
1

Computer Architecture2 Third level

1.Introduction

There are different definition of computer architecture is built on four

basic viewpoints.

These are the structure, the organization, the implementation, and the

performance.

The structure define is the interconnection of various hardware

components.

The organization defines the dynamic interplay and management of the

various components. The implementation defines the detailed design of

hardware components, and the performance specifies the behavior of the

computer system.

Figure : Computer System Component

2

2.Memory Management

2-1-Types of Memory

A- Main Memory

The program must be in main memory to be executed. Main memory is

the only large storage area that the processor can be access directly . Its

an array of words or bytes, ranging in size from hundreds of thousands to

hundreds of millions. Memory is the central to the operation of modern

computer system. The CPU fetches instructions from memory according

to value of the program counter. These instruction may cause additional

loading from and storing to specific memory addresses. For example first

fetches an instruction from memory. The instruction is then decoded and

may cause operands to be fetches from memory . after the instruction has

been executed on the operands, results may be stored back in memory.

Ideally, we would want the programs and data to reside in main memory

permanently . this arrangement is not possible for the following two

reasons:

1- Main memory is usually too small to store all needed programs and

data permanently.

2- Main memory is volatile storage device that loses its components

when power is turned off or otherwise lost.

Thus, must computer systems provide secondary storage as extension of

main memory. The main requirement for secondary storage is that it be

able to hold large quantities of data permanently .

Note:- memory unit sees only as a stream of memory addresses; it does

not know how they are generated.

B-Virtual Memory

3

Is a technique that allows the execution of processes that may not be

completely in main memory. The main visible advantage of this scheme

is that programs can be larger than physical memory. Further, its abstracts

main memory into an extremely large, uniform array of storage,

separating logical memory as viewed by the user from physical memory.

This technique frees programmers from concern over memory storage

limitations .

The set of all logical addresses generated by a program is referred to as a

logical or virtual addresses, while the real addresses in the main memory

that corresponding to the logical addresses called physical addresses.

Each logical address will be converted to physical address using MMU

(Memory Management Unit), required hardware support by adding

relocation register contain value loading to it from the operating system,

where each logical address will be added to the relocation register for

generating corresponding physical address in memory.

Figure: Dynamic relocation using relocation register.

4

 Memory Hierarchy

A typical memory hierarchy starts with a small, expensive, and relatively

fast unit, called the cache, followed by a larger, less expensive, and

relatively slow main memory unit.

Figure: Typical memory hierarchy

Figure: Major differences between cache –main memory and

mainsecondary memory hierarchies

5

Cache Memory

A cache is a small, fast memory located close to the CPU that holds the

most recently accessed code or data. When the CPU finds a requested

data item in the cache, it is called a cache hit. When the CPU does not

find a data item it needs in the cache, a cache miss occurs. A fixed-size

block of data, called a block, containing the requested word is retrieved

from the main memory and placed into the cache. Temporal locality tells

us that we are likely to need this word again in the near future, so placing

it in the cache where it can be accessed quickly is useful. Because of

spatial locality, there is high probability that the other data in the block

will be needed soon.

The time required for the cache miss depends on both the latency of the

memory and its bandwidth, which determines the time to retrieve the

entire block. A cache miss, which is handled by hardware, usually causes

the CPU to pause, or stall, until the data are available.

Likewise, not all objects referenced by a program need to reside in main

memory.

The following figure shows the principal components of a cache memory.

Words are stored in a cache data memory and are grouped into small page

called cachevblocks or block frames or lines.

6

The content of the cache‟s data memory are copies of a set of main

memory blocks. Each cache block is marked with its block address,

referred to as a tag, so the cache knows to what part of the memory space

the block belongs . The collection of tag addresses currently assigned to

the cache , is stored in cache tag memory or directory which implemented

as associative memory. For example , if bock Bj containing data entries

Dj is assign to M1 , then Bj is in the tag memory and Dj is in the cache‟s

data memory.

The probability of finding the requested item in the first level is called the

hit ratio, h1. The probability of not finding (missing) the requested item

in the first level of the memory hierarchy is called the miss ratio,

h2=(1-h1).

Memory Address Mapping

There are three main different organization techniques used for

cache memory. The three techniques are discussed below. These

techniques differ in two main aspects:

1. The criterion used to place, in the cache, an incoming block from the

main memory.

2. The criterion used to replace a cache block by an incoming block (on

cache full).

The design of cache is subjected to different constrains and trade -off than

that of main memory. The placement policy(memory address mapping

techniques) represent the most important policy in the design of a cache

memory, which establishes the correspondence between the main

memory block and in the cache .In discussing the mapping functions,

consider example in which each processor cache is of size 2 k (2048)

words with 16 words per block. Thus the cache has 128 block frames. Let

the main memory has a capacity of 256 k w , or 16384 blocks. The

7

physical address is 18 bits. The placement policy includes a four policies

as follows:

1- DIRECT MAPPING:

Is the simplest one in this mapping , block i of the memory map

into the block frame i module 128 of the cache.

Frame j= Block i mod (N: number of frames in cache)

Advantage :

Simplicity to determining where to place an incoming main memory

block in cache.

Disadvantage:

 That the cache hit ratio drops sharply if two or more blocks, used

alternately, happen to map onto the same block frame in the cache.

For solving this problem The memory address divided for three fields:

the tag , block, and word field as shown in (figure 1).each block frame

has specific tag associated with it.

1- Word field= log2 B

B: size of block in words.

2- Block field = log2N

N: size of cache in blocks.

3- Tag field = log2(M/N)

M:size of Mian Memory(MM) in blocks.

4- The Number of bits in MM address = log2(B*M){must be equal to the

summation of total number of bits that coming from the first three

equations.

Example:

For the above values

Word field= log216 =4bit.

Block field= log2128 = 7bit.

8

Tag field = log2(16384/128) = 7bit.

Address MM = 18 bit = log2(16384*16).

The steps of the protocol are:

1.Use the Block field to determine the cache block that should contain the

element requested by the processor. The Block field is used directly to

determine the cache block sought, hence the name of the technique:

direct-mapping.

2. Check the corresponding Tag memory to see whether there is a match

between its content and that of the Tag field . A match between the two

indicates that the targeted cache block determined in step 1 is currently

holding the main memory element requested by the processor, that is, a

cache hit.

