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LAPLACE TRANSFORM AND GENERALIZED HYERS-ULAM

STABILITY OF LINEAR DIFFERENTIAL EQUATIONS

QUSUAY H. ALQIFIARY, SOON-MO JUNG

Abstract. By applying the Laplace transform method, we prove that the

linear differential equation

y(n)(t) +

n−1
X

k=0

αky(k)(t) = f(t)

has the generalized Hyers-Ulam stability, where αk is a scalar, y and f are n

times continuously differentiable and of exponential order.

1. Introduction

In 1940, Ulam [24] posed a problem concerning the stability of functional equa-
tions: “Give conditions in order for a linear function near an approximately linear
function to exist.” A year later, Hyers [5] gave an answer to the problem of Ulam
for additive functions defined on Banach spaces: Let X1 and X2 be real Banach
spaces and ε > 0. Then for every function f : X1 → X2 satisfying

‖f(x + y) − f(x) − f(y)‖ ≤ ε (x, y ∈ X1),

there exists a unique additive function A : X1 → X2 with the property

‖f(x) − A(x)‖ ≤ ε (x ∈ X1).

After Hyers’s result, many mathematicians have extended Ulam’s problem to
other functional equations and generalized Hyers’s result in various directions (see
[3, 6, 10, 18]). A generalization of Ulam’s problem was recently proposed by re-
placing functional equations with differential equations: The differential equation
ϕ(f, y, y′, . . . , y(n)) = 0 has Hyers-Ulam stability if for a given ε > 0 and a function
y such that |ϕ(f, y, y′, . . . , y(n))| ≤ ε, there exists a solution ya of the differential
equation such that |y(t) − ya(t)| ≤ K(ε) and limε→0 K(ε) = 0. If the preceding
statement is also true when we replace ε and K(ε) by ϕ(t) and Φ(t), where ϕ, Φ
are appropriate functions not depending on y and ya explicitly, then we say that
the corresponding differential equation has the generalized Hyers-Ulam stability (or
Hyers-Ulam-Rassias stability).
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Ob loza seems to be the first author who has investigated the Hyers-Ulam stability
of linear differential equations (see [14, 15]). Thereafter, Alsina and Ger published
their paper [1], which handles the Hyers-Ulam stability of the linear differential
equation y′(t) = y(t): If a differentiable function y(t) is a solution of the inequality
|y′(t) − y(t)| ≤ ε for any t ∈ (a,∞), then there exists a constant c such that
|y(t) − cet| ≤ 3ε for all t ∈ (a,∞).

Those previous results were extended to the Hyers-Ulam stability of linear dif-
ferential equations of first order and higher order with constant coefficients in
[12, 22, 23] and in [13], respectively. Furthermore, Jung has also proved the
Hyers-Ulam stability of linear differential equations (see [7, 8, 9]). Rus investigated
the Hyers-Ulam stability of differential and integral equations using the Gronwall
lemma and the technique of weakly Picard operators (see [20, 21]). Recently, the
Hyers-Ulam stability problems of linear differential equations of first order and sec-
ond order with constant coefficients were studied by using the method of integral
factors (see [11, 25]). The results given in [8, 11, 12] have been generalized by
Cimpean and Popa [2] and by Popa and Raşa [16, 17] for the linear differential
equations of nth order with constant coefficients.

Recently, Rezaei, Jung and Rassias have proved the Hyers-Ulam stability of
linear differential equations by using the Laplace transform method (see [19]).

In this paper, by using the Laplace transform method, we prove that the linear
differential equation of the nth order

y(n)(t) +

n−1
∑

k=0

αky(k)(t) = f(t)

has the generalized Hyers-Ulam stability, where αk is a scalar, y and f are n times
continuously differentiable and of exponential order, respectively.

2. Preliminaries

Throughout this paper, F will denote either the real field R or the complex field
C. A function f : (0,∞) → F is said to be of exponential order if there are constants
A, B ∈ R such that

|f(t)| ≤ AetB

for all t > 0. For each function f : (0,∞) → F of exponential order, we define the
Laplace transform of f by

F (s) =

∫ ∞

0

f(t)e−stdt.

