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9. Fixed Point Theorems and Their Applications
Fixed point theory serves as an essential for various branches of mathematical analysis and
its applications. Loosely speaking, there are main approaches in this theory, metric, the
topological and order – theoretic approach, where representative examples of these are
Banach's, Brouwer's and Schauder -Tychonoff theorems respectively.

9.1 Definitions and General Properties

Definition(9.1.1)
Let X  be a non-empty set and XXf :  be a function. A fixed point of f  is simply a point
x X  such that ( )f x x . In other words, a fixed point of f is nothing but a solution of the
functional equation ( )f x x , x X . Fixed point have long been used in analysis to solve
various kinds of integral and differential equations.
Examples(9.1.2)
(1) Let { , }X a b .The function :f X X defined by ( ) , ( )f a b f b a  has no fixed point, but

other three functions that function X into itself each have one or two fixed points.
(2)Let [0,1]X  . The graph of a function :f X X is a subset of the unit square X X . If
f  is continuous, then its graph is a curve from the left edge of the square to the right edge.
A point of f  is an element of [0,1] at which the graph of f intersects the 450-
line.Intuitively, it seems clear that if f  is continuous then it must have a fixed point (its
graph must cross or touch the 450-line), and also that discontinuous functions f  may not
have a fixed point.
Definition(9.1.3)

Let ),( dX  be a metric space . A function XXf : is said to satisfy a Lipschitz condition
on X  if there exists a constant 0k  such that ( ( ), ( )) ( ( , ))d f x f y k d x y for all Xyx , .
Such k is called Lipschitz constant.
  If this conditions is satisfied with Lipschitz constant k  such that 0 1k  , we sat that

f is a contraction function. i.e.  A function XXf :  is called a contraction function if
there exists a constant k , 10  k , such that ),())(),(( yxdkyfxfd   for all Xyx , . Such
k is called a contraction modulus of f .
  If this conditions is satisfied with Lipschitz constant k  such that 1k  , we sat that f is

a nonexpansive function. i.e.  A function XXf :  is called a nonexpansive function if
( ( ), ( )) ( , )d f x f y d x y  for all Xyx , .



ماجستیر-دراسات علیا 
Functional Analysisتحلیل دالي  

3: عدد الوحدات 1: ناقشة م3: نظري 

146

Note that
For notational purposes we define ( ), , 0,1, 2,nf x x X n   , inductively by 0 ( )f x x  and

1( ) ( ( ))n nf x f f x 
    If XXf : is satisfy a Lipschitz condition with Lipschitz constant k , we have

1 1 1( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( , )n n n n n nd f x f y kd f x f y k d f x f y k d x y       for all Xyx ,

Also 1 1 1 2( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( , ( ))n n n n n nd f x f y kd f x f y k d f x f y k d x f y      for all Xyx ,

Examples(9.1.4)
(1)  In usual metric space 2( , )ud . Define 2 2:f    by xxf

2
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(2) Let :f    be a differentiable real function. If there is a real number 1k   for which
     the derivative f  satisfies ( )f x k   for all x  , then f  is a contraction with respect to

    the usual metric on and k is called a contraction modulus of f . This is a straightforward
   consequence of the mean value theorem : let ,x y   with x y ; the mean value theorem
   tells us there is a number ( , )c x y  such that       ( )f y f x f c y x    and therefore

       ( )f y f x f c y x f c y x k y x       

The sane mean value theorem argument establishes that if 1k  and : ( , ) ( , )f a b a b
satisfies ( )f x k   for all ( , )x a b , then f  is a contraction of ( , )a b .

Remark
Recall that a function f  form metric space ( , )X d  into a metric space ( , )Y d   is called an
uniformly continuous if for every 0  there is a 0   such that

for all , : ( , ) ( ( ), ( ))x y X d x y d f x y    

Theorem(9.1.5)
Every contraction function is uniformly continuous.

Proof :
   Let XXf :  is  a contraction function on a metric space ( , )X d , with modulus k .
Let 0  , take  
Since f is contraction with modulus k , then ( ( ), ( )) ( ( , ))d f x f y k d x y for all Xyx , .Then

( , ) ( ( ), ( ))d x y d f x f y k      for all Xyx , .therefore f is uniformly continuous.

Corollary (9.1.6)
Every contraction function is continuous.
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Theorem(9.1.7) Banach's contraction principle.
Let ),( dX  be a  complete metric space and let XXf :  is  a contraction function  with

Lipschitzian constant k . Then f  has a unique fixed point 0x X .  Furthermore, for any

x X  we have 0lim ( )n

n
f x x


  and 0( ( ), ) ( , ( ))

1

n
n k

d f x x d x f x
k




Proof :
Let x X . we first show that { ( )}nf x  is a Cauchy sequence .

