Hyers-Ulam Stability of Second-Order Linear Differential Equations with Boundary Conditions

Qusuay H. Alqifiary and Soon-Mo Jung
College of Mathematics, University of Belgrade, Belgrade, Serbia
Work: University of Al-Qadisiyah, Al-Diwaniya, Iraq
E-mail: qhaq2010@gmail.com
Mathematics Section, College of Science and Technology, Hongik University, 339-701 Sejong, Republic of Korea
E-mail: smjung@hongik.ac.kr

Abstract

In this paper, we establish the Hyers-Ulam stability of linear differential equations of second order with boundary conditions.

2010 Mathematics Subject Classification: 44A10; 39B82; 34A40; 26D10.
Key words and phrases: differential equation; Hyers-Ulam stability; linear differential equation; differential equation of second order.

1 Introduction

In 1940, Ulam [24] posed a problem concerning the stability of functional equations: "Give conditions in order for a linear function near an approximately linear function to exist."

A year later, Hyers [5] gave an answer to the problem of Ulam for additive functions defined on Banach spaces: Let X_{1} and X_{2} be real Banach spaces and $\varepsilon>0$. Then for every function $f: X_{1} \rightarrow X_{2}$ satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \quad\left(x, y \in X_{1}\right)
$$

there exists a unique additive function $A: X_{1} \rightarrow X_{2}$ with the property

$$
\|f(x)-A(x)\| \leq \varepsilon \quad\left(x \in X_{1}\right)
$$

After Hyers's result, many mathematicians have extended Ulam's problem to other functional equations and generalized Hyers's result in various directions (see [3, 6, 10, 18]). A generalization of Ulam's problem was recently proposed by replacing functional equations with differential equations: The differential equation $\varphi\left(f, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ has the HyersUlam stability if for given $\varepsilon>0$ and a function y such that

$$
\left|\varphi\left(f, y, y^{\prime}, \ldots, y^{(n)}\right)\right| \leq \varepsilon
$$

there exists a solution y_{0} of the differential equation such that $\left|y(t)-y_{0}(t)\right| \leq K(\varepsilon)$ and $\lim _{\varepsilon \rightarrow 0} K(\varepsilon)=0$.

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of linear differential equations (see $[14,15]$). Thereafter, Alsina and Ger published their paper [1], which handles the Hyers-Ulam stability of the linear differential equation $y^{\prime}(t)=y(t)$: If a differentiable function $y(t)$ is a solution of the inequality $\left|y^{\prime}(t)-y(t)\right| \leq \varepsilon$ for any $t \in(a, \infty)$, then there exists a constant c such that $\left|y(t)-c e^{t}\right| \leq 3 \varepsilon$ for all $t \in(a, \infty)$.

Those previous results were extended to the Hyers-Ulam stability of linear differential equations of first order and higher order with constant coefficients in [12, 22, 23] and in [13], respectively. Furthermore, Jung [7, 8, 9] has also proved the Hyers-Ulam stability of linear differential equations (see also [4]). Rus investigated the Hyers-Ulam stability of differential and integral equations using the Gronwall lemma and the technique of weakly Picard operators (see [20, 21]). Recently, the Hyers-Ulam stability problems of linear differential equations of first order and second order with constant coefficients were studied by using the method of integral factors (see [11, 25]). The results given in $[8,11,12]$ have been generalized by Cimpean and Popa [2] and by Popa and Raşa $[16,17]$ for the linear differential equations of nth order with constant coefficients. Furthermore, the Laplace transform method was recently applied to the proof of the Hyers-Ulam stability of linear differential equations (see [19]).

In this paper, we prove the Hyers-Ulam stability of the second-order linear differential equations (3.1), (3.5), and (3.17) with boundary conditions.

