دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

8. Spectral Theory

8.1 Matrix of Linear Transformation

Recall that a function between linear spaces is often referred to as a transformation. Let $T: X \rightarrow Y$ linear transformation where X and Y are finite dimensional linear spaces over a field F such that $\operatorname{dim} X=n, \operatorname{dim} Y=m$.
Let $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be an ordered basis for X so that each vector in X is expressible as linear combination of the elements of β, i.e. for every $x \in X$ has unique representation

$$
x=\sum_{i=1}^{n} \lambda_{i} x_{i}, \quad \lambda_{i} \in F, \quad i=1,2, \cdots, n
$$

The vector $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ is called the Coordinates Vector of x. Let $\beta^{\prime}=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$ be an ordered basis for Y so that each vector in Y is expressible as linear combination of the elements of β^{\prime}.
Let us choose $n m$ scalars $a_{i j} \in F$ where $i=1,2, \cdots, m, \quad j=1,2, \cdots, n$
Since $x_{1} \in X \quad \Rightarrow T\left(x_{1}\right) \in Y \quad \Rightarrow T\left(x_{1}\right)$ can be expressible as linear combination of m vectors in β^{\prime}.i.e.
$T\left(x_{1}\right)=a_{11} y_{1}+a_{21} y_{2}+\cdots+a_{m 1} y_{m}=\sum_{i=1}^{m} a_{i 1} y_{i}$
Also
$T\left(x_{2}\right)=a_{12} y_{1}+a_{22} y_{2}+\cdots+a_{m 2} y_{m}=\sum_{i=1}^{m} a_{i 2} y_{i} y_{i}$
$T\left(x_{n}\right)=a_{1 n} y_{1}+a_{2 n} y_{2}+\cdots+a_{m n} y_{m i}=\sum_{i=1}^{m} a_{i n} y_{i}$
We can write the above n equations in symbolic form as under
$T\left(x_{j}\right)=\sum_{i=1}^{m} a_{i j} y_{i}, j=1,2, \cdots, n$
The coefficient matrix in the above expression is

$$
\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right]
$$

Then the matrix of $T: X \rightarrow Y$ with respect to the given basis β and β^{\prime} is the transpose of the above coefficient matrix which is obtained by changing the rows into columns and columns into rows of the coefficient matrix,
Matrix of T with respect to basis β and β^{\prime} is

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]
$$

Above matrix is $m \times n$ matrix consisting of m rows and n columns. The above matrix is symbolically written as $\left[T: \beta, \beta^{\prime}\right]$ or simply $[T]$.

Remark

If $X=Y$, then $T: X \rightarrow X$ and $m=n$ so that the matrix of T with respect to basis β will be a $n \times n$ matrix and the rule for writing is same as expressed above.

Theorem(8.1.1)

Let $T: X \rightarrow Y$ linear transformation where X and Y are finite dimensional linear spaces over a field F such that $\operatorname{dim} X=n, \operatorname{dim} Y=m$. Let $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be an ordered basis for X, and let $\beta^{\prime}=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$ be an ordered basis for Y. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\eta}\right)$ is the Coordinates Vector of $x \in X$ with respect to β and $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ is the Coordinates Vector of $T(x) \in Y$ with respect to β^{\prime}. Then the matrix A of T with respect to the given basis β and β^{\prime} is satisfying $\alpha=\lambda A$

Proof :

Since $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ is the Coordinates Vector of $x \in X$ with respect to β
$\Rightarrow x=\sum_{j=1}^{n} \lambda_{j} x_{j} \Rightarrow T(x)=T\left(\sum_{j=1}^{n} \lambda_{j} x_{j}\right)=\sum_{j=1}^{n} \lambda_{j} T\left(x_{j}\right)$
Since $T\left(x_{j}\right)=\sum_{i=1}^{m} a_{i j} y_{i} \quad, \quad j=1,2, \cdots, n \Rightarrow T(x)=\sum_{j=1}^{n} \lambda_{j}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \lambda_{j} a_{i j}\right) y_{i}$
Since $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ is the Coordinates Vector of $T(x) \in Y$ with respect to β^{\prime}
$\Rightarrow T(x)=\sum_{i=1}^{m} \alpha_{i} y_{i} \Rightarrow \sum_{i=11^{-}}^{m} \alpha_{i} y_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \lambda_{j} a_{i j}\right) y_{i}$
Since every $y \in Y$ has unique representation of linear combination of vectors in β^{\prime}. Thus

$$
\left.\left(\alpha_{1}, \alpha_{2},\right)^{\prime}, \alpha_{n}\right)=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \Rightarrow \alpha=\lambda A
$$

Example(8.1.2)

(1) Let $X=\mathbb{R}^{2}, Y=\mathbb{R}^{3}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x, x+y, 2 x-y)$ for all $(x, y) \in \mathbb{R}^{2}$, then T is linear operator, the matrix A of T with respect to the given basis $\beta=\{(1,0),(0,1)\}$

دراسات عايا - ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3 :

and $\beta^{\prime}=\{(1,0,0),(0,1,0),(0,0,1)\}$ is $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & -1\end{array}\right]$.
(2) Let $X=P_{2}(\mathbb{R}), Y=\mathbb{R}^{2}$ and $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ defined by $T\left(a+b x+c x^{2}\right)=(2 a, b-c)$ for all $a+b x+c x^{2} \in P_{2}(\mathbb{R})$, then T is linear operator, the matrix A of T with respect to the given basis $\beta=\left\{5,2 x, x^{2}\right\}$ and $\beta^{\prime}=\{(-1,0),(0,3)\}$ is $A=\left[\begin{array}{cc}-10 & 0 \\ 0 & \frac{2}{3} \\ 0 & -\frac{1}{3}\end{array}\right]$.