Since 1( ( ), ( )) ( , ( ))n n nd f x f x k d x f x   for all x X
Thus for m n  where 0,1, 2,n  

1
1 1 2 1 1

0

( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))
m n

n m n n n n m m n i n i
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d f x f x d f x f x d f x f x d f x f x d f x f x
 

      
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     
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 .

That is for m n  where 0,1, 2,n   , we have ( ( ), ( )) ( , ( ))
1

n
n m k

d f x f x d x f x
k




 as ,n m 

{ ( )}nf x  is a Cauchy sequence in X

Since ),( dX  is a  complete metric space, then there is 0x X  such that 0lim ( )n

n
f x x


 .

Moreover the continuity of f  yields 1
0 0lim ( ) lim ( ( )) ( )n n

n n
x f x f f x f x

 
  

Finally ,  letting m  , 0( ( ), ) ( , ( ))
1

n
n k

d f x x d x f x
k

 


Remark
The above theorem requires that 1k  . If 1k  then f  need not have a fixed point as the
example ( ) 1f x x   for x  .

Theorem(9.1.8)
If XXf :  is a contraction function on a metric space ( , )X d , with modulus k , then for
any x X , 0 0( ( ), ) ( ( , ))n nd f x x k d x x  for n  , where 0x is the unique fixed point of f .
Proof :
 Since 0x  is a fixed point of f , then 0 0( )f x x

1 1 2 2 2
0 0 0 0 0

0
0 0

( ( ), ) ( ( ( )), ( )) ( ( ), ) ( ( ( ), ( )) ( ( ), )

( ( ), ) ( , )

n n n n n

n n

d f x x d f f x f x kd f x x kd f f x f x k d f x x

k d f x x k d x x

      

  

Theorem(9.1.9)
Let XXf :  be a  continuous function on a complete metric space ),( dX , and let mf  is a
contraction function on X for some positive integer m .then f has a unique fixed point.
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Proof :
By assumption, mg f is a contraction on X , that is, ( ( ), ( )) ( , )d g x g y kd x y  for all
,x y X ; here 1k  . Hence for every 0x X ,

1 1
0 0 0 0 0 0( ( ), ( )) ( ( ), ( )) ( ( ), ) 0n n n n nd g f x g x kd g f x g x k d f x x      as n 

Fixed point theorem implies that g  has a unique fixed point, call it x , and 0( )ng x x .
Since the mapping f is continuous, this implies 0 0( ) ( ) ( )n ng f x fg x f x  .Hence

0 0( ( ), ( )) ( ( ), )n nd g f x g x d f x x so that ( ( ), ) 0d f x x  . This shows that x is a fixed point of
f . Since every fixed point of f  is also a fixed point of g , we see that f  cannot have more
than one fixed point.
Theorem(9.1.10)
Let ),( dX  be a  complete metric space and let 0: ( )rf x X   is  a contraction function
with Lipschitzian constant k (i.e. ( ( ), ( )) ( , )d f x f y kd x y for all 0, ( )rx y x ) and

0 0( ( ), ) (1 )d f x x k r  . Then f  has a unique fixed point in 0( )r x .
Proof :
           There exists 0r  with 00 r r   with 0 0 0( ( ), ) (1 )d f x x k r 

We will show that
0 00 0: ( ) ( )r rf x x  . To see this note that if

0 0( )rx x

0 0 0 0 0 0 0( ( ), ) ( ( ), ( )) ( ( ), ) ( , ) (1 )d f x x d f x f x d f x x kd x x k r r     

We can apply theorem (9.1.7) to deduce that f  has a unique fixed point in
0 0 0( ) ( )r rx x  .

Again it is easy to see that f  has only one  fixed point in 0( )r x .

Definition(9.1.11)
A topological space X has the fixed point property if every continuous XXf :  has a
fixed point.
Theorem(9.1.12)
If X has the fixed point property and X is homeomorphic to Y ,then Y has the fixed point
property.
Proof :

Let :g Y Y  be a continuous function .we want to show that g  has a fixed point in Y

Since X is homeomorphic to Y , then there exists a homeomorphism function :f X Y ,
i.e. f   is a bijective function and 1,f f   are continuous.
Since :f X Y , :g Y Y  and 1 :f Y X   are continuous functions, then

1 :f g f X X    is continuous function.
Since X has the fixed point property  , then there is 0x X  such that 1

0 0( )( )f g f x x  
Hence 0 0( )g y y , where 0 0( )y f x .
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Definition (9.1.13)
A subset A  of a topological space X is a retract of X if there is a continuous function

:r X A  with ( )r a a , for all a A . The function r  is called a retraction.

