دراسات عليا ـ ماجستير تحلیل دالی Functional Analysis 3: 1: 3:

8. Spectral Theory

8.1 Matrix of Linear Transformation

Recall that a function between linear spaces is often referred to as a transformation. Let $T: X \to Y$ linear transformation where X and Y are finite dimensional linear spaces over a field F such that $\dim X = n$, $\dim Y = m$.

Let $s = \{x_1, x_2, \dots, x_n\}$ be an ordered basis for X so that each vector in X is expressible as linear combination of the elements of s, i.e. for every $x \in X$ has unique representation

$$x = \sum_{i=1}^{n} \}_{i} x_{i}, \quad \}_{i} \in F, \quad i = 1, 2, \dots, n$$

The vector $\{ \{y_1, y_2, \dots, y_n\} \}$ is called the Coordinates Vector of x. Let $s' = \{y_1, y_2, \dots, y_m\}$ be an ordered basis for Y so that each vector in Y is expressible as linear combination of the elements of s'.

Let us choose nm scalars $a_{ij} \in F$ where $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$

Since $x_1 \in X \implies T(x_1) \in Y \implies T(x_1)$ can be expressible as linear combination of m vectors in s'.i.e.

$$T(x_1) = a_{11}y_1 + a_{21}y_2 + \dots + a_{m1}y_m = \sum_{i=1}^m a_{i1}y_i$$

Also
$$T(x_{2}) = a_{12}y_{1} + a_{22}y_{2} + \dots + a_{m2}y_{m} = \sum_{i=1}^{m} a_{i2}y_{i}$$

$$T(x_n) = a_{1n}y_1 + a_{2n}y_2 + \dots + a_{mn}y_m = \sum_{i=1}^m a_{in}y_i$$

We can write the above n equations in symbolic form as under

$$T(x_j) = \sum_{i=1}^{m} a_{ij} y_i$$
, $j = 1, 2, \dots, n$

The coefficient matrix in the above expression is

$$\begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

Then the matrix of $T:X\to Y$ with respect to the given basis s and s' is the transpose of the above coefficient matrix which is obtained by changing the rows into columns and columns into rows of the coefficient matrix,

Matrix of T with respect to basis s and s' is

دراسات علیا - ماجستیر تحلیل دالی Functional Analysis

3: 1: 3:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = [a_{ij}]$$

Above matrix is $m \times n$ matrix consisting of m rows and n columns. The above matrix is symbolically written as [T:s,s'] or simply [T].

Remark

If X = Y, then $T : X \to X$ and m = n so that the matrix of T with respect to basis S will be a $S \to R$ matrix and the rule for writing is same as expressed above.

Theorem(8.1.1)

Let $T: X \to Y$ linear transformation where X and Y are finite dimensional linear spaces over a field F such that $\dim X = n$, $\dim Y = m$. Let $S = \{x_1, x_2, \dots, x_n\}$ be an ordered basis for X, and let $S' = \{y_1, y_2, \dots, y_m\}$ be an ordered basis for Y. If $Y = \{y_1, y_2, \dots, y_m\}$ is the Coordinates Vector of $Y \in X$ with respect to $Y \in X$ with respect to $Y \in X$ with respect to $Y \in X$ with respect to the given basis $Y \in X$ and $Y \in X$ with respect to $Y \in X$ with respect to the given basis $Y \in X$ and $Y \in X$ with respect to $Y \in X$ with respect to the given basis $Y \in X$ and $Y \in X$ with respect to $Y \in X$ with respect to the given basis $Y \in X$ and $Y \in X$ with respect to $Y \in X$ with respect to the given basis $Y \in X$ and $Y \in X$ with respect to $Y \in X$ with respect to the given basis $Y \in X$ and $Y \in X$ with respect to $Y \in X$ with respect t

Since $\{ \{ \{\}_1, \{\}_2, \dots, \{\}_n \} \}$ is the Coordinates Vector of $x \in X$ with respect to $\{ \{\}_n, \{\}_n \} \}$

$$\Rightarrow x = \sum_{j=1}^{n} \}_{j} x_{j} \quad \Rightarrow \quad T(x) = T(\sum_{j=1}^{n} \}_{j} x_{j}) = \sum_{j=1}^{n} \}_{j} T(x_{j})$$

Since
$$T(x_j) = \sum_{i=1}^m a_{ij} y_i$$
, $j = 1, 2, \dots, n \Rightarrow T(x) = \sum_{j=1}^n \left\{ \sum_{i=1}^m a_{ij} y_i \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_i \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_j \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_j \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_j \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_j \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n \left\{ \sum_{j=1}^n a_{ij} y_j \right\} \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_j \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_j \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_j \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_i \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_i \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_j \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_j \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_i \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^n a_{ij} y_j \right\} = \sum_{i=1}^m \left\{ \sum_{j=1}^$