Theorem (8.2.3)

If $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is an ordered basis for a finite dimensional linear space X over F. Then the function $T \rightarrow[T]$ which assigns to each operator T its matrix relative to β is an isomorphism of algebra $L(X)$ onto the total matrix algebra $M_{n}(F)$.

Proof :

Define a function $f: B(X) \rightarrow M_{n}(F)$ by $f(T)=[T]$ for all $T \in B(X)$
Let $T_{1}, T_{2} \in B(X)$, then $f\left(T_{1}\right)=\left[T_{1}\right]=\left[a_{i j}\right]_{n \times n}$ and $f\left(T_{2}\right)=\left[T_{2}\right]=\left[b_{i j}\right]_{n \times n}$
$T_{1}\left(x_{j}\right)=\sum_{i=1}^{m} a_{i j} y_{i}, \quad j=1,2, \cdots, n, \quad T_{2}\left(x_{j}\right)=\sum_{i=1}^{m} b_{i,} y_{i}, \quad j=1,2, \cdots, n$
Let $x=\sum_{j=1}^{n} \lambda_{j} x_{j}$
To prove :
(1) f is one-one : Let $T_{1}, T_{2} \in B(X)$ such that $f\left(T_{1}\right)=f\left(T_{1}\right)$

$$
\begin{aligned}
& \quad \Rightarrow \quad\left[a_{i j}\right]_{n \times n}=\left[b_{i j}\right]_{n \times n} \Rightarrow \sum_{i=1}^{n} a_{i j} x_{i}=\sum_{i=1}^{n} b_{i j} x_{i}, \quad j=1,2, \cdots \\
& \Rightarrow \\
& \Rightarrow T_{1}\left(x_{j}\right)=T_{2}\left(x_{i j}\right)_{j} j=1,2, \cdots, n \Rightarrow \sum_{j=1}^{n} \lambda_{j} T_{1}\left(x_{j}\right)=\sum_{j=1}^{n} \lambda_{j} T_{2}\left(x_{j}\right) \Rightarrow T_{1}\left(\sum_{j=1}^{n} \lambda_{j} x_{j}\right)=T_{2}\left(\sum_{j=1}^{n} \lambda_{j} x_{j}\right) \\
& \Rightarrow T_{1}(x)=T_{2}(x) \text { for all } x \in X \Rightarrow T_{1}=T_{2} . \text { Hence } f \text { is one-one. }
\end{aligned}
$$

(2) f is onto : let $\left[c_{i j}\right]$ be any matrix in $M_{n}(F)$ the corresponding to this matrix three exists a linear operator $T: X \rightarrow X$ such that $T\left(x_{j}\right)=\sum_{i=1}^{n} \lambda_{i j} x_{i}, \quad j=1,2, \cdots, n$
Above defines the operators T is extended by linearity to whole of X then the resulting operator has $\left[c_{i j}\right]$ as its matrix relative to β. Hence f is onto.
From (1),(2), we have f is bijective.
(3) f is preserves addition, i.e. $f\left(T_{1}+T_{2}\right)=f\left(T_{1}\right)+f\left(T_{2}\right)$

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

$$
\begin{gathered}
\left(T_{1}+T_{2}\right)\left(x_{j}\right)=T_{1}\left(x_{j}\right)+T_{2}\left(x_{j}\right)=\sum_{i=1}^{n} a_{i j} x_{i}+\sum_{i=1}^{n} b_{i j} x_{i}=\sum_{i=1}^{n}\left(a_{i j}+b_{i j}\right) x_{i} \\
f\left(T_{1}+T_{2}\right)=\left[T_{1}+T_{2}\right]=\left[a_{i j}+b_{i j}\right]_{n \times n}=\left[a_{i j}\right]_{n \times n}+\left[b_{i j}\right]_{n \times n}=\left[T_{1}\right]+\left[T_{2}\right]=f\left(T_{1}\right)+f\left(T_{2}\right)
\end{gathered}
$$

(4) f is preserves scalar multiplication, i.e. $f(\lambda T)=\lambda f(T)$

$$
(\lambda T))\left(x_{j}\right)=\lambda T\left(x_{j}\right)=\lambda \sum_{i=1}^{n} a_{i j} x_{i}=\sum_{i=1}^{n} \lambda a_{i j} x_{i}=\sum_{i=1}^{n}\left(c_{i j}\right) x_{i}
$$

$$
f(\lambda T)=[\lambda T]=\left[c_{i j}\right]_{n \times n}=\left[\lambda a_{i j}\right]_{n \times n}=\lambda\left[a_{i j}\right]_{n \times n}=\lambda[T]=\lambda f(T)
$$