3. Among the elements contained in the cache block, the targeted element

can be selected using the Word field.

4. If in step 2, no match is found, then this indicates a cache miss.

Therefore, the required block has to be brought from the main memory ,

deposited in the cache, and the targeted element is made available to the

processor. The cache Tag memory and the cache block memory have to

be updated accordingly

Main memory

Block 0

Block 1

Block 127

Block 1

Block 2

 Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

Block 0

tag

tag

tag

tag

7 bits

cache

9

2 - Fully Associative Mapping

 According to this technique, an incoming main memory block can be

placed in any available cache block. Therefore, the address issued by the

processor need only have two fields. These are the Tag and Word fields.

The first uniquely identifies the block while residing in the cache. The

second field identifies the element within the block that is requested by

the processor.

The MMU interprets the address issued by the processor by dividing it

into two fields as shown in Figure 2 . The length, in bits, of each of the

fields in Figure 2 are given by:

1. Word field = log2B, where B is the size of the block in words

2. Tag field = log2M, where M is the size of the main memory in blocks

3. The number of bits in the main memory address = log2 (B*M)

It should be noted that the total number of bits as computed by the first

two equations should equal to the length of the main memory address

.This can be used as a check for the correctness of your computation.

7 7 4

tag block word

Main memory address

Figure: Direct Mapping

10

 Tag word

Example:

 Compute the above three parameters for a memory system having the

following specification: size of the main memory is 4K blocks, size of the

cache is128blocks, and the block size is16 words. Assume that the system

uses associative mapping.

Word field = log2B = log216 = log22
4
 = 4 bits

Tag field = log2M = log2(2
2
* 2

10
)= 12 bits

The number of bits in the main memory address =log2 (B*M)

= log2(2
4
* 2

12
) = 16 bits.

Main memory

Block 0

Block 1

Block 127

Block 1

Block 16383

Block i

Block 0

Block 16382

tag

tag

tag

tag

14 bits

14 4

Main memory address

Figure : Associative mapping

11

Having shown the division of the main memory address, we can now

proceed to explain the protocol used by the MMU to satisfy a request

made by the processor for accessing a given element.

 The steps of the protocol are:

1. Use the Tag field to search in the Tag memory for a match with any of

the tags stored.

2. A match in the tag memory indicates that the corresponding targeted

cache block determined in step 1 is currently holding the main memory

element requested by the processor, that is, a cache hit.

3. Among the elements contained in the cache block, the targeted element

can be selected using the Word field.

4. If in step2, no match is found, then this indicates a cache miss

.Therefore , the required block has to be brought from the main memory ,

deposited in the first available cache block, and the targeted element

(word) is made available to the processor. The cache Tag memory and the

cache block memory have to be updated accordingly.

It should be noted that the search made in step1 above requires matching

the tag field of the address with each and every entry in the tag memory.

Such a search, if done sequentially, could lead to a long delay. Therefore,

the tags are stored in an associative (content addressable) memory. This

allows the entire contents of the tag memory to be searched in parallel

(associatively), hence the name, associative mapping.

It should be noted that , regardless of the cache organization used , a

mechanism is needed to ensure that any accessed cache block contains

valid information . The validity of the information in a cache block can be

checked via the use of a single bit for each cache block, called the valid

bit. The valid bit of a cache block should be updated in such a way that if

valid bit = 1, then the corresponding cache block carries valid

information; otherwise, the information in the cache block is invalid.

12

When a computer system is powered up , all valid bits are made equal to

0 , indicating that they carry invalid information . As blocks are brought

to the cache , their statuses are changed accordingly to indicate the

validity of the information contained.

Advantage:

Efficient use of the cache. This stems from the fact that there exists no

restriction on where to place incoming main memory blocks. Any

unoccupied cache block can potentially be used to receive those incoming

main memory blocks.

Disadvantage:

The hardware overhead required to perform the associative search

conducted in order to find a match between the tag field and the tag

memory as discussed above.

A compromise between the simple but inefficient direct cache

organization and the involved but efficient associative cache organization

can be achieved by conducting the search over a limited set of cache

blocks while knowing ahead of time where in the cache an incoming

main memory block is to be placed. This is the basis for the set-

associative mapping technique explained next.

3 - SET ASSOCIATIVE:

 In the set-associative mapping technique, the cache is divided into a

number of sets. Each set consists of a number of blocks. A given main

memory block maps to a specific cache set based on the equation s = I

mod S, where S is the number of sets in the cache, i is the main memory

block number, and s is the specific cache set to which block i maps.

However, an incoming block maps to any block in the assigned cache set.

Therefore, the address issued by the processor is divided into three

distinct fields. These are the Tag, Set, and Word fields. The Set field is

13

used to uniquely identify the specific cache set that ideally should hold

the targeted block .The Tag field uniquely identifies the targeted block

within the determined set. The Word field identifies the element (word)

within the block that is requested by the processor. According to the set-

associative mapping technique, the MMU interprets the address issued by

the processor by dividing it into three fields as shown in Figure below .

The length, in bits, of each of the fields of Figure 3 is given by

1. Word field = log2B, where B is the size of the block in words

2. Set field = log2S, where S is the number of sets in the cache

3. Tag field =log2 (M/S), where M is the size of the main memory in

blocks.

S= N/Bs, where N is the number of cache blocks and Bs is the number of

blocks per set

4. The number of bits in the main memory address= log2 (B*M)

It should be noted that the total number of bits as computed by the first

three equations should add up to the length of the main memory address.

This can be used as a check for the correctness of your computation.

Example:

Compute the above three parameters (Word, Set, and Tag) for a memory

system having the following specification: size of the main memory is

4K blocks, size of the cache is 128 blocks, and the block size is 16 words.

Assume that the system uses set-associative mapping with four blocks per

set.

S=128/4 = 32 sets:

1. Word field = log2B= log2 16= log2 2
4
=4 bits

2. Set field= log2 32= 5 bits

3. Tag field= log2 (4* 2
10

/32)= 7 bits

The number of bits in the main memory address= log2 (B*M)

14

= log2(2
4
* 2

12
)= 16 bits.