Since $r = (r_1, r_2, \dots, r_n)$ is the Coordinates Vector of $T(x) \in Y$ with respect to s'

$$\Rightarrow T(x) = \sum_{i=1}^{m} r_i y_i \Rightarrow \sum_{i=1}^{m} r_i y_i = \sum_{i=1}^{m} (\sum_{j=1}^{n} \{j\}_j a_{ij}) y_i$$

Since every $y \in Y$ has unique representation of linear combination of vectors in s'. Thus

$$y_{i} = \sum_{k=1}^{m} \}_{k} a_{ki}$$

$$(\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{n}) = (\}_{1}, \}_{2}, \cdots, \}_{n}) \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \implies \Gamma = \} A$$

Example(8.1.2)

(1) Let $X = \mathbb{R}^2$, $Y = \mathbb{R}^3$ and $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x,x+y,2x-y) for all $(x,y) \in \mathbb{R}^2$, then T is linear operator, the matrix A of T with respect to the given basis $S = \{(1,0),(0,1)\}$

دراسات عليا ـ ماجستير تحلیل دالی Functional Analysis 3: 3:

and
$$s' = \{(1,0,0), (0,1,0), (0,0,1)\}$$
 is $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \end{bmatrix}$.

(2) Let $X = P_2(\mathbb{R}), Y = \mathbb{R}^2$ and $T : P_2(\mathbb{R}) \to \mathbb{R}^2$ defined by $T(a+bx+cx^2) = (2a,b-c)$ for all $a+bx+cx^2 \in P_2(\mathbb{R})$, then T is linear operator, the matrix A of T with respect to the given basis

$$s = \{5, 2x, x^2\}$$
 and $s' = \{(-1, 0), (0, 3)\}$ is $A = \begin{bmatrix} -10 & 0 \\ 0 & \frac{2}{3} \\ 0 & -\frac{1}{3} \end{bmatrix}$.

Theorem (8.2.3)

If $s = \{x_1, x_2, \dots, x_n\}$ is an ordered basis for a finite dimensional linear space X over F. Then the function $T \to [T]$ which assigns to each operator T its matrix relative to s is an isomorphism of algebra L(X) onto the total matrix algebra $M_n(F)$.

Proof:

Define a function $f: B(X) \to M_n(F)$ by f(T) = [T] for all $T \in B(X)$

Let $T_1, T_2 \in B(X)$, then $f(T_1) = [T_1] = [a_{ij}]_{n \times n}$ and $f(T_2) = [T_2] = [b_{ij}]_{n \times n}$

$$T_1(x_j) = \sum_{i=1}^m a_{ij} y_i, \quad j = 1, 2, \dots, n, \quad T_2(x_j) = \sum_{i=1}^m b_{ij} y_i, \quad j = 1, 2, \dots, n$$

Let
$$x = \sum_{j=1}^{n} \}_{j} x_{j}$$

To prove:

(1) f is one-one: Let $T_1, T_2 \in B(X)$ such that $f(T_1) = f(T_1)$

$$\Rightarrow [a_{ij}]_{n \times n} = [b_{ij}]_{n \times n} \Rightarrow \sum_{i=1}^{n} a_{ij} x_{i} = \sum_{i=1}^{n} b_{ij} x_{i}, \quad j = 1, 2, \dots$$

$$\Rightarrow [a_{ij}]_{n \times n} = [b_{ij}]_{n \times n} \Rightarrow \sum_{i=1}^{n} a_{ij} x_{i} = \sum_{i=1}^{n} b_{ij} x_{i}, \quad j = 1, 2, \cdots$$

$$\Rightarrow T_{1}(x_{j}) = T_{2}(x_{j}), \quad j = 1, 2, \cdots, n \quad \Rightarrow \quad \sum_{j=1}^{n} \}_{j} T_{1}(x_{j}) = \sum_{j=1}^{n} \}_{j} T_{2}(x_{j}) \quad \Rightarrow \quad T_{1}(\sum_{j=1}^{n} \}_{j} x_{j}) = T_{2}(\sum_{j=1}^{n} \}_{j} x_{j})$$

$$\Rightarrow T_1(x) = T_2(x)$$
 for all $x \in X \Rightarrow T_1 = T_2$. Hence f is one-one.

(2) f is onto: let $[c_{ij}]$ be any matrix in $M_n(F)$ the corresponding to this matrix three exists a

linear operator
$$T: X \to X$$
 such that $T(x_j) = \sum_{i=1}^n \}_{i,j} x_i$, $j = 1, 2, \dots, n$

Above defines the operators T is extended by linearity to whole of X then the resulting operator has $[c_{ij}]$ as its matrix relative to s. Hence f is onto.

From (1),(2), we have f is bijective.