There exists a unique number −∞ ≤ σ < ∞ such that this integral converges if
ℜ(s) > σ and diverges if ℜ(s) < σ, where ℜ(s) denotes the real part of the (complex)
number s. The number σ is called the abscissa of convergence and denoted by σf .
It is well known that |F (s)| → 0 as ℜ(s) → ∞. Furthermore, f is analytic on the
open right half plane {s ∈ C : ℜ(s) > σ} and we have

d

ds
F (s) = −

∫ ∞

0

te−stf(t)dt (ℜ(s) > σ).

The Laplace transform of f is sometimes denoted by L(f). It is well known that L
is linear and one-to-one.
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Conversely, let f(t) be a continuous function whose Laplace transform F (s) has
the abscissa of convergence σf , then the formula for the inverse Laplace transforms
yields

f(t) =
1

2πi
lim

T→∞

∫ α+iT

α−iT

F (s)estds =
1

2π

∫ ∞

−∞

e(α+iy)tF (α + iy)dy

for any real constant α > σf , where the first integral is taken along the vertical line
ℜ(s) = α and converges as an improper Riemann integral and the second integral
is used as an alternative notation for the first integral (see [4]). Hence, we have

L(f)(s) =

∫ ∞

0

f(t)e−stdt (ℜ(s) > σf )

L−1(F )(t) =
1

2π

∫ ∞

−∞

e(α+iy)tF (α + iy)dy (α > σf ).

The convolution of two integrable functions f, g : (0,∞) → F is defined by

(f ∗ g)(t) :=

∫ t

0

f(t − x)g(x)dx.

Then L(f ∗ g) = L(f)L(g).

Lemma 2.1 ([19]). Let P (s) =
∑n

k=0 αksk and Q(s) =
∑m

k=0 βksk, where m, n
are nonnegative integers with m < n and αk, βk are scalars. Then there exists an

infinitely differentiable function g : (0,∞) → F such that

L(g) =
Q(s)

P (s)
(ℜ(s) > σ

P
)

and

g(i)(0) =

{

0 for i ∈ {0, 1, . . . , n − m − 2},

βm/αn for i = n − m − 1

where σ
P

= max{ℜ(s) : P (s) = 0}.

Lemma 2.2 ([19]). Given an integer n > 1, let f : (0,∞) → F be a continuous

function and let P (s) be a complex polynomial of degree n. Then there exists an n
times continuously differentiable function h : (0,∞) → F such that

L(h) =
L(f)

P (s)
(ℜ(s) > max{σ

P
, σf}),

where σ
P

= max{ℜ(s) : P (s) = 0} and σf is the abscissa of convergence for f . In

particular, it holds that h(i)(0) = 0 for every i ∈ {0, 1, . . . , n − 1}.

3. Main Results

Let F denote either R or C. In the following theorem, using the Laplace transform
method, we investigate the generalized Hyers-Ulam stability of the linear differential
equation of first order

y′(t) + αy(t) = f(t). (3.1)

Theorem 3.1. Let α be a constant in F and let ϕ : (0,∞) → (0,∞) be an integrable

function. If a continuously differentiable function y : (0,∞) → F satisfies the

inequality

|y′(t) + αy(t) − f(t)| ≤ ϕ(t) (3.2)
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for all t > 0, then there exists a solution yα : (0,∞) → F of the differential equation

(3.1) such that

|y(t) − yα(t)| ≤ e−ℜ(α)t

∫ t

0

eℜ(α)xϕ(x)dx

for any t > 0.

Proof. If we define a function z : (0,∞) → F by z(t) := y′(t) +αy(t)−f(t) for each
t > 0, then

L(y) −
y(0) + L(f)

s + α
=

L(z)

s + α
. (3.3)

If we set yα(t) := y(0)e−αt + (E−α ∗ f)(t), where E−α(t) = e−αt, then yα(0) = y(0)
and

L(yα) =
y(0) + L(f)

s + α
=

yα(0) + L(f)

s + α
. (3.4)

Hence, we get

L
(

y′

α(t) + αyα(t)
)

= sL(yα) − yα(0) + αL(yα) = L(f).