 The steps of the protocol are:

1. Use the Set field (5 bits) to determine (directly) the specified set (1 of

the 32 sets).

2. Use the Tag field to find a match with any of the (four) blocks in the

determined set. A match in the tag memory indicates that the specified set

determined in step 1 is currently holding the targeted block, that is, a

cache hit.

3. Among the 16 words (elements) contained in hit cache block, the

requested word is selected using a selector with the help of the Word

field.

4. If in step 2, no match is found, then this indicates a cache miss.

Therefore, the required block has to be brought from the main memory,

deposited in the specified set first, and the targeted element (word) is

made available to the processor. The cache Tag memory and the cache

block memory have to be updated accordingly.

It should be noted that the search made in step2 above requires matching

the tag field of the address with each and every entry in the tag memory

for the specified set.

Such a search is performed in parallel (associatively) over the set, hence

the name, set-associative mapping. The hardware overhead required to

performing the associative search within a set in order to find a match

between the tag field and the tag memory is not as complex as that used

in the case of the fully associative technique.

The set-associative-mapping technique is expected to produce a moderate

cache utilization efficiency, that is, not as efficient as the fully associative

technique and not as poor as the direct technique. However, the technique

inherits the simplicity of the direct mapping technique in terms of

determining the target set.

15

.

Main memory

Block 0

Block 1

Block 127

Block 1

Block 16383

Block 63

Block 0

Block 4095

tag

tag

tag

tag

8 bits

8 4

tag word

Main memory address

Figure: set associative mapping

Block 2

Block 3

Block 126

tag

tag

Set 0

Set 1

Set 63

Block 64

Block 65

6

set

16

 Replacement Techniques

A number of replacement techniques can be used . These include

1- Random selection of a cache block for replacement is done based

on the output of the random number generator at the time of

replacement. This technique is simple and does not require much

additional overhead

2- Frst-In-Frst-Out(FIFO) technique takes the time spent by a block

in the cache as a measure for replacement . The block that has been

in the cache the longest is selected for replacement regardless of

the recent pattern of access to the block. This technique requires

keeping track of the life time of a cache block. Therefore, it is not

as simple as the random selection technique. Intuitively, the FIFO

technique is reasonable to use for straight line programs where

locality of reference is not of concern.

3- Least Recently Used (LRU)replacement technique, the cache

block that has been recently used the least is selected for

replacement. Among the three replacement techniques, the LRU

technique is the most effective. This is because the history of block

usage (as the criterion for replacement) is taken into consideration.

The LRU algorithm requires the use of a cache controller circuit

that keeps track of references to all blocks while residing in the

cache. This can be achieved through a number of possible

implementations. Among these implementations is the use of

counters. In this case each cache block is assigned a counter. Upon

a cache hit,

17

Input/ output (I/O)&Direct Memory Access(DMA)

1- Input/ Output (I/O) Concept

Figure(1) shows a simple arrangement for connecting the processor and

the memory in a given computer system to an input device, for example,

a keyboard and an output device such as a graphic display. A single bus

consisting of the required address, data, and control lines is used to

connect the system‟s components in the Figure below.

Figure: Single Bus System

 here concerned with the way which the processor and the I/O devices

exchange data. There exists a big difference in the rate at which a

processor can process information and those of input and output devices.

One simple way to accommodate this speed difference is to have the

input device, for example, a keyboard, deposit the character struck by the

user in a register (input register), which indicates the availability of that

character to the processor. When the input character has been taken by

the processor, this will be indicated to the input device in order to proceed

and input the next character, and so on. Similarly, when the processor has

a character to output (display), it deposits it in a specific register

dedicated for communication with the graphic display (output register).

When the character has been taken by the graphic display, this will be

18

indicated to the processor such that it can proceed and output the next

character, and so on. This simple way of communication between the

processor and I/O devices, called I/O protocol, requires the availability of

the input and output registers. In a typical computer system, there is a

number of input registers, each belonging to a specific input device.

There is also a number of output registers,

each belonging to a specific output device. More than one arrangement

exists to satisfy the above mentioned requirements. Such as shared I/O

arrangement figure(2), and Memory_Mapped arrengement. In addition, a

mechanism according to which the processor can address those input and

output registers must be adopted such as programmed I/O, Interrupt-

Driven I/O, and Direct Memory access.

Figure: Shared I/O arrengment.

2. Programmed I/O

This protocol has to be programmed in the form of routines that run under

the control of the CPU. Consider, for example, an input operation from

19

Device 6 (could be the keyboard) in the case of shared I/O arrangement.

Let us also assume that there are eight different I/O devices connected to

the processor in this case figure(3). The following protocol steps

(program) have to be followed:

1. The processor executes an input instruction from device 6, for

example, INPUT 6. The effect of executing this instruction is to send the

device number to the address decoder circuitry in each input device in

order to identify the specific input device to be involved. In this case, the

output of the decoder in Device #6 will be enabled, while the outputs of

all other decoders will be disabled.

2. The buffers (in the figure we assumed that there are eight such buffers)

holding the data in the specified input device (Device #6) will be enabled

by the output of the address decoder circuitry.

3. The data output of the enabled buffers will be available on the data bus.

4. The instruction decoding will gate the data available on the data bus

into the input of a particular register in the CPU, normally the

accumulator. Output operations can be performed in a way similar to the

input operation explained above. The only difference will be the direction

of data transfer, which will be from a specific CPU register to the output

register in the specified output device

They are performed under the CPU control. A complete instruction fetch,

decode,and execute cycle will have to be executed for every input and

every output operation. Programmed I/O is useful in cases where by one

character at a time is to be transferred, for example, keyboard and

character mode printers. Although simple, programmed I/O is slow.

20

Figure: I/O connection to the processor

3. Interrupt-Driven I/O

It is often necessary to have the normal flow of a program interrupted, for

example, to react to abnormal events, such as power failure. In the case of

an I/O interrupt, serving an interrupt means to perform the required data

transfer. Upon finishing serving an interrupt, the processor should restore

the original status by popping the relevant values from the stack. Once

the processor returns to the normal state, it can enable sources of interrupt

again.

One important point that was overlooked in the above scenario is the

issue of serving multiple interrupts, for example, the occurrence of yet

another interrupt while the processor is currently serving an interrupt.