(5) f is preserves multiplication, i.e. $f\left(T_{1} T_{2}\right)=f\left(T_{1}\right) f\left(T_{2}\right)$

$$
\begin{aligned}
& \quad\left(T_{1} T_{2}\right)\left(x_{j}\right)=T_{1}\left(T_{2}\left(x_{j}\right)\right)=T_{1}\left(\sum_{k=1}^{n} b_{k j} x_{k}\right)=\sum_{k=1}^{n} b_{k j} T\left(x_{k}\right)=\sum_{k=1}^{n} b_{k j}\left(\sum_{i=1}^{n} a_{i k} x_{i}\right)=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} a_{i k} x_{i}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right) x_{i}+\sum_{i=1}^{n} b_{i j} x_{i}=\sum_{i=1}^{n}\left(c_{i j}\right) x_{i} \\
& f\left(T_{1} T_{2}\right)=\left[T_{1} T_{2}\right]=\left[c_{i j}\right]_{n \times n}=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]=\left[a_{i j}\right]_{n \times n}\left[b_{i j}\right]_{n \times n}=\left[T_{1}\right]\left[T_{2}\right]=f\left(T_{1}\right) f\left(T_{2}\right)
\end{aligned}
$$

Hence is $f: B(X) \rightarrow M_{n}(F)$ by $f(T)=[T]$ for all $T \in B(X)$ an isomorphism

Matrices of identity and zero operators

If T be a linear operators on linear space whose matrix relative to basis $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be $\left[a_{i j}\right]$ then is $T\left(x_{j}\right)=\sum_{i=1}^{n} a_{i j} y_{i}, \quad j=1,2, \cdots, n$
$I\left(x_{j}\right)=x_{j}=0 x_{1}+0 x_{2}+\cdots+1 \cdot x_{j}+\cdots+0 x_{n} \Rightarrow I\left(x_{j}\right)=\sum_{i=1}^{n}\left(\delta_{i j}\right) x_{i}$ where $\delta_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}$
$\Rightarrow \quad[I]=\left[\delta_{i j}\right]$, i.e. unit matrix
Again $0\left(x_{j}\right)=0=0 x_{1}+\theta x_{2}+\cdots+0 x_{n} \quad \Rightarrow \quad 0\left(x_{j}\right)=\sum_{i=1}^{n}\left(0_{i j}\right) x_{i}$
$\Rightarrow \quad[0]=\left[0_{i j}\right]$, i.e , null matrix.

Matrix of an inverse operator

Theorem(8.1.4)

Let T be linear operator on a linear space X whose matrix relative to basis $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is $\left[a_{i j}\right]$. Then T is non singular iff $\left[a_{i j}\right]$ is non singular and in this case $\left[a_{i j}\right]^{-1}=\left[T^{-1}\right]$

Proof :

Since T is non singular iff $T \circ T^{-1}=T^{-1} \circ T=I$
iff $[T]\left[T^{-1}\right]=\left[T^{-1}\right][T]=[I]$
iff $\left[a_{i j}\right]\left[T^{-1}\right]=\left[T^{-1}\right]\left[a_{i j}\right]=\delta_{i j}$ unit matrix I_{n}
iff $\left[a_{i j}\right]$ is non singular and $\left[a_{i j}\right]^{-1}=\left[T^{-1}\right]$

دراسات عليا ـ ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

8.2 Eigenvalues and Eigenvectors.

Definition(8.2.1)

Let X be a linear space over F, and let $T \in L(X)$.
(1) A scalar $\lambda \in F$ is called an eigenvalue of T, if there exists a non zero vector $x \in X$ such that $T(x)=\lambda x$.
(2)A non zero vector $x \in X$ is called an eigenvector of T, if there exists $\lambda \in F$ such that $T(x)=\lambda x$.
Form(1),(2), we say that x is an eigenvector of T associated with eigenvalue λ.
Eigenvalues are some times also called characteristic values, proper values, or spectral values.
Similarly eigenvectors are called characteristic vectors , proper vectors, or spectral vectors.
The set of all eigenvalues of T is called the spectrum of T and we shall denote it by $\sigma(T)$.

Remark

If the linear space X has no non zero vectors at all, then T certainly has no eigenvectors. In this case the whole theory collapses into triviality. Therefore throughout the present lector we shall assume that $X \neq\{0\}$.

Examples(8.2.2)

(1) Let $X=\mathbb{R}^{2}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(-y, x)$ for all $(x, y) \in \mathbb{R}^{2}$, then T is linear operator has no eigenvalue.
(2) Let $X=\mathbb{R}^{2}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+2 y, 3 x+2 y)$ for all $(x, y) \in \mathbb{R}^{2}$, then T is linear operator have eigenvalues $\lambda=-1, \lambda=4$.
(3) Let $X=\ell^{2}$ and $T: \ell^{2} \rightarrow \ell^{2}$ defined by $T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right)$ for all $\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in \ell^{2}$, then T is linear operator has no eigenvalue.

Theorem(8.2.3)

Let X be a linear space over F, and let $T \in L(X)$. If x is an eigenvector of T corresponding to the eigenvalue λ and α is any non zero scalar, then αx is also an eigenvector of T corresponding to the same eigenyalue λ.

