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On a New Class of Multivalent Functions with Negative
Coefficient Defined by Hadamard Product Involving a
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Abstract In this paper, we have introduced and studied a new class of multivalent functions in the open unit disk
U = {z € C:|z| < 1}, we obtain some interesting properties, like, coefficient inequality, distortion bounds, closure theorems,
radii of starlikeness, convexity and close-to-convexity, weighted mean, neighborhoods and partial sums.
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1. Introduction

Let G denote the class of all functions of the from

f@) =2z + ¥ pmanz", (PEeN={12.} (1)
which are analytic and multivalent in the open unit disk U.

Let S,, denote the subclass of Gconsisting of functions of
the from

f(z) =2zF - Z?=p+1 a,z",
which are analytic and multivalent in the open unit disk U.
For the function f €S,, given by (2) and g € S,
defined by
9(2) = 2P = ¥ p1 by2",
we define the convolution (or Hadamard product) of
f and g by
(f = g)(z) =2zP - Z§=p+1 a,b,z". 4)

A function f € S, is said to be p-valentlystarlike of order

u if and only if
Re (4@ '
€ { f(2) } > H

A function f € S, is said to be p-valently convex of
order u if and only if

(a, 20,pEN) 2)

(b, 20,pEN) (3)

O<u<pzel). (5

Reft + L9 >y,

< ; .
o) O<spu<pzel). (6)
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A function f €S, is said to be
close-to-convex of order u if and only if

Re {f’(Z)} >

zp—1

p-valently

O<u<p;zel). @)

Definition 1 [8]: Let y,,m,eR,y=0,=0,m >
0,p € N and

00

f(z) =2z"— Z a,z".

n=p+1
Then we define the linear operator

D;'fl: G - G by

: © (m=-pr\™
DI f@ =2 =By (14 522) 0,2 2 € U, 9)
Definition 2: Let g be a fixed function defined by (3).
The function f € S,, given by (2) is said to be in the class
H,,(y,B,m, 4 a,v) if and only if
(D;;,’fl(f*g)(z)) +z<<Dg_'fn(f*g)(Z)) _pzzp—z>
’ " < /L (9)
a(DZ_’fl(f*g)(z)) —ZV((D;:gl(f*g)(z)) _pZZp—2>

where 0<a<1,0<v<1,0<A<Lly [ meRy =
0,=0m=0,p€N.

Some of the following properties studied for other class in

(11, (2], [3], [4], [6] and [7].

2. Coefficient Inequalities

Theorem 1: Let f € S,,. Then f € H,,(y, 8, m, 1, a,v)
if and only if
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Yn=p+1 (1 + %)m [n(A(v(n—1) — a) + n)] a,b, < pA(a +v), (10)

where 0 < <1,0<v<1,0<A<1ly,meRy=20,=20m=0,p€eN.
The result is sharp for the function
f2) =2P -

pA(a+v) n

E——— zZ".
(1+@Tpﬂ)y) [n(A(v(n—1)—a)+n)]b,

(11)

Proof: Suppose that the inequality (10) holds true and |z| = 1. Then we have

(D12« @) +2((008F @) —p222)| = 2|a (DL (F = (@) — v (DL (F + )@) —p2r2)|

[oe]

= |- Z (1+%) n?a,b,z"| — A|p(a +v)zP~! — Z <1+%) (an —v(n* —n)) a,b,z"

n=p+1 n=p+1

IA

® m

n f—

Z (1 + ﬂ) [n(Alv(n — 1) — @) + n)]a, b, —pA(a +v) <0,
Yy ®+B)

n=p+1

by hypothesis.

Hence, by maximum modulus principle, f € H,,, (y, 8, m, A, a, V).

Conversely, suppose that f € H,, (y, B,m, A, a,v). Then from (9), we have

"

(Dym(r = g)(Z))’ +2((DE(f * (@) —pPzr?)