21

Response to the new interrupt will depend upon the priority of the newly

arrived interrupt with respect to that of the interrupt being currently

served.

- If the newly arrived interrupt has priority less than or equal to that of the

currently served one, then it can wait until the processor finishes serving

the current interrupt.

 - If, on the other hand, the newly arrived interrupt has priority higher

than that of the currently served interrupt.

For example, power failure interrupt occurring while serving an I/O

interrupt, then the processor will have to push its status onto the stack and

serve the higher priority interrupt.

4-Direct Memory Access (DMA)

We have discussed the data transfer between the processor and no

devices. We have discussed two different approaches namely

prograrhmed I/O and Intpt-driven tro Both the methods require the active

intervention of the processor to transfer data between memory and the I/O

module, and any data transfer must transverse a path through the

processor. Thus both these forms of tro suffer from two inherent

drawbacks.

1- The I/O transfer rate is limited by the speed with which the processor

can test and service adevice.

2- The processor is tied up in managing an I/O transfer; a number of

instructions must be executed for each I/O transfet.

To transfer large block of data at high speed, a special control unit may

be provided to allow transfer of a block of data directly between an

external device and the main memory, without continuous intervention by

the processor. This approach is called direct memory access or DMA.

22

DMA transfers are performed by a control circuit associated with the I/O

device and this circuit is referred as DMA controller. The DMA

controller allows direct data transfer between the device and the main

memory without involving the processor.

To transfer data between memory and I/O devices, DMA controller takes

over the control of the system from the processor and transfer of data take

place over the system bus. For this purpose, the DMA controller must use

the bus only when the processor does not need it, or it must force the

processor to suspend operation temporarily. The later technique is more

common and is referred to as cycle stealing, because the DMA module in

effect steals a bus cycle.

Figure: DMA Block daigram

When the processor wishes to read or write a block of data, it issues a

command to the DMA module, by sending to the DMA module the

following information.

1-Whether a read or write is requested, using the read or write control line

between the processor and the DMA module.

2-The address of the I/O devise involved, communicated on the data

lines.

23

3-The starting location in the memory to read from or write to,

communicated on data lines and stored by the DMA module in its address

register.

4-The number of words to be read or written again communicated via the

data lines and stored in the data count register.The processor then

continues with other works. It has delegated this no operation to the

DMA module. The DMA module checks the status of the I/O devise

whose address is communicated to DMA controller by the processor. If

the specified I/O devise is ready for data transfer, then DMA module

generates the DMA request to the processor. Then the processor indicates

the release of the system bus through DMA acknowledge.The DMA

module transfers the entire block of data, one word at a time, directly to

I/O from memory, without going through the processor.When the transfer

is completed, the DMA module sends an interrupt signal to the processor.

After receiving the interrupt signal, processor takes over the system

bus.Thus the processor is involved only at the beginning and end of the

transfer. During that time the processor is suspended. It is not required to

complete the current instruction to suspend the processor. The processor

may be suspended just after the completion of the current bus cycle. On

the other hand, the processor can be suspended just before the need of the

system bus by the processor, because DMA controller is going to use the

system bus, it will not use the processor. The point where in the

instruction cycle the processor may be suspended shown in the figure

below.

24

Figure: Instruction Cycle

When the processor is suspended, then the DMA module transfer one

word and return control to the processor.

Note that, this is not an interrupt, the processor does not save a context

and so something else.Rather, the processor pauses for one bus cycle.

During that time processor may perform some other task which does not

involve the system bus.In the worst situation processor will wait for some

time, till the DMA releases the bus.

The net effect is that the processor will go slow. But the net effect is the

enhancement of performed, because for a multiple word I/O transfer,

DMA is far more efficient than interrupt driven or programmed I/O.

The DMA mechanism can be configured in different ways. The most

common amongst them are:

o Single bus, detached DMA - I/O confrgtration.

o Single bus, Integrated DMA- I/O confrguration.

o Using separate I/O bus.

Single bus, detached DMA- I/O confrguration.

In this organization all modules share the same system bus.The DMA

module here acts as a surrogate processor. This method uses programmed

I/O to exchange data between memory and an I/O module through the

DMA module.

25

For each transfer it uses the bus twice. The first one is when transferring

the data between I/O and DMA and the second one is when transferring

the data between DMA and memory. Since the bus is used twice while

transferring data, so the bus will be suspended twice. The transfer

consumes two bus cycle. The interconnection organization is shown in

the figure(a).

Single bus, Integrated DMA- I/O confrguration.

By integrating the DMA- I/O and function thq number of required bus

cycle can be reduced. In this configuration, the DMA module and one or

more I/O modules are integrated together in such a way that the system

bus is not involved. In this case DMA logic may actually be a part of an

I/O module, or it may be a separate module that controls one or more fio

modules.

The DMA module, processor and the memory module are connected

through the system bus. In this configuration each transfer will use the

system bus only once and so the processor is suspended only once.

The system bus is not involved when transferring data between DMA and

I/O device, so processor is not suspended. Processor is suspended when

data is transferred between DMA and memory. The configuration is

shown in the figure(b).

 Using separate I/O bus.

In this configuration the I/O modules are connected to the DMA through

another I/O bus.In the case the DMA module is reduced to one.

Transfer of data between I/O module and DMA module is carried out

through this I/O bus. In this transfer, system bus is not in use and so it is

not needed to suspend the proiessor.

There is another transfer phase between DMA module and memory. In

this time system bus is needed for transfer and processor will be

suspended for one bus cycle. The configuration is shown in the figure(c).

26

5-I/O Channals And Processors

as computer system have evolved, there has been a pattern of increasing complexity

and sophistication of individual components; No where is this more than in the I/O

function. We have already seen part of that evolution. The evolutionary steps can be

summarized as follows:

processer DMA I/O memory

DMA

I/O

(a) Single bus, detached DMA- I/O

confrguration.

processer DMA

I/O

memory

I/O I/O

(b)Single bus, Integrated DMA- I/O

confrguration.

DMA

(c) Using separate I/O bus.

