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LAPLACE TRANSFORM AND GENERALIZED HYERS-ULAM
STABILITY OF LINEAR DIFFERENTIAL EQUATIONS

QUSUAY H. ALQIFIARY, SOON-MO JUNG

ABSTRACT. By applying the Laplace transform method, we prove that the
linear differential equation

n—1
y (0 + D ary® (@) = f(1)
k=0

has the generalized Hyers-Ulam stability, where «y, is a scalar, y and f are n
times continuously differentiable and of exponential order.

1. INTRODUCTION

In 1940, Ulam [24] posed a problem concerning the stability of functional equa-
tions: “Give conditions in order for a linear function near an approximately linear
function to exist.” A year later, Hyers [5] gave an answer to the problem of Ulam
for additive functions defined on Banach spaces: Let X; and X5 be real Banach
spaces and € > 0. Then for every function f: X; — X, satisfying

If(z+y) = fl@) = fWI<e (v,y€Xy),

there exists a unique additive function A : X; — X5 with the property
If(z) — A@@)]| <e (z € Xy).

After Hyers’s result, many mathematicians have extended Ulam’s problem to
other functional equations and generalized Hyers’s result in various directions (see
[3, 6] 10l [18]). A generalization of Ulam’s problem was recently proposed by re-
placing functional equations with differential equations: The differential equation
o(f,y,7,...,y"™) = 0 has Hyers-Ulam stability if for a given ¢ > 0 and a function
y such that |o(f,y,v',...,y"™)| < e, there exists a solution y, of the differential
equation such that |y(t) — y.(t)] < K(e) and lim._o K(¢) = 0. If the preceding
statement is also true when we replace € and K () by ¢(t) and ®(t), where ¢, @
are appropriate functions not depending on y and y, explicitly, then we say that
the corresponding differential equation has the generalized Hyers-Ulam stability (or
Hyers-Ulam-Rassias stability).
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Obtloza seems to be the first author who has investigated the Hyers-Ulam stability
of linear differential equations (see [14, [15]). Thereafter, Alsina and Ger published
their paper [I], which handles the Hyers-Ulam stability of the linear differential
equation y/(t) = y(t): If a differentiable function y(t) is a solution of the inequality
ly'(t) — y(t)] < e for any t € (a,00), then there exists a constant ¢ such that
ly(t) — cet| < 3e for all t € (a,00).

Those previous results were extended to the Hyers-Ulam stability of linear dif-
ferential equations of first order and higher order with constant coefficients in
12, 22| 23] and in [I3], respectively. Furthermore, Jung has also proved the
Hyers-Ulam stability of linear differential equations (see [7, 8, [9]). Rus investigated
the Hyers-Ulam stability of differential and integral equations using the Gronwall
lemma and the technique of weakly Picard operators (see [20, 2I]). Recently, the
Hyers-Ulam stability problems of linear differential equations of first order and sec-
ond order with constant coefficients were studied by using the method of integral
factors (see [II} 25]). The results given in [, 1], 2] have been generalized by
Cimpean and Popa [2] and by Popa and Rasa [16], 7] for the linear differential
equations of nth order with constant coefficients.

Recently, Rezaei, Jung and Rassias have proved the Hyers-Ulam stability of
linear differential equations by using the Laplace transform method (see [19]).

In this paper, by using the Laplace transform method, we prove that the linear
differential equation of the nth order

YO0+ 3 ™ (0) = 1)
k=0

has the generalized Hyers-Ulam stability, where «y is a scalar, y and f are n times
continuously differentiable and of exponential order, respectively.

2. PRELIMINARIES

Throughout this paper, F will denote either the real field R or the complex field
C. A function f : (0,00) — F is said to be of exponential order if there are constants
A, B € R such that

[f(t)] < AetP

for all ¢ > 0. For each function f : (0,00) — F of exponential order, we define the
Laplace transform of f by

F(s) = /000 f(t)e stdt.

