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DIFFERENTIAL SUBORDINATIONS OF MULTIVALENT
ANALYTIC FUNCTIONS ASSOCIATED WITH RUSCHEWEYH

DERIVATIVE

WAGGAS GALIB ATSHAN1, ABBAS KAREEM WANAS2

Abstract. In the present paper, we consider a class km
p (λ, γ;h) which consists

of analytic and multivalent functions in the open unit disk U = {z ∈ C : |z| < 1}
associated with Ruscheweyh derivative. Also we obtain some results for this class.

1. Introduction and Preliminaries

Let R(p,m) denote the class of all analytic functions f of the form:

f(z) = zp +
∞∑
n=m

an+pz
n+p (p,m ∈ N = {1, 2, 3, · · · }), z ∈ U. (1.1)

The Hadamard product (or convolution) (f1 ∗ f2)(z) of two functions

fj(z) = zp +
∞∑
n=m

an+p,jz
n+p ∈ R(p,m) (j = 1, 2)

is given by

(f1 ∗ f2) = zp +
∞∑
n=m

an+p,1an+p,2z
n+p.

Given two functions f and g, which are analytic in U , we say that the function
g is subordinate to f , written g ≺ f or g(z) ≺ f(z) (z ∈ U), if there exists a
Schwarz function w(z), analytic in U , with w(0) = 0 and |w(z)| < 1, and such that
g(z) = f(w(z)), (z ∈ U). In particular, if the function f is univalent in U , then g ≺ f
if and only if g(0) = f(0) and g(U) ⊂ f(U).

For λ > −p and f ∈ R(p,m). The Ruscheweyh Derivative of order λ+ p− 1 (see
[1]) is denoted by Dλ+p−1f and defined as

Dλ+p−1f(z) =
zp

(1− z)p+λ
∗f(z) = zp+

∞∑
n=m

Γ(λ+ n+ p)
Γ(λ+ p)n!

an+pz
n+p (λ > −p). (1.2)
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We note from (1.2) that, we have

z(Dλ+p−1f(z))′ = (λ+ p)(Dλ+pf(z))− λDλ+p−1f(z). (1.3)

Let H be the class of function h with h(0) = 1, which are analytic and convex
univalent in U .

Definition 1.1. A function f ∈ R(p,m) is said to be in the class kmp (λ, γ;h) if it
satisfies the subordination condition:

(1− γ)z−pDλ+p−1f(z) + γz−pDλ+pf(z) ≺ h(z),

where γ ∈ C and h ∈ H.
A function f ∈ R(1,m) is said to be in the class S∗(α) if

Re

{
zf ′(z)
f(z)

}
> α (z ∈ U)

for some α (α < 1).
When 0 ≤ α < 1, S∗(α) is the class of starlike functions of order α in U .
A function f ∈ R(1,m) is said to be prestarlike of order α in U if

z

(1− z)2(1−α)
∗ f(z) ∈ S∗(α) (α < 1).

We note this class by <(α).
Clearly a function f ∈ R(1,m) is in the class <(0) if and only if f is convex

univalent in U and <
(

1
2

)
= S∗

(
1
2

)
.

Lemma 1.1. [4] Let g be analytic in U and let h be analytic and convex univalent
in U with h(0) = g(0). If

g(z) +
1
µ
zg′(z) ≺ h(z), (1.4)

where Re µ ≥ 0 and µ 6= 0, then

g(z) ≺ h̃(z) = µz−µ
∫ z

0

tµ−1h(t)dt ≺ h(z)

and h̃(z) is the best dominant of (1.4).

Lemma 1.2. [6] Let α < 1, f ∈ S∗(α) and g ∈ <(α). Then, for any analytic
function F in U

g ∗ (fF )
g ∗ f

(U) ⊂ co(F (U)),

where co(F (U)) denotes the closed convex hull of F (U).

Such type of study was carried out by various authors for another classes, like,
Dinggong and Liu [2], Liu [3], Prajapat and Raina [5] and Yang et. al. [7].
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2. Main Results

Theorem 2.1. Let 0 ≤ γ1 < γ2. Then kmp (λ, γ2;h) ⊂ kmp (λ, γ1;h).

Proof. Let 0 ≤ γ1 < γ2 and f ∈ kmp (λ, γ2;h).
Suppose that

g(z) = z−pDλ+p−1f(z). (2.1)

Then the function g is analytic in U with g(0) = 1.
Since f ∈ kmp (λ, γ2;h), then we have

(1− γ2)z−pDλ+p−1f(z) + γ2z
−pDλ+pf(z) ≺ h(z). (2.2)

From (2.1) and (2.2), we get

(1− γ2)z−pDλ+p−1f(z) + γ2z
−pDλ+pf(z) = g(z) +

γ2

(λ+ p)
zg′(z) ≺ h(z). (2.3)

By using Lemma 1.1, we have
g(z) ≺ h(z). (2.4)

Note that 0 ≤ γ1
γ2
< 1 and that h is convex univalent in U . Hence

(1− γ1)z−pDλ+p−1f(z) + γ1z
−pDλ+pf(z)

=
γ1

γ2
((1− γ2)z−pDλ+p−1f(z) + γ2z

−pDλ+pf(z)) +
(

1− γ1

γ2

)
g(z) ≺ h(z).