I/O bus

System bus

Figure: DMA mechanism

processer memory

I/O I/O I/O

27

28

Figure: I/O Channel Architecture

discussing. Thus , the I/O channel serves in place of the CPU in

controlling these I/O controllers. Amultiplexorchannel can handle I/O

with multiple devices at the same time. For low- speed devices ,abyte

multiplexor accepts or transmits characters as fast as possible to multiple

devices.

29

Associative Memories
1- Content Addressing

 In conventional memories could be access to the information by the

address of the location that is contained it. There are another situations,

where the reverse function is required, In other words, the contents are

known, it is necessary to determine the location where this information

has been stored.

 It should be possible to determine the address of a memory location be

means of the contents stored therein. Such memories called (content –

addressed or Associative memories). These memories are very

convenient to perform parallel searches by data association.

It is possible to address such memories by the data itself. When a location

is to be accessed, the value of the contents of the location (or a part-a sub-

field of the word) is supplied. The memory accesses all the locations in

parallel and identifies all the locations where the contents match the

specified value. These can then be read out.

When a new word is to be stored the address is specified. The word is

stored in any unused (empty) location.

Example:

Function f(x) may have been stored for several values (x1,x2,…,xn), this

may have been as a table with two field (xi,f(xi)).

Let us assume that the values xi and f(xi) are both stored in a single

location Li with two sub-field. The problem is to determine the value

f(xi) given xi.

2-Operation of Associative Memories

 Each location of the memory is assumed to contain an argument

field and a contents field. The value which is required to be matched is

loaded in to the argument register. This compared with the contents of

the argument field of each location. The match register has one bit for

30

each location of the memory. Wherever the argument field of the

location matches the content of the argument register, the corresponding

bit is set in the match register. The match register tags all the locations

where a match has been found. It is possible then to read the contents of

each of these locations in sequential.

An optional „key‟ register may be used to choose only particular bits in

the argument for matching. Bits of the argument register are used for

matching only if the corresponding bits of the key register are 1 .they

are ignored otherwise. It is possible to construct associative memories

with several argument fields. Anyone of these may be used at any given

time for effecting an associative search, each having its own key

register .

3-Applications

 It is obvious that associative memories will be significantly more

expensive than the corresponding regular memories. Consequently they

are used only in application where the time available for associative

search is very limited. They are typically used in virtual memory and

cache systems.

31

Cache Coherence Basic Concept

May be there are more than one cache memory in the system computer.

Multiple copies of data, spread throughout the caches, lead to a coherence

problem among the caches. The copies in the caches are coherent if they

all equal the same value. However, if one of the processors writes over

the value of one of the copies, then the copy becomes inconsistent

because it no longer equals the value of the other copies. If data are

allowed to become inconsistent (incoherent), incorrect results will be

propagated through the system, leading to incorrect final results. Cache

coherence algorithms are needed to maintain a level of consistency

throughout the parallel system.

A- Cache–Memory Coherence

 In a single cache system, coherence between memory and the cache is

maintained using one of two policies:

(1) write-through.

(2) write-back.

Argument register

Key register

Argument Content

M
a
tch

 R
eg

ister

Read

write

output

Figure: Associative Memory operation.

32

When a task running on a processor P requests the data in memory

location X, for example, the contents of X are copied to the cache, where

it is passed on to P. When P updates the value of X in the cache, the

other copy in memory also needs to be updated in order to maintain

consistency. In write-through, the memory is updated every time the

cache is updated, while in write-back, the memory is updated only when

the block in the cache is being replaced. Table1 shows the write-through

versus write-back policies.

 TABLE 1 Write-Through vs. Write-Back

B- Cache–Cache Coherence

In multiprocessing system, when a task running on processor P requests

the data in global memory location X, for example, the contents of X are

copied to processor P‟s local cache, where it is passed on to P. Now,

suppose processor Q also accesses X. What happens if Q wants to write a

new value over the old value of X? There are two fundamental cache

coherence policies:

 (1) write-invalidate.

(2) write-update.

Write-invalidate maintains consistency by reading from local caches until

a write occurs. When any processor updates the value of X through a

write, posting a dirty bit for X invalidates all other copies. For example,

processor Q invalidates all other copies of X when it writes a new value

into its cache. This sets the dirty bit for X. Q can continue to change X

33

without further notifications to other caches because Q has the only valid

copy of X. However, when processor P wants to read X, it must wait until

X is updated and the dirty bit is cleared.

Write-update maintains consistency by immediately updating all copies in

all caches. All dirty bits are set during each write operation. After all

copies have been updated, all dirty bits are cleared. Table2 shows the

write-update versus write-invalidate policies.

 TABLE2 Write-Update vs. Write-Invalidate

C- Shared Memory System Coherence

The four combinations to maintain coherence among all caches and

global memory are:

. Write-update and write-through;

. Write-update and write-back;

. Write-invalidate and write-through; and

. Write-invalidate and write-back.

If we permit a write-update and write-through directly on global memory

location X, the bus would start to get busy and ultimately all processors

would be idle while waiting for writes to complete. In write-update and

write-back, only copies in all caches are updated. On the contrary, if the

write is limited to the copy of X in cache Q, the caches become

inconsistent on X. Setting the dirty bit prevents the spread of inconsistent

values of X, but at some point, the inconsistent copies must be updated.

34

Pipelining Techniques

There exist two basic techniques to increase the instruction execution rate

of a processor. These are to increase the clock rate, thus decreasing the

instruction execution time, or alternatively to increase the number of

instructions that can be executed simultaneously. Pipelining and

instruction-level parallelism are examples of the latter technique.

Figure (0): Multiple issue versus pipelining versus sequential processing

Pipelining owes its origin to car assembly lines. The idea is to have more

than one instruction being processed by the processor at the same time.

Similar to the assembly line, the success of a pipeline depends upon

dividing the execution of an instruction among a number of subunits

35

(stages), each performing part of the required operations. A possible

division is to consider instruction fetch (F), instruction decode (D),

operand fetch (F), instruction execution (E), and store of results (S) as the

subtasks needed for the execution of an instruction.

In this case, it is possible to have up to five instructions in the pipeline at

the same time, thus reducing instruction execution latency.