There exists a unique number —oco < ¢ < oo such that this integral converges if
R(s) > o and diverges if R(s) < o, where R(s) denotes the real part of the (complex)
number s. The number o is called the abscissa of convergence and denoted by o.
It is well known that |F'(s)] — 0 as R(s) — oco. Furthermore, f is analytic on the
open right half plane {s € C: R(s) > o} and we have

d oo
—F(s) = 7/ te " f(t)dt  (R(s) > o).
ds 0
The Laplace transform of f is sometimes denoted by L£(f). It is well known that £
is linear and one-to-one.
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Conversely, let f(¢) be a continuous function whose Laplace transform F(s) has
the abscissa of convergence o, then the formula for the inverse Laplace transforms
yields

1 a+1T . 1 (e’ (atin)t
t)= — 1i F Stds = — et ) d
£(t) QMTg;A%T (s)e"!ds QF[me (o + iy)dy

for any real constant a > oy, where the first integral is taken along the vertical line
R(s) = o and converges as an improper Riemann integral and the second integral
is used as an alternative notation for the first integral (see [4]). Hence, we have

/f Je~tdt (R(s) > o)

LOU(F) (1) = 2W/ (o 1 ig)dy (@ > oy).

The convolution of two integrable functions f, g : (0,00) — F is defined by

(f * o)t /f%w

Then L(f xg) = L(f)L(g).

Lemma 2.1 ([19]). Let P(s) = Y p_ooxs® and Q(s) = >, Bes”, where m,n
are nonnegative integers with m < n and ag, B are scalars. Then there exists an
infinitely differentiable function g : (0,00) — F such that

c@) =2 R >0,

P(s)
and
g(i)(()): 0 forie{0,1,...,n—m — 2},
Bm/on fori=n—m—1

where o, = max{R(s) : P(s) = 0}.

Lemma 2.2 ([19]). Given an integer n > 1, let f : (0,00) — F be a continuous
function and let P(s) be a complex polynomial of degree n. Then there exists an n
times continuously differentiable function h : (0,00) — F such that

£ =53 (R(9) > max(o,,o7))
where o, = max{R(s) : P(s) = 0} and o is the abscissa of convergence for f. In

particular, it holds that hV)(0) = 0 for every i € {0,1,...,n —1}.

3. MAIN RESULTS

Let F denote either R or C. In the following theorem, using the Laplace transform
method, we investigate the generalized Hyers-Ulam stability of the linear differential
equation of first order

y'(t) + ay(t) = f(1). (3.1)

Theorem 3.1. Let « be a constant inF and let ¢ : (0,00) — (0,00) be an integrable
function. If a continuously differentiable function y : (0,00) — F satisfies the
inequality

ly'(t) + ay(t) — F()] < (1) (3.2)
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for allt > 0, then there exists a solution y, : (0,00) — T of the differential equation

(3.1) such that
t
0) a0 < &N [ R ()
0

for any t > 0.
Proof. If we define a function z : (0,00) — F by z(¢) := ¢/(¢) + ay(t) — f(¢) for each
t > 0, then
YO +L(f) _ L(2)
£ s+a  s+a (3.3)

If we set yo(t) := y(0)e™* + (E_q * f)(t), where E_,(t) = e~**, then y,(0) = y(0)

and
y(0) + L(f)  ya(0) + L(f)
s+a s+« '

L(ya) = (3.4)

Hence, we get

Ly (t) + aya(t)) = sLYa) — ¥a(0) + aL(ya) = L(f).