, - <A

a (DI (fx @) —zv (D} (f + 9)() —p?z2)

Since Re(z) < |z| forall z(z € U), we get
_ m
"Z%;p+1(1+%;:2;) nzanbnzn
Re —— <A (12)

_Z?lo:p+1(1+ (pf;;/) [an—v(n2-n)la, by z"+p(a+v)zP~1
We choose the value of z on the real axis, so that (Dg,"’ﬁ (f = g)(z)) is real.
Letting z — 17 through real values, we obtain inequality (10).
Finally, sharpness follows if we take

A
f(Z) — Zp — —— pA(a+v) Zn_ (13)
(14557 A G-1D=a)tn)lb,

Corollary 1: Let f € H,,(y,8,m, A, a,v). Then

@y < e DAL , n=p+1p+2 .. (14)

(1+55) A G-D=a)+n)lb,
3. Growth and Distortion Theorems
Theorem 2: Let the function f € H,,(y,8,m, A, @, v). Then
Ala +v
|z|P~ - P pAC ) |lz|P* < |f(2)] <
(1+5L5) [0+ DA -0+ @+ )b
< |zt + —— pA(a+y) z[P+1, (15)
(1+55) [P+DAGP—a)+@+D)]bp+
Proof:
F@I=[+ > @z <lal+ Y aldt <l + 12 ) a,

n=p+1 n=p+1 n=p+1
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By Theorem 1, we get
pA(a+v)
m .
Lighs) [(p+DAEp-a)+p+1)]by4

Z;.lo=p+1 an S (

Thus
Ala +
FD] < |21 + " @+ v) 21+,
1+ m) [0+ D(AOvp —a) + (@ + 1)]bys1
also
@Izl = ) aylalt =12 =12+ ) a,
n=p+1 n=p+1
> |z - — pALe +v) 121+,
(1+5L5) [0+ DA -0+ @+ V)b
and the proof is complete.
Theorem 3: Let f € H,,(y, 8,m, A, a,v). Then
_ pAla +v) ,
plz|P~t — V" [zIP < |f'(2)|
(1 + m) [+ 1)(/1(11117 —a)+(@+1D)|b,s1
+
<plzlp=t + pAla +v) 2.

14 (prr_ﬁ)) [0+ D(Ap — @) + (0 + 1))]bpss
Proof: Notice that

[oe]

(1+@IﬁﬁmKP+D@@p—@+(p+DH%H E:n%

n=p+1

< 20 (14 22)" OG0 - 1) - @) + b, < pa(a +v),

from Theorem 1, thus

@l = pz ™+ Y nay | <plalP 4 ) naylan
n=p+1 n=p+l
pA(a+v)
(1+555) [+DACP-)+E+D)]bp+1

<plz|P7! + |z|P.

On the other hand

[oe]

@I =pz + ) na,z | zplaP = ) naylznt

n=p+1 n=p+1
> plalp ™ 4 LD 2l
(LFW) [P+ (A(vp —2)+(p+1))]bp 41
Combining (18) and (19), we get the result.
Closure Theorems:
Theorem 4: Let the function f; defined by
fi(@) =2 = X0 an 2" (a,; 20,p€EN,i=12,..,m),

be in the class H,,(y,8,m, A, a,v) for everyi = 1,2, ..., m. Then the function h defined by

149

(16)

(17)

(18)

(19)

(20)
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h(z) = zP — Z 2", (c, =20,pEN),

n=p+1
also belongs to the class H,, (y, B,m, A, a,v), where

m
1
c, =E.Za”"‘” n=p+1).
pn

Proof: Since f; € H,,(y, B,m, A, a,v), then by Theorem 1, we have

T (14 922)" [nA@ 0 — 1) = @) + mlay b, < pAa +v)

forevery i = 1,2,...,m

Hence
N (n—-py\"
nzzp-ﬂ (1 + (p n B) ) [Tl(/l(V(Tl - 1) - (,{) + n)]cnbn
N L (n—py " L

m (o]

- (»+B)
i=1 \n=p+1

By Theorem 1, it follows that h € H,, (y, B, m, A, a, v).

Theorem 5: Let the function f;(z), defined by (20) be in the class H,,(y, 8, m, A, a,v), for every i

the function h(z) defined by

h(z)=2difi(z) and Zdi=1, (d; = 0)
i=1 i=1

is also in the classH,, (v, B, m, A, a, V).
Proof: By definition of h(z), we have

h(z) = [i dil zP — lz d; an,il z"
i=1 1

Since f;(z) are in the class H,,(y, B,m, A, a,v), forevery i = 1,2, ..., m, we obtain

n=p+1

[oe]

n=p+1 i=1

m

Z [(1 + p)y) [rAv(n—1)—a) + n)]an,ibn] < pAla +v) Z d; = pAla +v).