1. General Concept

Pipelining refers to the technique in which a given task is divided into a

number of subtasks that need to be performed in sequence. Each subtask

is performed by a given functional unit. The units are connected in a

serial fashion and all of them operate simultaneously. The use of

pipelining improves the performance compared to the traditional

sequential execution of tasks. Figure 1 shows an illustration of the basic

difference between executing four subtasks of a given instruction (in this

case fetching F, decoding D, execution E, and writing the results W)

using pipelining and sequential processing.

 Figure(1): Pipelining versus sequential processing.

It is clear from the figure that the total time required to process three

instructions (I1, I2, I3) is only six time units if four-stage pipelining is

used as compared to 12 time units if sequential processing is used. A

possible saving of up to 50% in the execution time of these three

instructions is obtained. In order to formulate some performance

measures for the goodness of a pipeline in processing a series of tasks, a

36

space time chart (called the Gantt‟s chart) is used. The chart shows the

succession of the subtasks in the pipe with respect to time. Figure (2)

shows a Gantt‟s chart. In this chart, the vertical axis represents the

subunits (four in this case) and the horizontal axis represents time

(measured in terms of the time unit required for each unit to perform its

task). In developing the Gantt‟s chart, we assume that the time (T) taken

by each subunit to perform its task is the same; we call this the unit time.

As can be seen from the figure, 13 time units are needed to finish

executing instructions (I1 to I10). This is to be compared to 40 time units if

sequential processing is used (ten instructions each requiring four time

units).

Figure(2): The space–time chart (Gantt chart)

In the following analysis, we provide three performance measures for the

goodness of a pipeline. These are the Speed-up S(n), Throughput U(n),

and Efficiency E(n). It should be noted that in this analysis we assume

that the unit time T= t units.

1. Speed-up S(n): Consider the execution of m tasks (instructions) using

n-stages (units) pipeline. As can be seen, n + m -1 time units are required

to complete m tasks.

37

2. Throughput U(n) is a number of tasks executed per unit time .

Throughput U(n)

3. Efficiency E(n) : Ratio of the actual speed-up to the maximum speed-

up.

 Efficiency E(n)

2. Instruction Pipeline

The simple analysis made in Section 9.1 ignores an important aspect that

can affect the performance of a pipeline, that is, pipeline stall. A pipeline

operation is said to have been stalled if one unit (stage) requires more

time to perform its function, thus forcing other stages to become idle.

Consider, for example, the case of an instruction fetch that incurs a cache

miss. Assume also that a cache miss requires three extra time units.

Figure(3) illustrates the effect of having instruction I2 incurring a cache

miss (assuming the execution of ten instructions I1 to I10).

Figure(3): Effect of a cache miss on the pipeline

The figure shows that due to the extra time units needed for instruction I2

to be fetched, the pipeline stalls, that is, fetching of instruction I3 and

subsequent instructions are delayed. Such situations create what is known

as pipeline bubble (or pipeline hazards). The creation of a pipeline bubble

38

leads to wasted unit times, thus leading to an overall increase in the

number of time units needed to finish executing a given number of

instructions. The number of time units needed to execute the 10

instructions shown in Figure(3) is now 16 time units, compared to 13

time units if there were no cache misses. Pipeline hazards can take place

for a number of other reasons. Among these are :

A: Instruction dependency.

B: Data dependency.

A: Instruction Dependency

Correct operation of a pipeline requires that operation performed by a

stage must not depend on the operation(s) performed by other stage(s).

Instruction dependency refers to the case where by fetching of an

instruction depends on the results of executing a previous instruction.

Instruction dependency manifests itself in the execution of a conditional

branch instruction. Consider, for example, the case of a “branch if

negative” instruction. In this case, the next instruction to fetch will not be

known until the result of executing that “branch if negative” instruction is

known. In the following discussion, we will assume that the instruction

following a conditional branch instruction is not fetched until the result of

executing the

branch instruction is known (stored). The following example shows the

effect of instruction dependency on a pipeline.

Example 1: Consider the execution of ten instructions I1–I10 on a pipeline

consisting of four pipeline stages: IF (instruction fetch), ID (instruction

decode), IE (instruction execute), and IS (instruction results store).

Assume that the instruction I4 is a conditional branch instruction and that

when it is executed, the branch is not taken, that is, the branch

condition(s) is(are) not satisfied. Assume also that when the branch

instruction is fetched, the pipeline stalls until the result of executing the

39

branch instruction is stored. Figure (4) shows that stall and the required

Gantt‟s chart.

Figure (4): Instruction dependency effect on a pipeline

B:Data Dependency

Data dependency in a pipeline occurs when a source operand of

instruction

Ii depends on the results of executing a preceding instruction, Ij, i > j. It

should be noted that although instruction Ii can be fetched, its operand(s)

may not be available until the results of instruction Ij are stored. The

following example shows the effect of data dependency on a pipeline.

Example 2: Consider the execution of the following piece of code:

In this piece of code, the first instruction, call it Ii, adds the contents of

two registers R1 and R2 and stores the result in register R3. The second

instruction, call it Ii+1 , shifts the contents of R3 one bit position to the left

and stores the result back into R3. The third instruction, call it Ii+2 , stores

the result of subtracting the content of R6 from the content of R5 in

register R4. In order to show the effect of such data dependency, we will

assume that the pipeline consists of five stages, IF, ID, OF, IE, and IS. In

this case, the (OF) stage represents the operand fetch stage. The functions

of the remaining four stages remain the same as explained before. As

shown in the figure(5), although instruction Ii+1has been successfully

40

decoded during time unit k +2, this instruction cannot proceed to the OF

unit during time unit k + 3. This is because the operand to be fetched by

Ii+1 during time unit k+3 should be the content of register R3, which has

been modified by execution of instruction Ii . However, the modified

value of R3 will not be available until the end of time unit k+4. This will

require instruction Ii+1 to wait (at the output of the ID unit) until k+5.

Notice that instruction Ii+2 will have also to wait (at the output of the IF

unit) until such time that instruction Ii+1 proceeds to the ID. The net result

is that pipeline stall takes place due to the data dependency that exists

between instruction Ii and instruction Ii+1.

