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9. Fixed Point Theoremsand Their Applications
Fixed point theory serves as an essential for various branches of mathematical analysis and
its applications. Loosely speaking, there are main approaches in this theory, metric, the
topological and order — theoretic approach, where representative examples of these are
Banach's, Brouwer's and Schauder -Tychonoff theorems respectively.

9.1 Definitions and General Properties

Definition(9.1.1)

Let X beanon-empty setand f: X — X beafunction. A fixed point-of f issimply apoint
x e X suchthat f (x)=x . Inother words, afixed point of f isnothing but a solution of the
functional equation f (x)=x, x e X . Fixed point have long been used in analysisto solve
various kinds of integral and differential equations.

Examples(9.1.2)

(D Let X ={a,b}.Thefunction f :X — X defined by -f (a) =b,f (b) =ahas no fixed point, but
other three functions that function X into itself each have one or two fixed points.

(2)Let X =[0,1]. The graph of afunction f : X —'X isasubset of the unit square X xX . If

f iscontinuous, then its graph is a curve fromthe left edge of the square to the right edge.

A point of f isan element of [0,1] at which the graph of  intersects the 45°-

line.Intuitively, it seems clear that if £ is continuous then it must have afixed point (its

graph must cross or touch the 45%line), and also that discontinuous functions f may not

have afixed point.

Definition(9.1.3)

Let (X,d) beametric space . A function f: X — X issaidto satisfy aLipschitz condition
on X if thereexistsaconstant k >0suchthat d(f (x),f (y))<k d(x,y)) foral xyeX.
Such k iscalled Lipschitz constant.

o If thisconditionsis satisfied with Lipschitz constant k such that 0<k <1, we sat that
f 1S acontraction function. i.e. A function f : X — X iscalled a contraction function if
there exists aconstant k, 0< k <1, suchthat d(f(x), f(y)) <kd(x,y) foral x,ye X.Such

k is called a contraction modulus of f .
e If this conditions is satisfied with Lipschitz constant k suchthat k =1, wesat that f is
anonexpansive function. i.e. A function f : X — X iscalled anonexpansive function if

d(f (x),f (y))<d(x,y) foral xyeX.
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Note that
For notationa purposes we define f "(x), x eX,n=0,12,---, inductively by f °(x)=x and
f i) =f (F " (x))

If f:X — X issatisfy aLipschitz condition with Lipschitz constant k , we have

d(f "(x),f "(y)) <kd(f "H(x),f "Hy)<---<k"d(F (x),f (y)<kd(x,y) foral xyeX
Also d(f "(x),f "(y)) <kd(f "(x),f "(y)) <---<k"Md(f (x),f 2(y)<k"d(x,f(y)foral xyeX
Examples(9.1.4)

(1) Inusua metric space (R?,d,). Define f :R*> - R? by f(x):%xforall xeR?. Then f is

a contraction function on R?
Ans:
Let x = (Xl’xz)! y = (y11y2) eR?

1.1 1 1 1 1 1 / > 1
d(f(x), f(y)) = d(EX’E y) = d((EX“E Xz)’(z o3 Y.)) = EJ(Xl “Y) (- Y,)" = Ed(x, y)

(2) Let f :R—>R beadifferentiable real function. If thereisarea number k <1 for which
the derivative f ' satisfies |f '(x)| <k forall x eR, then f isa contraction with respect to
the usual metric onR andk is called a contraction modulus of f . Thisisastraightforward
consequence of the mean value theorem: let x,y e R with x <y ; the mean value theorem

tellsusthereisanumber c e (x,y) suchthat f (y)-f (x)=f '(c)(y —x) and therefore
‘f (y)-f (x)‘z f.A(c)(y —x)‘z‘f ’(C)Hy -x|<k|y —x|

The sane mean value theorem argument establishesthat if k <1and f :(a,b) — (a,b)

satisfies [f '(x)|<k for all x e (a,b), then f isacontraction of (a,b).

Remark

Recall that afunction f form metric space (X ,d) into ametric space (v ,d*) iscaled an

uniformly continuous if for every e >0thereisad >0 such that
fordl x,y eX :d(x,y)<d = d*(f (x),(y)) <e

Theorem(9.1.5)
Every contraction function is uniformly continuous.
Proof :
Let £:X — X is acontraction function on a metric space (X ,d), with modulus k .
Lete>0,taked=e
Since f is contraction with modulus k , then d (f (x),f (y))<k d(x,y))foral x,ye X .Then
d(x,y)<d = d(f (x),f(y))<dk <eforadl x,ye X .therefore f isuniformly continuous.

