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Abstract 

      In this work, We introduce the concepts of an FP-Extending, FP-Continuous and 

FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-

Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous 

and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-

Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-

Continuous, P-Quasi-Continuous) . 

 

Keyword: Extending module, P-Extending, P-Continuous, P-Quasi-Continuous, 

fully invariant submodule, stable submodule, uniform module, closed submodule. 

 

 FP–التوسعمقاسات 
 

 *عماد علاوي شلال
 العراق, كلية علوم الحاسوب والرياضيات , جامعة القادسية, قسم الرياضيات

 
 :ةصلاالخ
مقاس التوسع , FP-مقاس التوسع المستمر, FP-قدمنا في هذا البحث مفاهيم جديدة هي مقاس التوسع    

مقاس , FP-مقاس التوسع المستمر) FP-توسعانه مقاس  Rيقال عن مقاس على الحلقة . FP-شبه المستمر
مقاس , P-مقاس التوسع المستمر)P-اذا كان كل مقاس جزئي من هو توسع(  FP-التوسع شبه المستمر
ميزنا تلك المقاسات ودرسنا خصيصاتها ووالعلاقة فيما بينها وعلاقتها بالاصناف (. P-التوسع شبه المستمر
 .الاخرى من المقاسات

 
 

Introduction 

     Throughout this paper all rings have an 

identity and modules are unitary. Let R be a ring 

and M be a left R-module, a submodule N of M 

is essential if every nonzero submodule of M 

intersects N nontrivially, we use  to 

denote that N is essential submodule of M. An 

R-module M is uniform if every submodule of 

M is essential in M . Also, a submodule N of M 

is closed in M if it has no proper essential 

extensions in M [1]. An R-module M is said to 

be Extending if every closed submodule of M is 

a direct summand [2]. A submodule N of an R-

module M is called a fully invariant if 

 for each  [3], an R-

module M is called duo if every submodule of 

M is fully invariant [4]. A submodule N of an R-

module M is called stable if  for each 

R-homomorphism , an R-module M 

fully stable if every submodule of M is stable 

[5]. For a module M consider the following 

conditions:  

: Every cyclic submodule of M is 

essential in a direct summand of M. 
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: For each , if  and 

, then . 

 For each  such that  

and  with , then 

. 

     E. A. Shallal in [6], defined and studied the 

concept of Pointwise Extending, Pointwise 

Continuous and Pointwise Quasi-Continuous. 

Later, the concepts of Pointwise Extending, 

Pointwise Continuous and Pointwise Quasi-

Continuous was introduced by M. A. Kamal; O. 

A. Elmnophy in [7] in another names Principally 

Extending, Principally Continuous and 

Principally Quasi-Continuous. An R-module M 

is called Principally Extending (for short P-

Extending) if it satisfies the condition , a 

Principally Continuous module (for short P-

Continuous) if it satisfies and , and 

a Principally Quasi-Continuous module (for 

short P-Quasi-Continuous) if it satisfies  

and . These classes of modules are 

studied extensively in [7]. We refer to [1], [8], 

[9], [3] and [10] for background on Extending 

and (Quasi-) Continuous module.  

     In this work, We introduce a new concepts, 

that is, FP-Extending, FP-Continuous and FP-

Quasi-Continuous which are stronger than P-

Extending, P-Continuous and P-Quasi-

Continuous. 

 

Definition(1): 

     An R-module M is called Fully Principally 

Extending module (for short FP-Extending) if 

every submodule of M is P-Extending . 

 

Definition(2): 

     An R-module M is called Fully Principally 

Continuous module (for short FP-Continuous) if 

every submodule of M is P-Continuous. 

 

Definition(3):  
     An R-module M is called Fully Principally 

Quasi-Continuous module (for short FP-Quasi-

Continuous) if every submodule of M is P-

Quasi-Continuous. 

Every submodule (hence direct summand) of 

FP-Extending (FP-Continuous, FP-Quasi-

Continuous) module is FP-Extending (FP-

Continuous, FP-Quasi-Continuous) module.  

     It is clear that if R-module M is FP-

Extending (FP-Continuous, FP-Quasi-

Continuous) module, then M is P-Extending (P-

Continuous, P-Quasi-Continuous) module. 

 

Examples(4): 
(1) Every regular R-module is FP-

Extending. 

(2) Every uniform module is FP-Extending 

(FP-Quasi-Continuous). In particular  

 as Z-module. But  as Z-module is FP-

Extending which is not uniform. 

(3) Every  over Z is FP-Extending (FP-

Continuous, FP-Quasi-Continuous) for each 

positive integer . 

(4) In the ring  every cyclic 

submodule is Continuous, then FP-Continuous. 

(5) Every semisimple artinian ring is FP-

Extending (FP-Continuous, FP-Quasi-

Continuous) module . 

(6) An R-module M is called a Q-module if 

every R-module is quasi-injective [11], therefore 

every Q-module is FP-Extending (FP-

Continuous, FP-Quasi-Continuous) module, the 

Z-module Q is FP-Extending (FP-Quasi-

Continuous) but not Q-module.  

 

Proposition(5): 

     Every FP-Continuous R-module is FP-Quasi-

Continuous R-module. 