Theorem(9.1.14)
  If X has the fixed point property and A is a retract of X , then A has the fixed point property.
Proof :
        Let :f A A  be a continuous function .we want to show that f  has a fixed point in A .
Since A is a retract of X , there exists a continuous function :r X A with ( )r a a , for alla A .

:f r X A X    is continuous function
Since X has the fixed point property, there exists 0x X such that 0 0( )( )f r x x

0 0( ( ))f r x x   . Since 0 0( ( ))f r x A x A  

Since ( )r a a , for alla A , then 0 0( )r x x 0 0( )f x x  . Consequently 0 0( )f x x , 0x A

9.2 Fixed Point Theorem in Normed spaces
In section(9.1), we proved fixed point theorems in metric spaces without any algebraic

structure. We now consider spaces with a linear structure but non linear functions in them.
In this section we restrict our attention to normed spaces.
Theorem(9.2.1)
Let A be a nonempty, closed, convex subset of a normed space X with :f A A
nonexpansive and ( )f A  a subset of a compact set of A . Then f  has a fixed point.
Proof :
Let 0x A . For 2,2,n   , define 0

1 1
(1 )nf f x

n n
  

Since A  is convex and 0x A , we see that :nf A A  and it is clear that :nf A A  is a
contraction. Therefore by theorem (9.1.7) each nf  has a unique fixed point nx A , that is,

0

1 1
( ) (1 ) ( )n n n nx f x f x x

n n
   

In addition, since ( )f A lies in a compact subset of A , there exists a subsequence S  of
integers and x A  with ( )nf x x  as n   in S .

Thus 0

1 1
(1 ) ( )n nx f x x x

n n
     as n   in S .

By continuity ( ) ( )nf x f x  as n   in S , and therefore ( )x f x .

Theorem(9.2.2)
The closed unit ball nB , in n , has the fixed point property, i.e. 1(0) { : 1}n nB x x    .
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Theorem (9.2.3)
Every nonempty, closed, convex sunset A  of n  is a retract of n .
Proof :
            For any nx  . Define : nr A  such that ( ) ( , )x r x d x A   for all x A ,

Since ( , ) inf{ : }d x A x z z A   ,then there exists a unique ( )y r x A  with

inf{ : }x y x z z A    r  is a retraction function from n  to A  .

Theorem (9.2.4)
 Every nonempty, bounded, closed, convex subset A  of n  has the fixed point property.
Proof :
Notice that A  is a subset of some ball B   in n .
Since nB  and B   are homeomorphic, theorem(9.1.11),and theorem(2.9.2) guarantee that
B   has the fixed point property. In addition, theorem(2.9.3) implies that A  is a retract of
B   and therefore theorem(9.1.13) ensure that A  has the fixed point property.
Corollary(9.2.5)
Every nonempty, bounded, closed, convex subset A  of a finite dimensional normed space
has the fixed point property.
Proof :
             Since any finite dimensional normed space X is isomorphic to n  with dim( )n X ,
we have Every nonempty, bounded, closed, convex subset A  of a finite dimensional
normed space has the fixed point property.

We would like to extend theorem(9.2.4) to a infinite dimensional space.
Example(9.2.6)
Let 2 2, { : 1}X B x x     . ( )B B  .define : ( )f B B by 2

( ) 1f x x  for all x B
It is easy to see that f  is continuous but not have a fixed point.

Theorem (9.2.7) Brouwer fixed point theorem
  Let K  be a nonempty, compact, convex subset of a finite dimensional normed space.
Then K  has the fixed point property( i.e. every continuous function :f K K has fixed
point).
Proof :

Remark
The Brouwer theorem requires only that f be continuous, not that it be a contraction, so
there are lots of situations in which the Brouwer theorem applies but the fixed theorem
doesn't. in particular, Brouwer's theorem confirms our intuition that any continuous
function from [0,1] into itself has a fixed point, not just the functions the functions that
satisfy ( )f x k  for some 1k  .
But conversely, the fixed point theorem doesn't require compactness or convexity , in fact,
it doesn't require that the domain of f be a subset of linear space, as this version of
Brouwer's theorem does. So there are also lots of situations where fixed point theorem
applies and Brouwer's doesn't.
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Definition(9.2.8)
Let X  and Y  be normed spaces .
(1) A function :f X Y  is called compact if ( )f X  contained in a compact subset of Y .
(2) A function :f X Y  is called completely continuous if it is both continuous and compact.
(3) A compact function :f X Y is called finite dimensional if ( )f X  contained in a finite
    dimensional subspace  of Y .
Note that
Let A  be a subset of a normed space X . A function :f A X  is compact if ( )f B  is a compact
subset of X whenever B is bounded subset of A .
Remark
We next extend Brouwer's fixed point theorem to compact map in normed spaces. This
generalization is due to Schauder. The main idea is to approximate compact functions by
functions with finite dimensional ranges.
Let 1 2{ , , , }nD x x x  be a finite subset of a normed space X and for fixed 0   let

1

( )
n

i
i

D x 


  where ( ) { : }i ix x X x x    

For each 1, 2, ,i n  , let :i D    given by ( ) max{0, }i ix x x     for all x D .