(3) f is preserves addition, i.e. $f(T_1 + T_2) = f(T_1) + f(T_2)$

دراسات علیا - ماجستیر تحلیل دالی Functional Analysis

3: 1: 3:

$$(T_1 + T_2)(x_j) = T_1(x_j) + T_2(x_j) = \sum_{i=1}^n a_{ij} x_i + \sum_{i=1}^n b_{ij} x_i = \sum_{i=1}^n (a_{ij} + b_{ij}) x_i$$

$$f(T_1 + T_2) = [T_1 + T_2] = [a_{ii} + b_{ii}]_{n \times n} = [a_{ii}]_{n \times n} + [b_{ii}]_{n \times n} = [T_1] + [T_2] = f(T_1) + f(T_2)$$

(4) f is preserves scalar multiplication, i.e. f(T) = f(T)

$$(T)(x_j) = T(x_j) = \sum_{i=1}^n a_{ij} x_i = \sum_{i=1}^n a_{ij} x_i = \sum_{i=1}^n (c_{ij}) x_i$$

$$f\left(\right\} T\left(\right) = [\]T\left[\right] = [c_{ij}]_{n\times n} = [\]a_{ij}]_{n\times n} = \left\{ [a_{ij}]_{n\times n} = \right\} [T\left[\right] = \left\{ f\left(T\right) \right\}$$

(5) f is preserves multiplication, i.e. $f(T_1T_2) = f(T_1)f(T_2)$

$$(T_1T_2)(x_j) = T_1(T_2(x_j)) = T_1(\sum_{k=1}^n b_{kj}x_k) = \sum_{k=1}^n b_{kj}T(x_k) = \sum_{k=1}^n b_{kj}(\sum_{i=1}^n a_{ik}x_i) = \sum_{k=1}^n (\sum_{k=1}^n a_{ik}x_i)$$

$$= \sum_{k=1}^n (\sum_{i=1}^n a_{ik}x_i) + \sum_{k=1}^n b_{kj}(\sum_{i=1}^n a_{ik}x_i) = \sum_{k=1}^n (\sum_{i=1}^n a_{ik}x_i) = \sum_{i=1}^n (\sum_{i=1}^n a_{ik}x_i) = \sum_{i=1}^$$

$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik} b_{kj} \right) x_{i} + \sum_{i=1}^{n} b_{ij} x_{i} = \sum_{i=1}^{n} \left(c_{ij} \right) x_{i}$$

$$f(T_1T_2) = [T_1T_2] = [c_{ij}]_{n \times n} = [\sum_{k=1}^n a_{ik}b_{kj}] = [a_{ij}]_{n \times n}[b_{ij}]_{n \times n} = [T_1][T_2] = f(T_1)f(T_2)$$

Hence is $f: B(X) \to M_n(F)$ by f(T) = [T] for all $T \in B(X)$ an isomorphism

Matrices of identity and zero operators

If T be a linear operators on linear space whose matrix relative to basis $s = \{x_1, x_2, \dots, x_n\}$ be

$$[a_{ij}]$$
 then is $T(x_j) = \sum_{i=1}^n a_{ij} y_i$, $j = 1, 2, \dots, n$

$$I(x_j) = x_j = 0x_1 + 0x_2 + \dots + 1 \cdot x_j + \dots + 0x_n \implies I(x_j) = \sum_{i=1}^n (u_{ij})x_i \text{ where } u_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

 \Rightarrow [I]=[u_{ij}], i.e. unit matrix.

Again
$$0(x_j) = 0 = 0x_1 + 0x_2 + \dots + 0x_n \implies 0(x_j) = \sum_{i=1}^n (0_{ij})x_i$$

 \Rightarrow [0] = [0_{ij}], i.e. null matrix.

Matrix of an inverse operator

Theorem(8.1.4)

Let T be linear operator on a linear space X whose matrix relative to basis $s = \{x_1, x_2, \dots, x_n\}$ is $[a_{ij}]$. Then T is non singular iff $[a_{ij}]$ is non singular and in this case $[a_{ij}]^{-1} = [T^{-1}]$

Proof:

Since T is non singular iff $T \circ T^{-1} = T^{-1} \circ T = I$

iff
$$[T][T^{-1}] = [T^{-1}][T] = [I]$$

iff
$$[a_{ij}][T^{-1}] = [T^{-1}][a_{ij}] = \mathsf{u}_{ij}$$
 unit matrix I_n

iff $[a_{ij}]$ is non singular and $[a_{ij}]^{-1} = [T^{-1}]$

8.2 Eigenvalues and Eigenvectors.

Definition(8.2.1)

Let X be a linear space over F, and let $T \in L(X)$.

- (1) A scalar $\} \in F$ is called an eigenvalue of T, if there exists a non zero vector $x \in X$ such that $T(x) = \}x$.
- (2)A non zero vector $x \in X$ is called an eigenvector of T, if there exists $f \in F$ such that f(x) = f(x).