 

Proof: 

     Suppose M is FP-Continuous R-module and 

let N submodule of M, then N is P-Continuous 

module, therefore N is P-Quasi-Continuous, 

hence M is FP-Quasi-Continuous. 

     The converse is not true in general [5]. 

 

Proposition(6): 

     Every FP-Quasi-Continuous is FP-

Extending. 

 

Proof: Suppose M is FP-Quasi-Continuous and 

let N submodule of M, then N is P-Quasi-

Continuous module, therefore N is P-Extending, 

hence M is FP-Extending. 

The converse is not true [12] 

 

Examples(7):  
(1)  The Z-module Z is uniform module and 

hence FP-Quasi-Continuous but Z is not FP-

Continuous because 2Z is isomorphic to Z while 

2Z is not a direct summand of Z, therefore Z not 

P-Continuous and hence Z is not FP-

Continuous. 
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(2) The Z-module  is FP-Extending 

but not FP-Quasi-Continuous, Since 

 ,but  is 

not direct summand of , therefore is 

not P-Quasi-Continuous and hence not FP-

Quasi-Continuous. 

     Like Extending modules a direct sum of FP-

Extending (FP-Continuous, FP-Quasi-

Continuous) module need not be FP-Extending 

(FP-Continuous, FP-Quasi-Continuous) module 

[see example(8)]. 

 

Example(8): 
(1) For a prime p, the Z-module 

 . Since Z is uniform and  is a 

simple Z-module, therefore Z and  are FP-

Extending (FP-Quasi-Continuous), but M is not 

FP-Extending (FP-Quasi-Continuous) module 

because 2Z is closed but not direct summand, 

hence not P-Extending. 

(2) The Z-module  has 

 and  both are 

uniform, thus they are FP-Extending (FP-Quasi-

Continuous) module but is not FP-Extending 

(FP-Quasi-Continuous) module because 

 is a closed submodule of M 

which is not direct summand (see [1]). 

(3) The Z-module  and  are FP-

Continuous (FP-Quasi-Continuous) module but 

the Z-module  is not FP-Continuous 

(FP-Quasi-Continuous) module (example(7),2). 

     Since every submodule (hence direct 

summand) of FP-Extending (FP-Continuous, 

FP-Quasi-Continuous) module is FP-Extending 

(FP-Continuous, FP-Quasi-Continuous) module 

,we have :  

 

Proposition(9):  

     If  is FP-Extending (FP-Continuous, 

FP-Quasi-Continuous) module, then M is FP-

Extending (FP-Continuous, FP-Quasi-

Continuous) . 

 

Proposition(10): 

     Any fully invariant submodule of P-

Extending R-module is P-Extending. 

 

Proof:  
     Suppose that M is P-Extending and N be 

fully invariant submodule of M. If  

submodule of N, then  is a submodule of M, 

since M is P-Extending, then there exists a direct 

summand A of M such that . That is 

 where B any submodule of M. 

Since N is a fully invariant submodule of M, 

then  [ 3,lemma 1.1]. 

That is  is a direct summand of N, since 

and , then 

. Hence N is P-

Extending. 

 

Corollary(11): 

     Every duo P-Extending R-module is FP-

Extending. 

     It is known that every stable submodule of 

any module is fully invariant [7].  

 

Corollary(12): 

     Every stable submodule of any module of P-

Extending R-module is P-Extending. 

 

Corollary(13): 

     Every stable submodule of any module of P-

Extending module is FP-Extending. 

 

Corollary(14): 

     Let M be a fully stable R-module. Then M is 

FP-Extending if an only if M is P-Extending. 

 

Corollary(15): 

     Let M be a fully stable R-module. Then the 

following statements are equivalent : 

(1) P-Continuous. 

(2) P-Quasi-Continuous. 

(3) P-Extending . 

(4) FP-Extending. 

 

Proof: 

(1) (2) and (2) (3) trivial. 

(3) (4) from corollary(14). 

(4) (1) Let M is a FP-Extending R-module, 

then M is P-Extending and from Corollary(12), 

every submodule is P-Extending. Since every 

fully stable module has  [5], then every 

submodule is P-Continuous. 

     S. A. G. Al-Saadi in [12], defined and studied 

the concept of Strongly Extending modules, 

where an R-module M is called Strongly 

Extending, if every submodule of M is essential 

in a stable direct summand, he show that an R-

module M is uniform if and only if M is 

indecomposable module and Strongly 

Extending. Hence we have the following. 
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Proposition(15): 

     For an indecomposable module M, the 

following are equivalent: 

(1) M is FP-Extending. 

(2) M is uniform. 

(3) M is Strongly Extending. 

(4) M is Extending. 

(5) M is P-Extending 

 

Proof:  

(1) (2): For each submodule  of M, 

then , since M is P-Extending, then 

there exist a direct summand K of M such that 

. Since M is indecomposable ,then (0) 

and M are only direct summand of M . So K=M, 

then  . Hence . 

(2) (3) and (3) (4) : see [12]  

(4) (5): see [7,lemma 2.14] 

(5) (1): Let N be submodule of P-Extending 

module M, for each submodule  of N,  is a 

submodule of M, then  essential in a direct 

summand of M, so  . Therefore 

, hence N is P-Extending. 
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