Since L is a one-to-one operator, it holds that

Ya(t) + aya(t) = f(1).
Thus, y, is a solution of (3.1]).
Moreover, by (3.3) and (3.4]), we obtain L£(y) — L(yo) = L(E_q4 * 2). Therefore,

we have
Y(t) = yalt) = (E_q * 2)(1). (3.5)
In view of (3.2)), it holds that

|2()] < (t) (3.6)
for all ¢ > 0, and it follows from the definition of convolution, , and . that

y(t) = Yo ()| = [(E—a * 2) (1))

—’/E (t — x)z(x)dx|

for all t > 0. (We remark that fot R D)2y (1)dx exists for each t > 0 provided ¢ is
an integrable function.) O

Corollary 3.2. Let « be a constant in F and let ¢ : (0,00) — (0, 00) be an integrable
function such that

t
/ R p(2)dr < Ko(t) (3.7
0

for allt > 0 and for some positive real constant K. If a continuously differentiable
function y : (0,00) — F satisfies the inequality (3.2]) for allt > 0, then there exists
a solution yq : (0,00) — F of the differential equation (3.1)) such that

y(t) = ya(t)| < Ko(t)
for anyt > 0.
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In the following remark, we show that there exists an integrable function ¢ :
(0,00) — (0, 00) satisfying the condition (3.7]).

Remark 3.3. Let a be a constant in F with R(a) > —1. If we define ¢(t) = Ae'
for all £ > 0 and for some A > 0, then we have

t t
/em(o‘)(l’*t)@(z)dazz/ M@ @=t) ge® dy

0 0
_ 1 t_ —R(a)t
= TR e (Ae Ae )
1
< -
= T

for each t > 0.

Now, we apply the Laplace transform method to the proof of the generalized
Hyers-Ulam stability of the linear differential equation of second order

y' () + By (t) + ay(t) = f(1). (3.8)

Theorem 3.4. Let o and 3 be constants in F such that there exist a,b € F with

a+b=—-0,ab=a, and a # b. Assume that ¢ : (0,00) — (0,00) is an integrable

function. If a twice continuously differentiable function y : (0,00) — F satisfies the
inequality

Y (t) + By (t) + ay(t) — f()] < o(t) (3.9)

for allt > 0, then there exists a solution y. : (0,00) — F of the differential equation

(13.8) such that

R(b)t
—R(b)z
W) e < e [ RO+ O [ O
for allt > 0.

Proof. If we define a function z : (0,00) — F by z(¢t) := y" (t) + 8y’ (t) + ay(t) — f(t)
for each t > 0, then we have

E(Z) = (52 + Bs + ) L{y) — [sy(0) + By(0) +y'(0)] — L(f). (3.10)
In view of , a function y : (0,00) — F is a solution of if and only if

(s + s+ a) L(yo) — syo(0 ) [ﬁyo( ) +¥6(0)] = L(f). (3.11)
Now, since s? + s + a = (s — a)(s — b), (3.10) implies that
sy(0) + [By(0) +y'(0 )] +£(f) £(2)

L(y) - G—a) D) = a6 (3.12)
If we set
aeat _ ebt
elt) = 9(0) "0 4 [89(0) + o O Bas (1) + (Buy « 1), (313)
where E, () := eat_ebt , then y.(0) = y(0). Moreover, since
a2 at b2 bt , aeat _ bebt d
Ye(t) y(O)ﬁ [By(0) +y @]ﬁ + &(Ea,b (1),

a—b a—

(Eap* f)(t) = e /te‘”f(x)d:z: e /te“f(x)dx
0 b 0
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we have
Py a? — b2 s @ —Db
Ye(0) = y(0)——~ + [By(0) + ' (0)] —
= (a+b)y(0) + By(0) +y'(0)
=14/(0).
It follows from that

o) = S2l0) + [3:0) + (0] + £

© (s —a)(s—b) '
Now, (3.11) and (3.14]) imply that y. is a solution of (3.8). Applying (3.12) and
(3-14) and considering the facts that y.(0) = y(0), y.(0) = ¥'(0), and L(Eqp % 2) =
%, we obtain L(y) — L(y.) = L(Eqp * z) or equivalently, y(t) — y.(t) =
(Eap* 2)(t).