2 Preliminaries

Lemma 2.1 Let $I=[a, b]$ be a closed interval with $-\infty<a<b<\infty$. If $y \in C^{2}(I, \mathbb{R})$ and $y(a)=0=y(b)$, then

$$
\max _{x \in I}|y(x)| \leq \frac{(b-a)^{2}}{8} \max _{x \in I}\left|y^{\prime \prime}(x)\right| .
$$

Proof. Let $M:=\max _{x \in I}|y(x)|$. Since $y(a)=0=y(b)$, there exists $x_{0} \in(a, b)$ such that $\left|y\left(x_{0}\right)\right|=M$. By the Taylor's theorem, we have

$$
\begin{aligned}
& y(a)=y\left(x_{0}\right)+y^{\prime}\left(x_{0}\right)\left(a-x_{0}\right)+\frac{y^{\prime \prime}(\xi)}{2}\left(a-x_{0}\right)^{2}, \\
& y(b)=y\left(x_{0}\right)+y^{\prime}\left(x_{0}\right)\left(b-x_{0}\right)+\frac{y^{\prime \prime}(\eta)}{2}\left(b-x_{0}\right)^{2}
\end{aligned}
$$

for some $\xi, \eta \in[a, b]$. Since $y(a)=y(b)=0$ and $y^{\prime}\left(x_{0}\right)=0$, we get

$$
\left|y^{\prime \prime}(\xi)\right|=\frac{2 M}{\left(a-x_{0}\right)^{2}}, \quad\left|y^{\prime \prime}(\eta)\right|=\frac{2 M}{\left(b-x_{0}\right)^{2}} .
$$

If $x_{0} \in(a,(a+b) / 2]$, then we have

$$
\frac{2 M}{\left(a-x_{0}\right)^{2}} \geq \frac{2 M}{\left(\frac{b-a}{2}\right)^{2}}=\frac{8 M}{(b-a)^{2}} .
$$

If $x_{0} \in[(a+b) / 2, b)$, then we have

$$
\frac{2 M}{\left(b-x_{0}\right)^{2}} \geq \frac{2 M}{\left(\frac{b-a}{2}\right)^{2}}=\frac{8 M}{(b-a)^{2}} .
$$

Hence, we obtain

$$
\max _{x \in I}\left|y^{\prime \prime}(x)\right| \geq \frac{8 M}{(b-a)^{2}}=\frac{8}{(b-a)^{2}} \max _{x \in I}|y(x)| .
$$

Therefore,

$$
\max _{x \in I}|y(x)| \leq \frac{(b-a)^{2}}{8} \max _{x \in I}\left|y^{\prime \prime}(x)\right|,
$$

which ends the proof.

Lemma 2.2 Let $I=[a, b]$ be a closed interval with $-\infty<a<b<\infty$. If $y \in C^{2}(I, \mathbb{R})$ and $y(a)=0=y^{\prime}(a)$, then

$$
\max _{x \in I}|y(x)| \leq \frac{(b-a)^{2}}{2} \max _{x \in I}\left|y^{\prime \prime}(x)\right| .
$$

Proof. By the Taylor's theorem, we have

$$
y(x)=y(a)+y^{\prime}(a)(x-a)+\frac{y^{\prime \prime}(\xi)}{2}(x-a)^{2}
$$

for some $\xi \in[a, b]$. Since $y(a)=y^{\prime}(a)=0$ and $(x-a)^{2} \leq(b-a)^{2}$, we get

$$
|y(x)| \leq \frac{\left|y^{\prime \prime}(\xi)\right|}{2}(b-a)^{2}
$$

for any $x \in I$. Thus, we obtain

$$
\max _{x \in I}|y(x)| \leq \frac{(b-a)^{2}}{2} \max _{x \in I}\left|y^{\prime \prime}(x)\right|,
$$

which completes the proof.

3 Main results

In the following theorems, we prove the Hyers-Ulam stability of the following linear differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)+\beta(x) y(x)=0 \tag{3.1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(a)=0=y(b) \tag{3.2}
\end{equation*}
$$

or with initial conditions

$$
\begin{equation*}
y(a)=0=y^{\prime}(a) \tag{3.3}
\end{equation*}
$$

where $I=[a, b], y \in C^{2}(I, \mathbb{R}), \beta \in C(I, \mathbb{R})$, and $-\infty<a<b<\infty$.

