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8. Spectral Theory

8.1 Matrix of Linear Transformation
  Recall that a function between linear spaces is often referred to as a transformation. Let

:T X Y linear transformation  where X and Y  are finite dimensional linear spaces over a
field F  such that mYnX  dim,dim .
Let 1 2{ , , , }nx x x   be an ordered basis for X so that each vector in X is expressible as
linear combination of the elements of  , i.e. for every x X has unique representation

1

, , 1, 2, ,
n

i i i
i

x x F i n 


   

The vector 1 2( , , , )n     is called the Coordinates Vector of x . Let 1 2{ , , , }my y y    be
an ordered basis for Y so that each vector in Y is expressible as linear combination of the
elements of   .
Let us choose nm scalars ija F where 1, 2, , , 1, 2, ,i m j n  
Since 1 1 1( ) ( )x X T x Y T x    can be expressible as linear combination of m vectors in
  .i.e.

1 11 1 21 2 1 1
1

( )
m

m m i i
i

T x a y a y a y a y


    

Also

2 12 1 22 2 2 2
1

( )
m

m m i i
i

T x a y a y a y a y


    

1 1 2 2
1

( )
m

n n n mn m in i
i

T x a y a y a y a y


    

We can write the above n  equations in symbolic form as under

1

( ) , 1, 2, ,
m

j i j i
i

T x a y j n


  

The coefficient matrix in the above expression is
11 21 1

12 22 2

. . . .

1 2

...

...

: : : :

...

m

m

n n mn

a a a

a a a

a a a

 
 
 
 
 
  

Then the matrix of :T X Y with respect to the given  basis   and    is the transpose of the
above coefficient matrix which is obtained by changing the rows into columns and columns into
rows of the coefficient matrix,
Matrix  of T with respect to basis   and    is
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11 12 1

21 22 2

. . . .

1 2

...

...
[ ]

: : : :

...

n

n

ij

m m mn

a a a

a a a
A a

a a a

 
 
   
 
  

Above matrix is m n matrix consisting of m rows and n columns. The above matrix is
symbolically written as [ : , ]T     or simply [ ]T .
Remark
 If X Y , then :T X X and m n  so that the matrix of T  with respect to basis   will be a
n n matrix and the rule for writing is same as expressed above.
Theorem(8.1.1)
 Let :T X Y  linear transformation  where X and Y  are finite dimensional linear spaces over a
field F  such that mYnX  dim,dim . Let 1 2{ , , , }nx x x   be an ordered basis for X , and let

1 2{ , , , }my y y    be an ordered basis for Y . If 1 2( , , , )n     is the Coordinates Vector of
x X with respect to   and 1 2( , , , )n     is the Coordinates Vector of ( )T x Y with respect
to    . Then the matrix A of T with respect to the given  basis  and    is satisfying A 
Proof :
          Since 1 2( , , , )n     is the Coordinates Vector of x X with respect to 

1 1 1

( ) ( ) ( )
n n n

j j j j j j
j j j

x x T x T x T x  
  

      

 Since
1

( ) , 1, 2, ,
m

j i j i
i

T x a y j n


  
1 1 1 1

( ) ( ) ( )
n m m n

j i j i j i j i
j i i j

T x a y a y 
   

     
Since 1 2( , , , )n     is the Coordinates Vector of ( )T x Y with respect to  

1 1 1 1

( ) ( )
m m m n

i i i i j i j i
i i i j

T x y y a y  
   

      
Since every y Y  has unique representation of linear combination of vectors in   . Thus

1

m

i k ki
k

y a



11 12 1

21 22 2

1 2 1 2

. . . .

1 2

...

...
( , , , ) ( , , , )

: : : :

...

n

n

n n

m m mn

a a a

a a a
A

a a a

       

 
 
    
 
  

 

Example(8.1.2)
(1) Let 2 3,X Y    and 2 3:T    defined by ( , ) ( , , 2 )T x y x x y x y    for all 2( , )x y  ,
     then T  is linear operator , the matrix A of T with respect to the given  basis {(1,0), (0,1)} 
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    and {(1,0,0), (0,1,0), (0,0,1)}    is
1 1 2

0 1 1
A
 
   

.

(2) Let 2
2 ( ),X P Y   and 2

2: ( )T P    defined by 2( ) (2 , )T a bx cx a b c     for all
2

2 ( )a bx cx P    ,then T  is linear operator , the matrix A of T with respect to the given basis

2{5,2 , }x x   and {( 1,0), (0,3)}     is

10 0

2
0

3
1

0
3

A

 
 
 
 
 
 
 
 

.

