# On properties of Sugeno Fuzzy Measure space

## Firas Hussean Maghool

AL- Qadisiya University

College of Computer science and Mathematic

Department of mathematics.

h.mfiras@yahoo.com

#### **Abstract:**

In this paper, first study some properties of a Sugeno fuzzy measure as a set function and Continunity of sugeno fuzzy measure space, discuss pesuduometric generating properties of this measure and prove some theory.

**Keyword:-**  $\sigma$ -field, Sugeno fuzzy measure, pesuduometric generating properties

#### **Introduction:**

Fuzzy measure is generalization of the notion of measure in mathematical analysis . In 1974, the Japanese Scholar Sugeno [1] presented a kind of typical non additive measure Sugeno fuzzy measure. The properties and application of Sugeno measure have been studied by many authors

as [2]and [4] , in this paper we present definition sugeno fuzzy measure as a monotone and continuous set function and study pesuduometric generating properties of sugeno fuzzy measure space and prove some important theory

#### **Preliminaries**

## Definition (2.1)[1]:

A family F of subsets of a set X is called a  $\sigma$ -field on a set  $\Omega$ , if

- (1)  $X \in F$
- (2) If  $A \in F$ , then  $A^c \in F$

(3) If 
$$A_n \in F$$
,  $n = 1, 2, ...$  then  $\bigcup_{n=1}^{\infty} A_n \in F$ 

A measurable space is a pair (X, F),

where X is a set and F is  $\sigma$ -field on X

A subset A of X is called measurable

(measurable with respect to the

 $\sigma$ -field F), if  $A \in F$  i.e. any member of F is called a measurable set.

## **Definition(2.2)[1][2]:-**

Let X is nonempty set and F is  $\sigma$  – field, a set function  $\mu: F \to [0,1]$  that is satisfy the following axioms:

(1) 
$$\mu(X) = 1$$

$$(2)\mu(\bigcup_{i=1}^{\infty} A_i) = \begin{cases} \frac{1}{\lambda} \left[ \prod_{i=1}^{\infty} (1 + \lambda \cdot \mu(A_i)) \right] - 1 &, \quad \lambda \neq 0 \\ \sum_{i=1}^{\infty} \mu(A_i) &, \quad \lambda = 0 \end{cases}$$

where  $\lambda \in (-1,\infty)$  is called  $\lambda$ -Sugeno fuzzy measure and atripe  $(X,F,\mu)$   $\lambda$ -Sugeno fuzzy measure space, X is a set.

**Example**: Let  $\mu: X \to [0,1]$ 

$$X = \{1,2\}, \qquad F = \{\phi, \{1\}, \{2\}, X\}$$

$$\mu(A) = \begin{cases} 0, & A = \phi \\ 0.4, & A = \{1\} \\ 0.2, & A = \{2\} \\ 1 & A = X \end{cases}$$

Is  $\lambda$  - Sugeno fuzzy measre where  $\lambda = 5$ 

Solve:-

$$\mu(\{1\} \bigcup \{2\}) = \mu(X) = 1$$

$$\mu(\{1\} \bigcup \{2\}) = \frac{1}{5} \{1 + 5\mu\{1\})(1 + 5\mu(\{2\}) - 1\}$$

$$= \frac{1}{5}[(1+2)(1+1)] - 1$$

$$=\frac{6}{5}-\frac{1}{5}=1$$

In the following we called  $\lambda$ - Sugeno fuzzy measure is Sugeno fuzzy measure

## **Main Result**

# 1- Properties of Sugeno fuzzy measure space:

#### Theorem(2.3):

Let  $(X, F, \mu)$  be Sugeno fuzzy measure space then

(1) 
$$\mu(\phi) = 0$$

(2) if 
$$A_1, A_2 \in F$$
 then 
$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) + \lambda \mu(A_1) \mu(A_2)$$