Proof:

Since x is eigenvector of T corresponding to the eigenvalue λ, then $x \neq 0$ and $T(x)=\lambda x$
Since $\alpha \neq 0$ and $x \neq 0 \Rightarrow \alpha x \neq 0 \Rightarrow T(\alpha x)=\alpha T(x)=\alpha(\lambda x)=(\alpha \lambda) x=(\lambda \alpha) x=\lambda(\alpha x)$
Therefore αx is an eigenvector of T corresponding to the eigenvalue λ.

Remark

Corresponding to an eigenvalue λ there may correspond more than one eigenvectors.
Theorem(8.2.4)
Let X be a linear space over F, and let $T \in L(X)$. If x is an eigenvector of T, then x cannot correspond to more than one eigenvalues of T.

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Proof :

Let x be an eigenvector of T corresponding to two distinct eigenvalues λ_{1} and λ_{2} of T $T(x)=\lambda_{1} x$ and also $T(x)=\lambda_{2} x$. Therefore we have $\lambda_{1} x=\lambda_{2} x \Rightarrow\left(\lambda_{1}-\lambda_{2}\right) x=0$
Since $x \neq 0 \Rightarrow \lambda_{1}-\lambda_{2}=0 \Rightarrow \lambda_{1}=\lambda_{2}$
and α is any non zero scalar, then αx is also an eigenvector of T corresponding to the same eigenvalue λ.

Definition (8.2.5)

Let X be a linear space over $F, T \in L(X)$ and let λ be an eigenvalue of T. The set consisting of all eigenvectors of T which correspond to eigenvalue λ together with the vector 0 is called eigenspace of T corresponding to the eigenvalue λ and is denoted by M_{λ}.
(1) Since by definition an eigenvector is a non zero vector, therefore the set M_{λ} necessarily contains some non zero vectors.
(2) Since by definition of M_{λ} a non zero vector x is in M_{λ} iff $T(x)=\lambda x$. Also it is given that the vector 0 is in M_{λ}. the vector 0 definitely satisfies the equation $T(x)=\lambda x$. Therefore

$$
\left.M_{\lambda}=\{x \in X: T(x)=\lambda x\}=\{ \rangle \in X:(T-\lambda I)(x)=0\right\}
$$

Thus M_{λ} is null space (or kernel of) of linear operator $T-\lambda I$ on X.
Hence M_{λ} is a subspace of X.
(3) Let $x \in X$, since M_{λ} is a subspace of X and $\lambda \in F \Rightarrow \lambda x \in M_{\lambda}$

Since $x \in M_{\lambda} \Rightarrow T(x)=\lambda x \Rightarrow T(x) \in M_{\lambda} \Rightarrow M_{\lambda}$ is an invariant under T.
From(1),(2) and (3), we have M_{λ} is a non zero subspace of X invariant under T.
(4) If X is normed space, and $T \in \mathcal{B}(\dot{X})$ then M_{λ} is closed subspace of X
M_{λ} is called eigenspace of T corresponding to the eigenvalue λ

Characteristic equation of operator
 Theorem(8.2.6)

Let $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}^{2}\right\}$ be an ordered basis for a finite dimensional linear space X over F, and let T be a linear operator on X whose matrix with respect to β be A and let $\lambda \in F$. Then λ is an eigenvalue of T iff $|A-\lambda I|=0$

Proof :

Suppose that λ is an eigenvalue of T, then there exist non zero vector $x \in X$ such that $T(x)=\lambda x \Rightarrow T(x)=\lambda I(x) \Rightarrow T(x)-\lambda I(x)=0 \Rightarrow(T-\lambda I)(x)=0 \Rightarrow x \in \operatorname{ker}(T-\lambda I)$
Since $x \neq 0 \Rightarrow \operatorname{ker}(T-\lambda I) \neq\{0\} \Rightarrow T-\lambda I$ is not one-one $\Rightarrow T-\lambda I$ is not bijective.
i.e. $T-\lambda I$ is singular (not invertible)

Since A is the matrix of T with respect to the given basis β, then $A-\lambda I$ is the matrix of $T-\lambda I$ with respect to the given basis $\beta, \Rightarrow A-\lambda I$ is singular (not invertible) $\Rightarrow|A-\lambda I|=0$

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Conversely : Suppose that $|A-\lambda I|=0$
$\Rightarrow A-\lambda I$ is singular (not invertible) $\Rightarrow T-\lambda I$ is singular (not invertible)
$\Rightarrow \operatorname{ker}(T-\lambda I) \neq\{0\}$, there exists non zero $x \in X$ such that $(T-\lambda I)(x)=0$
$\Rightarrow T(x)-\lambda I(x)=0 \Rightarrow T(x)-\lambda x=0 \Rightarrow T(x)=\lambda x \quad \Rightarrow T(x)=\lambda x$

Remark

The equation $|A-\lambda I|=0$ is called characteristic equation of T where A is the matrix of T with respect to β. Since $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $A=\left[a_{i j}\right]_{n \times n}$, then $|A-\lambda I|=0$ is an equation of nth degree in λ.

Theorem(8.2.7)

A non zero eigenvectors $x_{1}, x_{2}, \cdots, x_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ of linear operator T on a linear space X over F are linearly independent.