The Schauder Projection is the function : ( )P D conv D    given by

1

1

( )
( )

( )

n

i i
i

n

i
i

x x
P x

x














 for all x D .

Notice P  is well defined . since if x D , then ( )ix x for some {1, 2, , }i n   and therefore

1

( ) 0
n

i
i

x


 .

 Also ( ) ( )P x conv D  since each ( )P x is convex combination of the points 1 2, , , nx x x
Theorem (9.2.9)
Let A  be a convex subset of a normed space X , and 1 2{ , , , }nD x x x A  .If P  denoted
the Schauder Projection, then
(1) P  is a convex, continuous function from D  into ( )conv D A , and
(2) x P    for all x D .

Proof :
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Theorem (9.2.10)
Let A  be a convex subset of a normed space X , and :f X A  a compact, continuous
function. Then for each 0  ,there are a finite set 1 2{ , , , }nD x x x  in ( )f X  and a finite
dimensional continuous function :f X A  with the following properties
(1) ( ) ( )f x f x   for all x X  (2) ( ) ( )f x conv D A  

Proof :

Theorem (9.2.11)
Let A  be a closed subset of a normed space X , and :f X A  a compact, continuous  function.
Then f  has fixed point iff f   has fixed point
Proof :

Theorem (9.2.12)
Let f be a completely continuous of a normed space X into itself and let ( )f X be bounded .
Then f has fixed point.
 Proof :

We now state and prove Schauder's fixed point theorem

Theorem (9.2.13) Schauder fixed point theorem
Let K  be a nonempty, closed, convex subset of  normed linear space X .Let f be a continuous
function of K into a compact  subset of K .Then f has fixed point in K .
Proof :

Theorem (9.2.14)
Let K  be a nonempty, compact, convex subset of  normed linear space X . Every continuous
function :f K K has fixed point.
Proof :

Remark
This theorem would apply, for example, to any compact convex subset of [0,1]C ,the linear
space of continuous functions on the unit interval, with the max norm.
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Definition(9.2.15)
A norm .  on a linear space X  is said to be strictly convex if x y x y   only when

x  and y  linearly independent.

Theorem(9.2.16) Clarkson
If a normed space X has a countable everywhere dense subset, then there exists a strictly
convex norm on X equivalent to the given norm.
Proof :
            Let { : 1}A x X x  

Theorem(9.2.17) Clarkson
Let K  be a compact convex subset of a normed space X with a strictly convex norm. Then
to each point x of X  corresponds a unique point Px of K at K at minimum distance from
x , i.e.

inf{ : }x Px x y y K     and the function x Px  is continuous in X . The function P

is called the metric projection onto K .
Proof :
     Let x X
9.3 Fixed Point Theorem in Hausdorff Locally convex spaces

This section presents fixed point results for functions defined on Hausdorff Locally
convex spaces. We begin with the Schauder-Tychonoff theorem with is an extension of
Schauder's fixed point theorem, which in turn is an extension of Brouwer's fixed point
theorem. In the proof we will need the following approximation theorem.
Theorem () Schauder – Tychonoff Theorem
Let K be a non-empty compact convex subset of a locally convex Hausdorff space X , and
let :f X X  be continuous function. Then f  has a fixed point in X .

Theorem (9.3.1) Schauder – Tychonoff Theorem
  Let K be a closed convex subset of a locally convex Hausdorff space X , and let f  be  a
continuous function of K  into a compact subset of K . Then f  has a fixed point in X .