(3) if 
$$A_1, A_2, ..., A_n \in F$$
 then

$$\mu(\bigcup_{k=1}^{n} A_{i}) = \begin{cases} \frac{1}{\lambda} \left[ \prod_{k=1}^{n} (1 + \lambda \cdot \mu(A_{k})) - 1 &, \quad \lambda \neq 0 \\ & \sum_{k=1}^{n} \mu(A_{k}) &, \quad \lambda = 0 \end{cases}$$

(4) if 
$$A \in F$$

Then 
$$\mu(A) + \mu(A^c) = 1 - \lambda \mu(A) \mu(A^c)$$

Proof:

(1) since 
$$X \cup \phi = X$$

$$\mu(X \cup \phi) = \mu(X) = 1$$

$$\mu(X \cup \phi) = \mu(X) + \mu(\phi) + \lambda \mu(X) \mu(\phi)$$

$$\Rightarrow$$
 1 +  $\mu(\phi)$  +  $\lambda\mu(\phi)$  = 1

$$\Rightarrow \mu(\phi) + \lambda \mu(\phi) = 0$$

$$\Rightarrow$$
  $(1+\lambda)\mu(\phi)=0$ 

(2) 
$$\mu(A_1 \cup A_2) = \frac{1}{\lambda} (\prod_{i=1}^{2} (1 + \lambda \mu(A_i)) - 1)$$

$$= \frac{1}{\lambda} [(1 + \lambda \mu(A_1)(1 + \lambda \mu(A_2) - 1)]$$

$$= \frac{1}{\lambda} [(1 + \lambda \mu (A_1 + \lambda \mu (A_2) + \lambda^2 \mu (A_1) \mu (A_2) - 1]$$

$$= \frac{1}{\lambda} [(\lambda \mu (A_1 + \lambda \mu (A_2) + \lambda^2 \mu (A_1) \mu (A_2)]$$

$$= \mu (A_1) + \mu (A_2) + \lambda \mu (A_1) \mu (A_2)$$

(3) put 
$$A = \phi$$
 when  $k \ge n$ 

$$\mu(\bigcup_{k=1}^{n}A_{k}) = \mu(\bigcup_{k=1}^{\infty}A_{k}) = \begin{cases} \frac{1}{\lambda}\prod_{k=1}^{\infty}(1+\lambda\cdot\mu(A_{k})) - 1 &, \quad \lambda \neq 0 \\ & \sum_{k=1}^{\infty}\mu(A_{k}) &, \quad \lambda = 0 \end{cases}$$

$$\mu(\bigcup_{k=1}^{n} A_{i}) = \begin{cases} \frac{1}{\lambda} \left[ \prod_{k=1}^{n} (1 + \lambda \cdot \mu(A_{k})) - 1 &, \quad \lambda \neq 0 \\ \sum_{k=1}^{n} \mu(A_{k}) &, \quad \lambda = 0 \end{cases} \qquad \mu(\bigcup_{k=1}^{n} A_{k}) = \begin{cases} \frac{1}{\lambda} \left[ \prod_{k=1}^{n} (1 + \lambda \cdot \mu(A_{k}) \prod_{k=n+1}^{\infty} (1 + \lambda \mu(A_{k})) - 1 \right] &, \quad \lambda \neq 0 \\ \sum_{k=1}^{n} \mu(A_{k}) + \sum_{k=1}^{\infty} \mu(A_{k}) &, \quad \lambda = 0 \end{cases}$$

$$\mu(\bigcup_{k=1}^{n} A_{i}) = \begin{cases} \frac{1}{\lambda} \left[ \prod_{k=1}^{n} (1 + \lambda \cdot \mu(A_{k})) - 1 &, \quad \lambda \neq 0 \\ \\ \sum_{k=1}^{n} \mu(A_{k}) &, \quad \lambda = 0 \end{cases}$$