Since L is a one-to-one operator, it holds that

y′

α(t) + αyα(t) = f(t).

Thus, yα is a solution of (3.1).
Moreover, by (3.3) and (3.4), we obtain L(y) − L(yα) = L(E−α ∗ z). Therefore,

we have

y(t) − yα(t) = (E−α ∗ z)(t). (3.5)

In view of (3.2), it holds that

|z(t)| ≤ ϕ(t) (3.6)

for all t > 0, and it follows from the definition of convolution, (3.5), and (3.6) that

|y(t) − yα(t)| = |(E−α ∗ z)(t)|

=
∣

∣

∫ t

0

E−α(t − x)z(x)dx
∣

∣

≤

∫ t

0

∣

∣e−α(t−x)
∣

∣ϕ(x)dx

≤ e−ℜ(α)t

∫ t

0

eℜ(α)xϕ(x)dx

for all t > 0. (We remark that
∫ t

0
eℜ(α)xϕ(x)dx exists for each t > 0 provided ϕ is

an integrable function.) �

Corollary 3.2. Let α be a constant in F and let ϕ : (0,∞) → (0,∞) be an integrable

function such that
∫ t

0

eℜ(α)(x−t)ϕ(x)dx ≤ Kϕ(t) (3.7)

for all t > 0 and for some positive real constant K. If a continuously differentiable

function y : (0,∞) → F satisfies the inequality (3.2) for all t > 0, then there exists

a solution yα : (0,∞) → F of the differential equation (3.1) such that

|y(t) − yα(t)| ≤ Kϕ(t)

for any t > 0.
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In the following remark, we show that there exists an integrable function ϕ :
(0,∞) → (0,∞) satisfying the condition (3.7).

Remark 3.3. Let α be a constant in F with ℜ(α) > −1. If we define ϕ(t) = Aet

for all t > 0 and for some A > 0, then we have
∫ t

0

eℜ(α)(x−t)ϕ(x)dx =

∫ t

0

eℜ(α)(x−t)Aexdx

=
1

1 + ℜ(α)

(

Aet − Ae−ℜ(α)t
)

≤
1

1 + ℜ(α)
ϕ(t)

for each t > 0.

Now, we apply the Laplace transform method to the proof of the generalized
Hyers-Ulam stability of the linear differential equation of second order

y′′(t) + βy′(t) + αy(t) = f(t). (3.8)

Theorem 3.4. Let α and β be constants in F such that there exist a, b ∈ F with

a + b = −β, ab = α, and a 6= b. Assume that ϕ : (0,∞) → (0,∞) is an integrable

function. If a twice continuously differentiable function y : (0,∞) → F satisfies the

inequality

|y′′(t) + βy′(t) + αy(t) − f(t)| ≤ ϕ(t) (3.9)

for all t > 0, then there exists a solution yc : (0,∞) → F of the differential equation

(3.8) such that

|y(t) − yc(t)| ≤
eℜ(a)t

|a − b|

∫ t

0

e−ℜ(a)xϕ(x)dx +
eℜ(b)t

|a − b|

∫ t

0

e−ℜ(b)xϕ(x)dx

for all t > 0.

Proof. If we define a function z : (0,∞) → F by z(t) := y′′(t)+βy′(t)+αy(t)−f(t)
for each t > 0, then we have

L(z) =
(

s2 + βs + α
)

L(y) − [sy(0) + βy(0) + y′(0)] − L(f). (3.10)

In view of (3.10), a function y0 : (0,∞) → F is a solution of (3.8) if and only if
(

s2 + βs + α
)

L(y0) − sy0(0) − [βy0(0) + y′

0(0)] = L(f). (3.11)

Now, since s2 + βs + α = (s − a)(s − b), (3.10) implies that

L(y) −
sy(0) + [βy(0) + y′(0)] + L(f)

(s − a)(s − b)
=

L(z)

(s − a)(s − b)
. (3.12)