(»+8)

i=1

4. Radii of Starlikeness, Convexity and Close-to-Convexity

- Z ( o W) A - 1) — @) + )]ayb, | < pAla+v).

21

,...,m. Then

In the following theorems, we obtain the radii of starlikeness, convexity and close-to-convexity for the class

Hm (V’ ﬁ’ m’ /L al V)'

Theorem 6: If f € H,,(y,B8,m A, a,v), then f(z) is p-valentlystarlike of order u (0 < u < p), in the dick |z| < Ry,

where

1

n—p

(»+8B)
(n — wpAla +v)

| |

[(p -0 (1+ 2280 mGom -1 - ) + )
Rl = lnfn

Proof: It is sufficient to show that



American Journal of Mathematics and Statistics 2014, 4(3): 147-155 151

zf (2) ‘
————Dp|<p—Uu 0<su<p),
f@) PSP H O=u<p)
for |z| < Ry, we have
2f (2) |<Z?f:p+1(n—p)an|2|"_”
f(Z) - 1- Z;O:p+1 anlzln_p
Thus
zf ' (2) |
—-pl<pn-—yu
2 p[=pP—HU
if
o (n—playlz|"7?P
Zn=p+1v <1 (22)

Hence, by Theorem 1, (22) will be true if

(n—planlz"? _ (1 + ((';__'_lg)y) n(A(v(n - 1) — @) +n)]

p-w - pA(a +v)

or if

1
n—p

v -0 (1+ 332 Oem -1 -0 + ]

Izl < CEIIICES)

Setting |z| = Ry, we get the desired result.
Theorem 7: If f € H,,(y,B,m,A, a,v). Then f(z) is p-valently convex of order u (0 < u < p) in the disk |z| < R,,
where

1
n—p

pp =0 (1+ EZ2LY (A = 1) = @) + )

n(n —p)pAla +v)

RZ = lnﬁl

Proof: It is sufficient to show that

‘1 +Zf”(z)—p‘ <p-u O0=u<p)
f' (@) - T
for |z| < R,, we have
‘1 +ny" (2) _p‘ - Z?{’=p+1:(n—p)anIZI_"‘p.
f @) P = Xp=pt1 Ny |z[* 7P
Thus
zf" (2) |
1+——=-p|<p-1n
| @ P|=P7*
if
o n(n—plalz|" 7P
R oy S b 23)
Hence by Theorem 1, (23) will be true if
(n— ’P)V)m N
(= pael™ _ (1+ &) Bewm-1-a+mn]
p(p—w B pAla +v) ’

and hence
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_1
p - (1+ $3BY) Aee- D - +n)]

n(n —p)pila +v)

|z| <

Setting |z| = R,, we get the desired result.
Theorem 8: Let the function f € H,, (y, B,m, A, a,v). Then f(z) is p-valently close-to-convex of order u (0 < u < p)
in the disk |z| < Rz, where

1
po -0 (1+EZBY) maee-v - +w|

n(n —p)pila +v)

R3 = infn

Proof: It is sufficient to show that

f @

Zp—l_p|Sp_'u’ (OSH<I9)
for |z| < Rz, we have
f(2) _
1 P < Z na,|z|"P.
n=p+1
Thus
f(2)
Zp—1 -p < pP—u
if
nan,|z|" 7P
Ynpr1i—p_, =1L (24)

hence, by Theorem 1, (24) will be true if

(n=py\"
el _ (1+555) Bace-D-a)+m)

p-w - pA(a +v)

)

and hence

1
w-w(1+ 858 moon-n-a+ml|

npAla +v)

|z| <
Setting |z| = R3, we get the desired result.

5. Weighted Mean
Definition 3: Let f; and f, be in the classH,, (v, f,m, 4, @, v). Then the weighted mean w, of f; and f, is given by

1
we =3[0 = L@ + 1+ Df@)], 0<q<1.

