X over F , and let ( )T B X . Then M  is
invariant under T  iff M  is invariant under *T .
Proof :
  Suppose M  is invariant under T
Let My  . To prove that *( )T y M  (i.e. *( )T y M  )
Let Mx , since M  is invariant under T ( )T x M 

Since *( ), 0 , (( ) 0y M T x y x T y     .Thus *( )T y M

Conversely suppose that M  is invariant under *T .
Since M  is closed subspace of X  invariant under *T , therefore by first case ( )M    is
invariant under *( )T  .
But ( )M M M     and *( )T T T   . Therefore M  is invariant under T .

Theorem(7.4.18)
Let M be a closed subspace of a Hilbert space X over F , and let ( )T B X . If P is the
projection on M , then M is invariant under T  iff T P P T P   .
Proof :
          Suppose M is invariant under T . Then to prove T P P T P  
Let x X , then ( )P x  is in the range of P , i.e. ( )P x M
Since M is invariant under T ( ( ))T P x M 
Since P is the projection on M ( ( ( ))) ( ( )) ( )( ) ( )( )P T P x T P x P T P x T P x     
We have T P P T P  
Conversely :  suppose that T P P T P   . Then to prove M is invariant under T
Let x M
Since P  is a Projection with rang M  and x M , then ( )P x x ( ( )) ( )T P x T x 
Since ( )( ) ( ) ) ( ( )) ( ( ( ))) ( ( )) ( ) ( ( ))T P x P T P x T P x P T P x P T x T x P T x       

( )T x M  .But P is the projection on M

Since ( )x M T x M   . Therefore M is invariant under T .

Definition(7.4.19)
Let M be a closed subspace of a Hilbert space X  over F , and let ( )T B X . We say
that T  is reduced by M if both M  and M  are invariant under T . If T  is reduced by
M , then sometimes we also say that M reduces T .
Theorem(7.4.20)
A closed subspace M of a Hilbert space X reduces an operator T iff M is invariant under both
T and T 

proof :
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  Suppose M  reduces . Then by the definition of reducibility both M and M are
invariant under T .by theorem (8.75), if M is invariant under T , then ( )M   ,i.e. M is
invariant T   . Thus M  is invariant under both T and T 

Conversely suppose that M  is invariant under both T and T 

Since M  is invariant under T  ,therefore by theorem (17), M is invariant under ( )T   ,
i.e. T  . Thus both M and M  are invariant under T . Therefore M  reduces T .
Theorem(7.4.22)
Let M be a closed subspace of a Hilbert space X over F , and let ( )T B X . If P is the
projection on M , then M is reduces under T  iff T P P T  .
Proof :
          Suppose M is reduces under T . Then to prove T P P T 

M is invariant under both T  and T   .  T P P T P    and T P P T P   
 T P P T P    and ( ) ( )T P P T P       T P P T P    and
P T P T P      
Since T T   and since P is a projection, then P P   T P P T P    and
P T P T P  
We have T P P T 
Conversely :  suppose that T P P T  . Multiplying both sides by P  on the left and
then on the right by P  we get 2T P P T P    and 2P T P P T  
Since P is a projection, then 2P P  T P P T P    and P T P P T  

( ) ( )P T P P T P T P T P P T P T P                     
 T P P T P    and T P P T P    M is invariant under both T  and T 

 M is reduces under T .
Orthogonal Projections
Definition(7.4.23)
Two perpendicular projection P and Q on a Hilbert space X are said to be orthogonal
if 0P Q  .

Theorem(7.4.24)
If M and N closed subspaces of a Hilbert space X and P  and Q  are the perpendicular
projections on M  and N  respectively, then P  and Q  are orthogonal iff M N
Proof :
Since P  and Q  are the perpendicular  projections on X , then P P   and Q Q 
Suppose that P  and Q  are orthogonal, i.e. 0P Q 
Let x M and y N
Since M is a range of P , then ( )P x x . Also since N is a range of Q , then ( )Q y y .
We have
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, ( ), ( ) , ( ( ))x y P x Q y x P Q y 

Since P P  , , ( ( )) , ( )( )x y x P Q y x P Q y   
Since 0P Q  , ,0( ) ,0 0x y x y x    M N  .

Conversely : suppose that M N
Let y N , since M N y x    for x M y M N M     
Let ( )z X Q z N    , since ( )N M Q z M     which is the null space of P .
Therefore

( ( )) 0P Q z   for all z X , then 0P Q  .
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Exercises(7)
7.1 If X is a Hilbert space, then X  is reflexive. Prove that
7.2 Let X  be  a Hilbert space over F , and let ( )T B X . Show that

(1) ** TTT  (2) 21 iTTT   such that )(, 21 XSTT  (3) If F , , then )(* XNTT  

7.3  Let X  be  a Hilbert space over F , and let ( )T B X . Show that
(1) ( )T N X  iff ( ) ( )T x T x   for all x X

(2) If )(XNT  , then 2
TTT 

(3) T  can be uniquely expressed as 21 iTTT   where )(, 21 XSTT 
(4) )(XNT  iff its real and imaginary parts commute.
(5) If )(XNT   and F , then )()( XNIT   .
(6) If )(XNT   and f is a polynomial with coefficients. Then the operator ( )f T  is normal.

7.4 Show that : An operator T on a Hilbert space X is unitary iff it is an isometric isomorphism
    of X onto itself.
7.5 Show that : If T  is an arbitrary operator on a Hilbert space X , and if , F    such that

  ,  then T T   is normal.
7.6 If X is a finite dimensional Hilbert space , show that every isometric isomorphism of

X into  itself is unitary.
7.7  Show that the unitary operators on a Hilbert space X  form a group.
7.8  Show that an operator T on a Hilbert space X is the unitary iff ({ })nT e is complete

orthonormal set whenever is.
7.9 If 1 2, , , nP P P  are the projections on closed subspaces 1 2, , , nM M M of a Hilbert space X ,

then 1 2 nP P P P     is  a perpendicular projection iff 0i jP P  ' whenever i j . Also

 then P  is a projection on 1 2 nM M M M    .
7.10 If P and Q  are the perpendicular  projections on M  and N  respectively of a Hilbert

space X . Show that P Q is a perpendicular  projections iff P Q Q P  . In this case .
   Show that P Q  is a perpendicular  projections on M N .