Proof :

We shall prove linear independent by induction method
If $n=1$
Let $\alpha_{1} x_{1}=0$, since $x_{1} \neq 0 \Rightarrow \alpha_{1}=o$. Thus the theorem is true for $n=1$
Suppose the theorem is true for $n=m$. i.e. $x_{1}, x_{2}, \cdots x_{m}$ are linearly independent
We shall prove that $x_{1}, x_{2}, \cdots, x_{m}, x_{m+1}$ are linearly independent
Consider the relation $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}+\alpha_{m+1} x_{m+1}=0$
$\Rightarrow T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}+\alpha_{m+1} x_{m+1}\right)=T(0)=0$
$\Rightarrow \alpha_{1} T\left(x_{1}\right)+\alpha_{2} T\left(x_{2}\right)+\cdots+\alpha_{m} T\left(x_{m}\right)+\alpha_{m+1} T\left(x_{m+1}\right)=0$
Since $T\left(x_{i}\right)=\lambda_{i} x_{i}$ for all $i=1,2, \cdots, n \Rightarrow \alpha_{1} \lambda_{1} x_{1}+\alpha_{2} \lambda_{2} x_{2}+\cdots+\alpha_{m} \lambda_{m} x_{m}+\alpha_{m+1} \lambda_{m+1} x_{m+1}=0$
Multiplying (1)by λ_{m+1} and substracting from (2)we get
$\alpha_{1}\left(\lambda_{1}-\lambda_{m+1}\right) x_{1}+\alpha_{2}\left(\lambda_{2}-\lambda_{m+1}\right) x_{2}+\cdots+\alpha_{m}\left(\lambda_{m}-\lambda_{m+1}\right) x_{m}=0$
Since $x_{1}, x_{2}, \cdots, x_{m}$ are linearly independent and λ_{i} are all distinct and as such it follows from above that $\alpha_{1}=\alpha_{2}=\alpha_{m}=0$. Putting in (1) we get $\alpha_{m+1} x_{m+1}=0$
Since $x_{m+1} \neq 0 \Leftrightarrow \lambda_{m+1}=0$. Hence $x_{1}, x_{2}, \cdots, x_{m}, x_{m+1}$ are linearly independent
Thus the theorem is true for all n.

Corollary (8.2.8)

If T is a linear operator on an n dimensional linear space X over F, then T can not have more than n distinct eigenvalues

Proof :

Suppose that T has more than n distinct eigenvalues, then these will form a linearly independent subset of X which will contain more than more n vectors. But this is not possible as a n dimensional linear space can not have a linearly independent set containing more than n elements. Hence can not have more than n distinct eigenvalues.

دراسات عليا - ماجستير
 تحيل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Theorem(8.2.9)

If T be a self -adjoint operator on an n dimensional Hilbert space X over F, then the eigenvalues of T are real and the eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

Proof :

(1) Let λ be the eigenvalue of T so that there exists non zero vector $x \in X$ such that $T(x)=\lambda x$

Since T is self-adjoint, then $\langle T(x), x\rangle$ is real
Now $\langle T(x), x\rangle=\langle\lambda x, x\rangle=\lambda\langle x, x\rangle=\lambda\|x\|^{2} \Rightarrow \lambda=\frac{\langle T(x), x\rangle}{\|x\|^{2}}$
Since $\|x\|^{2} \geq 0$ and $\langle T(x), x\rangle$ is real it follows that λ is real.
(2) Let λ_{1}, λ_{2} be two distinct eigenvalues of T and x_{1}, x_{2} be the corresponding eigenvectors so that $T\left(x_{1}\right)=\lambda_{1} x_{1}, T\left(x_{2}\right)=\lambda_{2} x_{2}$ where λ_{1}, λ_{2} are real. To prove that $\left.\bar{x}\right) \perp x_{2}$
Since T is self-adjoint $\Rightarrow T^{*}=T$, also since λ_{1}, λ_{2} are real $\Rightarrow \bar{\lambda}_{1}=\lambda_{1}, \quad \overline{\lambda_{2}}=\lambda_{2}$
$\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle=\left\langle T\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, T^{*}\left(x_{2}\right)\right\rangle=\left\langle x_{1}, T\left(x_{2}\right)\right\rangle=\left\langle x_{1}, \lambda_{2} x_{2}\right\rangle=\overline{\lambda_{2}}\left\langle x_{1}, x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle$
$\Rightarrow \lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle \Rightarrow\left(\lambda_{1}-\lambda_{2}\right)\left\langle x_{1}, x_{2}\right\rangle=0$
Since λ_{1}, λ_{2} are distinct $\Rightarrow \lambda_{1}-\lambda_{2} \neq 0$, therefore $\left\langle x_{1} \dot{\nu}_{2}\right\rangle=0 \Rightarrow x_{1} \perp x_{2}$, i.e. x_{1}, x_{2} are orthogonal.

Remark

If T is non negative or positive, then the eigenvalues of T are non negative or positive respectively.

Theorem(8.2.10)

If T be an unitary operator on an n dimensional Hilbert space X over F, then the eigenvalues of T are real unimodular and the corresponding distinct eigenvectors are orthogonal.

