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6.3   Scheduling Algorithms 

CPU scheduling deals with the problem of deciding which of the processes in the 

ready queue is to be allocated the CPU.  

 

6.3.1 First-Come, First-Served Scheduling 

By far the simplest CPU-scheduling algorithm is the first-come, first-served 

(FCFS) scheduling algorithm. With this scheme, the process that requests the CPU 

first is allocated the CPU first. The implementation of the FCFS policy is easily 

managed with a FIFO queue. When a process enters the ready queue, its PCB is 

linked onto the tail of the queue. When the CPU is free, it is allocated to the 

process at the head of the queue. The running process is then removed from the 

queue. The average waiting time under the FCFS policy, is often quite long. 

Consider the following set of processes that arrive at time 0, with the length of the 

CPU-burst time given in milliseconds: 

                    Process                                   Burst Time 

      P1      24 

      P2                                                3 

      P3                                                3 

 

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,we get 

the result shown in the following Gantt chart: 
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The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, 

and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 

27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, Pl, however, 

the results will be as shown in the following Gantt chart: 

 

 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is 

substantial. Thus, the average waiting time under a FCFS policy is generally not 

minimal, and may vary substantially if the process CPU-burst times vary greatly. 

In addition, consider the performance of FCFS scheduling in a dynamic situation. 

Assume we have one CPU-bound process and many I/O-bound processes. The 

CPU-bound process will get the CPU and hold it. During this time, all the other 

processes will finish their I/O and move into the ready queue, waiting for the CPU. 

While the processes wait in the ready queue, the I/O devices are idle. Eventually, 

the CPU-bound process finishes its CPU burst and moves to an I/O device. All the 

I/O-bound processes, which have very short CPU bursts, execute quickly and move 

back to the I/O queues. At this point, the CPU sits idle. The CPU-bound process 

will then move back to the ready queue and be allocated the CPU. Again, all the 

I/O processes end up waiting in the ready queue until the CPU-bound process is 

done. the other processes wait for the one big process to get off the CPU. This 

effect results in lower CPU and device utilization than might be possible if the 

shorter processes were allowed to go first. 

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been 

allocated to a process, that process keeps the CPU until it releases the CPU, either 
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by terminating or by requesting I/O. The FCFS algorithm is particularly 

troublesome for time-sharing systems, where each user needs to get a share of the 

CPU at regular intervals. It would be disastrous to allow one process to keep the 

CPU for an extended period. 

 

6.3.2 Shortest-Job-First Scheduling 

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling 

algorithm. This algorithm associates with each process the length of the latter's 

next CPU burst. When the CPU is available, it is assigned to the process that has 

the smallest next CPU burst. If two processes have the same length next CPU 

burst, FCFS scheduling is used to break the tie. As an example, consider the 

following set of processes, with the length of the CPU-burst time given in 

milliseconds: 

Process    Burst Time 

    P1      6 

    P2      8 

    p3             7 

    p4                3 

Using SJF scheduling, we would schedule these processes according to the 

following Gantt chart: 

 

 

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2,9 

milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average 
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waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using the FCFS 

scheduling scheme, then the average waiting time would be 10.25 milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it gives the minimum 

average waiting time for a given set of processes. By moving a short process 

before a long one, the waiting time of the short process decreases more than it 

increases the waiting time of the long process. Consequently, the average waiting 

time decreases. 

The real difficulty with the SJF algorithm is knowing the length of the next CPU 

request. For long-term (or job) scheduling in a batch system, we can use as the 

length the process time limit that a user specifies when he submits the job. SJF 

scheduling is used frequently in long-term scheduling. 

Although the SJF algorithm is optimal, it cannot be implemented at the level of 

short-term CPU scheduling. There is no way to know the length of the next CPU 

burst. One approach is to try to approximate SJF scheduling. We may not know the 

length of the next CPU burst, but we may be able to predict its value. 

We expect that the next CPU burst will be similar in length to the previous ones. 

Thus, by computing an approximation of the length of the next CPU burst, we 

can pick the process with the shortest predicted CPU burst. 

The SJF algorithm may be either preemptive or nonpreemptive. The choice arises 

when a new process arrives at the ready queue while a previous process is 

executing. The new process may have a shorter next CPU burst than what is left 

of the currently executing process. A preemptive SJF algorithm will preempt the 

currently executing process, whereas a nonpreemptive SJF algorithm will allow 

the currently running process to finish its CPU burst. Preemptive SJF scheduling 

is sometimes called shortest-remaining-time-first scheduling. 
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As an example, consider the following four processes, with the length of the CPU-

burst time given in milliseconds: 

Process   Arrival Time   Burst Time 

   P1     0     8 

   P2     1             4 

   P3     2     9 

   p4     3     5 

 

If the processes arrive at the ready queue at the times shown and need the indicated 

burst times, then the resulting preemptive SJF schedule is as depicted in the 

following Gantt chart: 

 

 

Process P1 is started at time 0, since it is the only process in the queue. Process 

P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is larger 

than the time required by process P2 (4 milliseconds), so process P1 is preempted, 

and process P2 is scheduled. The average waiting time for this example is ((10 - 1) 

+ (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds. A nonpreemptive SJF 

scheduling would result in an average waiting time of 7.75 milliseconds. 

 

6.3.3 Priority Scheduling 

The SJF algorithm is a special case of the general priority-scheduling algorithm. 

A priority is associated with each process, and the CPU is allocated to the process 

with the highest priority. Equal-priority processes are scheduled in FCFS order. 
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An SJF algorithm is simply a priority algorithm where the priority (p) is the 

inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the 

priority, and vice versa. 

Priorities are generally some fixed range of numbers, such as 0 to 7, or 0 to 4,095. 