(4) since  $\lambda \in F$ ,  $A = \emptyset$ 

Then 
$$\mu(\phi) \subseteq \mu(A) \subseteq \mu(X) \Rightarrow 0 \le \mu(A) \le 1$$

Since 
$$A \cup A^c = X \rightarrow \mu(A \cup A^c) = \mu(X) = 1$$

$$\mu(A) + \mu(A^c) + \lambda \mu(A)\mu(A^c) = 1$$

$$\mu(A) = 1 - (\mu(A^c) + \lambda \mu(A) \mu(A^c))$$

Then

$$\mu(A) + \mu(A^c) + \lambda \mu(A) \mu(A^c) = 1$$

If 
$$\lambda = 0$$

Then  $\mu(A) = 1 - \mu(A^c)$ 

## **Proposition(2.4):**

If 
$$A_1, A_2 \in F$$
,  $A_1 \subset A_2$ 

then 
$$\mu(A_1) \le \mu(A_2)$$

Proof:

since 
$$A_1 \subset A_2 \Rightarrow A_2^c \subset A_1^c$$
  

$$\Rightarrow \mu(A_2^c \cup A_2) = \mu(X) = 1$$

$$\mu(A_1^c) = \mu(A_2) + \lambda \mu(A_1^c) \mu(A_2)$$

$$\begin{split} 1 - (\mu(A_1^c) + \lambda \mu(A_1^c) \mu(A_1^c) + \mu(A_2^c) + \lambda \mu(A_1^c) \mu(A_2) \\ \\ 1 - \mu(A_1^c) [1 + \lambda \mu(A_1^c)] + \mu(A_2^c) [1 + \lambda \mu(A_1^c)] = 1 \\ \\ [1 + \lambda \mu(A_1^c)] [\mu(A_2^c) - \mu(A_1^c)] = 0 \\ \\ \mu(A_2^c) - \mu(A_1^c) \geq 0 \\ \\ \mu(A_2^c) \geq \mu(A_1^c) \end{split}$$

**Proposition (2.5)**:- Let  $(X, F, \mu)$  be a Sugeno fuzzy measure space then

$$\mu(A_1 \cap A_2) = \frac{1 - \mu(A_1 \cup A_2)}{1 + \lambda \mu(A_1 \cup A_2)}$$

Proof:- since  $A_1 \cap A_2 = (A_1 \cup A_2)^c$ 

$$\mu(A_{1} \cap A_{2}) = \mu(A_{1} \cup A_{2})^{c} = 1$$

$$1 - \mu(A_{1} \cup A_{2}) - \lambda \mu(A_{1} \cup A_{2}) \mu(A_{1} \cup A_{2})^{c}$$

$$\mu(A_{1} \cap A_{2}) = 1 - [\mu(A_{1}) + \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})]$$

$$-\lambda [\mu(A_{1}) + \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})] \mu(A_{1} \cap A_{2})$$

$$\mu(A_{1} \cap A_{2}) = 1 - \mu(A_{1}) - \mu(A_{2}) - \lambda \mu(A_{1}) \mu(A_{2})$$

$$-(\lambda \mu(A_{1}) + \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})) \mu(A_{1} \cap A_{2})$$

$$\mu(A_{1} \cap A_{2}) + (\lambda \mu(A_{1}) + \lambda \mu(A_{2})) + \lambda \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})$$

$$= 1 - \mu(A_{1}) - \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})$$

$$= \mu(A_{1} \cap A_{2}) [1 + \lambda(\mu(A_{1}) + \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})]$$

$$= 1 - (\mu(A_{1}) + \mu(A_{2}) + \lambda \mu(A_{1}) \mu(A_{2})$$

$$\rightarrow \mu(A_{1} \cap A_{2}) = \frac{1 - \mu(A_{1} \cup A_{2})}{1 + \lambda \mu(A_{1} \cup A_{2})}$$