Corollary (9.1.6)
Every contraction function is continuous.
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Theorem(9.1.7) Banach's contraction principle.
Let (X,d) bea complete metric spaceand let f: X — X is acontraction function with

Lipschitzian constant k . Then f has a unique fixed point x, e X . Furthermore, for any

n

d(x,f (x))

x e X wehave limf "(x)=x, and d (f n(x),xo)slk "

Proof :
Let x e X . wefirst show that {f "(x)} isaCauchy sequence.

Since d (f "(x),f "(x))<k"d(x,f (x)) forall xeX
Thusfor m>n where n=0,12,---

d(f ") f TeO)=d (f (), )+ (FH)),E ) o+ d (F T (X), rn(><))=mzn:lcl (fF ™ (x),F (X))
m-n-1 m-n-1 m-n-1 k n

since Z d(f ™ (x),f " *(x)) < Z k™id(x,f (x))=k"( Z ki)d (X, f (=17

d(x,f (x))

n

= d(f "(x),f m(x))sllik

d(x,f (x)) .

n

kd(x,f (X)) asnm-oow

Thatisfor m>n where n=0,1,2,---, wehave d(f "(x),f m(x))glk

= {f "(x)} isaCauchy sequencein X
Since (X,d) isa complete metric space, then thereis x, e X such that limf "(x) =x,.

Moreover the continuity of f yields x, =limf n+l(x)=|nimf (f"(x))=f (x,)

n

Finaly , letting m >, = d({F"(x),x,)<—

Zd(f (x))

Remark
The above theorem requiresthat k <1. If k =1then f need not have afixed point as the
example f (x)=x +1 for x eR.

Theorem(9.1.8)
If f:X — X isacontraction function on a metric space (X ,d), with modulus k , then for

any x e X.,d(f "(x),x,) <k"(d(x,x,)) for neN, where x,isthe unique fixed point of f .
Proof :

Sincex, isafixed point of f , then f (x,) =x,

d (7 (x),xo) =d (f (F "7(x)),F (X)) <kd (F "(x),x0) =kd (F (F "*(x),f (X)) <k ’d (f "*(x),x,)
<--<kMd(f O(x),x,)=k"d(X,X,)

Theorem(9.1.9)

Let f: X —» X bea continuous function on a complete metric space(X,d), and let f ™ is a
contraction function on X for some positive integer m.then f has a unique fixed point.
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Proof :
By assumption, g =f ™isacontractionon X , that is, d(g(x),g(y))<kd(x,y) for al
x,y e X ; here k <1. Hencefor every x,eX ,
d(9"f (X4),9" (X)) <kd (9" (X0), 9" (X)) - <k"d(f (X,),X,) >0 @S n—>w
Fixed point theorem impliesthat g hasaunique fixed point, call it x , and g"(x,) >% .
Since the mapping f iscontinuous, thisimplies g"f (x,) =fg" (x,) —f (x).Hence
d(g"f (X,),9"(X,)) —>d(f (x),x)sothat d(f (x),x)=0. Thisshowsthat x isafixed point of
f . Since every fixed point of f isaso afixed point of g, we seethat f ‘cannot have more

than one fixed point.
Theorem(9.1.10)
Let (X,d) bea complete metric spaceand let f :b, (x,) > X is acontraction function
with Lipschitzian constant k (i.e.d (f (x),f (y))<kd(x,y)foralx;y eb, (x,)) and
d(f (X,),X,)<(@-k)r.Then f hasauniquefixed pointinb, (x,) .
Proof :
There exists r, with 0<r, <r with d(f (x,),x,)< @-K)r,
Wewill show that f :b, (x,) > b, (x,). Toseethisnotethat if x eb, (x,)
d(f (x),x,)<d(f (x),f (xp)+d(f (X4),X,) <kd(x,%g)+(1—K)r,<r,
We can apply theorem (9.1.7) to deduce that f has aunique fixed point inb, (x,) < b, (x,).
Againitiseasy toseethat f hasonly-one fixed pointinb, (x,).
Definition(9.1.11)
A topologica space X has the fixed point property if every continuous f : X - X hasa
fixed point.
Theorem(9.1.12)
If X hasthe fixed point-property andX is homeomorphictoy ,theny hasthe fixed point

property.
Proof :
Let g:Y —»Y bea continuous function .we want to show that g hasafixed pointiny

Since X ishomeomorphictoY , then there exists a homeomorphism function f : X —Y
i.e. f isabijectivefunctionand f ,f ** are continuous.

Since f :X Y ,gY »Y andf 'y - X arecontinuous functions, then

f Tegof :X — X Iscontinuous function.