9.4 Fixed Point Theorem in Ordered Linear spaces
A relation R on a set X is said to be a partial order relation if satisfies the following three
conditions
(1) xRx , for every x X (reflexivity) (2) xRy and yRz  implies xRz   (transitivity)
(3) xRy  and yRx  implies x y (antisymmetry)
   We shall denote the partial order relation by the symbol  . The set X  together with the
partial order i.e. the pair ( , )X   is called a partially ordered set. If , ( , )x y x y X  , we say
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that x precedes or smaller than y and that y follows or larger than x . The symbol x y
stands for x y  and x y  and reads " strictly precedes y " or " strictly dominates x ".
   Two elements x and y  of partially ordered set are said to be comparable if one of them
is smaller than or equal to the other, i.e. if x y  or y x . A partial ordering  on  a set X

is called total (or linear or simple or complete) ordering iff either x y  or y x  for every
pair ,x y X . A set with a total ordering is called a totally ordered set or a chain. An
element a X is called the first or the smallest element of X , if a x  for every x X .
similarly an element b X is called the last or the largest element of X , if x b  for every
x X . An element a X is called a minimal element of X , if x a  implies a x .
similarly an element b X is called a maximal element of X , if b x   implies b x .
   An element a X  is said to be a lower bound of A  if a x  for every x A . Similarly an
element b X  will be an upper of A  if x b  for every x A . A set A  may have no lower
bounds or no upper bounds, or it may have many. Let A   denote the collection of all upper
bounds of A  and A  denote the collection of all lower bounds of A . The smallest member
of A  ,if it exists, is called the least upper bound (l.u.b)or the supremum of A  written as
sup A . Similarly the largest member of A , if it exists, is called the greatest lower bound
(g.l.b) of infimum of A  written as inf A . Note that the inf A  and the sup A may or may not
be members of A .
    A partially ordered set X  is said to be will ordered if every subset of X  contains a first
element. Let A  be a subset of a partially ordered  set X .
Definition (9.4.1)

Let X be a real linear space. A partial order relation   on X  is call linear order if the
following axioms are satisfied
(1) zyzxyx    for all , ,x y z X
(2) yxyx       for all ,x y X  for all 0 

      A real linear space endowed  with a linear order is called an ordered linear space. An
element x  of an ordered linear space X  is said to be positive if 0x , and negative if 0x .
The set of all positive elements of an ordered linear space X  with be denoted by X , i.e.

}0:{  xXxX

Definition(9.4.2)
A subset A  of real linear space X  is  called a positive cone if it satisfies
(1) ,x y A x y A               (2) x A  and 0 x A   
(3) , 0x x A x                   (4) A  contains non-zero element.
It is clear to show that X  is a positive cone of X .
It is easy to show that X  is a convex  cone of X , i.e.   XXX    and   XX .
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9.5 Some Applications of Fixed Point Theorems
      Fixed point theorem has important application
Such theorems are most important tools for proving the existence and uniqueness of the
solutions to various mathematical models (differential, integral and partial differential
equations, and variational inequalities, etc.)

Application of Fixed Point Theorem to Linear Equations
Fixed point theorem has important application to iteration methods for solving systems of
linear algebraic equations and yields sufficient conditions for convergence and error
bounds.
Suppose we want to find the solution of system on n linear algebraic equation with n
unknowns :

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   
   

   







This system can be written as Ax b  where

1 1
11 12 1

2 2
21 22 2

1 2

[ ], ( ), ( )
n

n ij i i

n n
n n nn

x b
a a a

x b
A a a a a x x b b

x b
a a a

 
    
    
         
    
    
     




 
  


To apply fixed point theorem, we need a complete metric space and a contraction function

on it. Let nX     with metric d  given by ( , ) max (1)i i
i

d x y x y  

where 1 2 1 2( , , , ), ( , , , )n nx x x x y y y y X    ,  then ( , )X d  is complete metric space. Define
:f X X  by ( ) (2)y f x Ax b   

where [ ]ijA a  is a fixed real n n  matrix and b X  a fixed vector. under what condition
will f be a  contraction , we have

1

n

i ij l i
j

y a x b


 
Setting ( ) ( )iw w f z  , we thus obtain from(1) and (2)

1 1 1

( , ) ( ( ), ( )) max max ( ) max ( , ) max
n n n

i i ij i i i i ij ij
i i i i

j j j

d y w d f x f z y w a x z x z a d x z a
  

         
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We see that this can be written ( , ) ( , )d y w kd x z , where
1

max
n

ij
i

j

k a


   . Fixed point theorem

thus yields.
Theorem (9.5.1) Linear equation
If a system x Ax b  , ( [ ],ijA a b , be given ), of n  linear equations in n

unknowns 1 2, , , nx x x (the components of x ) satisfies
1

1
n

ij
j

a


 , 1, 2, ,i n  it has precisely

one solution x .

Application of Fixed Point Theorem to Differential Equations
The most interesting applications of fixed point theorem arise in connection with function
spaces. The theorem then yields existence and uniqueness theorems for differential and
integral equations, as we shall see. In fact, in this section let us consider an explicit ordinary
differential equation of the first order

( , )
dy

y f x y
dx

  

An initial value problem for such an equation consists of the equation and initial condition

0 0( )y x y , where 0x  and 0y  are given real number.