**Remark:-** from Proposition (2.5) we have

$$\mu(A_1 - A_2) = \mu(A_1 \cap A_2^c) = \frac{1 - \mu(A_1 \cup A_2^c)}{1 + \lambda \mu(A_1 \cup A_2^c)}$$

# 2- Continunity of sugeno fuzzy measure space:

Let  $\{A_n\}$  be a sequence of subset of XThe set of all points which are belong to infinitely many sets of the sequence  $\{A_n\}$  is called the upper limit(or limit superior ) of  $\{A_n\}$  and (in symbol  $A^*$ ) defined by

$$A^* = \limsup_{n \to \infty} A_n = \{x \in A_n : \text{ for infinitely } \}$$

many 
$$n$$
} =  $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \lim_{n\to\infty} \bigcup_{k=n}^{\infty} A_k$ 

Thus,  $x \in A_n$  iff for all n, then  $x \in A_k$  for some  $k \ge n$ 

the lower limit (or limit inferior ) of  $\{A_n\}$  defined by  $A_*$  is the set of all points which belong to almost all sets of the sequence  $\{A_n\}$ , and denoted by

$$A_* = \lim_{n \to \infty} \inf A_n = \{x \in A_n : \text{for all but finitely} \}$$

many 
$$n$$
} =  $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \lim_{n \to \infty} \bigcap_{k=n}^{\infty} A_k$ 

Thus,  $x \in A_n$  iff for some n, then  $x \in A_k$  for all  $k \ge n$ .

A sequence  $\{A_n\}$  of subset of a set X is said to be converge if

 $\lim_{n\to\infty} \sup A_n = \lim_{n\to\infty} \inf A_n = A \quad \text{and} \quad A \quad \text{is said to be}$ the limit of  $\{A_n\}$  we write

$$A = \lim_{n \to \infty} A_n$$
 or  $A_n \to A$  [4].

A sequence  $\{A_n\}$  of subset of a set  $\Omega$  is said to be increasing if  $A_n \subset A_{n+1}$  for  $n=1,2,\ldots$  And is said to be decreasing if  $A_{n+1} \subset A_n$  for  $n=1,2,\ldots$ .

A monotone sequence of sets is one which either increasing or decreasing.

If  $\{A_n\}$  is an increasing sequence of subset of a set X and  $\bigcup_{n=1}^{\infty} A_n = A$ , we say that  $A_n$  an increasing sequence of a set with limit A, or that  $A_n$  increase to A, write  $A_n \uparrow A$ , also if  $\{A_n\}$  is a decreasing sequence of subset of a set X and  $\bigcap_{n=1}^{\infty} A_n = A$ , we say that the  $A_n$  a decreasing sequence of a set with limit A, or that the  $A_n$  decrease to A, write  $A_n \downarrow A$  [4].

### Theorem (3.1)[4]:

Let  $\{A_n\}$  be a sequence of subset of a set X and let  $A \subset X$ 

- (1) If  $A_n \uparrow A$  then  $A_n^c \downarrow A^c$
- (2) If  $A_n \downarrow A$  then  $A_n^c \uparrow A^c$

## Theorem(3.2):

Let  $(X, F, \mu)$  be Sugeno fuzzy measure space and  $A_n \in F$  then

- (i) If  $A_n \uparrow A$  then  $\lim_{n \to \infty} \mu(A_n) = \mu(A)$
- (ii) If  $A_n \downarrow A$  then  $\lim_{n \to \infty} \mu(A_n) = \mu(A)$
- (iii) If  $A_n \downarrow \phi$  then  $\lim_{n \to \infty} \mu(A_n) = 0$
- (iv) If  $A_n \uparrow X$  then  $\lim_{n \to \infty} \mu(A_n) = 1$