Form(1),(2), we say that x is an eigenvector of T associated with eigenvalue $\}$. Eigenvalues are some times also called characteristic values, proper values, or spectral values. Similarly eigenvectors are called characteristic vectors, proper vectors, or spectral vectors.

The set of all eigenvalues of T is called the spectrum of T and we shall denote it by $\dagger (T)$.

Remark

If the linear space X has no non zero vectors at all, then T certainly has no eigenvectors. In this case the whole theory collapses into triviality. Therefore throughout the present lector we shall assume that $X \neq \{0\}$.

Examples(8.2.2)

- (1) Let $X = \mathbb{R}^2$ and $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (-y,x) for all $(x,y) \in \mathbb{R}^2$, then T is linear operator has no eigenvalue.
- (2) Let $X = \mathbb{R}^2$ and $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+2y,3x+2y) for all $(x,y) \in \mathbb{R}^2$, then T is linear operator have eigenvalues $\} = -1$, $\} = 4$.
- (3) Let $X = \ell^2$ and $T : \ell^2 \to \ell^2$ defined by $T(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$ for all $(x_1, x_2, x_3, \dots) \in \ell^2$, then T is linear operator has no eigenvalue.

Theorem(8.2.3)

Let X be a linear space over F, and let $T \in L(X)$. If x is an eigenvector of T corresponding to the eigenvalue Y and Y is any non zero scalar, then Y is also an eigenvector of Y corresponding to the same eigenvalue Y.

Proof:

Since x is an eigenvector of T corresponding to the eigenvalue $\}$, then $x \ne 0$ and $T(x) = \}x$ Since $r \ne 0$ and $x \ne 0 \implies rx \ne 0 \implies T(rx) = rT(x) = r(\}x) = (\}r)x = \{(rx)\}$

Therefore rx is an eigenvector of T corresponding to the eigenvalue $\}$.

Remark

Corresponding to an eigenvalue } there may correspond more than one eigenvectors.

Theorem(8.2.4)

Let X be a linear space over F, and let $T \in L(X)$. If x is an eigenvector of T, then x cannot correspond to more than one eigenvalues of T.

دراسات عليا ـ ماجستير **Functional Analysis** تحليل دالي 3: 1: 3:

Proof:

Let x be an eigenvector of T corresponding to two distinct eigenvalues $\}_1$ and $\}_2$ of T $\{T(x) = \}_1 x$ and also $\{T(x) = \}_2 x$. Therefore we have $\}_1 x = \}_2 x \implies (\}_1 - \}_2)x = 0$

Since $x \neq 0 \implies \left\{ -1 \right\}_1 = \left\{ -1 \right\}_2 = 0 \implies \left\{ -1 \right\}_1 = \left\{ -1 \right\}_2$

and r is any non zero scalar, then rx is also an eigenvector of T corresponding to the same eigenvalue $\}$.

Definition (8.2.5)

Let X be a linear space over F, $T \in L(X)$ and let Y be an eigenvalue of Y. The set consisting of all eigenvectors of Y which correspond to eigenvalue Y together with the vector Y is called eigenspace of Y corresponding to the eigenvalue Y and is denoted by Y.

- (1) Since by definition an eigenvector is a non zero vector, therefore the set M_1 necessarily contains some non zero vectors.
- (2) Since by definition of M_1 a non zero vector x is in M_2 iff T(x) = x. Also it is given that the vector 0 is in M_2 , the vector 0 definitely satisfies the equation T(x) = x. Therefore $M_2 = x \in X : T(x) = x = x \in X : T(x) = x$.

Thus M_1 is null space(or kernel of) of linear operator T - I on X.

Hence M_{\downarrow} is a subspace of X.

(3) Let $x \in X$, since M_1 is a subspace of X and $Y \in F \Rightarrow Y \in M_2$. Since $X \in M_2 \Rightarrow T(X) = X \Rightarrow T(X) \in M_2 \Rightarrow M_2$ is an invariant under T.

From (1), (2) and (3), we have M_3 is a non zero subspace of X invariant under T.

(4) If X is normed space, and $T \in B(X)$ then M_1 is closed subspace of X M_2 is called eigenspace of T corresponding to the eigenvalue }

Characteristic equation of operator

Theorem(8.2.6)

Let $s = \{x_1, x_2, \dots, x_n\}$ be an ordered basis for a finite dimensional linear space X over F, and let T be a linear operator on X whose matrix with respect to s be A and let f is an eigenvalue of f iff f iff f iff f if f

Proof:

Suppose that $f(x) = f(x) \Rightarrow T(x) = f(x) \Rightarrow T(x) = f(x) = f$

Since $x \neq 0 \implies \ker(T - I) \neq \{0\} \implies T - I$ is not one—one $\implies T - I$ is not bijective.

i.e. T - I is singular (not invertible)