If we set

yc(t) := y(0)
aeat − bebt

a − b
+ [βy(0) + y′(0)]Ea,b(t) + (Ea,b ∗ f)(t), (3.13)

where Ea,b(t) := eat
−ebt

a−b
, then yc(0) = y(0). Moreover, since

y′

c(t) = y(0)
a2eat − b2ebt

a − b
+ [βy(0) + y′(0)]

aeat − bebt

a − b
+

d

dt
(Ea,b ∗ f)(t),

(Ea,b ∗ f)(t) =
eat

a − b

∫ t

0

e−axf(x)dx −
ebt

a − b

∫ t

0

e−bxf(x)dx,
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we have

y′

c(0) = y(0)
a2 − b2

a − b
+ [βy(0) + y′(0)]

a − b

a − b

= (a + b)y(0) + βy(0) + y′(0)

= y′(0).

It follows from (3.13) that

L(yc) =
syc(0) + [βyc(0) + y′

c(0)] + L(f)

(s − a)(s − b)
. (3.14)

Now, (3.11) and (3.14) imply that yc is a solution of (3.8). Applying (3.12) and
(3.14) and considering the facts that yc(0) = y(0), y′

c(0) = y′(0), and L(Ea,b ∗ z) =
L(z)

(s−a)(s−b) , we obtain L(y) − L(yc) = L(Ea,b ∗ z) or equivalently, y(t) − yc(t) =

(Ea,b ∗ z)(t).
In view of (3.9), it holds that |z(t)| ≤ ϕ(t), and it follows from the definition of

the convolution that

|y(t) − yc(t)| = |(Ea,b ∗ z)(t)|

≤
eℜ(a)t

|a − b|

∫ t

0

e−ℜ(a)xϕ(x)dx +
eℜ(b)t

|a − b|

∫ t

0

e−ℜ(b)xϕ(x)dx

for any t > 0. We remark that
∫ t

0
e−ℜ(a)xϕ(x)dx and

∫ t

0
e−ℜ(b)xϕ(x)dx exist for

any t > 0 provided ϕ is an integrable function. �

Corollary 3.5. Let α and β be constants in F such that there exist a, b ∈ F with

a + b = −β, ab = α, and a 6= b. Assume that ϕ : (0,∞) → (0,∞) is an integrable

function for which there exists a positive real constant K with
∫ t

0

(

eℜ(a)(t−x) + eℜ(b)(t−x)
)

ϕ(x)dx ≤ Kϕ(t) (3.15)

for all t > 0. If a twice continuously differentiable function y : (0,∞) → F satisfies

the inequality (3.9) for all t > 0, then there exists a solution yc : (0,∞) → F of the

differential equation (3.8) such that

|y(t) − yc(t)| ≤
K

|a − b|
ϕ(t)

for all t > 0.

We now show that there exists an integrable function ϕ : (0,∞) → (0,∞) which
satisfies the condition (3.15).

Remark 3.6. Let α and β be constants in F such that there exist a, b ∈ F with
a + b = −β, ab = α, ℜ(a) < 1, ℜ(b) < 1, and a 6= b. If we define ϕ(t) = Aet for all
t > 0 and for some A > 0, then we get

∫ t

0

(

eℜ(a)(t−x) + eℜ(b)(t−x)
)

ϕ(x)dx

=

∫ t

0

(

eℜ(a)(t−x) + eℜ(b)(t−x)
)

Aexdx

=
A

1 −ℜ(a)

(

et − eℜ(a)t
)

+
A

1 −ℜ(b)

(

et − eℜ(b)t
)
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≤
( 1

1 −ℜ(a)
+

1

1 −ℜ(b)

)

ϕ(t)

for all t > 0.

Similarly, we apply the Laplace transform method to investigate the generalized
Hyers-Ulam stability of the linear differential equation of nth order

y(n)(t) +
n−1
∑

k=0

αky(k)(t) = f(t) (3.16)

Theorem 3.7. Let α0, α1, . . . , αn be scalars in F with αn = 1, where n is an

integer larger than 1. Assume that ϕ : (0,∞) → (0,∞) is an integrable function of

exponential order. If an n times continuously differentiable function y : (0,∞) → F

satisfies the inequality

∣

∣y(n)(t) +

n−1
∑

k=0

αky(k)(t) − f(t)
∣

∣ ≤ ϕ(t) (3.17)

for all t > 0, then there exist real constants M > 0 and σg and a solution yc :
(0,∞) → F of the differential equation (3.16) such that

|y(t) − yc(t)| ≤ M

∫ t

0

eα(t−x)ϕ(x)dx

for all t > 0 and α > σg.