Proof:

(1) Let λ be a eigenvalue of T, so that there exists non zero $x \in X$ such that $T(x)=\lambda x$

Also since T is an unitary operator, then $\langle T(x), T(x)\rangle=\langle x, x\rangle$
$\Rightarrow\langle\lambda x, \lambda x\rangle=\langle x, x\rangle \Rightarrow \lambda \bar{\lambda}\langle x, x\rangle=\langle x, x\rangle \Rightarrow|\lambda|^{2}\|x\|^{2}=\|x\|^{2} \Rightarrow|\lambda|^{2}=1 \Rightarrow|\lambda|=1$
i.e. eigenvalues are unimodular.
(2) Let λ_{1}, λ_{2} be two distinct eigenvalues of T and x_{1}, x_{2} be the corresponding eigenvectors so that $T\left(x_{1}\right)=\lambda_{1} x_{1}, T\left(x_{2}\right)=\lambda_{2} x_{2}$, where λ_{1}, λ_{2} are unimodular.
since \hat{T} is an unitary operator, then $\left\langle T\left(x_{1}\right), T\left(x_{2}\right)\right\rangle=\left\langle x_{1}, x_{2}\right\rangle$
$\Rightarrow\left\langle\lambda_{1} x_{1}, \lambda_{2} x_{2}\right\rangle=\left\langle x_{1}, x_{1}\right\rangle \Rightarrow \lambda_{1} \overline{\lambda_{2}}\left\langle x_{1}, x_{2}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle$. Since $\left|\lambda_{2}\right|^{2}=1 \Rightarrow \lambda_{2} \overline{\lambda_{2}}=1 \Rightarrow \overline{\lambda_{2}}=\frac{1}{\lambda_{2}}$
$\Rightarrow \lambda_{1} \frac{1}{\lambda_{2}}\left\langle x_{1}, x_{2}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle \Rightarrow \lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle \Rightarrow\left(\lambda_{1}-\lambda_{2}\right)\left\langle x_{1}, x_{2}\right\rangle=0$
Since λ_{1}, λ_{2} are distinct $\Rightarrow \lambda_{1}-\lambda_{2} \neq 0$, therefore $\left\langle x_{1}, x_{2}\right\rangle=0 \Rightarrow x_{1} \perp x_{2}$.

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

Theorem(8.2.11)

Let T be a normed operator on a finite dimensional Hilbert space X over F
(1) If $\lambda \in \sigma(T)$, then $T-\lambda I$ is normal
(2)Every eigenvector of T is also a eigenvector for T^{*}.
(3) the eigenspaces of T are pair wise orthogonal

Proof :

(1) Since T is normal $\Rightarrow T \circ T^{*}=T^{*} \circ T$
$(T-\lambda I)^{*}=T^{*}-\bar{\lambda} I^{*}=T^{*}-\bar{\lambda} I \Rightarrow(T-\lambda I)(T-\lambda I)^{*}=(T-\lambda I)\left(T^{*}-\bar{\lambda} I\right)=T T^{*}-\lambda T^{*}-\bar{\lambda} T+\lambda \bar{\lambda}$
$\Rightarrow(T-\lambda I)^{*}(T-\lambda I)=\left(T^{*}-\bar{\lambda} I\right)(T-\lambda I)=T^{*} T-\lambda T^{*}-\bar{\lambda} T+\lambda \bar{\lambda} \Rightarrow T T^{*}-\lambda T^{*}-\bar{\lambda} T+\lambda \bar{\lambda}$
$\Rightarrow(T-\lambda I)(T-\lambda I)^{*}=(T-\lambda I)^{*}(T-\lambda I) \Rightarrow T-\lambda I$ is normal
(2) Let x be an eigenvector of T corresponding to eigenvalue $\lambda \nRightarrow T(x)=\lambda x$
$\left.\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle x, T^{*}(T(x))\right\rangle=\left\langle x, T\left(T^{*}(x)\right)\right\rangle=\left\langle T^{*}(x), T^{*}(x)\right\rangle_{=}=\right\rangle^{*}(x)\left\|^{2} \Rightarrow \mid T(x)\right\|=\left\|T^{*}(x)\right\|$
Since $T-\lambda I$ is normal, therefore $x \in X$, we have
$\|(T-\lambda I)(x)\|=\left\|(T-\lambda I)^{*}(x)\right\| \Rightarrow\|T(x)-\lambda x\|=\left\|\left(T^{*}-\bar{\lambda} I\right)(x)\right\|=\left\|T^{*}(x)-\bar{\lambda} x\right\|$
Since $T(x)=\lambda x \Rightarrow 0=\left\|T^{*}(x)-\bar{\lambda} x\right\|$. Hence it follows that $T^{*}(x)=\bar{\lambda} x$, therefore x is eigenvector of T^{*} and corresponding eigenvalue is $\bar{\lambda}$
(3)Let x_{i} and x_{j} belong to M_{i} and M_{j} the eigenspaces of T and the corresponding eigenvalues be λ_{i} and λ_{j} respectively so that $T\left(x_{i}\right)=\lambda_{i} x_{i}, T\left(x_{j}\right)=\lambda_{j} x_{j}$ and $T^{*}\left(x_{j}\right)=\bar{\lambda}_{j} x_{j}$ as T is normal
$\lambda_{i}\left\langle x_{i}, x_{j}\right\rangle=\left\langle\lambda_{i} x_{i}, x_{j}\right\rangle=\left\langle T\left(x_{i}\right), x_{j}\right\rangle=\left\langle x_{i} T^{*}\left(x_{j}\right)\right\rangle=\left\langle x_{i}, \overline{\lambda_{j}} x_{j}\right\rangle=\overline{\overline{\lambda_{j}}}\left\langle x_{i}, x_{j}\right\rangle=\lambda_{j}\left\langle x_{i}, x_{j}\right\rangle$
$\Rightarrow \lambda_{i}\left\langle x_{i}, x_{j}\right\rangle=\lambda_{j}\left\langle x_{i}, x_{j}\right\rangle \Rightarrow\left(\lambda,-\lambda_{j}\right)\left\langle x_{i}, x_{j}\right\rangle=0$
Since λ_{i}, λ_{j} are distinct $\Rightarrow \lambda_{i}-\lambda_{j} \neq 0$, therefore $\left\langle x_{i}, x_{j}\right\rangle=0 \Rightarrow x_{i} \perp x_{j}$, i.e. M_{i} and M_{j} are pair wise orthogonal.