Since A is the matrix of T with respect to the given basis s, then A - I is the matrix of I - I with respect to the given basis s, A - I is singular (not invertible) A - I = 0

دراسات عليا ـ ماجستير تحلیل دالي Functional Analysis 3:

Conversely: Suppose that |A - I| = 0

 $\Rightarrow A - I$ is singular (not invertible) $\Rightarrow T - I$ is singular (not invertible)

 $\Rightarrow \ker(T-I) \neq \{0\}$, there exists non zero $x \in X$ such that (T-I)(x) = 0

 $\Rightarrow T(x) - I(x) = 0 \Rightarrow T(x) - x = 0 \Rightarrow T(x) = x \Rightarrow T(x) = x$

Remark

The equation |A - I| = 0 is called **characteristic equation** of T where A is the matrix of T with respect to s . Since $s = \{x_1, x_2, \dots, x_n\}$ and $A = [a_{ij}]_{n \times n}$, then |A - I| = 0 is an equation of nth degree in }.

Theorem(8.2.7)

A non zero eigenvectors x_1, x_2, \dots, x_n corresponding to eigenvalues $\{x_1, x_2, \dots, x_n\}$ of linear operator T on a linear space X over F are linearly independent.

Proof:

We shall prove linear independent by induction method?

Let $r_1 x_1 = 0$, since $x_1 \neq 0 \implies r_1 = o$. Thus the theorem is true for n = 1

Suppose the theorem is true for n = m. i.e. x_1, x_2, \dots, x_m are linearly independent

We shall prove that $x_1, x_2, \dots, x_m, x_{m+1}$ are linearly independent

Consider the relation $r_1x_1 + r_2x_2 + \cdots + r_mx_m + r_{m+1}x_{m+1} = 0$

$$\Rightarrow T(\Gamma_1 x_1 + \Gamma_2 x_2 + \dots + \Gamma_m x_m + \Gamma_{m+1} x_{m+1}) = T(0) = 0$$

$$\Rightarrow \Gamma_1 T(x_1) + \Gamma_2 T(x_2) + \dots + \Gamma_m T(x_m) + \Gamma_{m+1} T(x_{m+1}) = 0$$

Since $T(x_i) = \}_i x_i$ for all $i = 1, 2, \dots, n \Rightarrow r_1 \}_1 x_1 + r_2 \}_2 x_2 + \dots + r_m \}_m x_m + r_{m+1} \}_{m+1} x_{m+1} = 0$ (2)

Multiplying (1)by $\}_{m+1}$ and substracting from (2)we get

$$\Gamma_1(\{1, -\}_{m+1})x_1 + \Gamma_2(\{1, -\}_{m+1})x_2 + \dots + \Gamma_m(\{1, -\}_{m+1})x_m = 0$$

Since x_1, x_2, \dots, x_m are linearly independent and $\}_i$ are all distinct and as such it follows from above that $r_1 = r_2 = r_m = 0$. Putting in (1) we get $r_{m+1}x_{m+1} = 0$

Since $x_{m+1} \neq 0$ \Rightarrow $\}_{m+1} = 0$. Hence $x_1, x_2, \dots, x_m, x_{m+1}$ are linearly independent

Thus the theorem is true for all n.

Corollary (8.2.8)

If T is a linear operator on an n dimensional linear space X over F, then T can not have more than n distinct eigenvalues

Proof:

Suppose that T has more than n distinct eigenvalues, then these will form a linearly independent subset of X which will contain more than more n vectors. But this is not possible as a *n* dimensional linear space can not have a linearly independent set containing more than n elements. Hence can not have more than n distinct eigenvalues.

در اسات علیا ۔ ماجستیر تحلیل دالی Functional Analysis

3: 1: 3:

Theorem(8.2.9)

If T be a self –adjoint operator on an n dimensional Hilbert space X over F, then the eigenvalues of T are real and the eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

Proof:

(1) Let f(x) = f(x) be the eigenvalue of f(x) = f(x) such that f(x) = f(x)Since T is self-adjoint, then $\langle T(x), x \rangle$ is real

Now
$$\langle T(x), x \rangle = \langle \{x, x \rangle = \} \langle x, x \rangle = \} \|x\|^2 \implies \} = \frac{\langle T(x), x \rangle}{\|x\|^2}$$

Since $||x||^2 \ge 0$ and $\langle T(x), x \rangle$ is real it follows that $\}$ is real.