Proof. Applying integration by parts repeatedly, we derive

L
(

y(k)
)

= skL(y) −
k

∑

j=1

sk−jy(j−1)(0)

for any integer k > 0. Using this formula, we can prove that a function y0 :
(0,∞) → F is a solution of (3.16) if and only if

L(f) =

n
∑

k=0

αkskL(y0) −

n
∑

k=1

αk

k
∑

j=1

sk−jy
(j−1)
0 (0)

=

n
∑

k=0

αkskL(y0) −

n
∑

j=1

n
∑

k=j

αksk−jy
(j−1)
0 (0)

= Pn,0(s)L(y0) −

n
∑

j=1

Pn,j(s)y
(j−1)
0 (0),

(3.18)

where Pn,j(s) :=
∑n

k=j αksk−j for j ∈ {0, 1, . . . , n}.

Let us define a function z : (0,∞) → F by

z(t) := y(n)(t) +

n−1
∑

k=0

αky(k)(t) − f(t) (3.19)

for all t > 0. Then, similarly as in (3.18), we obtain

L(z) = Pn,0(s)L(y) −
n

∑

j=1

Pn,j(s)y(j−1)(0) − L(f).
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Hence, we get

L(y) −
1

Pn,0(s)

(

n
∑

j=1

Pn,j(s)y(j−1)(0) + L(f)
)

=
L(z)

Pn,0(s)
. (3.20)

Let σf be the abscissa of convergence for f , let s1, s2, . . . , sn be the roots of the
polynomial Pn,0(s), and let σ

P
= max{ℜ(sk) : k ∈ {1, 2, . . . , n}}. For any s with

ℜ(s) > max{σf , σ
P
}, we set

G(s) :=
1

Pn,0(s)

(

n
∑

j=1

Pn,j(s)y(j−1)(0) + L(f)
)

. (3.21)

By Lemma 2.2, there exists an n times continuously differentiable function f0 such
that

L(f0) =
L(f)

Pn,0(s)
(3.22)

for all s with ℜ(s) > max{σf , σ
P
} and

f
(i)
0 (0) = 0 (3.23)

for any i ∈ {0, 1, . . . , n − 1}.
For j ∈ {1, 2, . . . , n}, we note that

Pn,j(s)

Pn,0(s)
=

1

sj
−

∑j−1
k=0 αksk

sjPn,0(s)
(3.24)

for every s with ℜ(s) > max{0, σ
P
}. Applying Lemma 2.1 for the case of Q(s) =

∑j−1
k=0 αksk and P (s) = sjPn,0(s), we can find an infinitely differentiable function

gj such that

L(gj) =

∑j−1
k=0 αksk

sjPn,0(s)
(3.25)

and g
(k)
j (0) = 0 for k ∈ {0, 1, . . . , n − 1}.

Let

fj(t) :=
tj−1

(j − 1)!
− gj(t) (3.26)

for j ∈ {1, 2, . . . , n}. Then we have

f
(i)
j (0) =

{

0 for i ∈ {0, 1, . . . , j − 2, j, j + 1, . . . , n − 1},

1 for i = j − 1.
(3.27)

If we define

yc(t) :=
n

∑

j=1

y(j−1)(0)fj(t) + f0(t),

then the conditions (3.23) and (3.27) imply that

y(i)
c (0) = y(i)(0) (3.28)
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for every i ∈ {0, 1, . . . , n − 1}. Moreover, it follows from (3.21)–(3.28) that

L(yc) =

n
∑

j=1

y(j−1)(0)L(fj) + L(f0)

=

n
∑

j=1

y(j−1)(0)
( 1

sj
− L(gj)

)

+
L(f)

Pn,0(s)

=
1

Pn,0(s)

(

n
∑

j=1

Pn,j(s)y(j−1)(0) + L(f)
)

(3.29)

for each s with ℜ(s) > max{0, σf , σ
P
}.