Theorem (8.2.3)
   If 1 2{ , , , }nx x x   is an ordered basis for a finite dimensional linear space X over F . Then
the function [ ]T T which assigns to each operator T its matrix relative to   is an
isomorphism of algebra ( )L X onto the total matrix algebra ( )nM F .
Proof :
            Define a function : ( ) ( )nf B X M F  by ( ) [ ]f T T  for all ( )T B X

Let 1 2, ( )T T B X , then 1 1( ) [ ] [ ]ij n nf T T a    and 2 2( ) [ ] [ ]ij n nf T T b  

1 2
1 1

( ) , 1, 2, , , ( ) , 1, 2, ,
m m

j i j i j i j i
i i

T x a y j n T x b y j n
 

     

Let
1

n

j j
j

x x



To prove :
(1) f is one-one : Let 1 2, ( )T T B X  such that 1 1( ) ( )f T f T

1 1

[ ] [ ] , 1, 2,
n n

ij n n ij n n ij i ij i
i i

a b a x b x j 
 

      

1 2 1 2 1 2
1 1 1 1

( ) ( ), 1, 2, , ( ) ( ) ( ) ( )
n n n n

j j j j j j j j j j
j j j j

T x T x j n T x T x T x T x   
   

         

1 2( ) ( )T x T x   for all x X 1 2T T  . Hence f is one-one.
(2) f is onto : let [ ]ijc  be any matrix in ( )nM F the corresponding to this matrix three exists a

    linear operator :T X X  such that
1

( ) , 1, 2, ,
n

j i j i
i

T x x j n


  

Above  defines the operators T is extended by linearity to whole of X then the resulting
operator has [ ]ijc  as its matrix relative to  . Hence f is onto.

  From (1),(2), we have f is bijective.
(3) f is preserves addition, i.e. 1 2 1 2( ) ( ) ( )f T T f T f T  
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1 2 1 2
1 1 1

( )( ) ( ) ( ) ( )
n n n

j j j ij i ij i ij ij i
i i i

T T x T x T x a x b x a b x
  

        
1 2 1 2 1 2 1 2( ) [ ] [ ] [ ] [ ] [ ] [ ] ( ) ( )ij ij n n ij n n ij n nf T T T T a b a b T T f T f T            

(4) f is preserves scalar multiplication , i.e. ( ) ( )f T f T 

1 1 1

( ))( ) ( ) ( )
n n n

j j ij i ij i ij i
i i i

T x T x a x a x c x   
  

     
( ) [ ] [ ] [ ] [ ] [ ] ( )ij n n ij n n ij n nf T T c a a T f T            

(5) f is preserves multiplication, i.e. 1 2 1 2( ) ( ) ( )f T T f T f T

1 2 1 2 1
1 1 1 1 1 1

1 1 1 1

( )( ) ( ( )) ( ) ( ) ( ) ( )

( ) ( )

n n n n n n

j j kj k kj k kj ik i ik i
k k k i i k

n n n n

ik kj i ij i ij i
i k i i

T T x T T x T b x b T x b a x a x

a b x b x c x

     

   

    

  

     

   

1 2 1 2 1 2 1 2
1

( ) [ ] [ ] [ ] [ ] [ ] [ ][ ] ( ) ( )
n

ij n n ik kj ij n n ij n n
k

f T T T T c a b a b T T f T f T  


     
Hence is : ( ) ( )nf B X M F  by ( ) [ ]f T T  for all ( )T B X  an isomorphism

Matrices of identity and zero operators
If T be a linear operators on linear space whose matrix relative to basis 1 2{ , , , }nx x x    be

[ ]ija  then is
1

( ) , 1, 2, ,
n

j i j i
i

T x a y j n


  

1 2
1

( ) 0 0 1 0 ( ) ( )
n

j j j n j ij i
i

I x x x x x x I x x


            where
0,

1,ij

i j

i j



  

[ ] [ ]ijI   , i.e. unit matrix.

Again 1 2
1

0( ) 0 0 0 0 0( ) (0 )
n

j n j ij i
i

x x x x x x


      

[0] [0 ]ij  , i.e. null matrix.