(2) Let $\}_1, \}_2$ be two distinct eigenvalues of T and x_1, x_2 be the corresponding eigenvectors so that $T(x_1) = \{x_1, T(x_2) = x_2 \}$ where $\{x_1, x_2 \}$ are real. To prove that $x_1 \perp x_2$

Since T is self-adjoint $\Rightarrow T^* = T$, also since $\{1, 1\}_2$ are real $\Rightarrow \{1, 1\}_2 = \{1, 1$

$$\Rightarrow \ \}_1 \langle x_1, x_2 \rangle = \}_2 \langle x_1, x_2 \rangle \ \Rightarrow \ (\}_1 - \}_2) \langle x_1, x_2 \rangle = 0$$

Since $\}_1, \}_2$ are distinct $\Rightarrow \}_1 - \}_2 \neq 0$, therefore $\langle x_1, x_2 \rangle = 0 \Rightarrow x_1 \perp x_2$, i.e. x_1, x_2 are orthogonal.

Remark

If T is non negative or positive, then the eigenvalues of T are non negative or positive respectively.

Theorem(8.2.10)

If T be an unitary operator on an n dimensional Hilbert space X over F, then the eigenvalues of T are real unimodular and the corresponding distinct eigenvectors are orthogonal.

Proof:

(1) Let $\}$ be a eigenvalue of T, so that there exists non zero $x \in X$ such that T(x) = xAlso since T is an unitary operator, then $\langle T(x), T(x) \rangle = \langle x, x \rangle$

$$\Rightarrow \langle \{x, \}x \rangle = \langle x, x \rangle \Rightarrow \{x, x \rangle = \langle x, x \rangle \Rightarrow \{x, x \rangle$$

i.e. eigenvalues are unimodular.

(2) Let $\}_1$, $\}_2$ be two distinct eigenvalues of T and x_1, x_2 be the corresponding eigenvectors so that $T(x_1) = \{x_1, T(x_2) = x_2, \text{ where } \}_1, \}_2$ are unimodular.

since T is an unitary operator, then $\langle T(x_1), T(x_2) \rangle = \langle x_1, x_2 \rangle$

$$\Rightarrow \langle \{\}_1 x_1, \}_2 x_2 \rangle = \langle x_1, x_1 \rangle \Rightarrow \{\}_1 \overline{\}_2} \langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle. \text{ Since } \{\}_2 |^2 = 1 \Rightarrow \{\}_2 \overline{\}_2} = 1 \Rightarrow \overline{\}_2} = \frac{1}{\}_2}$$

$$\Rightarrow \}_1 \frac{1}{\}_2} \langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle \Rightarrow \}_1 \langle x_1, x_2 \rangle = \}_2 \langle x_1, x_2 \rangle \Rightarrow (\}_1 - \}_2) \langle x_1, x_2 \rangle = 0$$

Since $\}_1, \}_2$ are distinct $\Rightarrow \}_1 - \}_2 \neq 0$, therefore $\langle x_1, x_2 \rangle = 0 \Rightarrow x_1 \perp x_2$.

Theorem(8.2.11)

Let T be a normed operator on a finite dimensional Hilbert space X over F

- (1) If $f \in T$, then f = I is normal
- (2) Every eigenvector of T is also a eigenvector for T^* .
- (3) the eigenspaces of T are pair wise orthogonal

Proof:

(1) Since T is normal $\Rightarrow T \circ T^* = T^* \circ T$

$$(T - I)^* = T^* - \overline{I}^* = T^* - \overline{I}^* = T^* - \overline{I}^* \implies (T - I)^* = (T - I)^* = (T - I)^* = T^* - \overline{I}^* = T$$

$$\Rightarrow (T - \{I\})^* (T - \{I\}) = (T^* - \{I\})^* (T - \{I\}) = (T^* - \{I\})^* (T - \{I\})^$$

$$\Rightarrow (T - I)(T - I)^* = (T - I)^*(T - I) \Rightarrow T - I$$
 is normal

(2) Let x be an eigenvector of T corresponding to eigenvalue T(x) = x

$$\left\|T\left(x\right)\right\|^{2} = \left\langle T\left(x\right), T\left(x\right)\right\rangle = \left\langle x, T^{*}\left(T\left(x\right)\right)\right\rangle = \left\langle x, T\left(T^{*}\left(x\right)\right)\right\rangle = \left\langle T^{*}\left(x\right), T^{*}\left(x\right)\right\rangle = \left\|T^{*}\left(x\right)\right\|^{2} \implies \left\|T\left(x\right)\right\| = \left\|T^{*}\left(x\right)\right\|$$

Since T - I is normal, therefore $x \in X$, we have

$$||(T - I)(x)|| = ||(T - I)^*(x)|| \implies ||T(x) - I|| = ||(T^* - \overline{I}I)(x)|| = ||T^*(x) - \overline{I}I||$$

Since $T(x) = x \implies 0 = \|T(x) - \overline{x}\|$. Hence it follows that $T(x) = \overline{x}$, therefore x is

eigenvector of T^* and corresponding eigenvalue is $\overline{}$

(3) Let x_i and x_j belong to M_i and M_j the eigenspaces of T and the corresponding eigenvalues

be $\}_i$ and $\}_j$ respectively so that $T(x_i) = \}_i x_i$, $T(x_j) = \}_j x_j$ and $T^*(x_j) = \overline{\}_j} x_j$ as T is normal

$$\Rightarrow \}_i \langle x_i, x_j \rangle = \}_j \langle x_i, x_j \rangle \Rightarrow (\}_i - \}_j) \langle x_i, x_j \rangle = 0$$

Since $\}_i, \}_j$ are distinct $\Rightarrow \}_i - \}_j \neq 0$, therefore $\langle x_i, x_j \rangle = 0 \Rightarrow x_i \perp x_j$, i.e. M_i and M_j are pair wise orthogonal.