Therefore f ∈ kmp (λ, γ1;h) and we obtain the result. �

Theorem 2.2. Let f ∈ kmp (λ, γ;h), g ∈ R(p,m) and

Re{z−pg(z)} > 1
2
. (2.5)

Then
(f ∗ g)(z) ∈ kmp (λ, γ;h).

Proof. Let f ∈ kmp (λ, γ;h) and g ∈ R(p,m). Then we have

(1− γ)z−pDλ+p−1(f ∗ g)(z) + γz−pDλ+p(f ∗ g)(z)

= (1− γ)(z−pg(z)) ∗ (z−pDλ+p−1f(z)) + γ(z−pg(z)) ∗ (z−pDλ+pf(z))

= (z−pg(z)) ∗ φ(z) (2.6)

where
φ(z) = (1− γ)z−pDλ+p−1f(z) + γz−pDλ+pf(z) ≺ h(z). (2.7)

From (2.5) note that the function z−pg(z) has the Herglotz representation

z−pg(z) =
∫
|x|=1

dµ(x)
1− xz

(z ∈ U), (2.8)

where µ(x) is a probability measure defined on the unit circle |x| = 1 and∫
|x|=1

dµ(x) = 1.
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Since h is convex univalent in U , it follows from (2.6) to (2.8) that

(1− γ)z−pDλ+p−1(f ∗ g)(z) + γz−pDλ+p(f ∗ g)(z) =
∫
|x|=1

φ(xz)dµ(x) ≺ h(z).

Therefore

(f ∗ g)(z) ∈ kmp (λ, γ;h).

�

Corollary 2.3. Let f ∈ kmp (λ, γ;h) be defined as in (1.1) and let

Re

{
1 +

∞∑
n=m

c+ p

c+ p+ n
zn

}
>

1
2
. (2.9)

Then

r(z) =
c+ p

zc

∫ z

0

tc−1f(t)dt, (c > −p)

is also in the class kmp (λ, γ;h).

Proof. Let f ∈ kmp (λ, γ;h) be defined as in (1.1). Then

r(z) =
c+ p

zc

∫ z

0

tc−1f(t)dt = zp +
∞∑
n=m

c+ p

c+ p+ n
an+pz

n+p

=

(
zp +

∞∑
n=m

an+pz
n+p

)
∗

(
zp +

∞∑
n=m

c+ p

c+ p+ n
zn+p

)
= (f ∗ F )(z), (2.10)

where

f(z) = zp +
∞∑
n=m

an+pz
n+p ∈ kmp (λ, γ;h)

and

F (z) = zp +
∞∑
n=m

c+ p

c+ p+ n
zn+p ∈ R(p,m).

Note that

Re{z−pF (z)} = Re

{
1 +

∞∑
n=m

c+ p

c+ p+ n
zn

}
>

1
2
. (2.11)

From (2.10) and (2.11) and by using Theorem 2.2, we get r(z) ∈ kmp (λ, γ;h). �

Theorem 2.4. Let f ∈ kmp (λ, γ;h), g ∈ R(p,m) and z1−pg(z) ∈ <(α), (α < 1).
Then

(f ∗ g)(z) ∈ kmp (λ, γ;h).
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Proof. Let f ∈ kmp (λ, γ;h) and g ∈ R(p,m). Then, we have

(1− γ)z−pDλ+p−1f(z) + γz−pDλ+pf(z) ≺ h(z). (2.12)

Now from (1.3), (2.12) is equivalent to

λ+ p(1− γ)
λ+ p

z−pDλ+p−1f(z) +
γ

λ+ p
z1−p(Dλ+p−1f(z))′ ≺ h(z). (2.13)

Hence
λ+ p(1− γ)

λ+ p
z−pDλ+p−1(f ∗ g)(z) +

γ

λ+ p
z1−p(Dλ+p−1(f ∗ g)(z))′

=
λ+ p(1− γ)

λ+ p
(z−pg(z)) ∗ (z−pDλ+p−1f(z))

+
γ

λ+ p
(z−pg(z)) ∗ (z1−p(Dλ+p−1f(z))′)

=
(z1−pg(z)) ∗ (zψ(z))

(z1−pg(z)) ∗ z
, (z ∈ U), (2.14)

where

ψ(z) =
λ+ p(1− γ)

λ+ p
z−pDλ+p−1f(z) +

γ

λ+ p
z1−p(Dλ+p−1f(z))′ ≺ h(z). (2.15)

Since h is convex univalent in U,ψ(z) ≺ h(z), z1−pg(z) ∈ <(α) and z ∈ S∗(α), (α < 1),
it follows from (2.14) and Lemma 1.2, we get the result. �

Theorem 2.5. Let γ > 0, σ > 0 and f ∈ kmp (λ, γ;σh+ 1− σ). If σ ≤ σ0, where

σ0 =
1
2

(
1− λ+ p

γ

∫ 1

0

u
λ+p
γ −1

1 + u
du

)−1

, (2.16)

then f ∈ kmp (λ, 0;h). The bound σ0 is the sharp when h(z) = 1
1−z .

