
Operating system Dr. Shroouq J.

1

1.2.2 Multiprogrammed Systems

The most important aspect of job scheduling is the ability to multiprogram.

A single user cannot keep either the CPU or the I/O devices busy at all times.

Multiprogramming increases CPU utilization by organizing jobs so that the CPU

always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory

simultaneously (Figure 1.3). This set of jobs is a subset of the jobs kept in the job

pool-since the number of jobs that can be kept simultaneously in memory is

usually much smaller than the number of jobs that can be in the job pool. The

Operating System

Job1

Job2

Job3

Job4

 Fig. 1.3 Memory layout for a multiprogramming system.

operating system picks and begins to execute one of the jobs in the memory.

Eventually, the job may have to wait for some task, such as an I/O operation, to

complete. In a non-multiprogrammed system, the CPU would sit idle. In a

multiprogramming system, the operating system simply switches to, and executes,

another job. When that job needs to wait, the CPU is switched to another job, and

so on.

0

512

Operating system Dr. Shroouq J.

2

Multiprogramming is the first instance where the operating system must make

decisions for the users. All the jobs that enter the system are kept in the job pool.

This pool consists of all processes residing on disk awaiting allocation of main

memory. If several jobs are ready to be brought into memory, and if there is not

enough room for all of them, then the system must choose among one them.

Making this decision is job scheduling. When the operating system selects a job

from the job pool, it loads that job into memory for execution. Having several

programs in memory at the same time requires some form of memory

management. In addition, if several jobs are ready to run at the same time, the

system must choose among them. Making this decision is CPU scheduling.

Finally, multiple jobs running concurrently require that their ability to affect one

another be limited in all phases of the operating system, including process

scheduling, disk storage, and memory management.

1.2.3 Time-Sharing Systems

Multiprogrammed, batched systems provided an environment where the

various system resources (for example, CPU, memory, peripheral devices) were

utilized effectively, but it did not provide for user interaction with the computer

system. Time sharing (or multitasking) is a logical extension of multiprogramming.

The CPU executes multiple jobs by switching among them, but the switches occur

so frequently that the users can interact with each program while it is running.

An interactive (or hands-on) computer system provides direct communication

between the user and the system. The user gives instructions to the operating

system or to a program directly, using a keyboard or a mouse, and waits for

immediate results. Accordingly, the response time should be short typically within

one second or so. A time-shared operating system allows many users to share the

computer simultaneously. Since each action or command in a time-shared system

Operating system Dr. Shroouq J.

3

tends to be short, only a little CPU time is needed for each user. As the system

switches rapidly from one user to the next, each user is given the impression that

the entire computer system is dedicated to her use, even though it is being shared

among many users.

A time-shared operating system uses CPU scheduling and multiprogramming to

provide each user with a small portion of a time-shared computer. Each user has at

least one separate program in memory. A program loaded into memory and

executing is commonly referred to as a process. Since interactive I/O typically runs

at "people speeds," it may take a long time to complete. Rather than let the CPU sit

idle when this interactive input takes place, the operating system will rapidly

switch the CPU to the program of some other user.

Time-sharing operating systems are even more complex than multiprogrammed

operating systems. In both, several jobs must be kept simultaneously in memory,

so the system must have memory management and protection. To obtain a

reasonable response time, jobs may have to be swapped in and out of main

memory to the disk that now serves as a backing store for main memory. A

common method for achieving this goal is virtual memory, which is a technique

that allows the execution of a job that may not be completely in memory. The main

advantage of the virtual-memory scheme is that programs can be larger than

physical memory.

Time-sharing systems must also provide a file system, a mechanism for concurrent

execution, mechanisms for job synchronization and communication and it may

ensure that jobs do not get stuck in a deadlock, forever waiting for one another.

Accordingly, multiprogramming and time sharing are the central themes of modern

operating systems.

Operating system Dr. Shroouq J.

4

1.3 Desktop Systems

 Personal computers PCs appeared in the 1970s. During their first decade, the

CPUs in PCs lacked the features needed to protect an operating system from user

programs. PC operating systems therefore were neither multiuser nor multitasking.

However, the goals of these operating systems have changed with time; instead of

maximizing CPU and peripheral utilization, the systems opt for maximizing user

convenience and responsiveness.