Theorem(8.2.12)

If T be a normal operator on an n dimensional Hilbert space X over F, then each eigenspace reduces T.

Proof:

Let x_{i} belong to M_{i} the eigenspace of T and the corresponding eigenvalue be λ_{i} so that $T\left(x_{i}\right)=\lambda_{i} x_{i}$
Since T is normal $\Rightarrow T^{*}(x)=\bar{\lambda} x$
Since M_{i} is a subspace $\Rightarrow \bar{\lambda} x \in M_{i} \Rightarrow T^{*}(x) \in M_{i} \Rightarrow M_{i}$ is invariant under T^{*}, but M_{i} is invariant under T. Hence M_{i} is reduces T.

دراسات عليا - ماجستير
 تحليل دالي Functional Analysis
 3: $\quad 1: \quad 3$:

8.3 Spectral Theorem for Normal Operators

Theorem(8.3.1) Spectral theorem for normal operators
Let T be an arbitrary linear operator on finite dimensional Hilbert space X, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be eigenvalues of T with eigenspaces $M_{1}, M_{2}, \cdots, M_{n}$. Further $P_{1}, P_{2}, \cdots, P_{n}$ are perpendicular Projections on the spaces $M_{1}, M_{2}, \cdots, M_{n}$ respectively. Then the spectral theorem states that the following statements are equivalent.
(1) The subspaces $M_{1}, M_{2}, \cdots, M_{n}$ are pair wise orthogonal and span X
(2) $P_{1}, P_{2}, \cdots, P_{n}$ are pair wise orthogonal and (i) $P_{1}+P_{2}+\cdots+P_{n}=I$ (ii) $\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P_{n}=T$
(3) T is a normal operator.

Proof :

(1) $\Rightarrow(2)$

Since $P_{1}, P_{2}, \cdots, P_{n}$ are perpendicular Projections on the spaces $M_{1}, M_{2}, \cdots, M_{n}$ respectively. Also the subspaces $M_{1}, M_{2}, \cdots, M_{n}$ are pair wise orthogonal and span X, i.e. $X=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$. Hence any $x \in X$ can by uniquely expressed as $x=x_{1}+x_{2}+\cdots+x_{n}$, where $x_{i} \in M_{i}$
Since M_{i}, M_{j} are subspaces of X and P_{i}, P_{j} are perpendicular projections on M_{i}, M_{j} respectively then M_{i}, M_{j} are orthogonal iff $P_{i} \circ P_{j}=0$ iff $P_{j} \circ P_{i}=0$
Since M_{i}, M_{j} are orthogonal, then $P_{i} \circ P_{j}=0, i \neq j$
P_{i} is projection on M_{i} and $x=x_{1}+x_{2}+\cdots+x_{n}, x_{i} \in M_{i}$
Since $x_{j} \in M_{j}$ and $M_{j} \perp M_{i} \Rightarrow x_{j_{j}} \not M_{i}^{\perp}$. But M_{i}^{\perp} is null space of P_{i} and hence $P_{i}\left(x_{j}\right)=0, i \neq j$
Thus $P_{i}\left(x_{i}\right)=x_{i}$ for all i and $P_{i}\left(X_{j}\right)=0, i \neq j \Rightarrow P_{i}(x)=P_{i}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=P_{i}\left(x_{i}\right)=x_{i}$
Now $I(x)=x=x_{1}+x_{2}+\cdots+x_{n}=P_{1}(x)+P_{2}(x)+\cdots+P_{n}(x)=\left(P_{1}+P_{2}+\cdots+P_{n}\right)(x)$
Since above is true for x It follows that $P_{1}+P_{2}+\cdots+P_{n}=I$.
Now $x_{i} \in M_{i}$ the eigenspace of T corresponding to eigenvalue $\lambda_{i} \Rightarrow T\left(x_{i}\right)=\lambda_{i} x_{i}$
$T(x)=T\left(x_{1}+x_{2}+\cdots+x_{n}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)+\cdots+T\left(x_{n}\right)=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}$
$T(x)=\lambda_{1} P_{1}(x)+\lambda_{2} P_{2}(x)+\cdots+\lambda_{n} P_{n}(x)=\left(\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P_{n}\right)(x)$
Since above holds for all x we have $T=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P_{n}$
(2) \Rightarrow (3)