Since X hasthe fixed point property , thenthereis x,e X suchthat (f *ogof )(x,) =X,
Hence 9(Yo) =VYor where Yo=F(Xo)-
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Definition (9.1.13)
A subset A of atopological space X isaretract of X if thereisacontinuous function
r:X - A with r(@) =a, foral aeA. Thefunction r iscalled aretraction.

Theorem(9.1.14)
If X hasthe fixed point property and A isaretract of X , then A hasthe fixed point property.

Proof :
Let f :A— A beacontinuous function .we want to show that f hasafixedpointin A.
SinceA isaretract of X , there exists a continuous function r : X — Awith r(@)=a, foralacA.

= f or:X — Ac X iscontinuous function

Sincex hasthe fixed point property, there exists x, e X such that(f -r)(x,) = x,

= f(r(x,)=X,.3ncef (r(x,))eA = x,€A

Sincer(a)=a, foradlacA,then r(x,)=x, = f (x,)=x,. Consequently f (x,)=x,, X,€A

9.2 Fixed Point Theorem in Normed spaces

In section(9.1), we proved fixed point theoremsin metric spaces without any algebraic
structure. We now consider spaces with alinear structure but non linear functions in them.
In this section we restrict our attention to normed spaces.

Theorem(9.2.1)
Let A be anonempty, closed, convex subset of a normed space X with f :A > A
nonexpansive and f (A) asubset of acompact set of A. Then f hasafixed point.

Proof :
Let x,eA.For n=22,--, define’f :(1—1)f +3x0
n n

Since A isconvex and x,eA,weseethat f :A—>A anditisclearthat f :A—>A isa
contraction. Therefore by theorem (9.1.7) each f  hasaunique fixed point x, A, that is,

X, =F,(x,) = @—2)F (x,) + 2%,
n n

In addition, since f (A)liesin acompact subset of A, there exists a subsequence S of
integersand-'x e A with f (x,) >x aSn—>® inS.

Thus x :(1—1)f (xn)+1x0—>x a8 n—owins.
n n

By-continuity f (x,) >f (x) a8 n -« in S, and therefore x =f (x).

Theorem(9.2.2)
Theclosed unit ball B, in R", has the fixed point property, i.e. B" =b,(0) ={x e R":|x|<3}.
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Theorem (9.2.3)
Every nonempty, closed, convex sunset A of R" isaretract of R".
Proof :
For any x eR". Define r :R" > A suchthat |x —r(x)|=d(x,A) foral x eA,

Sinced (x,A) =inf{|x —z||:z € A} ,then there exists aunique y =r (x) e A with
Ix —y|=inf{|x —z||:ze A} = r isaretraction function from R" to A .

Theorem (9.2.4)

Every nonempty, bounded, closed, convex subset A of R" has the fixed point property.
Proof :

Noticethat A isasubset of somebal B* in R".

Since B" and B* are homeomorphic, theorem(9.1.11),and theorem(2.9.2) guarantee that
B* hasthe fixed point property. In addition, theorem(2.9.3) impliesthat A isaretract of
B* and therefore theorem(9.1.13) ensure that A hasthe fixed point property.

Corollary(9.2.5)
Every nonempty, bounded, closed, convex subset A of afinite dimensional normed space
gas tf]]e fixed point property.
roof :
Since any finite dimensional normed space X isisomorphic to R" with n=dim(X),
we have Every nonempty, bounded, closed, convex subset A of afinite dimensiona
normed space has the fixed point property.

We would like to extend theorem(9.2.4) to ainfinite dimensional space.

Example(9.2.6) _ _

Let X =¢*, B={xe(’:|x|<3. a(B)cB .definef :B —»>o(B)by f (x)=y1-|x|" fordlxeB
It iseasy to seethat f iscontinuous but not have afixed point.

Theorem (9.2.7) Brouwerfixed point theorem

Let K beanonempty, compact, convex subset of afinite dimensional normed space.
Th_ertl)K has the fixed point property( i.e. every continuous function f :K — K hasfixed
point).
Proof :

Remark

The Brouwer theorem requires only that f be continuous, not that it be a contraction, so
there are lots of situations in which the Brouwer theorem applies but the fixed theorem
doesn't.in particular, Brouwer's theorem confirms our intuition that any continuous
function from [0,1] into itself has a fixed point, not just the functions the functions that
satisfy |f '(x)|<k for some k <1. _ _
But‘conversaly, the fixed point theorem doesn't require compactness or convexity
it doesn't requilre that the domain of f be a subset of linear space, as thisversion of
Brouwer's theorem does. So there are aso lots of situations where fixed point theorem
applies and Brouwer's doesn't.

in fact,
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Definition(9.2.8)

Let X andyY benormed spaces.