We shall use fixed point theorem to prove the famous Picard's theorem
Theorem (9.5.2) Picard Theorem

Let D denote an open set in 2 , 0 0( , )x y D . Let f  be real valued function defined and
continuous in D , and let it satisfy Lipschitz condition of the form

1 2 1 2 1 2( , ) ( , ) , ( , ), ( , )f x y f x y k y y x y x y D   

in the variable y . Then there is an interval 0x x   in which the differential equation

( , )
dy

f x y
dx
  has a unique solution ( )y x satisfying the initial condition 0 0( )x y 

proof :
         Together  the differential equation ( , )y f x y  and the initial condition 0 0( )x y   are
equivalent to the integral equation

0

0( ) ( , ( ))
x

x

x y f t t dt   
By the continuity of f , we have ( , )f x y M in some domain D D  containing the point

0 0( , )x y . Choose 0   such that (1) ( , )x y D   if 0 0,x x y y M        (2) 1k  
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and let C   be the space of continuous functions   defined on the interval 0x x    and

such that 0( )x y M   ,equipped with the metric d  defined by ( , ) max ( ) ( )
x

d x x      .

The space C   is complete, since it is closed subspace of the space of all continuous
functions on 0 0[ , ]x x   .defined :g C C   by ( )g   , where

0

0 0( ) ( , ( )) ,
x

x

x y f t t dt x x     

If C  , 0x x   , then
0 0

0( ) ( , ( )) ( , ( ))
x x

x x

x y f t t dt f t t dt     

Since ( , )f x y M , then
0

0( , ( ))
x

x

f t t dt M x x M    , so that 0( )x y M   , hence

C  . Moreover,

0 0

( ) ( ) ( ( , ( )) ( , ( ))) ( , ( )) ( , ( )) max ( ) ( ) ( , )
x x

x
x x

x x f t t f t t dt f t t f t t dt k x x k d                       
After maximizing with respect to x .But 1k   , so that g is contraction function. It follows
from fixed point theorem that equation ( )g   , i.e. the integral equation

0

0( ) ( , ( ))
x

x

x y f t t dt   
has a unique solution in the space C   .
Remark
Picard theorem can easily be generalized to the case of systems of differential equations :
Theorem(9.5.3)generalized Picard theorem
Let D denote an open set in 1n , 0 01 02 0( , , , , )nx y y y D . Let if  be functions defined and
continuous in D , and let it satisfy Lipschitz condition of the form

1 2 1 2 1 2
1

( , , , , ) ( , , , , ) max , ( , ), ( , )n n i i
i n

f x y y y f x y y y k y y x y x y D
 

       

in the variables 1 2, , , ny y y . Then there is an interval 0x x   in which the system of

differential equations 1 2( , , , , ), 1, 2, ,i
i n

dy
f x y y y i n

dx
    has a unique solution

1 1 2 2( ), ( ), , ( )n ny x y x y x     satisfying the initial condition

1 0 01 2 0 02 0 0( ) , ( ) , , ( )n nx y x y x y    
proof :
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    Together  the differential equations 1 2( , , , , ), 1, 2, ,i
i n

dy
f x y y y i n

dx
   and the initial

conditions 1 0 01 2 0 02 0 0( ) , ( ) , , ( )n nx y x y x y      are equivalent to the system of integral
equation

0

0 1 2( ) ( , ( ), ( ), , ( )) , 1, 2, ,
x

i i n

x

x y f t t t t dt i n       

By the continuity of the functions if , we have 1 2( , , , , ) , 1, 2, ,nf x y y y M i n   in some

domain D D  containing the point 0 01 02 0( , , , , )nx y y y . Choose 0   such that
(1) 1 2( , , , , )nx y y y D   if 0 0, i ix x y y M      for all 1, 2, ,i n     (2) 1k  

This let C   be the space of ordered n - tuples 1 2( , , , )n      of continuous functions

1 2, , , n    defined on the interval 0x x    and such that 0( )i ix y M    for all

1, 2, ,i n  , equipped with the metric d  defined by ( , ) max ( ) ( )i i
x

d x x      . The space

C   is complete, since it is closed subspace of the space of all continuous functions on
0 0[ , ]x x   .defined :g C C   by ( )g   , where 1 2( , , , )n    