However, there is no general agreement on whether 0 is the highest or lowest 

priority. Some systems use low numbers to represent low priority; others use low 

numbers for high priority. This difference can lead to confusion. In this text, we 

use low numbers to represent high priority. 

As an example, consider the following set of processes, assumed to have arrived at 

time 0, in the order P1, P2, ..., Pn, with the length of the CPU-burst time given in 

milliseconds: 

Process   Burst Time    Priority 

    P1     10         3 

    p2     1         1 

    p3     2         4 

    P4     1         5 

    P5     5         2 

Using priority scheduling, we would schedule these processes according to the 

following Gantt chart: 

 

 

The average waiting time is 8.2 milliseconds. 

Priority scheduling can be either preemptive or nonpreemptive. When a process 

arrives at the ready queue, its priority is compared with the priority of  the 
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currently running process. A preemptive priority-scheduling algorithm will 

preempt the CPU if the priority of the newly arrived process is higher than the 

priority of the currently running process. A nonpreemptive priority-scheduling 

algorithm will simply put the new process at the head of the ready queue. 

A major problem with priority-scheduling algorithms is indefinite blocking (or 

starvation). A process that is ready to run but lacking the CPU can be considered 

blocked-waiting for the CPU. A priority-scheduling algorithm can leave some low-

priority processes waiting indefinitely for the CPU. In a heavily loaded computer 

system, a steady stream of higher-priority processes can prevent a low-priority 

process from ever getting the CPU. Generally, one of two things will happen. 

Either the process will eventually be run, or the computer system will eventually 

crash and lose all unfinished low-priority processes.  

A solution to the problem of indefinite blockage of low-priority processes is aging. 

Aging is a technique of gradually increasing the priority of processes that wait in 

the system for a long time. For example, if priorities range from 127 (low) to 0 

(high), we could decrement the priority of a waiting process by 1 every 15 minutes. 

Eventually, even a process with an initial priority of 127 would have the highest 

priority in the system and would be executed. In fact, it would take no more than 

32 hours for a priority 127 process to age to a priority 0 process. 

 

6.3.4 Round-Robin Scheduling 

The round-robin (RR) scheduling algorithm is designed especially for timesharing 

systems. It is similar to FCFS scheduling, but preemption is added to switch 

between processes. A small unit of time, called a time quantum (or time slice), is 

defined. A time quantum is generally from 10 to 100 milliseconds. The ready 

queue is treated as a circular queue. The CPU scheduler goes around the ready 
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queue, allocating the CPU to each process for a time interval of up to 1 time 

quantum. 

To implement RR scheduling, we keep the ready queue as a FIFO queue of 

processes. New processes are added to the tail of the ready queue. The CPU 

scheduler picks the first process from the ready queue, sets a timer to interrupt after 

1 time quantum, and dispatches the process. 

One of two things will then happen. The process may have a CPU burst of less 

than 1 time quantum. In this case, the process itself will release the CPU 

voluntarily. The scheduler will then proceed to the next process in the ready queue. 

Otherwise, if the CPU burst of the currently running process is longer than 1 time 

quantum, the timer will go off and will cause an interrupt to the operating system. 

A context switch will be executed, and the process will be put at the tail of the 

ready queue. The CPU scheduler will then select the next process in the ready 

queue. 

The average waiting time under the RR policy, however, is often quite long. 

Consider the following set of processes that arrive at time 0, with the length of 

the CPU-burst time given in milliseconds: 

Process   Burst Time 

     P1      24 

     P2      3 

     P3      3 

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 

milliseconds. Since it requires another 20 milliseconds, it is preempted after the 

first time quantum, and the CPU is given to the next process in the queue, process 

P2. Since process P2 does not need 4 milliseconds, it quits before its time quantum 

expires. The CPU is then given to the next process, process P3. Once each process 



Operating system                                                                                                                                 Dr.  Shroouq J. 

9 

 

has received 1 time quantum, the CPU is returned to process P1 for an additional 

time quantum. The resulting RR schedule is 

 

 

In the RR scheduling algorithm, no process is allocated the CPU for more than 1 

time quantum in a row. If a process' CPU burst exceeds 1 time quantum, that 

process is preempted and is put back in the ready queue. The RR scheduling 

algorithm is preemptive. 

If there are n processes in the ready queue and the time quantum is q, then each 

process gets l/n of the CPU time in chunks of at most q time units. Each process 

must wait no longer than (n - 1) x q time units until its next time quantum. For 

example, if there are five processes, with a time quantum of 20 milliseconds, then 

each process will get up to 20 milliseconds every 100 milliseconds. 

The performance of the RR algorithm depends heavily on the size of the time 

quantum. At one extreme, if the time quantum is very large (infinite), the RR 

policy is the same as the FCFS policy. If the time quantum is very small (say 1 

microsecond), the RR approach is called processor sharing, and appears  to the 

users as though each of n processes has its own processor running at l/n the speed 

of the real processor.  

In software, however, we need also to consider the effect of context switching on 

the performance of RR scheduling. Let us assume that we have only one process of 

10 time units. If the quantum is 12 time units, the process finishes in less than 1 

time quantum, with no overhead. If the quantum is 6 time units, however, the 
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process requires 2 quantam, resulting in 1 context switch. If the time quantum is 1 

time unit, then 9 context switches will occur, slowing the execution of the process 

accordingly .Thus, we want the time quantum to be large with respect to the 

context switch time. If the context-switch time is approximately 10 percent of the 

time quantum, then about 10 percent of the CPU time will be spent in context 

switch. 

Turnaround time also depends on the size of the time quantum. The average 

turnaround time of a set of processes does not necessarily improve as the time-

quantum size increases. In general, the average turnaround time can be improved if 

most processes finish their next CPU burst in a single time quantum.  