Matrix of an inverse operator
Theorem(8.1.4)
Let T be linear operator on a linear space X  whose matrix relative to basis 1 2{ , , , }nx x x   is
[ ]ija  . Then T  is non singular iff [ ]ija  is non singular and in this case 1 1[ ] [ ]ija T 

Proof :
Since T  is non singular iff 1 1T T T T I   
iff 1 1[ ][ ] [ ][ ] [ ]T T T T I  
iff 1 1[ ][ ] [ ][ ]ij ij ija T T a     unit matrix nI

iff [ ]ija  is non singular and 1 1[ ] [ ]ija T 
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.8.2 Eigenvalues and Eigenvectors
Definition(8.2.1)
Let X be a linear space over F , and let ( )T L X .
(1) A scalar F  is called an eigenvalue of T , if there exists a non zero vector x X

such that ( )T x x .
(2)A non zero vector x X  is called an eigenvector of T , if there exists F  such
     that ( )T x x .
   Form(1),(2) , we say that x  is an eigenvector of T  associated with eigenvalue  .
Eigenvalues are some times also called characteristic values, proper values, or spectral values.
Similarly eigenvectors are called characteristic vectors , proper vectors, or spectral vectors.

The set of all eigenvalues of T is called the spectrum of T and we shall denote it by ( )T .

Remark
If the linear space X  has no non zero vectors at all, then T certainly has no eigenvectors. In
this case the whole theory collapses into triviality. Therefore throughout the present lector  we
shall assume that {0}X  .

Examples(8.2.2)
(1) Let 2X    and 2 2:T    defined by ( , ) ( , )T x y y x   for all 2( , )x y  , then T  is linear
     operator has no eigenvalue.
(2) Let 2X    and 2 2:T    defined by ( , ) ( 2 ,3 2 )T x y x y x y    for all 2( , )x y  , then T

      is linear operator have eigenvalues 1, 4    .
(3) Let 2X    and 2 2:T    defined by 1 2 3 1 2 3( , , , ) (0, , , , )T x x x x x x   for all 2

1 2 3( , , , )x x x   ,
     then T  is linear operator has no eigenvalue.
Theorem(8.2.3)
Let X be a linear space over F , and let ( )T L X . If x is an eigenvector of T corresponding to
the eigenvalue  and   is any non zero scalar, then x is also an  eigenvector of T corresponding
to the same eigenvalue  .
Proof:
Since x is an eigenvector of T corresponding to   the eigenvalue , then 0x   and ( )T x x
Since 0  and 0x  0x  ( ) ( ) ( ) ( ) ( ) ( )T x T x x x x x            
Therefore x is an  eigenvector of T corresponding  to the eigenvalue  .
Remark
Corresponding  to an eigenvalue   there may correspond more than one eigenvectors.
Theorem(8.2.4)
Let X be a linear space over F , and let ( )T L X . If x is an eigenvector of T , then x  cannot
correspond to more than one eigenvalues of T .
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Proof :
          Let x be an eigenvector of T  corresponding to two distinct eigenvalues 1  and 2  of T

1( )T x x and also 2( )T x x . Therefore we have 1 2x x  1 2( ) 0x   

Since 1 2 1 20 0x         

and   is any non zero scalar, then x is also an  eigenvector of T corresponding  to the same
eigenvalue  .
Definition (8.2.5)
Let X be a linear space over F , ( )T L X and let be an eigenvalue of T  . The set consisting
of all eigenvectors of T which correspond to eigenvalue   together with the vector 0  is called
eigenspace of T corresponding to the eigenvalue   and is denoted by M  .
(1) Since by definition an eigenvector is a non zero vector, therefore the set M   necessarily
    contains some non zero vectors.
(2) Since by definition of M   a non zero vector x is in M   iff ( )T x x . Also it is given that
     the vector 0  is in M  . the vector 0  definitely satisfies the equation ( )T x x . Therefore

{ : ( ) } { : ( )( ) 0}M x X T x x x X T I x        

Thus M   is null space(or kernel of ) of linear operator T I  on X .
Hence M   is a subspace  of X .
(3) Let x X , since M   is a subspace of X and F x M    

    Since ( ) ( )x M T x x T x M M        is an invariant under T .
From(1),(2) and (3) , we have M   is a non zero subspace of X invariant under T .
(4) If X is normed space, and ( )T B X   then M  is closed subspace of X