(1) A function f : X —Y iscalled compact if f (X) contained in acompact subset of Y .

(2) A function f : X —Y iscalled completely continuousif it is both continuous and compact.

(3) A compact function f : X —Y iscalled finitedimensional if f (X ) contained in afinite
dimensional subspace of Y .

Note that

Let A beasubset of anormed space X . A function f : A —» X iscompact if £ (B) isacompact

subset of X whenever B is bounded subset of A.

Remark

We next extend Brouwer's fixed point theorem to compact map in normed spaces. This

generalization is due to Schauder. The main ideais to approximate compact functions by

functions with finite dimensional ranges.

Let D ={x,,x,,---,x,} beafinite subset of a normed space X and for fixed e >0 let

D, :Obe(xi) where b, (x;)={x e X :|x —x; | <e}

Foreachi =12,n,let m:D, >R given by m(x)=max{0,e—|x —x, [} foral x eD,.
The Schauder Projection isthe function P, : D, = conv (D) given by

Zm(X)Xi
P,(x)=2t——— forall xeD,.

2mX)
Notice P, iswell defined . sinceif x eD,, then x e b, (x,)for some i {12,--,n} and therefore
Zm(x);to.

Also P, (x) cconv (D)sSince eachP,(x) is convex combination of the points x,,x,,---,x,

Theorem (9.2.9)
Let A beaconvex subset of anormed space X , and D ={x,,x,,---,X,} <A .If P, denoted

the Schauder Projection, then
(1) P, isaconvex, continuous function from D, into conv(D)c A, and

(2). |x-P,|<e foral x eD,.
Proof :
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Theorem (9.2.10)
Let A beaconvex subset of anormed space X ,and f : X — A acompact, continuous

function. Then for each e > 0,thereareafinite set D ={x,,x,,---,x,} Inf (X) and afinite
dimensional continuous function f_:X — A with the following properties

(D [f.x)-f (x)|<efordl xex (2) f.(x)<conv(D)c=A

Proof :

Theorem (9.2.11)

Let A beaclosed subset of anormed space X , and f : X — A acompact; continuous function.
Then f hasfixed point iff e-f hasfixed point

Proof :

Theorem (9.2.12)
Let f beacompletely continuous of anormed space X into itself and letf (X ) be bounded .

Then f hasfixed point.
Proof :

We now state and prove Schauder's fixed pointtheorem

Theorem (9.2.13) Schauder fixed point theorem _

Let K beanonempty, closed, convex-subset of normed linear space X .Let f be acontinuous
functflon of K into acompact subset of K .Then f hasfixed pointin K .

Proof :

Theorem (9.2.14)

Let K beanonempty, compact, convex subset of normed linear space X . Every continuous
functflon f :K — K hasfixed point.
Proof :

Remark

This theorem would apply, for example, to any compact convex subset of C[0,1] ,the linear
space of continuous functions on the unit interval, with the max norm.

152



ibala - Lle @l o
Functional Analysis (12 Julas
3: 1: 3:

Definition(9.2.15)
A norm | .|| onalinear space X issaidto bestrictly convex if |x +y|=|x|+|y| only when

x and y linearly independent.

Theorem(9.2.16) Clarkson
If anormed space X has a countable everywhere dense subset, then there exists a strictly
convex norm on X equivalent to the given norm.
Proof :
Let A={x eX :|x|=3

Theorem(9.2.17) Clarkson

Let K beacompact convex subset of anormed space X with astrictly convex norm. Then
to each point x of X correspondsaunigue point Px of K at K at minimum distance from
X, l.e

Ix —Px||=inf{|x —y|:y eK} and the function x — Px iscontinuousin X . Thefunction P

is called the metric projection onto K .
Proof :
Let x eX

9.3 Fixed Point Theorem in Hausdor ff Locally convex spaces

This section presents fixed point results for functions defined on Hausdorff Locally
convex spaces. We begin with the Schauder-Tychonoff theorem with is an extension of
Schauder's fixed point theorem, which?in turn is an extension of Brouwer's fixed point
theorem. In the proof we will need the foll owing approximation theorem.
Theorem () Schauder — Tychonoff Theorem
Let K be anon-empty compact convex subset of alocally convex Hausdorff space X , and
let f :X — X be continuousfunction. Then f hasafixed pointin X .

Theorem (9.3.1) Schauder — Tychonoff Theorem
Let K be aclosed convex subset of alocally convex Hausdorff space X ,andlet f be a
continuous function of K into acompact subset of K . Then f hasafixed pointin X .