Since $T=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P_{n} \Rightarrow T^{*}=\left(\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P_{n}\right)^{*}=\left(\lambda_{1} P_{1}\right)^{*}+\left(\lambda_{2} P_{2}\right)^{*}+\cdots+\left(\lambda_{n} P_{n}\right)^{*}$
Since $\left(\lambda_{i} P_{i}\right)^{*}=\overline{\lambda_{i}} P_{i}^{*}$ and $P_{i}^{*}=P_{i}=P_{i}^{2} \Rightarrow T^{*}=\bar{\lambda}_{1} P_{1}^{*}+\bar{\lambda}_{2} P_{2}^{*}+\cdots+\overline{\lambda_{n}} P_{n}{ }^{*}=\bar{\lambda}_{1} P_{1}+\overline{\lambda_{2}} P_{2}+\cdots+\overline{\lambda_{n}} P_{n}$ $T \circ T^{*}=\left(\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P\right)\left(\overline{\lambda_{1}} P_{1}^{*}+\overline{\lambda_{2}} P_{2}^{*}+\cdots+\overline{\lambda_{n}} P_{n}^{*}\right)=\sum_{i=1}^{n} \lambda_{i} \overline{\lambda_{i}} P_{i}^{2}+\sum \lambda_{i} \overline{\lambda_{j}} P_{i} P_{j}, i \neq j$
$\Rightarrow T \circ T^{*}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} P_{i}+0=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} P_{i}$ in a similar manner we can show that $T * \circ T=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} P_{i}$

دراسات عليا - ماجستير

 تحليل دالي Functional Analysis

 تحليل دالي Functional Analysis
 3: 1: 3:

Hence $T \circ T^{*}=T^{*} \circ T$ and as such T is normal operator .
(3) \Rightarrow (1)

Theorem(5.3.2) Uniqueness of spectral resolution of a normal operator
The spectral resolution of a normal operator on a finite dimensional Hilbert space X is unique.
Another form. Let T be a normal operator on finite dimensional Hilbert space X. If $\sum_{i=1}^{n} \lambda_{i} P_{i}$ is the spectral form of T, then λ_{i} are all the distinct eigenvalues of T. If more $1 \leq k \leq n$ then there exists polynomials P_{k} with complex coefficients such that $P_{k}\left(\lambda_{i}\right)=0$ whenever $i \neq k$ and $P_{k}\left(\lambda_{k}\right)=1$. For all such polynomials $P_{k}(T)=Q_{k}$, i.e. each Q_{k} is a polynomial in T.

Proof:

Theorem(5.3.3)

Let T be a normal operator on a finite dimensional on Hilbert space X, then X has on orthonormal basis β consisting of eigenvectors of T. Consequently the natrix of T relative to β is a diagonal matrix.

5.4 Spectral theorem for Self adjoint Operators Theorem(5.4.1)

Let T be a self-adjoint operator on finite dimensional Hilbert space X, then there exists n real numbers $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ and perpendicular projections $P_{1}, P_{2}, \cdots, P_{n}$, (where $n>0$, and $n \leq$ the dimension of X) such that
(1) $\lambda_{i}, i=1,2, \cdots, n$ are pair wise distinct
(2) $P_{1}, P_{2}, \cdots, P_{n}$ are pair wise orthogenal and different from zero.
(3) $P_{1}+P_{2}+\cdots+P_{n}=I$
(4) $\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n} P_{n}=T$

Proof:

Theorem(5.4.2)

Let T be a self-adjoint operator on finite dimensional Hilbert space X. If $\sum_{i=1}^{n} \lambda_{i} P_{i}$ is the spectral form of T, then λ_{i} are all the distinct eigenvalues of T. If moreover $1 \leq k \leq n$ then there exists polynomials P_{k} with real coefficients such that $P_{k}\left(\lambda_{i}\right)=0$ whenever $i \neq k$ and $P_{k}\left(\lambda_{k}\right)=1$. For all such polynomials $P_{k}(T)=Q_{k}$, i.e. each Q_{k} is a polynomial in T.

Theorem(5.4.3)

Let T be a self-adjoint operator on finite dimensional Hilbert space X such that $T=\sum_{i=1}^{n} \lambda_{i} P_{i}$. If S is any linear transformation on X, then S commutes with T iff S commutes with each P_{i} for $i=1,2, \cdots, n$

دراسات عليا ـ ماجستير
 تحليل دالي Functional Analysis
 3: 1: 3:

Proof :

Suppose that S commutes with each P_{i}, i.e. $S \circ P_{i}=P_{i} \circ S$ for all i. To prove that : $S \circ T=T \circ S$ Since $T=\sum_{i=1}^{n} \lambda_{i} P_{i}$
$\Rightarrow S \circ T=S \circ\left(\sum_{i=}^{n} \lambda_{i} P_{i}\right)=\sum_{i=1}^{n} \lambda_{i}\left(S \circ P_{i}\right)=\sum_{i=}^{n} \lambda_{i}\left(P_{i} \circ S\right)=\sum_{i=}^{n}\left(\lambda_{i} P_{i}\right) \circ S=T \circ S$
Conversely : Suppose that S commutes with T, i.e. $S \circ T=T \circ S$. To prove that $S \circ \rho_{i}=P_{i} \circ S$ for all i