Theorem(8.2.12)

If T be a normal operator on an n dimensional Hilbert space X over F, then each eigenspace reduces T.

Proof:

Let x_i belong to M_i the eigenspace of T and the corresponding eigenvalue be $\}_i$ so that $T(x_i) = \}_i x_i$

Since T is normal $\Rightarrow T^*(x) = \overline{y}x$

Since M_i is a subspace $\Rightarrow \overline{x} \in M_i \Rightarrow T^*(x) \in M_i \Rightarrow M_i$ is invariant under T^* , but M_i is invariant under T. Hence M_i is reduces T.

دراسات عليا ـ ماجستير **Functional Analysis** تحليل دالي 3: 1: 3:

8.3 Spectral Theorem for Normal Operators

Theorem(8.3.1) Spectral theorem for normal operators

Let T be an arbitrary linear operator on finite dimensional Hilbert space X, and $\{1, 2, \dots, n\}$ be eigenvalues of T with eigenspaces M_1, M_2, \dots, M_n . Further P_1, P_2, \dots, P_n are perpendicular Projections on the spaces M_1, M_2, \dots, M_n respectively. Then the spectral theorem states that the following statements are equivalent.

- (1) The subspaces M_1, M_2, \cdots, M_n are pair wise orthogonal and span X
- (2) P_1, P_2, \dots, P_n are pair wise orthogonal and (i) $P_1 + P_2 + \dots + P_n = I$ (ii) $P_1 + P_2 + \dots + P_n = I$
- (3) T is a normal operator.

Proof:

$$(1) \Rightarrow (2)$$

Since P_1, P_2, \dots, P_n are perpendicular Projections on the spaces M_1, M_2, \dots, M_n respectively. Also the subspaces M_1, M_2, \dots, M_n are pair wise orthogonal and span X, i.e. $X = M_1 \oplus M_2 \oplus \dots \oplus M_n$. Hence any $x \in X$ can by uniquely expressed as $x = x_1 + x_2 + \dots + x_n$, where $x_i \in M_i$

Since M_i, M_j are subspaces of X and P_i, P_j are perpendicular projections on M_i, M_j respectively then M_i, M_j are orthogonal iff $P_i \circ P_j = 0$ iff $P_i \circ P_i = 0$

Since M_i, M_j are orthogonal, then $P_i \circ P_j = 0$, $i \neq j$

 P_i is projection on M_i and $x = x_1 + x_2 + \cdots + x_n$, $x_i \in M_i$

Since $x_j \in M_j$ and $M_j \perp M_i \implies x_j \in M_i^{\perp}$. But M_i^{\perp} is null space of P_i and hence $P_i(x_j) = 0$, $i \neq j$

Thus $P_i(x_i) = x_i$ for all i and $P_i(x_j) = 0$, $i \neq j \implies P_i(x) = P_i(x_1 + x_2 + \dots + x_n) = P_i(x_i) = x_i$

Now
$$I(x) = x = x_1 + x_2 + \dots + x_n = P_1(x) + P_2(x) + \dots + P_n(x) = (P_1 + P_2 + \dots + P_n)(x)$$

Since above is true for x It follows that $P_1 + P_2 + \cdots + P_n = I$.

Now $x_i \in M_i$ the eigenspace of T corresponding to eigenvalue $\}_i \Rightarrow T(x_i) = \}_i x_i$

$$T(x) = T(x_1 + x_2 + \dots + x_n) = T(x_1) + T(x_2) + \dots + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = \{x_1 + x_2 + \dots + x_n\} = T(x_n) + T(x_n) = T(x_n) = T(x_n) = T(x_n) + T(x_n) = T(x_n)$$

$$T(x) = \{ P_1(x) + P_2(x) + \dots + P_n(x) = (\{ P_1 + \} P_2 + \dots + P_n \}$$

Since above holds for all x we have $T = \{1, P_1 + \}_2 P_2 + \dots + \}_n P_n$

$$(2) \Rightarrow (3)$$

Since
$$T = \{P_1 + P_2 + \dots + P_n \implies T^* = (\{P_1 + P_2 + \dots + P_n\}^* = (\{P_1 + P_2\}^* + \dots + (\{P_n\}^*)^* + (\{P_n\}^* + \dots + (\{P_n\}^*)^* + \dots + (\{$$

