
Operating system                                                                                                                         Dr.  Shroouq J. 

1 

 

3.2 Operating-System Services 

 
An operating system provides an environment for the execution of 

programs. It provides certain services to programs and to the users of those 

programs. These operating-system services are provided for the convenience of 

the programmer, to make the programming task easier. 

Program execution: The system must be able to load a program into memory 

and to run that program. The program must be able to end its execution, either 

normally or abnormally (indicating error). 

I/O operations: A running program may require I/O. This I/O may involve a 

file or an I/O device. For efficiency and protection, users usually cannot control 

I/O devices directly. Therefore, the operating system must provide a means to 

do I/O. 

A File-system manipulation: programs need to read and write files. Programs 

also need to create and delete files by name. 

Communications: In many circumstances, one process needs to exchange 

information with another process. Such communication can occur in two major 

ways. The first takes place between processes that are executing on the same 

computer; the second takes place between processes that are executing on 

different computer systems that are tied together by a computer network. 

Communications may be implemented via shared memory, or by the technique 

of message passing, in which packets of information are moved between 

processes by the operating system. 

Error detection: The operating system constantly needs to be aware of possible 

errors. Errors may occur in the CPU and memory hardware, in I/O devices and 

in the user program. For each type of error, the operating system should take the 

appropriate action to ensure correct and consistent computing. 

In addition, another set of operating-system functions exists not for 

helping 



Operating system                                                                                                                         Dr.  Shroouq J. 

2 

 

the user, but for ensuring the efficient operation of the system itself. Systems 

with multiple users can gain efficiency by sharing the computer resources 

among the users. 

Resource allocation: When multiple users are logged on the system or multiple 

jobs are running at the same time, resources must be allocated to each of them. 

Many different types of resources are managed by the operating system. For 

instance, in determining how best to use the CPU, operating systems have CPU-

scheduling routines that take into account the speed of the CPU, the jobs that 

must be executed, the number of registers available, and other factors. There 

might also be routines to allocate a tape drive for use by a job. 

Accounting: We want to keep track of which users use how many and which 

kinds of computer resources.  

Protection: The owners of information stored in a multiuser computer system 

may want to control use of that information. When several disjointed processes 

execute concurrently, it should not be possible for one process to interfere with 

the others, or with the operating system itself. Protection involves ensuring that 

all access to system resources is controlled. Security of the system from 

outsiders is also important. Such security starts with each user having to 

authenticate himself to the system, usually by means of a password, to be 

allowed access to the resources.  

 

3.3 System Calls 

System calls provide the interface between a process and the operating 

system. These calls are generally available as assembly-language instructions. 

Certain systems allow system calls to be made directly from a higher level 

language program, in which case the calls normally resemble predefined 

function or subroutine calls. As an example of how system calls are used, 

consider writing a simple program to read data from one file and to copy them 



Operating system                                                                                                                         Dr.  Shroouq J. 

3 

 

to another file. The first input that the program will need is the names of the two 

files: the input file 

and the output file. These names can be specified in many ways, depending on 

the operating-system design. One approach is for the program to ask the user for 

the names of the two files. In an interactive system, this approach will require a 

sequence of system calls, first to write a prompting message on the screen, and 

then to read from the keyboard the characters that define the two files. On 

mouse-based window-and-menu systems, a menu of file names is usually 

displayed in a window. The user can then use the mouse to select the source 

name, and a similar window can be opened for the destination name to be 

specified. Once the two file names are obtained, the program must open the 

input file and create the output file. Each of these operations requires another 

system call and may encounter possible error conditions. When the program 

tries to open the input file, it may find that no file of that name exists or that the 

file is protected against access. In these cases, the program should print a 

message (another sequence of system calls), and then terminate abnormally 

(another system call). If the input file exists, then we must create a new output 

file. We may find an output file with the same name. This situation may cause 

the program to abort (a system call), or we may delete the existing file (another 

system call) and create a new one (another system call). In an interactive 

system, another option is to ask the user (a sequence of system calls to output 

the prompting message and to read the response from the keyboard) whether to 

replace the existing file or to abort the program. 

Now that both files are set up, we enter a loop that reads from the input file (a 

system call) and writes to the output file (another system call). Each read and 

write must return status information regarding various possible error conditions.  

Finally, after the entire file is copied, the program may close both files (another 

system call), write a message (more system calls), and finally terminate 



Operating system                                                                                                                         Dr.  Shroouq J. 

4 

 

normally (the final system call). As we can see, even simple programs may 

make heavy use of the operating system. 

System calls occur in different ways, depending on the computer in use. Often, 

more information is required than simply the identity of the desired system call. 

The exact type and amount of information vary according to the particular 

operating system and call. For example, to get input, we may need to specify the 

file or device to use as the source, and the address and length of the memory 

buffer  

 

                         Fig. 3.1 Passing of parameters as a table. 