9.4 Fixed Point Theorem in Ordered Linear spaces
A relation Ronaset X issaid to be apartial order relation if satisfies the following three
conditions
(1) xRx , for every x e X (reflexivity) (2) xRy and yRz implies xRz (transitivity)
(3) xRy and yRx implies x =y (antisymmetry)

We shall denote the partial order relation by the symbol <. Theset X together with the
partial order i.e. the pair (X ,<) iscaled apartialy ordered set. If x <y, (x,y eX), wesay
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that x precedes or smaller than y and that y follows or larger than x . The symbol x <y
standsfor x <y and x =y andreads" strictly precedes y " or " strictly dominates x ".

Two elements x and y of partially ordered set are said to be comparableif one of them
issmaller than or equal to the other,i.e.if x <y or y <x . A partia ordering < on aset X
iscalled total (or linear or ssimple or complete) ordering iff either x <y or y <x for every
pair x,y e X . A set with atotal ordering is called atotally ordered set or achain.’An
element ac X iscaled thefirst or the smallest element of X ,if a<x forevery x eX .
similarly an element b e X is called thelast or the largest element of X , if x<b for every
x eX .Anelement ac X iscaled aminimal element of X , if x <a impliesa=x .
similarly an element b e X is called amaximal element of X ,if b<x implies b=x.

Anedement ac X issaidtobealower bound of A if a<x forevery x eA. Similarly an
element b e X will be an upper of A if x <b for every x eA. A set A may have no lower
bounds or no upper bounds, or it may have many. Let A* denotethe collection of all upper
boundsof A and A, denote the collection of all lower bounds of A . The smallest member
of A"if it exists, is caled the least upper bound (l.u.b)or the supremum of A written as
supA . Similarly the largest member of A, if it exists, is called the greatest lower bound
(g9.l.b) of infimum of A written as inf A . Note that the inf A and the supA may or may not
be membersof A.

A partialy ordered set X issaid to bewill ordered if every subset of X containsafirst
element. Let A be asubset of apartially-ordered set X .
Definition (9.4.1)

Let X be area linear space. A partial order relation < onX is call linear order if the

following axioms are satisfied

(D) x<y = x+z<y+z foral x,y,zeX

(2) x<y = Ix<ly ~fordl x,yeX forall >0

A real linear space endowed with alinear order is called an ordered linear space. An

element x of an-ordered linear space X issaid to be positiveif x>0, and negativeif x<0.
The set of all positive elements of an ordered linear space X with be denoted by X_, i.e.
X, ={xe X:x=0}
Definition(9.4.2)
A subset A of real linear space X is called apositive coneif it satisfies
(Dex,yeA = x+yeA (2 xeAand!l >0 = IxeA
3 x,xeA = x=0 (4) A contains non-zero element.
It isclear to show that X, isapositive coneof X .
It iseasy to show that X, isaconvex coneof X,i.e. X, +X, c X, and I X, cX,.

154



ibala - Lle @l o
Functional Analysis (12 Julas
3: 1: 3:

9.5 Some Applications of Fixed Point Theorems

Fixed point theorem has important application
Such theorems are most important tools for proving the existence and uniqueness of the
solutions to various mathematical models (differential, integral and partial differential
equations, and variational inequalities, etc.)

Application of Fixed Point Theorem to Linear Equations

Fixed point theorem has important application to iteration methods for solving systems of
linear algebraic equations and yields sufficient conditions for convergence and error
bounds.

Suppose we want to find the solution of system on n linear algebraic equation with n
unknowns :

&, Xy +apX, +o+ 3, X, =by

3 Xy +3,X, + 0+ 3 X, =D,

anlxl—i_a‘nZXZ—’_'“_’_a‘nnxn :bn
This system can be written as Ax =b where

Xl bl
a; &, v &y « b
A=lay a, - &, =[a1j]f X = :2 =(X;), b= :2 =(b)
. . . Xn bn
(B G 1 Ay
To apply fixed point theorem, we need a complete metric space and a contraction function
onit. Let X =R" withmetricd givenby d(x,y)=max|x, -y,| ()

where x = (X, X, X,), Y= (Y, Y, Y,) € X, then (X ,d) iscomplete metric space. Define

f:X >X by y=ft(x)=Ax+b (2

where A =[a,] isafixedread nxn matrix and b e X afixed vector. under what condition
will f bea contraction , we have

Yi :Zaijxl "'bi
j=1
Settingw =@, )=f (z), we thus obtain from(1) and (2)
d(yw)=d(f (x),f (z)):miax|yi —wi|:miax Za,,j X, -z,) Smiax|xi —zi|Zaﬂ‘:d(x,z)miax Zaﬂ‘
j=1 j=1 j=1
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We see that this can be written d (y,w) <kd(x,z), where k = max

n aj‘ . Fixed point theorem
j=1
thusyields.