Since
$$(\}_i P_i)^* = \overline{ \}_i } P_i^*$$
 and $P_i^* = P_i = P_i^2 \implies T^* = \overline{ \}_1 } P_1^* + \overline{ \}_2 } P_2^* + \dots + \overline{ \}_n } P_n^* = \overline{ \}_1 } P_1 + \overline{ \}_2 } P_2 + \dots + \overline{ \}_n } P_n$

$$T \circ T^* = (\{\}_1 P_1 + \{\}_2 P_2 + \dots + \{\}_n P)(\overline{\{\}}_1 P_1^* + \overline{\{\}}_2 P_2^* + \dots + \overline{\{\}}_n P_n^*) = \sum_{i=1}^n \{\}_i \overline{\{\}}_i P_i^2 + \sum_i \overline{\{\}}_j P_i P_j, i \neq j$$

$$\Rightarrow T \circ T^* = \sum_{i=1}^n ||f_i||^2 P_i + 0 = \sum_{i=1}^n ||f_i||^2 P_i \text{ in a similar manner we can show that } T^* \circ T = \sum_{i=1}^n ||f_i||^2 P_i$$

دراسات عليا ـ ماجستير **Functional Analysis** تحليل دالي 3: 1: 3:

Hence $T \circ T^* = T^* \circ T$ and as such T is normal operator. (3) \Rightarrow (1)

Theorem(5.3.2) Uniqueness of spectral resolution of a normal operator

The spectral resolution of a normal operator on a finite dimensional Hilbert space X is unique.

Another form. Let T be a normal operator on finite dimensional Hilbert space X. If $\sum_{i=1}^{n} \}_{i} P_{i}$ is

the spectral form of T, then $\}_i$ are all the distinct eigenvalues of T. If more $1 \le k \le n$ then there exists polynomials P_k with complex coefficients such that $P_k(\}_i) = 0$ whenever $i \ne k$ and $P_k(\}_k) = 1$. For all such polynomials $P_k(T) = Q_k$, i.e. each Q_k is a polynomial in T.

Proof:

Theorem(**5.3.3**)

Let T be a normal operator on a finite dimensional on Hilbert space X, then X has on orthonormal basis s consisting of eigenvectors of T. Consequently the matrix of T relative to s is a diagonal matrix.

5.4 Spectral theorem for Self adjoint Operators Theorem(5.4.1)

Let *T* be a self-adjoint operator on finite dimensional Hilbert space *X* , then there exists *n* real numbers $\}_1, \}_2, \dots, \}_n$ and perpendicular projections P_1, P_2, \dots, P_n , (where n > 0, and $n \le 1$ the dimension of *X*) such that

- (1)_i, $i = 1, 2, \dots, n$ are pair wise distinct
- (2) P_1, P_2, \dots, P_n are pair wise orthogonal and different from zero.
- (3) $P_1 + P_2 + \dots + P_n = I$
- $(4) \}_1 P_1 + \}_2 P_2 + \dots + \}_n P_n = T$

Proof:

Theorem(5.4.2)₃

Let T be a self-adjoint operator on finite dimensional Hilbert space X. If $\sum_{i=1}^{n} \}_{i} P_{i}$ is the spectral form of T, then $\}_{i}$ are all the distinct eigenvalues of T. If moreover $1 \le k \le n$ then there exists polynomials P_{k} with real coefficients such that $P_{k}(\}_{i}) = 0$ whenever $i \ne k$ and $P_{k}(\}_{k}) = 1$. For all such polynomials $P_{k}(T) = Q_{k}$, i.e. each Q_{k} is a polynomial in T.

Theorem(5.4.3)

Let T be a self-adjoint operator on finite dimensional Hilbert space X such that $T = \sum_{i=1}^{n} \{x_i\}_{i=1}^{n}$.

If S is any linear transformation on X, then S commutes with T iff S commutes with each P_i for $i = 1, 2, \dots, n$

دراسات عليا ـ ماجستير تحلیل دالي Functional Analysis

3: 3: 1:

Proof:

Suppose that S commutes with each P_i , i.e. $S \circ P_i = P_i \circ S$ for all i. To prove that: $S \circ T = T \circ S$ Since $T = \sum_{i=1}^{n} \}_{i} P_{i}$

$$\Rightarrow S \circ T = S \circ (\sum_{i=1}^{n} \}_{i} P_{i}) = \sum_{i=1}^{n} \}_{i} (S \circ P_{i}) = \sum_{i=1}^{n} \}_{i} (P_{i} \circ S) = \sum_{i=1}^{n} (\}_{i} P_{i}) \circ S = T \circ S$$

Augustal agastickly by the state of the stat **Conversely**: Suppose that S commutes with T, i.e. $S \circ T = T \circ S$. To prove that $S \circ P_i = P_i \circ S$