**Proof:-** (i) since  $A_n \uparrow A$ ,  $A_n \subset A_{n+1}$  and

$$\bigcup_{n=1}^{\infty} A_n = A$$

$$\mu(A) = \mu(\bigcup_{n=1}^{\infty} A_n) = \mu(A_1) + \sum_{i=2}^{\infty} \mu(A_i \mid A_{i-1})$$

$$= \mu(A_1) + \lim_{n \to \infty} \sum_{i=2}^{\infty} \mu(A_i \mid A_{i-1})$$

$$= \mu(A_1) + \lim_{n \to \infty} \sum_{i=2}^{\infty} \mu(A_i) - \mu(A_{i-1})$$

$$= \mu(A_1) + \lim_{n \to \infty} (\mu(A_n) - \mu(A_1))$$

$$=\lim_{n\to\infty}(\mu(A_n)$$

then 
$$\lim_{n\to\infty} \mu(A_n) = \mu(A)$$

(ii) 
$$A_n \downarrow A \rightarrow A_n^c \uparrow A^c$$

Then from (i)  $\lim_{n\to\infty} \mu(A_n^c) = \mu(A^c)$ 

$$\Rightarrow \lim_{n\to\infty} (1-\mu(A_n) - \lambda \mu(A_n^c)\mu(A_n)$$

$$=1-\mu(A)-\lambda\mu(A)\mu(A^c)$$

$$\Rightarrow 1 - \lim_{n \to \infty} \mu(A_n) - \lambda \mu(A_n^c) \mu(A_n) =$$

$$1 - \mu(A) - \lambda \mu(A) \mu(A^c)$$

$$= - \lim_{n \to \infty} \mu(A_n) = -\mu(A)$$

$$\therefore \lim_{n\to\infty} \mu(A_n) = \mu(A)$$

(iii)from(ii) 
$$A_n \downarrow \phi$$
 then  $\lim_{n \to \infty} \mu(A_n) = \mu(\phi)$ 

$$\lim_{n\to\infty}\mu(A_n)=0$$

(iv) 
$$A_n \uparrow X$$
 then from (ii)

$$Lim \mu(A_n) = \mu(X)$$

$$\rightarrow \lim_{n\to\infty} \mu(A_n) = 1$$
.

**Theorem(3.3 ):-** Let  $(X, F, \mu)$  be Sugeno Fuzzy measure space and  $A_n \in F$ ,  $\mu(A_n) \to 0$  as  $n \to \infty$  then

$$\mu(A \bigcup A_n) = \lim_{n \to \infty} \mu(A - A_n) = \mu(A).$$

Proof:-

$$A \subset A \cup A_n \to \mu(A) \le \mu(A \cup A_n)$$
  $\forall n$ 

$$\mu(A \bigcup A_n) = \mu(A) + \mu(A_n) + \lambda \mu(A) \mu(A_n)$$

Since 
$$\mu(A_n) \to 0$$
 then  $\mu(A \cup A_n) \to \mu(A)$   
and  $A - A_n \subset A \subset (A - A_n) \cup A_n$ 

We have

$$\mu(A - A_n) \le \mu(A)$$
  
=  $\mu(A - A_n) + \mu(A_n) + \lambda \mu(A - A_n) \mu(A_n)$ 

Since  $\mu(A_n) \to 0$  we have

$$\mu(A-A_n) \to \mu(A)$$
.

## **3-pesduometric generating properties:**

In this section we will study pesduometric generating properties in sugeno measure many authors was study with another measure as [3],[5].

## **Definition**(4.1)[4]:

Let  $\beta$  be a collection of all real valued function defined on a set X, and  $f, f_n \in \beta$ ,  $n \in N$  and  $A \in X$  we say that  $\{f_n\}$  uniformly convergent to f on A, if for every  $\varepsilon > 0$  there is  $k \in Z^+$  such that  $|f_n(x) - f(x)| < 0 \quad \forall n > k$  and  $x \in A$ , we write  $f_n \to f$  on A.