Theorem (9.5.1) Linear equation

If asystem x =Ax +b, (A=[a],b, begiven), of n linear equationsin n

unknownsx,x,,---,x, (the components of x ) satisfies zn:\aﬂ\d, i =1,2,---,n it has precisaly
=1

one solution x .

Application of Fixed Point Theorem to Differential Equations

The most interesting applications of fixed point theorem arise in connéection with function
spaces. The theorem then yields existence and uniqueness theorems for differential and
integral equations, aswe shall see. In fact, in this section let us consider an explicit ordinary
differential equation of the first order

, d
y =d—y=f(x,y)
X

Aninitial value problem for such an equation consists of the equation and initial condition
y(X,)=Y,, Where x, and y, are given real number.

We shall use fixed point theorem to prove the famous Picard's theorem

Theorem (9.5.2) Picard Theorem
Let D denotean open setin R?,(x,y,) eD . Let f berea vaued function defined and

continuousin D, and let it satisfy Lipschitz condition of the form
[F G yD=f (GYR)[<kyi=y,[,  (Xy).(x,y,)eD
inthevariable y . Thenthereisaninterva |x —x,|<d inwhich the differential equation

3—i’=f (x,y) hasaunique solution y =j (x)satisfying theinitial condition j (x,) =y,
proof :
Together the differential equation y'=f (x,y)and theinitial conditionj (x,)=vy, are
equivalent to the integral equation
i () =yo+[f (i Ot

By the continuity of f , wehave [f (x,y)|<M in some domain D' D containing the point
(X, Y,)- Choose d >0 suchthat (1) (x,y)eD’ if [x —x,[<d, |y-y,<Md (2) kd<1
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and let C* be the space of continuous functions ) defined on theinterval |x —x,|<d and
suchthat |j (x)-y,|<Md ,equipped with the metric d defined by d( j ’)=mxax[i (x)=j "(x)|-
The space C* iscomplete, sinceit is closed subspace of the space of all continuous
functionson [x,-d,x,+d] .defined g:C* —C" by g( )=f , where

f(x)=y0+]f tj ©)t, [x—x,|<d

Xo

gj|f (t,j @))|dt

Xo

[ ) O

Xo

Ifj eC”, [x —x,|<d, then [f (x)-y,|=

Since |f (x,y)|<M , then j|f (t.j @))|dt <M |x —x,|<Md, sothat ff (x)-y,<Md, hence

f eC*. Moreover,

X

F o) —f 00 =| [ (F € @)—F . ‘Ot

Xo

After maximizing with respect to x .But kd <1, so that g is contraction function. It follows
from fixed point theorem that equation g(j ) =j .i.e. theintegra equation

i () =yo [Tt Ot

Xo

< [If 3 @)~ @it <kdmaxj (x)-j ‘(x)|<kdd( j )

Xo

has a unique solution in the space C*.

Remark
Picard theorem can easily be generalized to the case of systems of differential equations:

Theorem(9.5.3)generdized Picard theorem

Let D denotean open setin R™™, (X4, Yo Yoo+ Yon) €D - L€t f. be functions defined and
continuousin D, and let it satisfy Lipschitz condition of the form
[FOGYLY oY) =f (GyLyseyp)<kmax]y, -y, (X,y.).(x,y,) €D

inthevariablesyy,,y,,--,y,. Thenthereisan interval |x —x,|<d in which the system of

differentia equations %:fi(x,yl,yz,---,yn), i =1,2,---,n hasaunigue solution
Y, =] ), ¥, =] ,(x),--,y, =] ,(x)satisfying theinitial condition

j 1(x0)=y01,j 2(Xo)= yoz""lj n(XO): Yon

proof :
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Together the differential equations %zfi(x,yl,yz,---,yn), i =1,2,---,nand theinitia
conditions j ;(X,) = Yourd 2(Xo) = Yoo i 1 (Xo) = Y,, &€ equivalent to the system of integral
eguation

P00 =Yg + [ G100 20) 0 O)t, §=12-n

By the continuity of the functions f, , we have |f (x,y,,y,,---,y,)|<M, i=12:--,ninsome
domain D' < D containing the point (X,,Y o, Yo Yor) - Ch0O0SE d >0 such that
(1) X,y Yy, eD"if [x—xg|<d, |y, —y,J]<Md forali=12-n «2) kd<1
Thislet C* bethe space of ordered n - tuplesj =( ,,j ,,---,j ,) Of continuous functions
j 1 2, defined ontheinterval |x —x,|<d and suchthat | ; (x)=y,|<Md forall
i =1,2,---,n, equipped with the metric d defined by dj ,j ’)=mxax|j L (x)=j {(x)|. The space
C* iscomplete, sinceit is closed subspace of the space of-all’ continuous functions on
[x,-d,x,+d].defined g:C* —>C" by g( )=j , wheref =(f,f,,--,f,)