0

0 1 2 0( ) ( , ( ), ( ), , ( )) , , 1, 2, ,
x

i i i n

x

x y f t t t t dt x x i n          

If 1 2( , , , )n C      , 0x x   , then

0 0

0 1 2 1 2( ) ( , ( ), ( ), , ( )) ( , ( ), ( ), , ( )) , 1, 2, ,
x x

i i n n

x x

x y f t t t t dt f t t t t dt i n            

Since 1 2( , , , , )nf x y y y M , then
0

1 2 0( , ( ), ( ), , ( ))
x

n

x

f t t t t dt M x x M       , so that

0( ) , 1,2, ,i ix y M i n     , hence 1 2( , , , )n C      . Moreover,

0 0

1 2 1 2 1 2 1 2( ) ( ) ( ( , ( ), ( ), , ( )) ( , ( ), ( ), , ( )) ( , ( ), ( ), , ( ) ( , ( ), ( ), , ( )

max ( ) ( ) ( , )

x x

i i n n n n

x x

i i
x

x x f t t t t f t t t t dt f t t t t f t t t t dt

k x x k d

             

     

          

   

    

After maximizing with respect to x .But 1k   , so that g is contraction function. It follows
from fixed point theorem that equation ( )g   , i.e. the integral equation

0

0 1 2( ) ( , ( ), ( ), , ( )) , 1, 2, ,
x

i i n

x

x y f t t t t dt i n       

has a unique solution in the space C   .
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Application of Fixed Point Theorem to Integral Equations
We now show how the method of successive approximations can be used to prove the
existence and uniqueness of solutions of integral equations. An integral equation of the
form

( ) ( ) ( , ) ( ) (1)
b

a

f x x k x y f y dy    

is called a Fredholm equation of the second kind. Here[ , ]a b  is a given interval . f is a
function on [ , ]a b which is unknown.  is parameter. The function k is called the kernel of
the equation defined on the square [ , ] [ , ]D a b a b   , and   is a given function on[ , ]a b ,  the
equation is said to be  homogeneous if 0  (but otherwise non-homogeneous). An integral
equation of the form

( ) ( ) ( , ) ( ) (2)
x

a

f x x k x y f y dy    

is called a Volterra equation. The difference between(1) and (2) is that in (1) the upper
limit of integration b is constant, where as here in (2) it is variable.

Theorem (9.5.4)  Fredholm integral equation theorem
Suppose k and    in the integral equation (1) to be continuous on [ , ] [ , ]a b a b and [ , ]a b ,

respectively, and assume that   satisfies 1

( )c b a
 


 with c defined in

( , ) , , [ , ]k x y c x y a b  . Then the Fredholm integral equation has a unique solution f on

[ , ]a b .
Proof :
Since k is continuous function, so that ( , ) , ,k x y c a x b a y b    

Let [ , ]X C a b , the space of all continuous functions defined on the interval [ , ]a b  with
metric d  given by ( , ) max ( ) ( )

a x b
d f g f x g x

 
  , then ( , )X d  is complete metric. Define

: X X  by ( )f g   where ( ) ( ) ( , ) ( )
b

a

g x x k x y f y dy   
If 1 1( )f g   and 2 2( )f g  , then

1 2 1 2 1 2( ) ( ) ( ) ( , ) ( ) ( ( ) ( , ) ( ) ) ( , )( ( ) ( ))
b b b

a a a

g x g x x k x y f t dt x k x y f t dt k x y f t f t dt            
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1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2

( , ) max ( ) ( ) max ( , )( ( ) ( )) max ( , )( ( ) ( ))

max ( , ) ( ) ( ) max ( ) ( ) ( ) max ( ) ( )

( ) ( , )

b b

a x b a x b a x b
a a

b b

a x b a x b a x b
a a

d g g g x g x k x y f y f y dy k x y f y f y dy

k x y f y f y dy c f x f x dy c b a f x f x

c b a d f f

 

  



     

     

     

      

 

 

 

so that   is contraction function if 1

( )c b a
 


. It follows from fixed point theorem that

the integral equation (1) has a unique solution for any value of   satisfying 1

( )c b a
 


.

Remark
 The successive approximations 0 1, , , ,nf f f  to this solution are given by

1( ) ( ) ( , ) ( ) , 1, 2,
b

n n

a

f x x k x y f y dy n     

where any function continuous on [ , ]a b  can be chosen as 0f .Note that the method of
successive approximations can be applied to the equation (1) only for sufficiently small 

Theorem(9.5.6) Volterra integral equation
 Suppose that k and   in the integral equation (2) to be continuous on R and [ , ]a b ,
respectively, where 2{( , ) : , }R x y a y x a x b      . Then the Volterra integral
equation has a unique solution f on [ , ]a b  for every  .
Proof :
  Let [ , ]X C a b , the space of all continuous functions defined on the interval [ , ]a b  with
metric d  given by ( , ) max ( ) ( )

a x b
d f g f x g x

 
  , then ( , )X d  is complete metric.

