
Operating system Dr. Shroouq J.

1

Deadlocks

In a multiprogramming environment, several processes may compete for a finite

number of resources. A process requests resources; if the resources are not

available at that time, the process enters a wait state. Waiting processes may never

again change state, because the resources they have requested are held by other

waiting processes. This situation is called a deadlock.

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously

in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode;

that is, only one process at a time can use the resource. If another process requests

that resource, the requesting process must be delayed until the resource has been

released.

2. Hold and wait: A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has completed

its task.

4. Circular wait: A set {P0, P1, ..., Pn) of waiting processes must exist such that P0

is waiting for a resource that is held by P1, P1 is waiting for a resource that is held

by P2, ..., Pn-1 is waiting for a resource that is held by Pn,, and Pn, is waiting for a

resource that is held by P0.

We emphasize that all four conditions must hold for a deadlock to occur. The

circular-wait condition implies the hold-and-wait condition, so the four conditions

are not completely independent.

Operating system Dr. Shroouq J.

2

Deadlock Prevention

The deadlock to occur, each of the four necessary conditions must hold. By

ensuring that at least one of these conditions cannot hold, we can prevent the

occurrence of a deadlock.

Mutual Exclusion

The mutual-exclusion condition must hold for non sharable resources. For

example, a printer cannot be simultaneously shared by several processes. Sharable

resources, on the other hand, do not require mutually exclusive access, and thus

cannot be involved in a deadlock. Read-only files are a good example of a sharable

resource. If several processes attempt to open a read-only file at the same time,

they can be granted simultaneous access to the file. A process never needs to wait

for a sharable resource. In general, however, we cannot prevent deadlocks by

denying the mutual-exclusion condition: Some resources are nonsharable.

hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must

guarantee that, whenever a process requests a resource, it does not hold any other

resources. One protocol that can be used requires each process to request and be

allocated all its resources before it begins execution. We can implement this

provision by requiring that system calls requesting resources for a process precede

all other system calls.

An alternative protocol allows a process to request resources only when the

process has none. A process may request some resources and use them. Before it

can request any additional resources, however, it must release all the resources that

it is currently allocated.

To illustrate the difference between these two protocols, we consider a process that

copies data from a tape drive to a disk file, sorts the disk file, and then prints the

Operating system Dr. Shroouq J.

3

results to a printer. If all resources must be requested at the beginning of the

process, then the process must initially request the tape drive, disk file, and printer.

It will hold the printer for its entire execution, even though it needs the printer only

at the end.

The second method allows the process to request initially only the tape drive and

disk file. It copies from the tape drive to the disk, and then releases both the tape

drive and the disk file. The process must then again request the disk file and the

printer. After copying the disk file to the printer, it releases these two resources and

terminates.

These protocols have two main disadvantages. First, resource utilization may be

low, since many of the resources may be allocated but unused for a long period. In

the example given, for instance, we can release the tape drive and disk file, and

then again request the disk file and printer, only if we can be sure that our data will

remain on the disk file. If we cannot be assured that they will, then we must

request all resources at the beginning for both protocols. Second, starvation is

possible. A process that needs several popular resources may have to wait

indefinitely, because at least one of the resources that it needs is always allocated

to some other process.

No Preemption

The third necessary condition is that there be no preemption of resources that have

already been allocated. To ensure that this condition does not hold, we can use the

following protocol. If a process is holding some resources and requests another

resource that cannot be immediately allocated to it (that is, the process must wait),

then all resources currently being held are preempted. In other words, these

resources are implicitly released. The preempted resources are added to the list of

Operating system Dr. Shroouq J.

4

resources for which the process is waiting. The process will be restarted only when

it can regain its old resources, as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether they are

available. If they are, we allocate them. If they are not available, we check whether

they are allocated to some other process that is waiting for additional resources. If

so, we preempt the desired resources from the waiting process and allocate them to

the requesting process. If the resources are not either available or held by a waiting

process, the requesting process must wait.

While it is waiting, some of its resources may be preempted, but only if another

process requests them. A process can be restarted only when it is allocated the new

resources it is requesting and recovers any resources that were preempted while it

was waiting.

This protocol is often applied to resources whose state can be easily saved and

restored later, such as CPU registers and memory space. It cannot generally be

applied to such resources as printers and tape drives.

Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition. One

way to ensure that this condition never holds is to impose a total ordering of all

resource types, and to require that each process requests resources in an increasing

order of enumeration.

Let R = {R1, R2, ..., Rm) be the set of resource types. We assign to each resource

type a unique integer number, which allows us to compare two resources and to

determine whether one precedes another in our ordering. Formally, we define a

one-to-one function F: R + N, where N is the set of natural numbers. For example,

Operating system Dr. Shroouq J.

5

if the set of resource types R includes tape drives, disk drives, and printers, then

the function F might be defined as follows:

F(tape drive) = 1,

F(disk drive) = 5,

F(printer) = 12.

We can now consider the following protocol to prevent deadlocks: Each process

can request resources only in an increasing order of enumeration. That is, a process

can initially request any number of instances of a resource type,

say Ri. After that, the process can request instances of resource type Ri if and only

if F(Rj) > F(Ri). If several instances of the same resource type are needed, a single

request for all of them must be issued. For example, using the function defined

previously, a process that wants to use the tape drive and printer at the same time

must first request the tape drive and then request the printer.

Alternatively, we can require that, whenever a process requests an instance of

resource type Rj, it has released any resources Ri such that F(Ri) >= F(Rj).

If these two protocols are used, then the circular-wait condition cannot hold.