 

into which the input should be read. Of course, the device or file and length may 

be implicit in the call. Three general methods are used to pass parameters to the 

operating system. The simplest approach is to pass the parameters in registers. 

In some cases, however, there may be more parameters than registers. In these 

cases, the parameters are generally stored in a block or table in memory, and the 

address of the block is passed as a parameter in a register (Figure 3.1). This is 

the approach 



Operating system                                                                                                                         Dr.  Shroouq J. 

5 

 

taken by Linux. Parameters can also be placed, or pushed, onto the stack by the 

program, and popped o f the stack by the operating system. Some operating 

systems prefer the block or stack methods, because those approaches do not 

limit the number or length of parameters being passed. 

System calls can be grouped into five major categories: process control, file 

management, device management, information maintenance, and 

communications. Figure 3.2 summarizes the types of system calls normally 

provided by an operating system. 

3.3.1 Process Control 

A running program needs to be able to halt its execution either normally 

(end) or abnormally (abort). If a system call is made to terminate the currently 

running program abnormally, or if the program runs into a problem and causes 

an error trap, a dump of memory is sometimes taken and an error message 

generated. The dump is written to disk and may be examined by a debugger to 

determine the cause of the problem. Under either normal or abnormal 

circumstances, the operating system must transfer control to the command 

interpreter. The command interpreter then reads the next command. In an 

interactive system, the command interpreter simply continues with the next 

command; it is assumed that the user will issue an appropriate command to 

respond to any error. In a batch system, the command interpreter usually 

terminates the entire job and continues with the next job. Some systems allow 

control cards to indicate special recovery actions in case an error occurs. If the 

program discovers an error in its input and wants to terminate abnormally, it 

may also want to define an error level.  

 

 

Process control 

o end, abort 

o load, execute 

o create process, terminate process 



Operating system                                                                                                                         Dr.  Shroouq J. 

6 

 

o get process attributes, set process attributes 

o wait for time 

o wait event, signal event 

o allocate and free memory 

File management 

o create file, delete file 

o open, close 

o read, write, reposition 

o get file attributes, set file attributes 

Device management 

o request device, release device 

o read, write, reposition 

o get device attributes, set device attributes 

o logically attach or detach devices 

Information maintenance 

o get time or date, set time or date 

o get system data, set system data 

o get process, file, or device attributes 

o set process, file, or device attributes 

Communications 

o create, delete communication connection 

o send, receive messages 

o transfer status information 

o attach or detach remote devices 

Fig.  3.2 Types of system calls. 

 

 
A process or job executing one program may want to load and execute another 

program. This feature allows the command interpreter to execute a program as 

directed by, for example, a user command, the click of a mouse, or a batch 

command. An interesting question is where to return control when the loaded 

program terminates. This question is related to the problem of whether the 

existing program is lost, saved, or allowed to continue execution concurrently 

with the new program. If control returns to the existing program when the new 

program terminates, we must save the memory image of the existing program; 

thus, we have effectively created a mechanism for one program to call another 

program. If both programs continue concurrently, we have created a new job or 



Operating system                                                                                                                         Dr.  Shroouq J. 

7 

 

process to be multiprogrammed. Often, system calls exists specifically for this 

purpose (create process or submit job). 

If we create a new job or process, or perhaps even a set of jobs or processes, we 

should be able to control its execution. This control requires the ability to 

determine and reset the attributes of a job or process, including the job's 

priority, its maximum allowable execution time, and so on (get process 

attributes and set process attributes). We may also want to terminate a job or 

process that we created (terminate process) if we find that it is incorrect or is no 

longer needed. Having created new jobs or processes, we may need to wait for 

them to finish their execution. We may want to wait for a certain amount of 

time (wait time); more likely, we may want to wait for a specific event to occur 

(wait event). The jobs or processes should then signal when that event has 

occurred (signal event). 

Another set of system calls is helpful in debugging a program. The trap is 

usually caught by a debugger, which is a system program designed to aid the 

programmer in finding and correcting bugs. The MS-DOS operating system is 

an example of a single-tasking system, which has a command interpreter that is 

invoked when the computer is started (Figure 3.3(a)). Because MS-DOS is 

single-tasking, it uses a simple method to run a program and does not create a 

new process. It , loads the program into memory, writing over most of itself to 

give the program as much memory as possible (Figure 3.3(b)). It then sets the 

instruction pointer to the first instruction of the program. The program then runs 

and either an error causes a trap, or the program executes a system call to 

terminate. In either case, the error code is saved in the system memory for later 

use. Following this action, the small portion of the command interpreter that 

was not overwritten resumes execution. Its first task is to reload the rest of the 

command interpreter from disk. Once this task is accomplished, the command 



Operating system                                                                                                                         Dr.  Shroouq J. 