 Define : X X  by ( ) ( ) ( , ) ( )
x

a

f x x k x y f y dy    
Let ,f g X

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( , )( ( ) ( ))
x x x

a a a

f x g x x k x y f y dy x k x y g y dy k x y f y g y dy              

( ) ( ) ( , )( ( ) ( )) ( , ) ( ) ( )

max ( ) ( ) ( ) max ( ) ( ) ( ) ( , )

x x

a a

x

x x
a

f x g x k x y f y g y dy k x y f y g y dy

c f x g x dy c x a f x g x c x a d f g

   

  

    

      

 


 where

,
max ( , )

x y
c K x y
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2 2

2
2 2

( ) ( ) ( , )( ( ) ( )) ( , ) ( ) ( )

( )
( ) ( , ) ( , )

2

x x

a a

x

a

f x g x k x y f y g y dy k x y f y g y dy

x a
c c x a dyd f g c d f g

       

  

    


  

 


We show by induction that

Assuming ( )
( ) ( ) ( , )

!

m
mm m m x a

f x g x c d f g
m

  


   hold for any m , we obtain

1 1( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( , )( ( ) ( ))
x x x

m m m m m m

a a a

f x g x x k x y f y dy x k x y g y dy k x y f y g y dy                   

1 1

1
1 1

( ) ( ) ( , )( ( ) ( )) ( , ) ( ) ( )

( ) ( )
( , ) ( , )

! ( 1)!

x x
m m m m m m

a a

x m m
m mm m

a

f x g x k x y f y g y dy k x y f y g y dy

x a x a
c c dyd f g c d f g

m m

       

  

 


 

    

 
 



 



Which completes the inductive proof. i.e. ( )
( , ) ( , )

!

n
nn n n b a

d f g c d f g
n

  




We finally note that a Volterra equation can be regarded as a special Fredholm equation
whose kernel k is zero in the part of the square [ , ] [ , ]a b a b where y x and may not be
continuous at points on the diagonal ( )y x .
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Exercises (9)
9.1 Let { : 1}X x x      and let the function :f X X  be defined by 11

( )
2

f x x x  

       for all x X .Show that f  is a contraction and fined the smallest k .
9.2 Let ( , )X d  be a compact metric space with :f X X satisfying ( ( ), ( )) ( , )d f x f y d x y
     for ,x y X and x y . Show that f  has a unique fixed point in X .
9.3 Let 0( )r x in Banach space X with 0: ( )rf x X  is a contraction function and

0 0( ( ( )) ( )r rf x x   . Show that f has a unique fixed point in 0( )r x .
9.4 Let ( , )X d  be a complete metric space with :f X X satisfying ( ( ), ( )) ( ( , ))d f x f y d x y
     where :[0, ) [0, )     is non decreasing function with lim ( ) 0n

n
t


 for 0t  . Show that

f has a unique fixed point 0x X  with 0lim ( )n

n
f x x


  for x X .

9.5 Let ( , )X d  be a complete metric space and let :f X X be such that :nf X X  is a
contraction for positive integer n . Show that f has a unique fixed point 0x X and that
for each x X  , 0lim ( )n

n
f x x


  .

9.6 Let G be an open subset of a Banach space X and let :f G X  be a contraction.
Show that ( )( )f G   is open.

9.7 Let ( , )X d  be a complete metric space and let : [0, )X   be a function. Suppose
inf{ ( ) ( ) : ( , ) } ( ) 0x y d x y        for all 0  . Show that each sequence { }nx in X ,
for which lim ( ) 0n

n
x


 , converges to one and only one point 0x X .

9.8 Let ( , )X d  be a complete metric space and let :f X X be a continuous. Suppose
( ) ( , ( ))x d x f x   satisfies inf{ ( ) ( ) : ( , ) } ( ) 0x y d x y         for all 0  , and that

inf{ ( , ( )) : } 0d x f x x X  . Show that f has a unique fixed point.
9.9 Let A be a nonempty, closed, bounded, convex set in a Hilbert space X . Show that

each  nonexpansive  function :f A A  has at least one fixed point.
9.10 Let X be a uniformly convex Banach space and A be a closed, bounded, convex subset

of X . Show that each every nonexpansive  function :f A A  has fixed point.

9.11 solve by iteration, choosing 0x   :
1

0

( ) ( ) ( )x yf x x e f y dy    
9.12 If   and k  are continuous on [ , ]a b  and [ , ] [ , ]C a b a b   ,respectively, and k satisfies
on [ , ] [ , ]D a b a b   a Lipschitz condition of the form 1 2 1 2( , , ) ( , , )k x y z k x y z M z z   .

Show that the nonlinear integral equation ( ) ( ) ( , , ( ))
b

a

f x x k x y f y dy     has a unique

solution f  for any   such that 1

( )M b a
 


 .