#### **Definition** (4.2):

A set function  $\mu$  is said to be have pseudometic generating property (p.g.p) if for any  $\varepsilon > 0$ , there exist  $\gamma > 0$  such for any Borel sets A and B,  $\mu(A) \lor \mu(B) < \gamma \Rightarrow \mu(A \cup B) < \varepsilon$ .

### **Theorem**(4.3):

A set function  $\mu$  has p.g.p if and only if there exist a sequence  $\{\gamma_n\}_n$  of real number such that  $\gamma_n \downarrow 0$  and, for any sequence  $\{A_n\}_n$  with  $\mu(A_n) < \gamma_n$ , the following inequalities hold

$$\mu(\bigcup_{k=n+1}^{+\infty} A_k) \le \gamma_n, \quad n \ge 1.$$

### **Proof:**

Let a set function  $\mu$  has p.g.p then there exist  $\gamma_1 \in (0, \frac{1}{2})$  such that

$$\mu(A) \vee \mu(B) < \gamma_1 \text{ implies } \mu(A \cup B) < \frac{1}{2}$$

For above  $\gamma_1$  there exist  $\gamma_2 \in (0, \frac{1}{2^2} \wedge \gamma_1)$  to satisfy that  $\mu(A) \vee \mu(B) < \gamma_2$  implies  $\mu(A \cup B) < \gamma_1$  and, similarly there exist

$$\gamma_3 \in (0, \frac{1}{2^3} \land \gamma_2)$$
 to satisfy that  $\mu(A) \lor \mu(B) < \gamma_3$  implies  $\mu(A \cup B) < \gamma_2$ 

Repeating this procedure,we can obtain a sequence  $\{\gamma_n\}_n$  such that

$$0<\gamma_{n+1}<\frac{1}{2^{n+1}}\wedge\gamma_n \qquad \forall n\geq 1\;.$$

If 
$$\mu(A_n) < \gamma_n$$
,  $\forall n \ge 1$ 

then we have 
$$\mu(\bigcup_{k=n+1}^{n+r} A_k) \le \gamma_n, \quad n \ge 1$$

So that 
$$\theta(\bigcup_{k=n+1}^{+\infty} A_k) \le \gamma_n, \quad n \ge 1$$

Conversely, for any 
$$\varepsilon>0$$
, there exist 
$$n_0\geq 1 \text{ such that } \gamma_{n_o}<\varepsilon$$

if we choose 
$$\gamma=\gamma_{n_o+2}$$
 and , when 
$$\mu(A)\vee\mu(B)<\gamma \text{ then } \text{ we have}$$
 
$$\theta(A\cup B)=\theta(\bigcup_{k=n_o+1}^{+\infty}A_n)\leq\gamma_{n_o}<\varepsilon$$

If we choose 
$$\gamma = \gamma_{n_o+2}$$
 and when  $\mu(A) \vee \mu(B) < \gamma$  then we have 
$$\mu(A \cup B) = \mu(\bigcup_{k=n+1}^{+\infty} A_k) \le \gamma_n < \varepsilon$$
 where 
$$A_{n_o+1} = A, \quad A_{n_o+2} = B, \quad \text{and} \quad \text{otherwise}$$
 
$$A_n = \phi$$

Thus a set function  $\mu$  has p.g.p.

## References

- [1]M.Sugeno,"Theory of fuzzy integrals and its application ", ph.D.dissertation, Tokyo institute of Technology,1974.
- [2] Z.Y.Wang, G.J.Klir, Fyzzy Measure Theory, Plenum Press, New York, 1992.
- [3] Q.Jiang, S.Wang and D.Ziou, "Pseudometric generating property and autocontinuity of fuzzy measure", ONR Grant No.N00014-94-1-0263,(1997).
- [4] Ash. R, "Probability and Measure Theory ", Second edition, Academic press (2000).
- [5] Q.Jiang, "On the exhaustivity and property (p.g.p) of null-additive set function ", www.orsc.edu.cn.com.