100 =Yg + [ 100 0,0 @)t [x=x[<d, i=12-n

1f§ =Gy i 0)€CTy [x =X,/ <d, then

|fi(x)_y0i|=

[f i) )0 @)t

I 10 @) et i =120

Sincelf (x,y, Y, Y| <M o then [If 0.0 50,0 ,@)[dt <M |x —x,[<Md, o that

f,(X)-Yq|<Md, i=12-n,hencef =(,f, - f )eC". Moreover,

‘fi (X)_fi’(x)‘ =

[ @ 1032000 O)—F G {0 50,0 L)

<[[F @ 10 200 W O—F € 10 50 Ol

<kdmej ; (x)— {(x)|<kdd( j )

After maximizing with respect to x .But kd <1, so that g is contraction function. It follows
from fixed point theorem that equation g( ) =j , i.e. theintegra equation

) =Yg + [ 0.0 0. ,O)t, §=120n

has a unique solution in the space C* .
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Application of Fixed Point Theorem to Integral Equations

We now show how the method of successive approximations can be used to prove the
existence and uniqueness of solutions of integral equations. An integral equation of the
form

FOO)=i )+ [keGy)f (v)dy @

iscalled aFredholm equation of the second kind. Here[a,b] isagiveninterval . f isa
function on [a,b]which isunknown.| is parameter. The function k is called the kernel of
the equation defined on the square D =[a,b]x[a,b] , and j isagiven function on[a,b], the
equation is said to be homogeneousif j =0(but otherwise non-homogeneous). An integral
eguation of the form

FOO)=i )+ [KOGYE (Y)dy ()

iscalled aVolterra equation. The difference between(1) and (2) isthat in (1) the upper
limit of integration b is constant, where asherein (2).itisvariable.

Theorem (9.5.4) Fredholm integral equationtheorem
Suppose k and j intheintegral equation (1) to'be continuous on [a,b]x[a,b] and [a,b],

respectively, and assume that | satisfies |l |<c(b1 2 with c defined in

k(x,y)|<c, x,y e[ab]. Then the Fredholm integral equation has a unique solution f on
[a,b] .

Proof :

Since k is continuous function, so that |k (x,y)|<c, a<x<b, a<y<b
Let X =CJa,b], the space of all continuous functions defined on the interval [a,b] with
metric d given by d(f ,g)=ma<>é|f (x)-g(x)[, then (X ,d) iscomplete metric. Define

f:X > X by f(f)=g where g(x)=j (x)+I '[k(x,y)f (y)dy
If £ (f)=g, and f (f,)=g,, then

0:0) = 9,(<) =] ()+1 [k, y)f)dt =G 0)+1 [k, y)F,0d) =1 [k y)(E ) —f @)t
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d(9,,9,) = max|g, (x) -, ()] = max | [k (x,y)(F,(y) ~F,(y)dy | <[l [max ]k (x,y)(F,(y) ~F (y)]dy

<l

b b
max [ [k (x, y)|[f,(y) ~f,(y)|dy <1 |e max|f,(x) ~F,0)| [dy =l [e(b—a) max|f,(x)~F,(x)|

=[l lcb-a)d (f,,f,)
1
c(b-a)

sothat f iscontraction functionif |I |< . It follows from fixed point theorem that

1

the integral equation (1) has a unique solution for any value of | satisfying |l |<c(b D

Remark
The successive approximations f,f,,---,f,--- to this solution are given by

f,0) =i )+ [K(,y)f,4(y)dy, n=12,.

where any function continuouson [a,b] can be chosen as f ,.Note that the method of
successi ve approximations can be applied to the equation (1) only for sufficiently small | |

Theorem(9.5.6) Volterraintegra equation

Supposethat k andj intheintegral equation (2) to be continuouson R and [a,b],
respectively, where R ={(x,y) e R*:a<y <x, a<x <b}. Thenthe Volterraintegra
equation has a unique solution f on [a,b] for every | .
Proof :

Let X =C[a,b], the space of al continuous functions defined on the interval [a,b] with
metric d givenby d(f ,g):gpxa<>é|f (x)—-g(x)|, then (X .d) is complete metric.