8 

 

interpreter makes the previous error code available to the user or to the next 

program. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 MS-DOS execution. (a) At system startup. (b) Running a program 

 

FreeBSD is an example of a multitasking system. When a user logs on to the 

system, the shell (or command interpreter) of the user's choice is run. This shell 

is similar to the MS-DOS shell in that it accepts commands and executes 

programs that the user requests. However, since FreeBSD is a multitasking 

system, the command interpreter may continue running while another program 

is executed (Figure 3.4). To start a new process, the shell executes a fork 

system call. Then, the selected program is loaded into memory via an exec 

system call, and the program is then executed. Depending on the way the 

command is issued, the shell then either waits for the process to finish, or runs 

the process "in the background." In the latter case, the shell immediately 

requests another command. When a process is running in the background, it 

cannot receive input directly from the keyboard, because the shell is using this 

resource. I/O is therefore done through files, or through a window-and-menu 

 



Operating system                                                                                                                         Dr.  Shroouq J. 

9 

 

interface. Meanwhile, the user is free to ask the shell to run other programs, to 

monitor the progress of the running process, to change that program's priority, 

and so on. When the process is done, it executes an exit system call to 

terminate, returning to the invoking process a status code of 0, or a nonzero 

error code. This status (or error) code is then available to the shell or other 

programs.  

 

 

 

 

 

 

 

 

 

 

                          Fig. 3.4 UNIX running multiple programs. 

3.3.2 File Management 

Once the file is created, we need to open it and to use it. We may also read, 

write, or reposition. Finally, we need to close the file. We may need these same 

sets of operations for directories if we have a directory structure for organizing 

files in the file system. In addition, we need to be able to determine the values 

of various attributes, and perhaps to reset them if necessary. File attributes 

include the file name, a file type, protection codes, accounting information, and 

so on. At least two system calls, get file attribute and set file attribute, are 

required for this function. Some operating systems provide many more calls. 

 

 

 



Operating system                                                                                                                         Dr.  Shroouq J. 

10 

 

3.3.3 Device Management 

A program, as it is running, may need additional resources to proceed. 

Additional resources may be more memory, tape drives, access to files, and so 

on. 

If the resources are available, they can be granted, and control can be returned 

to the user program; otherwise, the program will have to wait until sufficient 

resources are available. Files can be thought of as abstract or virtual devices. 

Thus, many of the system calls for files are also needed for devices. If the 

system has multiple users, however, we must first request the device, to ensure 

exclusive use of it. After we are finished with the device, we must release it. 

These functions are similar to the open and close system calls for files. Once the 

device has been requested (and allocated to us), we can read, write, and 

(possibly) reposition the device, just as we can with ordinary files. 

 

3.3.4 Information Maintenance 

Many system calls exist simply for the purpose of transferring information 

between the user program and the operating system. For example, most systems 

have a system call to return the current time and date. Other system calls may 

return information about the system, such as the number of current users, the 

version number of the operating system, the amount of free memory or disk 

space, and so on. 

In addition, the operating system keeps information about all its processes, and 

there are system calls to access this information. Generally, there are also calls 

to reset the process information (get process attributes and set process 

attributes).  

 

 

 



Operating system                                                                                                                         Dr.  Shroouq J. 

11 

 

3.3.5 Communication 

There are two common models of communication. In the message-passing 

model, information is exchanged through an interprocess-communication 

facility provided by the operating system. Before communication can take 

place, a connection must be opened. The name of the other communicator must 

be known. Each computer in a network has a host name, such as an IP name, by 

which it is commonly known. Similarly, each process has a process name, 

which is translated into an equivalent identifier by which the operating system 

can refer to it. The get hostid and get processid system calls do this translation. 

These identifiers are then passed to the general-purpose open and close calls 

provided by the file system, or to specific open connection and close 

connection system calls, depending on the system's model of communications. 

The recipient process usually must give its permission for communication to 

take place with an accept connection call. Most processes that will be receiving 

connections are special purpose daemons-systems programs provided for that 

purpose. They execute a wait for connection call and are awakened when a 

connection is made. The source of the communication, known as the client, and 

the receiving daemon, known as a server, then exchange messages by read 

message and write message system calls. The close connection call terminates 

the communication. 

In the shared-memory model, processes use map memory system calls to gain 

access to regions of memory owned by other processes. Recall that, normally, 

the operating system tries to prevent one process from accessing another 

process' memory. Shared memory requires that several processes agree to 

remove this restriction. They may then exchange information by reading and 

writing data in these shared areas. The form of the data and the location are 

determined by these processes and are not under the operating system's control. 



Operating system                                                                                                                         Dr.  Shroouq J. 

12 

 

The processes are also responsible for ensuring that they are not writing to the 

same location simultaneously.  

Both of these methods are common in operating systems, and some systems 

even implement both. Message passing is useful when smaller numbers of data 

need to be exchanged, because no conflicts need to be avoided. It is also easier 

to implement than is shared memory for intercomputer communication. Shared 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Communications models. (a) Msg passing. (b) Shared memory. 

 

memory allows maximum speed and convenience of communication. Problems 

exist, in the areas of protection and synchronization. The two communications 

models are contrasted in Figure 3.5. 

 