Proof. Suppose that
g(z) = z−pDλ+p−1f(z). (2.17)

Let f ∈ kmp (λ, γ;σh+ 1− σ) with γ > 0 and σ > 0. Then, we have

g(z) +
γ

(λ+ p)
zg′(z) = (1− γ)z−pDλ+p−1f(z) + γz−pDλ+pf(z) ≺ σh(z) + 1− σ.

By using Lemma 1.1, we have

g(z) ≺ σ(λ+ p)
γ

z−
(λ+p)
γ

∫ z

0

t
λ+p
γ −1h(t)dt+ 1− σ = (h ∗ ϕ)(z), (2.18)

where

ϕ(z) =
σ(λ+ p)

γ
z−

(λ+p)
γ

∫ z

0

t
λ+p
γ −1

1− t
dt+ 1− σ. (2.19)
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If 0 < σ ≤ σ0, where σ0 < 1 is given by (2.16), then it follows from (2.19) that

Re(ϕ(z)) =
σ(λ+ p)

γ

∫ 1

0

u
λ+p
γ −1Re

(
1

1− uz

)
du+ 1− σ

>
σ(λ+ p)

γ

∫ 1

0

u
λ+p
γ −1

1 + u
du+ 1− σ ≥ 1

2
.

Now, by using the Herglotz representation for ϕ(z), from (2.17) and (2.18), we arrive
at

z−pDλ+p−1f(z) ≺ (h ∗ ϕ)(z) ≺ h(z).

Since h is convex univalent in U , then f ∈ kmp (λ, 0;h).
For h(z) = 1

1−z and f ∈ R(p,m) define by

z−pDλ+p−1f(z) =
σ(λ+ p)

γ
z−

(λ+p)
γ

∫ z

0

t
λ+p
γ −1

1− t
dt+ 1− σ,

we have
(1− γ)z−pDλ+p−1f(z) + γz−pDλ+pf(z) = σh(z) + 1− σ.

Thus f ∈ kmp (λ, γ;σh+ 1− σ).
Also for σ > σ0, we have

Re{z−pDλ+p−1f(z)} → σ(λ+ p)
γ

∫ 1

0

u
λ+p
γ −1

1 + u
du+ 1− σ < 1

2
, (z → 1)

which implies that f 6∈ kmp (λ, 0;h).
Therefore the bound σ0 cannot be increased when h(z) = 1

1−z .
This completes the proof of the theorem. �

Theorem 2.6. Let f ∈ kmp
(
λ+ 1, γ; 1+Az

1+Bz

)
, λ > −p,−1 ≤ B < A ≤ 1. Then

z−pDλ+pf(z) ≺ h̃(z) =
λ+ p+ 1

γ
z−

(λ+p+1)
γ

∫ z

0

t
λ+p+1
g −1

(
1 +Az

1 +Bz

)
dt

and h̃ is the best dominant.

Proof. Let f ∈ kmp
(
λ+ 1, γ; 1+Az

1+Bz

)
. Then, we have

(1− γ)z−pDλ+pf(z) + γz−pDλ+p+1f(z) ≺ 1 +Az

1 +Bz
. (2.20)

Suppose that
g(z) = z−pDλ+pf(z). (2.21)

Then the function g is analytic in U with g(0) = 1.
From (1.3), (2.20) and (2.21), we get

(1− γ)z−pDλ+pf(z) + γz−pDλ+p+1f(z) = g(z) +
γ

λ+ p+ 1
zg′(z) ≺ 1 +Az

1 +Bz
. (2.22)
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By Lemma 1.1, we obtain

g(z) ≺ h̃(z) =
λ+ p+ 1

γ
z−

(λ+p+1)
γ

∫ z

0

t
λ+p+1
γ −1

(
1 +Az

1 +Bz

)
dt

and h̃ is the best dominant. Thus we have the result. �
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[7] Y. Yang, Y. Tao and J. L. Liu, Differential subordinations for certain meromorphically multi-

valent functions defined by Dziok-Srivastava operator, Abstract and Applied Analysis, Article

ID 726518, 9 pages, 2011.

Received 25 December 2011

Department of Mathematics, College of Computer Science and Mathematics, Univer-

sity of Al-Qadisiya, Diwaniya, Iraq

E-mail address: 1 waggashnd@yahoo.com, 2 k.abbaswmk@yahoo.com