Operating systems for these computers have benefited in several ways from the

development of operating systems for mainframes. Microcomputers were

immediately able to adopt some of the technology developed for larger operating

systems. On the other hand, the hardware costs for microcomputers are sufficiently

low that individuals have sole use of the computer, and CPU utilization is no

longer a prime concern. Thus, some of the design decisions made in operating

systems for mainframes may not be appropriate for smaller systems. Other design

decisions still apply. For example, file protection was, at first, not necessary on a

personal machine. However, these computers are now often tied into other

computers over local-area networks or other Internet connections. When other

computers and other users can access the files on a PC, file protection again

becomes a necessary feature of the operating system. The lack of such protection

has made it easy for malicious programs to destroy data on systems such as MS-

DOS and the Macintosh operating system. These programs may be self-replicating,

and may spread rapidly via worm or virus mechanisms and disrupt entire

companies or even worldwide networks. Advanced timesharing features such as

protected memory and file permissions are not enough, on their own, to safeguard

a system from attack.

Operating system Dr. Shroouq J.

5

1.4 Multiprocessor Systems

Most systems to date are single-processor systems; that is, they have only

one main CPU. However, multiprocessor systems (also known as parallel

systems or tightly coupled systems) are growing in importance. Such systems

have more than one processor in close communication, sharing the computer bus,

the clock, and sometimes memory and peripheral devices. Multiprocessor systems

have three main advantages.

1. Increased throughput. By increasing the number of processors, we hope to get

more work done in less time. The speed-up ratio with N processors is not N; rather,

it is less than N. When multiple processors cooperate on a task, a certain amount of

overhead is incurred in keeping all the parts working correctly. This overhead, plus

contention for shared resources, lowers the expected gain from additional

processors. Similarly, a group of N programmers working closely together does not

result in N times the amount of work being accomplished.

2. Economy of scale. Multiprocessor systems can save more money than multiple

single-processor systems, because they can share peripherals, mass storage, and

power supplies. If several programs operate on the same set of data, it is cheaper to

store those data on one disk and to have all the processors share them, than to have

many computers with local disks and many copies of the data.

3. Increased reliablility. If functions can be distributed properly among several

processors, then the failure of one processor will not halt the system, only slow it

down. If we have ten processors and one fails, then each of the remaining nine

processors must pick up a share of the work of the failed processor. Thus, the

entire system runs only 10 percent slower, rather than failing altogether. This

ability to continue providing service proportional to the level of surviving

Operating system Dr. Shroouq J.

6

hardware is called graceful degradation. Systems designed for graceful

degradation are also called fault tolerant.

Continued operation in the presence of failures requires a mechanism to allow the

failure to be detected, diagnosed, and, if possible, corrected. The Tandem system

uses both hardware and software duplication to ensure continued operation despite

faults. The system consists of two identical processors, each with its own local

memory. The processors are connected by a bus. One processor is the primary and

the other is the backup. Two copies are kept of each process: one on the primary

processor and the other on the backup. At fixed checkpoints in the execution of the

system, the state information of each job including a copy of the memory image-is

copied from the primary machine to the backup. If a failure is detected, the backup

copy is activated and is restarted from the most recent checkpoint. This solution is

expensive, since it involves considerable hardware duplication.

The most common multiple-processor systems now use symmetric

multiprocessing (SMP), in which each processor runs an identical copy of the

operating system, and these copies communicate with one another as needed. Some

systems use asymmetric multiprocessing, in which each processor is assigned a

specific task. A master processor controls the system; the other processors either

look to the master for instruction or have predefined tasks. This scheme defines a

master-slave relationship. The master processor schedules and allocates work to

the slave processors.

SMP means that all processors are peers; no master-slave relationship exists

between processors. Each processor concurrently runs a copy of the operating

system.

Operating system Dr. Shroouq J.

7

 Fig 1.4 illustrates a typical SMP architecture.

The difference between symmetric and asymmetric multiprocessing may be the

result of either hardware or software. Special hardware can differentiate the

multiple processors, or the software can be written to allow only one master and

multiple slaves.

CPU1 CPU2 CPUn ………………….

Memory