Theorem 9: Let f; and f, be in the class H,, (v, f,m, 4, a,v). Then the weighted mean w, of f; and f, is also in the
class H,, (y,B,m, A, a,v).
Poof: By Definition 3, we have
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1
=31 -DAG + (1 +Df@)]
ZE 1-q)| 2P - z ap1z" |+ (A +q)| 2P - Z an 2"
n=p+1 n=p+1
=zP — Z;O:p+1%[(1 - q)an,l + (1 + q)an,Z]Zn' (25)

Since f; and f, are in the class H,, (y, 8, m, A, a,v) so by Theorem 1, we get

o0

Z <1 + M) [n(A(v(n — 1) — a) + n)]a, 1 b, < pAla+v)

WS GRS
and

n;ﬂ (1 + %) [n(Av(n —1) — a) + M)]a, b, < pAla +v),
Hence

N 1
(1 + %) [nA(n - 1) — @) +n)] (5 (1 - @an, + @+ q)an,z]) by

= —(1 —q) 2 (1 + @ :_pﬁ))y) [nA(v(n — 1) — a) + M)]a, 1 b,

n=p+1

4 (1+q) Z <1+( f;;’) [N — 1) — @) + n)]an b

< 3 (1 —qprla+v) + 5(1 + @pAla +v) = pAla +v).

Therefore w, € H,, (r, B.m, A, a,v).

The proof is complete.

6. Neighborhoods and Partial Sums
Now we define the (n — §) —neighborhoods of the function f € S,, by
Nos(f) = {9 € 501 9(2) = 2" = 521 bz and 552y y nla, — b,| < 6,0 <6 < 1), (26)
For identity functione(z) = z”, (p € N)
Nos(e) ={g € Spn:g9(2) = 2P — Ly 11 bpz" and Ty_, 41 nlb,| < 6,0 <6 < 1}, (27)

The concept of neighborhoods was first introduced by Goodman [5] and then generalized by Ruscheweyh [9].

Definition 4: A function f €S, is said to be in the class H,(y,B,m,A a,v), if there exist a function
g € H,,(y,B,m, A, a,v) such that
f@)
9(2)
Theorem 10: If g € H,,(y, 8,m, A, a,v) and

—1|<p—17 (zeU,0<n<1).

5(1+ ) [(p+1)(l(vp—01)+(P+1))]ap+1
n=p-— @+8) - (28)

+D(1+22) " [ +D (A0 @)+ 1)y +1-pA(a+v)

Then N, 5(9) € Hy, (v, B, m, 4, , V).
Proof: Let f € N,, 5(g). Then we have from (26) that
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(o)
Z nla, — b, <,
n=p+1

which readily implies the following coefficient inequality

i 4y~ byl <
A, —Dp| =S——
n=p+1 p+1

Next, since g € H,,,(y, 8, m, A, a,v), we have from Theorem 1

[oe]

Ala +
b, < — pA(a +v) ’
n —
n=p+1 (1 + @TPB)V) [(p + 1)(/1(vp - )+ @+ 1))]ap+1
so that
f(Z) _ 1’ < Z§=p+1(!oan - bnl
g(Z) 1- n=p+1 bn
]/ m
5 <1 + m) [(p + 1)(/1(vp -+ @+ 1))]ap+1 ~
T+l (—py\" P
(1 + —) [(p + 1)(/1(vp —a)+(p+ 1))]ap+1 —pAa +v)
(+5)
Then by Definition 3, f € H,,,(y, 8, m, 4, a,v) for every 1 given by (28).
Now, we introduce the partial sums.
Theorem 11: Let f € S, be given by (2) and define the S;(z)and S,(z) by
S$i(z) =2P
and
S(@ =z - a2, >p+1, (30)
suppose also that
=pr\™
(1+ ) @A (—1)—a)+n)]by
_ +B)
Z?lo=p+l dnan S 1’ (dn - pl(a+v) ) (31)
Thus, we have
f(2) 1
Re {Sl (Z)} >1- (32)
and
S.(z) _ dn
Re {—f(z)} >1- (33)
Each of the bounds in (32) and (33) is the best possible for p € N.
Proof: For the coefficients d,, given by (31), it is not difficult to verity that
dpy1>d,>1, n=p+1p+2..
Therefore, by using the hypothesis (30), we have
Z:lo:p+1 an + dl Z%o=p+t an < Z‘;.:)=p+1 dn an <L (34)

By setting

g1 =dt(£(z)_(1_i)> - dlzg’:ptlanzn—p
'(2) _

and applying (34), we find that

|gl (Z) - 1| < dl Z?Lo=p+t an <1
(@ +1| = 2 - 222:;;11 Ay —d, Y @y

This prove (32). Therefore, Re(g1 (z)) > 0, and we obtain
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Re {g((zz))} >1- %

Now, in the same manner, we prove the assertion(33), by setting

S d,
0200 = L+ ay) (32 - )

and this completes the proof.
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