In view of (3.9)), it holds that |z(¢)| < ¢(¢), and it follows from the definition of
the convolution that

y(t) = ye()| = [(Eap * 2)(1)]

(3.14)

Rt S RO O ()
< —— | e MW r+— [ e To(x)dx
la —b| Jo |a =0l Jo
for any ¢t > 0. We remark that fg e ROz p(2)dr and fo e RO p(g)dx exist for
any t > 0 provided ¢ is an integrable function. O

Corollary 3.5. Let o and 3 be constants in F such that there exist a,b € F with
a+b=—0,ab=cq, and a #b. Assume that ¢ : (0,00) — (0,00) is an integrable
function for which there exists a positive real constant K with

¢
/ (e%(“)(t*‘”) + em(b)(t*‘”)) p(xr)dr < Ko(t) (3.15)
0

for allt > 0. If a twice continuously differentiable function y : (0,00) — F satisfies
the inequality (3.9) for all t > 0, then there exists a solution y. : (0,00) — F of the
differential equation (3.8)) such that

ly(t) = ye(t)] <

g

for allt > 0.

We now show that there exists an integrable function ¢ : (0, 00) — (0, 00) which

satisfies the condition (3.15]).

Remark 3.6. Let a and § be constants in F such that there exist a,b € F with
a+b=—-03,ab=a, R(a) <1, R(b) < 1, and a # b. If we define ¢(t) = Ae for all
t > 0 and for some A > 0, then we get

t
/ (ewa)(tfz) n e%(b)(tfm)(p(x)dx

0
t

:/ ( R(a)(t— w)_’_e%(b )(t— w)Ae;ﬂdx
0

= 1_’%((})(@ _ eén(a)t) n 1_?}%@)(& -~ e%(b)t)
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1 1
< (1= Ra@) T 1= é}%(b))“"(t)
for all t > 0.

Similarly, we apply the Laplace transform method to investigate the generalized
Hyers-Ulam stability of the linear differential equation of nth order

Y™ (1) + Z awy® (1) = f(1) (3.16)

Theorem 3.7. Let ag,aq,...,a, be scalars in F with a,, = 1, where n is an
integer larger than 1. Assume that ¢ : (0,00) — (0,00) is an integrable function of
exponential order. If an n times continuously differentiable functiony : (0,00) — F
satisfies the inequality

y™( Z ary® (1) = F(D)] < o(t) (3.17)

for all t > 0, then there exist real constants M > 0 and o4 and a solution y. :
(0,00) — T of the differential equation (3.16]) such that

t
) = 00 < M [ e p(a)do
0
forallt >0 and o > oy.

Proof. Applying integration by parts repeatedly, we derive

k
Ly™) =stLy) = sF7yU(0)
j=1

for any integer £ > 0. Using this formula, we can prove that a function yq :
(0,00) — T is a solution of (3.16) if and only if

Zaks L(yo) Zakz,sk J (] 1)
- Zaks L(yo) ZZaks y971(0) (3.18)

Jj=1k=j

= Poo(s)L(y0) — Z P (s)y¥1(0),
j=1

where P, j(s) := Y_p_ aps®/ for j € {0,1,...,n}.
Let us define a function z : (0,00) — F by

2(t) =y (t) + Z ary®(t) - f(t) (3.19)
for all ¢ > 0. Then, similarly as in , we obtain

L(z) =P )= Puj(s)yV 0 (0) = L(f).
7j=1
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Hence, we get

1 - ; L(z)
L —7( P, ;(s)yY=D(0) + L ): . 3.20
0= B (P O+ L) = ol G20)
Let o; be the abscissa of convergence for f, let s1,59,...,5, be the roots of the

polynomial P, ¢(s), and let o, = max{R(sx) : k € {1,2,...,n}}. For any s with
R(s) > max{oy,0,}, we set

n

G(s) = %@(an,j(s)y<jfl>(0) +L‘(f)). (3.21)

n,0

By Lemma [2.2] there exists an n times continuously differentiable function fo such
that

L(f)