Figure(5): The write-after-write data dependency

The data dependency presented in the above example resulted because

register R3 is the destination for both instructions Ii and Ii+1. This is called

a write-after-write data dependency. Taking into consideration that any

register can be written into (or read from), then a total of four different

possibilities exist, including the:

 write-after-write.

 read-after-write .

 write-after-read.

 read-after-read.

41

Among the four cases, the read-after-read case should not lead to pipeline

stall. This is because a register read operation does not change the content

of the register. Among the remaining three cases, the write-after-write

(see the above example) and the read-after-write lead to pipeline stall.

The following

piece of code illustrates the read-after-write case:

In this case, the first instruction modifies the content of register R3

(through a write operation) while the second instruction uses the modified

contents of R3 (through a read operation) to load a value into register R4.

While these two instructions are proceeding within a pipeline, care should

be taken so that the value of register R3 read in the second instruction is

the updated value resulting from execution of the previous instruction see

figure(6).

In this case assuming that the first instruction is called Ii and the second

instruction is called Ii+1.

It is clear that the operand of the second instruction cannot be fetched

during time unit k+3 and that it has to be delayed until time unit k+5.

This is because the modified value of the content of register R3 will not

be available until time slot k+5.

42

Figure(6) The read-after-write data dependency

Fetching the operand of the second instruction during time slot k+3 will

lead to incorrect results.

Example 3: Consider the execution of the following sequence of

instructions on a five-stage pipeline consisting of IF, ID, OF, IE, and IS.

It is required to show the succession of these instructions in the pipeline.

In this example, the following data dependencies are observed:

Figure(7) illustrates the progression of these instructions in the pipeline

taking into consideration the data dependencies mentioned above. The

assumption made in constructing the Gantt‟s chart in Figure(7) is that

fetching an operand by an instruction that depends on the results of a

previous instruction execution is delayed until such operand is available,

that is, the result is stored. A total of 16 time units are required to execute

43

the given seven instructions taking into consideration the data

dependencies among the different instructions.

Figure (7) Gantt‟s chart for Example 3

Based on the results obtained above, we can compute the speed-up and

the throughput for executing the piece of code given in Example 3 as:

The discussion on pipeline stall due to instruction and data dependencies

should reveal three main points about the problems associated with

having such dependencies. These are:

1. Both instruction and data dependencies lead to added delay in the

pipeline.

2. Instruction dependency can lead to the fetching of the wrong

instruction.

3. Data dependency can lead to the fetching of the wrong operand.

There exist a number of methods to deal with the problems resulting from

instruction and data dependencies. Some of these methods try to prevent

the fetching of the wrong instruction or the wrong operand while others

try to reduce the delay incurred in the pipeline due to the existence of

instruction or data dependency. A number of these methods are

introduced below.

44

3-Methods Used to Prevent Fetching the Wrong Instruction

or Operand

Use of NOP (No Operation):

 This method can be used in order to prevent the fetching of the wrong

instruction, in case of instruction dependency, or fetching the wrong

operand, in case of data dependency. Recall Example 1. In that example,

the execution of a sequence of ten instructions I1–I10 on a pipeline

consisting of four pipeline stages: IF, ID, IE, and IS were considered. In

order to show the execution of these instructions in the pipeline, we have

assumed that when the branch instruction is fetched, the pipeline stalls

until the result of executing the branch instruction is stored. This

assumption was needed in order to prevent fetching the wrong instruction

after fetching the branch instruction. In real-life situations, a mechanism

is needed to guarantee fetching the appropriate instruction at the

appropriate time. Insertion of “NOP” instructions will help carrying out

this task. A “NOP” is an instruction that has no effect on the status of the

processor.

Example4: Consider the execution of ten instructions I1–I10 on a

pipeline consisting of four pipeline stages: IF, ID, IE, and IS. Assume that

instruction I4 is a conditional branch instruction and that when it is

executed, the branch is not taken; that is, the branch condition is not

satisfied.

45

Figure(8) The use of NOP instructions

In order to execute this set of instructions while preventing the fetching of

the wrong instruction, we assume that a specified number of NOP

instructions have been inserted such that they follow instruction I4 in the

sequence and they precede instruction I5. Figure(8) shows the Gantt‟s

chart illustrating the execution of the new sequence of instructions (after

inserting the NOP instructions). The figure shows that the insertion of

THREE NOP instructions after instruction I4 will guarantee that the

correct instruction to fetch after I4, in this case I5, will only be fetched

during time slot number 8 at which the result of executing I4 would have

been stored and the condition for the branch would have been known.

It should be noted that the number of NOP instructions needed is equal to

(n-1), where n is the number of pipeline stages.

Note: the use of NOP instructions to prevent fetching the wrong

instruction in the case of instruction dependency. A similar approach can

be used to prevent fetching the wrong operand in the case of data

dependency. Consider the execution of the following piece of code on a

five-stage pipeline (IF, ID, OF, IE, IS).

Note the data dependency in the form of read-after-write (R-W) between

the first two instructions. Fetching the operand for the second instruction,

that is, fetching the content of R3, cannot proceed until the result of the

46

first instruction has been stored. In order to achieve that, NOP

instructions can be inserted between the first two instructions as shown

below.

Execution of the modified sequence of instructions is shown in Figure(9).

The figure shows that the use of NOP guarantees that during time unit #6

instruction.

Figure(9): Use of NOP in data dependency

I2 will fetch the correct value of R3. This is the value stored as a result of

executing instruction I1 during time unit #5.

4- Methods Used to Reduce Pipeline Stall Due to Instruction

Dependency

-Unconditional Branch Instructions

 In order to be able to reduce the pipeline stall due to unconditional

branches, it is necessary to identify the unconditional branches as early as

possible and before fetching the wrong instruction. It may also be

possible to reduce the stall by reordering the instruction sequence. These

methods are explained below.

47

*REORDERING OF INSTRUCTIONS:

 In this case, the sequence of instructions are reordered such that correct

instructions are brought to the pipeline while guaranteeing the correctness

of the final results produced by the reordered set of instructions.

Consider, for example, the execution of the following group of

instructions I1, I2, I3, I4, I5., ., Ij, Ij+1, ., . on a pipeline consisting of three

pipeline stages: IF, IE, and IS. In this group of instructions, I4 is an

unconditional branch instruction whereby the target instruction is Ij.