M  is called eigenspace of T corresponding to the eigenvalue 

Characteristic equation of operator
Theorem(8.2.6)
Let 1 2{ , , , }nx x x   be an ordered basis for a finite dimensional linear space X over F , and
let T be a linear operator on X  whose matrix with respect to   be A and  let F . Then   is
an eigenvalue of T  iff 0A I 

Proof :
Suppose that   is an eigenvalue of T , then there exist non zero vector x X  such that

( )T x x ( ) ( ) ( ) ( ) 0 ( )( ) 0 ker( )T x I x T x I x T I x x T I             
Since 0 ker( ) {0}x T I    T I   is not one–one T I   is not bijective.
i.e. T I  is singular (not invertible )
Since A is the matrix of T with respect to the given  basis  , then A I  is the matrix of
T I with respect to the given  basis  , A I   is singular (not invertible ) 0A I  
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Conversely : Suppose that 0A I 

A I   is singular (not invertible ) T I   is singular (not invertible )
ker( ) {0}T I   , there exists non zero x X  such that ( )( ) 0T I x 

( ) ( ) 0 ( ) 0 ( ) ( )T x I x T x x T x x T x x            
Remark
The equation 0A I   is called characteristic equation of T  where A is the matrix  of T

with respect to   . Since 1 2{ , , , }nx x x    and [ ]ij n nA a   , then 0A I   is an equation of nth
degree in  .
Theorem(8.2.7)
A non zero eigenvectors 1 2, , , nx x x  corresponding to eigenvalues 1 2, , , n    of linear operator
T on a linear space X  over F  are linearly independent.
Proof :

We shall prove linear independent by induction method
If 1n 
Let 1 1 0x  , since 1 10x o   . Thus the theorem is true for 1n 

Suppose the theorem is true for n m . i.e. 1 2, , , mx x x  are linearly independent
We shall prove that 1 2 1, , , ,m mx x x x   are linearly independent
Consider the relation 1 1 2 2 1 1 0 (1)m m m mx x x x         

1 1 2 2 1 1( ) (0) 0m m m mT x x x x T           

1 1 2 2 1 1( ) ( ) ( ) ( ) 0m m m mT x T x T x T x          
 Since ( )i i iT x x  for all 1,2, ,i n  1 1 1 2 2 2 1 1 1 0 (2)m m m m m mx x x x              
Multiplying (1)by 1m   and substracting from (2)we get

1 1 1 1 2 2 1 2 1( ) ( ) ( ) 0m m m m m mx x x                
Since 1 2, , , mx x x  are linearly independent and i  are all distinct and as such it follows from
above that 1 2 0m      . Putting in (1) we get 1 1 0m mx   

Since 1 10 0m mx     . Hence 1 2 1, , , ,m mx x x x   are linearly independent
Thus the theorem is true for all n .
Corollary(8.2.8)
If T is a linear operator on an n dimensional linear space X  over F , then T  can not have
more than n  distinct eigenvalues
Proof :
        Suppose that T  has more than n  distinct eigenvalues, then these will form a linearly
independent subset of X  which will contain more than more n  vectors . But this is not
possible as a n dimensional linear space  can not have a linearly independent set containing
more than n  elements . Hence can not have more than n  distinct eigenvalues.
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Theorem(8.2.9)
If T be a self –adjoint operator on an n dimensional Hilbert space X over F , then the eigenvalues
of T  are real and the eigenvectors of T corresponding to distinct eigenvalues are orthogonal.
Proof :
(1) Let   be the eigenvalue of T so that there exists non zero vector x X such that ( )T x x
Since T  is self-adjoint , then ( ),T x x  is real

Now 2

2

( ),
( ), , ,

T x x
T x x x x x x x

x
       

Since 2
0x   and ( ),T x x  is real it follows that   is real.

(2) Let 1 2,   be two distinct eigenvalues of T  and 1 2,x x  be the corresponding eigenvectors so
that 1 1 1( )T x x , 2 2 2( )T x x  where 1 2,   are real . To prove that 1 2x x

Since T is self-adjoint T T  , also since 1 2,   are real 1 1 2 2,     

1 1 2 1 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 1 2, , ( ), , ( ) , ( ) , , ,x x x x T x x x T x x T x x x x x x x          

1 1 2 2 1 2 1 2 1 2, , ( ) , 0x x x x x x       

Since 1 2,   are distinct 1 2 0    , therefore 1 2 1 2, 0x x x x   , i.e. 1 2,x x  are orthogonal.