= .22
£(fo) = (3.22)

for all s with R(s) > max{oy,o,} and
Dy=0 (3.23)

for any ¢ € {0,1,...,n—1}.
For j € {1,2,...,n}, we note that

P"vj(s) — l _ Z-I]c;%) OékSk (324)

Poo(s) s TPy, 0(s)

for every s with R(s) > max{0,0,}. Applying Lemma [2.1] for the case of Q(s) =
i;é ays® and P(s) = s7 P, o(s), we can find an infinitely differentiable function
g; such that

Jj—1 k
N k=0 QLS
‘c(g]) - San’O(S) (325)
and g§k)(0) =0for k€{0,1,...,n—1}.
Let
1
fit) = G- g;(t) (3.26)
for j € {1,2,...,n}. Then we have
f(i)(()) _ 0 forie{0,1,...,57—2,4,+1,...,n—1}, (3.27)
J 1 fori=j—1.

If we define

Ye(t) := Zy(j_l)(o)fj(t) + fo(t),

then the conditions (3.23)) and (3.27)) imply that
5 (0) = y(0) (3.28)
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for every i € {0,1,...,n — 1}. Moreover, it follows from ([3.21)—(3.28) that

n

>y O)L) + L£(fo)

)
—
<
(s}
S~—

I

=S 0) (5 - £lan) + s (329)

1 = i1
e @ Pai(8)y970(0) + £(1))

for each s with $(s) > max{0,0¢,0,}.
Now, implies that y. is a solution of . Moreover, by and
(3-29), we have
L)~ L) = 52
Y Ye Pro(s) .
Applying Lemma for the case of Q(s) = 1 and P(s) = P, (s), we find an
infinitely differentiable function g : (0,00) — F such that

(3.30)

L(g) = (3.31)

which implies that

1 1 o . 1
—_ r-1 _ (a+tiy)t
9(t) = £ (Pn,o(s)> o /_ L€ Pn,o(aﬂy)dy

for any real constant a > 04. Moreover, it holds that

1 b : 1
t—2) < — elatw)t—=)|___ - g
st—al<g | | ot

1 > 1

< — €a(t_r)7,dy
21 J oo [ Pro(o + iy)| (3.32)
1 > 1

< 76(1(15795)\/ - 4

= o o [Prolatig)] ™

< Mea(tfw)

for all a > o4, where
1 > 1
M=— — _dy< oo,

o /,oo [P oo+ iy)]

because n is an integer larger than 1. By (3.17) and (3.19)), it also holds that
|2(t)| < (t) for all £ > 0.

In view of , , and , we obtain
L(y) — L(ye) = L(9)L(z) = L(g * 2).

Consequently, we have y(t) — y.(t) = (g z)(t) for any ¢ > 0. Hence, it follows from
(3.17), (3.19)), and (3.32)) that

(1) — 5e®)] = (g% 2)(8)] < / lg(t — @) ||2(2)|de < M / €= ()

for all £ > 0 and for any real constant o > o4, which completes the proof. (I
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Corollary 3.8. Let ag,aq,...,a, be scalars in F with a,, = 1, where n is an
integer larger than 1. Assume that there exist real constants o and K > 0 such that
a function ¢ : (0,00) — (0,00) satisfies

t
| et ptade < Kol
0

for allt > 0. Moreover, assume that the constant o4 given in Theorem @ is less
than «. If an n times continuously differentiable function y : (0,00) — F satisfies
the inequality (3.17)) for all t > 0, then there exist a real constants M > 0 and a
solution y. : (0,00) — F of the differential equation (3.16]) such that

y(t) — ye(t)| < KMo(t)
for allt > 0.

Remark 3.9. Assume that a < 1. If we define o(t) = Ae! for all ¢ > 0 and for
some A > 0, then we get

¢ t
/ e o(z)dz = / e®(t=2) Aedx = .
0 0 —a

1
11—«

(et _ eat) S Lp(t)

for all ¢ > 0.
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