Execution of this group of instructions in the same sequence as given will

lead to the incorrect fetching of instruction I5 after fetching instruction I4.

However, consider execution of the reordered sequence I1, I4, I2, I3, I5, . .,

Ij, Ij+1. Execution of this reordered sequence using the three-stage pipeline

is shown in Figu(10).

The figure shows that the reordering of the instructions causes instruction

Ij to be fetched during time unit #5, that is, after instruction I4 has been

executed. Reordering of instructions can be done using a “smart”

compiler that can scan the sequence of code and decide on the appropriate

reordering of instructions that will lead to producing the correct final

results while minimizing the number of time units lost due to the

instruction dependency. One important condition that must be satisfied in

order for the reordering of the instruction method to produce correct

results is that the set of instructions that are swapped with the branch

instruction hold no data and/or instruction dependency relationship

among them.

48

Figure(10): Instruction reordering

**USE OF DEDICATED HARDWARE IN THE FETCH UNIT

In this case, the fetch unit is assumed to have associated with it a

dedicated hardware unit capable of recognizing unconditional branch

instructions and computing the branch target address as quickly as

possible. Consider, for example, the execution of the same sequence of

instructions as illustrated above. Assume also that the fetch unit has a

dedicated hardware unit capable of recognizing unconditional branch

instructions and computing the branch address using no additional time

units. Figure(11) shows the Gantt‟s chart for this sequence of instructions.

The figure shows that the correct sequence of instructions is executed

while incurring no extra unit times.

The assumption of needing no additional time units to recognize branch

instructions and computing the target branch address is unrealistic. In

typical cases, the added hardware unit to the fetch unit will require

additional time unit(s) to carry out its task of recognizing branch

instructions and computing target branch addresses. During the extra time

units needed by the hardware unit, if other instructions can be executed,

then the number of extra time units needed may be reduced and indeed

may be eliminated altogether. This is the essence of the method shown

below.

49

Figure(11) Use of additional hardware unit for branch instruction

recognition

***PRECOMPUTING OF BRANCHES AND REORDERING OF

INSTRUCTIONS

This method can be considered as a combination of the two methods

discussed in the previous two sections above. In this case, the dedicated

hardware (used to recognize branch instructions and computing the target

branch address) executes its task concurrently with the execution of other

instructions. Consider, for example, the same sequence of instructions

given above. Assume also that the dedicated hardware unit requires one

time unit to carry out its task. In this case, reordering of the instructions to

become I1, I2, I4, I3, I5., ., Ij, Ij+1, ., . should produce the correct results

while causing no additional lost time units. This is illustrated using the

Gantt‟s chart in Figure(12). Notice that time unit #4 is used by the

dedicated hardware unit to compute the target branch address

concurrently with the fetching of instruction I3.

Figure (12): Branch folding

It should be noted that the success of this method depends on the

availability of instructions to be executed concurrently while the

dedicated hardware unit is computing the target branch address. In the

50

case presented above, it was assumed that reordering of instructions can

provide those instructions that can be executed concurrently with the

target branch computation. However, if such reordering is not possible,

then the use of an instruction queue together with prefetching of

instructions can help provide the needed conditions. This is explained

below.

INSTRUCTION PREFETCHING

This method requires that instructions can be fetched and stored in an

instruction queue before they are needed. The method also calls for the

fetch unit to have the required hardware needed to recognize branch

instructions and compute the target branch address. If a pipeline stalls due

to data dependency causing no new instructions to be fetched into the

pipeline, then the fetch unit can use such time to continue fetching

instructions and add them to the instruction queue. On the other hand, if a

delay in the fetching of instructions occurs, for example, due to

instruction dependency, then those prefetched instructions in the

instruction queue can be used to provide the pipeline with new

instructions, thus eliminating some of the otherwise lost time units due to

instruction dependency.

DELAYED BRANCH:

Delayed branch refers to the case where by it is possible to fill the

location(s) following a conditional branch instruction, called the branch

delay slot(s), with useful instruction(s) that can be executed until the

target branch address is known. Consider, for example, the execution of

the following program loop on a pipeline consisting of two stages: Fetch

(F) and Execute (E).

51

It should be noted that at the end of the first loop, either instruction I1 or

instruction I4 will have to be fetched depending on the result of executing

instruction I3. The way with which such a situation has been dealt will

delay fetching of the next instruction until the result of executing

instruction I3 is known. This will lead to incurring extra delay in the

pipeline. However, this extra delay may be avoided if the sequence of

instructions has been reordered to become as follows.

Figure(13) shows the Gantt‟s chart for executing the modified piece of

code for the case R2 =3 before entering the loop.

The figure indicates that branching takes place one instruction later than

the actual place where the branch instruction appears in the original

instruction sequence, hence the name “delayed branch.” It is also clear

from Figure(13) that by reordering the sequence of instructions, it was

possible to fill the branch delay time slot with a useful instruction, thus

eliminating any extra delay in the pipeline.

It has been shown in a number of studies that “smart” compilers were

able to make use of one branch delay time slot in more than 80% of the

cases. The use of branch delay time slots has led to the improvement of

both the speed-up and the throughput of those processors using “smart”

compilers.

52

PREDICTION OF THE NEXT INSTRUCTION TO FETCH

This method tries to reduce the time unit(s) that can potentially be lost

due to instruction dependency by predicting the next instruction to fetch

after fetching a conditional branch instruction. The basis is that if the

branch outcomes are random, then it would be possible to save about

50% of the otherwise lost time. A simple way to carry out such a

technique is to assume that whenever a conditional branch is encountered,

the system predicts that the branch will not be taken (or alternatively will

be taken).

Figure (13) Delayed branch

In this way, fetching of instructions in sequential address order will

continue (or fetching of instructions starting from the target branch

instruction will continue). At the completion of the branch instruction

execution, the results will be known and a decision will have to be made

as to whether the instructions that were executed assuming that the

branch will not be taken (or taken) were the intended correct instruction

sequence or not. The outcome of this decision is one of two possibilities.

If the prediction was correct, then execution can continue with no wasted

time units. If, on the other hand, the wrong prediction has been made,

then care must be taken such that the status of the machine, measured in

terms of memory and register contents, should be restored as if no

speculative execution took place.