Remark
If T is non negative  or positive, then  the eigenvalues of T are non negative or positive
respectively.
Theorem(8.2.10)
If T be an unitary operator on an n dimensional Hilbert space X  over F , then the eigenvalues of

T  are real unimodular and the corresponding distinct eigenvectors are orthogonal.
Proof :
(1) Let   be a eigenvalue of T , so that there exists non zero x X  such that ( )T x x
    Also since T is an unitary operator, then ( ), ( ) ,T x T x x x

2 2 2 2
, , , , 1 1x x x x x x x x x x              

i.e. eigenvalues are unimodular.
(2) Let 1 2,   be two distinct eigenvalues of T  and 1 2,x x  be the corresponding eigenvectors so
that 1 1 1 2 2 2( ) , ( )T x x T x x   , where 1 2,   are unimodular.
since T is an unitary operator, then 1 2 1 2( ), ( ) ,T x T x x x

1 1 2 2 1 1 1 2 1 2 1 2, , , ,x x x x x x x x       . Since 2

2 2 2 2
2

1
1 1   


    

1 1 2 1 2 1 1 2 2 1 2 1 2 1 2
2

1
, , , , ( ) , 0x x x x x x x x x x    


      

Since 1 2,   are distinct 1 2 0    , therefore 1 2 1 2, 0x x x x   .
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Theorem(8.2.11)
Let T be a normed operator on a finite dimensional Hilbert space X over F
(1) If ( )T  , then T I  is normal
(2)Every eigenvector of T is also a eigenvector for T  .
(3) the eigenspaces of T are pair wise orthogonal
Proof :
     (1) Since T  is normal T T T T   
( ) ( )( ) ( )( )T I T I T I T I T I T I T I TT T T                              

( ) ( ) ( )( )T I T I T I T I T T T T TT T T                           
( )( ) ( ) ( )T I T I T I T I T I             is normal

(2) Let x be an eigenvector of T  corresponding to eigenvalue  ( )T x x 
22

( ) ( ), ( ) , ( ( )) , ( ( )) ( ), ( ) ( )T x T x T x x T T x x T T x T x T x T x         ( ) ( )T x T x 

Since T I  is normal, therefore x X , we have
( )( ) ( ) ( ) ( ) ( )( ) ( )T I x T I x T x x T I x T x x              

Since ( )T x x 0 ( )T x x   . Hence it follows that ( )T x x  , therefore x  is

eigenvector of T   and corresponding eigenvalue is 
(3)Let ix and jx  belong to iM and jM the eigenspaces of T and the corresponding eigenvalues

be i  and j  respectively so that ( ) , ( )i i i j j jT x x T x x    and ( )j j jT x x   as T  is normal

, , ( ), , ( ) , , ,i i j i i j i j i j i j j j i j j i jx x x x T x x x T x x x x x x x         

, , ( ) , 0i i j j i j i j i jx x x x x x       

Since ,i j   are distinct 0i j    , therefore , 0i j i jx x x x   , i.e. iM and jM are  pair

wise orthogonal.
Theorem(8.2.12)
If T be a normal operator on an n dimensional Hilbert space X  over F , then each eigenspace

reduces T .
Proof :
Let ix belong to iM the eigenspace of T and the corresponding eigenvalue be i so that

( )i i iT x x

Since T is normal ( )T x x 

Since iM  is a subspace ( )i i ix M T x M M       is invariant under T  , but iM is
invariant under T . Hence iM is reduces T .
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8.3 Spectral Theorem for Normal Operators

Theorem(8.3.1) Spectral theorem for normal operators
 Let T  be an arbitrary linear operator on finite dimensional Hilbert space X , and 1 2, , , n    be
eigenvalues of T  with eigenspaces 1 2, , , nM M M . Further 1 2, , , nP P P  are perpendicular
Projections on the spaces 1 2, , , nM M M  respectively. Then the spectral theorem states that the
following statements are equivalent.
(1) The subspaces 1 2, , , nM M M  are pair wise orthogonal and span X

(2) 1 2, , , nP P P  are pair wise orthogonal and (i) 1 2 nP P P I     (ii) 1 1 2 2 n nP P P T     
(3) T  is a normal operator.
Proof :