Definef :X - X by f4(x)=j (x)+I .X[k(x,y)f (y)dy
Let f,geX
ffx)-fgx)=j (x)+I IK(X,Y)f (y)dy —=j (x)-I Ik(x,y)g(y)dy =1 Ik(X,Y)(f (y)-g(y))dy

£ 0= g =]l [k y)(E (v)—alyDdy | <[l | [lk o y)lif (v)-g(y)|dy

<|l |cmxax|f (x)—g(x)|.|'dy =l e(x —a)mxax|f (x)—g(x)|=|l [c(x —a)d (f ,g)

where ¢ =max|K (x,y)|
X,y
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2f (x)-f g (x)| =|l jk(x,y)(ff (y)=fg(y)dy|<|l |[Ik Oy f (y)—Ff g(y)|dy

2 2(X a)*
"c 5 ————d(f,9)

<[l |cj|| lc(x —a)dyd (f ,g) =l
We show by induction that

m m(x a)

Assuming \f " (x)—f g(x)‘ e d(f ,g) hold for any m, we obtain

f7 () —f g (x) =) (x)+! Jk(X,Y)f " (y)dy =i (x)- jk(x,y)f "g(y)dy =I Ik(X,Y)(f "t (y)—f "g(y))dy

(<) —F Mg (x)| =]l |jk(x,y)(f "t (y)—f Mgy Ddy | <]l | [k, y)[ff °F (v)-f "g(y)|dy

m+1

m+1 cm+l (x -a)

(m+D!
Which completes the inductive proof. i.e. d( "f f "g) <l |”c“(b;l—?)nd(f ,9)

<[l |cj||| cm(x ) dyd (f ,g) =] | d(f.9)

We finally note that a V olterra equation can beregarded as a specia Fredholm equation
whose kernel k iszero in the part of the square [a,b]x[a,b] where y > x and may not be

continuous at points on the diagonal (y £x).
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Exercises (9)
91Let X ={xeR:x > cR and let thefunction f :X — X bedefined by f (x)=%x +x7t

for al x e X .Show that f isacontraction and fined the smallest k .
9.2 Let (X ,d) beacompact metric space with f : X — X satisfying d (f (x),f (y)) <d(xyy)
for x,y eX and x =y . Show that f hasaunique fixed pointin X .
9.3 Let b, (x,)in Banach space X with f :b, (x,) —» X isacontraction function and
f (0(b, (x,)) = b, (x,). Show that f has a unique fixed point inb_ (x,).
9.4 Let (X ,d) beacomplete metric spacewith f : X — X satisfying d (f (x),f (y))<j d(x,y))
wherej :[0,00) —[0,0) iSnon decreasing function with limj "(t)=0for t >0. Show that

f hasaunique fixed pointx, e X with limf "(x)=x, for x e X .

n—o

9.5Let (X,d) beacomplete metric spaceand let f : X — X besuchthat f ":X - X isa
contraction for positive integern . Show that f has a unique fixed pointx, e X and that
foreach x e X limf "(x)=x, .

9.6 Let G be an open subset of aBanach space X and let f :G — X be a contraction.
Show that (1-f )(G) isopen.

9.7 Let (X ,d) beacomplete metric spaceandlet j : X —[0,) be afunction. Suppose
inf{j (x)+j (y):d(x,y)>g}=m@g)>0 foral g>0.Show that each sequence {x }in X ,
for which limj (x,) =0, convergesto one and only one point x,e X .

9.8 Let (X ,d) beacomplete metric spaceand let f : X — X be a continuous. Suppose
j (x)=d(x,f (x)) satisfiesinf{j (x)+j (y):d(x,y)>g}=mg)>0 foral g>0, and that
inf{d (x,f (x)):x e X}=0<Show that f hasaunique fixed point.
9.9 Let A be anonempty, closed, bounded, convex set in a Hilbert space X . Show that
each nonexpansive function f :A — A has at |east one fixed point.
9.10 Letx be auniformly convex Banach space and A be a closed, bounded, convex subset
of X . Show that each every nonexpansive function f : A — A hasfixed point.

1
9.11 solve by iteration, choosing x, =f : f (x)=j (x)+ jex-yf (y)dy
0

9.12 Hf and k arecontinuouson [a,b] and C =[a,b]x[a,b]xR ,respectively, and k satisfies
on‘D =[a,b]x[a,b] aLipschitz condition of the form |k (x,y,z,)-k(x,y,z,)|<M |z,-z,|.

b
Show that the nonlinear integral equation f (x)=j (x)+I jk(x,y,f (y))dy hasaunique

1
M(b-a)
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solution f forany | suchthat |l |<