Now, (3.18) implies that yc is a solution of (3.16). Moreover, by (3.20) and
(3.29), we have

L(y) − L(yc) =
L(z)

Pn,0(s)
. (3.30)

Applying Lemma 2.1 for the case of Q(s) = 1 and P (s) = Pn,0(s), we find an
infinitely differentiable function g : (0,∞) → F such that

L(g) =
1

Pn,0(s)
(3.31)

which implies that

g(t) = L−1

(

1

Pn,0(s)

)

=
1

2π

∫ ∞

−∞

e(α+iy)t 1

Pn,0(α + iy)
dy

for any real constant α > σg. Moreover, it holds that

|g(t − x)| ≤
1

2π

∫ ∞

−∞

∣

∣e(α+iy)(t−x)
∣

∣

1

|Pn,0(α + iy)|
dy

≤
1

2π

∫ ∞

−∞

eα(t−x) 1

|Pn,0(α + iy)|
dy

≤
1

2π
eα(t−x)

∫ ∞

−∞

1

|Pn,0(α + iy)|
dy

≤ Meα(t−x)

(3.32)

for all α > σg, where

M =
1

2π

∫ ∞

−∞

1

|Pn,0(α + iy)|
dy < ∞,

because n is an integer larger than 1. By (3.17) and (3.19), it also holds that
|z(t)| ≤ ϕ(t) for all t > 0.

In view of (3.30), (3.31), and (3.32), we obtain

L(y) − L(yc) = L(g)L(z) = L(g ∗ z).

Consequently, we have y(t)− yc(t) = (g ∗ z)(t) for any t > 0. Hence, it follows from
(3.17), (3.19), and (3.32) that

|y(t) − yc(t)| = |(g ∗ z)(t)| ≤

∫ t

0

|g(t − x)||z(x)|dx ≤ M

∫ t

0

eα(t−x)ϕ(x)dx

for all t > 0 and for any real constant α > σg, which completes the proof. �
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Corollary 3.8. Let α0, α1, . . . , αn be scalars in F with αn = 1, where n is an

integer larger than 1. Assume that there exist real constants α and K > 0 such that

a function ϕ : (0,∞) → (0,∞) satisfies
∫ t

0

eα(t−x)ϕ(x)dx ≤ Kϕ(t)

for all t > 0. Moreover, assume that the constant σg given in Theorem 3.7 is less

than α. If an n times continuously differentiable function y : (0,∞) → F satisfies

the inequality (3.17) for all t > 0, then there exist a real constants M > 0 and a

solution yc : (0,∞) → F of the differential equation (3.16) such that

|y(t) − yc(t)| ≤ KMϕ(t)

for all t > 0.

Remark 3.9. Assume that α < 1. If we define ϕ(t) = Aet for all t > 0 and for
some A > 0, then we get

∫ t

0

eα(t−x)ϕ(x)dx =

∫ t

0

eα(t−x)Aexdx =
A

1 − α

(

et − eαt
)

≤
1

1 − α
ϕ(t)

for all t > 0.

Acknowledgements. This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (No. 2013R1A1A2005557).

References

[1] C. Alsina, R. Ger; On some inequalities and stability results related to the exponential func-

tion, J. Inequal. Appl. 2, pp. 373–380, 1998.
[2] D. S. Cimpean, D. Popa; On the stability of the linear differential equation of higher order

with constant coefficients, Appl. Math. Comput. 217, pp. 4141–4146, 2010.
[3] S. Czerwik; Functional Equations and Inequalities in Several Variables, World Scientific,

Singapore, 2002.

[4] B. Davies; Integral Transforms and Their Apllications, Springer, New York, 2001.
[5] D. H. Hyers; On the stability of the linear functional equation, Proc. Natl. Soc. USA 27, pp.

222–224, 1941.
[6] D. H. Hyers, G. Isac, Th. M. Rassias; Stability of Functional Equations in Several Variables,
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