(1) (2)
Since 1 2, , , nP P P  are perpendicular Projections on the spaces 1 2, , , nM M M  respectively. Also the
subspaces 1 2, , , nM M M  are pair wise orthogonal and span X , i.e. 1 2 nX M M M    . Hence
any x X can by uniquely expressed as 1 2 nx x x x    , where i ix M

Since ,i jM M are subspaces of X and ,i jP P  are perpendicular projections on ,i jM M  respectively

then ,i jM M  are orthogonal iff 0i jP P   iff 0j iP P 
Since ,i jM M  are orthogonal, then 0i jP P  , i j

iP  is projection on iM  and 1 2 nx x x x    , i ix M

Since j jx M  and j i j iM M x M    . But iM   is null space of iP and hence ( ) 0i jP x  , i j

Thus ( )i i iP x x  for all i  and ( ) 0i jP x  , i j  1 2( ) ( ) ( )i i n i i iP x P x x x P x x     
Now 1 2 1 2 1 2( ) ( ) ( ) ( ) ( )( )n n nI x x x x x P x P x P x P P P x              
Since above is true for x  It follows that 1 2 nP P P I    .
Now i ix M  the eigenspace of T  corresponding to eigenvalue i ( )i i iT x x 

1 2 1 2 1 1 2 2( ) ( ) ( ) ( ) ( )n n n nT x T x x x T x T x T x x x x               

1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )( )n n n nT x P x P x P x P P P x             
Since above holds for all x we have 1 1 2 2 n nT P P P     

(2) (3)
Since 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )n n n n n nT P P P T P P P P P P                          

Since ( )i i i iP P    and 2
i i iP P P   1 1 2 2 1 1 2 2n n n nT P P P P P P                 

2
1 1 2 2 1 1 2 2

1

( )( )
n

n n n i i i i j i j
i

T T P P P P P P P P P            



            , i j

2 2

1 1

0
n n

i i i i
i i

T T P P 

 

      in a similar manner we can show that 2

1

n

i i
i

T T P




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Hence T T T T   and as such T  is normal operator .
(3) (1)

Theorem(5.3.2) Uniqueness of spectral resolution of a normal operator
 The spectral resolution of a normal operator on a finite dimensional Hilbert space X is unique.

Another form. Let T be a normal operator on finite dimensional Hilbert space X . If
1

n

i i
i

P

  is

the spectral form of T , then i  are all the distinct eigenvalues of T . If more 1 k n   then
there exists polynomials kP  with complex coefficients such that ( ) 0k iP    whenever i k

and ( ) 1k kP   . For all such polynomials ( )k kP T Q , i.e. each kQ is a polynomial in T .
Proof :
Theorem(5.3.3)
 Let T be a normal operator on a finite dimensional on Hilbert space X , then X has on orthonormal
basis   consisting of eigenvectors of T . Consequently the matrix of T  relative to   is a diagonal
matrix.
5.4 Spectral theorem for Self adjoint Operators
Theorem(5.4.1)
Let T be a self-adjoint operator on finite dimensional Hilbert space X , then there exists n
real numbers 1 2, , , n    and perpendicular projections 1 2, , , nP P P ,( where 0n  , and n 

the dimension of X ) such that
(1) i , 1, 2, ,i n   are pair wise distinct
(2) 1 2, , , nP P P  are pair wise orthogonal and different from zero.
(3) 1 2 nP P P I   
(4) 1 1 2 2 n nP P P T     
Proof :
Theorem(5.4.2)
Let T be a self-adjoint operator on finite dimensional Hilbert space X . If

1

n

i i
i

P

  is the

spectral form of T , then i  are all the distinct eigenvalues of T . If moreover 1 k n   then
there exists polynomials kP  with real coefficients such that ( ) 0k iP    whenever i k  and

( ) 1k kP   . For all such polynomials ( )k kP T Q , i.e. each kQ is a polynomial in T .

Theorem(5.4.3)
Let T be a self-adjoint operator on finite dimensional Hilbert space X such that

1

n

i i
i

T P


 .

If S is any linear transformation on X , then S commutes with T iff S commutes with each

iP  for 1, 2, ,i n 
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Proof :
Suppose that S  commutes with each iP , i.e. i iS P P S  for all i . To prove that : S T T S 

Since
1

n

i i
i

T P




1

( ) ( ) ( ) ( )
n n n n

i i i i i i i i
i i i i

S T S P S P P S P S T S   
   

             

Conversely : Suppose that S  commutes with T , i.e. S T T S  . To prove that : i iS P P S 
 for all i