Theorem 3.1 Given a closed interval $I=[a, b]$, let $\beta \in C(I, \mathbb{R})$ be a function satisfying $\max _{x \in I}|\beta(x)|<8 /(b-a)^{2}$. If a function $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality

$$
\begin{equation*}
\left|y^{\prime \prime}(x)+\beta(x) y(x)\right| \leq \varepsilon, \tag{3.4}
\end{equation*}
$$

for all $x \in I$ and for some $\varepsilon \geq 0$, as well as the boundary conditions in (3.2), then there exist a constant $K>0$ and a solution $y_{0} \in C^{2}(I, \mathbb{R})$ of the differential equation (3.1) with the boundary conditions in (3.2) such that

$$
\left|y(x)-y_{0}(x)\right| \leq K \varepsilon
$$

for any $x \in I$.

Proof. By Lemma 2.1, we have

$$
\max _{x \in I}|y(x)| \leq \frac{(b-a)^{2}}{8} \max _{x \in I}\left|y^{\prime \prime}(x)\right| .
$$

Thus, it follows from (3.4) that

$$
\begin{aligned}
\max _{x \in I}|y(x)| & \leq \frac{(b-a)^{2}}{8} \max _{x \in I}\left|y^{\prime \prime}(x)+\beta(x) y(x)\right|+\frac{(b-a)^{2}}{8} \max _{x \in I}|\beta(x)| \max _{x \in I}|y(x)| \\
& \leq \frac{(b-a)^{2}}{8} \varepsilon+\frac{(b-a)^{2}}{8} \max _{x \in I}|\beta(x)| \max _{x \in I}|y(x)| .
\end{aligned}
$$

Let $C:=\frac{(b-a)^{2}}{8}$ and $K:=\frac{C}{1-C \max |\beta(x)|}$. Obviously, $y_{0} \equiv 0$ is a solution of (3.1) with the boundary conditions in (3.2) and

$$
\left|y(x)-y_{0}(x)\right| \leq K \varepsilon
$$

for any $x \in I$.

Theorem 3.2 Given a closed interval $I=[a, b]$, let $\beta: I \rightarrow \mathbb{R}$ be a function satisfying $\max _{x \in I}|\beta(x)|<2 /(b-a)^{2}$. If a function $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality (3.4) for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the initial conditions in (3.3), then there exist a solution $y_{0} \in C^{2}(I, \mathbb{R})$ of the differential equation (3.1) with the initial conditions in (3.3) and a constant $K>0$ such that

$$
\left|y(x)-y_{0}(x)\right| \leq K \varepsilon
$$

for any $x \in I$.

Proof. On account of Lemma 2.2, we have

$$
\max _{x \in I}|y(x)| \leq \frac{(b-a)^{2}}{2} \max _{x \in I}\left|y^{\prime \prime}(x)\right| .
$$

Thus, it follows from (3.4) that

$$
\begin{aligned}
\max _{x \in I}|y(x)| & \leq \frac{(b-a)^{2}}{2} \max _{x \in I}\left|y^{\prime \prime}(x)+\beta(x) y(x)\right|+\frac{(b-a)^{2}}{2} \max _{x \in I}|\beta(x)| \max _{x \in I}|y(x)| \\
& \leq \frac{(b-a)^{2}}{2} \varepsilon+\frac{(b-a)^{2}}{2} \max _{x \in I}|\beta(x)| \max _{x \in I}|y(x)| .
\end{aligned}
$$

Let $C:=\frac{(b-a)^{2}}{2}$ and $K:=\frac{C}{1-C \max |\beta(x)|}$. Obviously, $y_{0} \equiv 0$ is a solution of (3.1) with the initial conditions in (3.3) and

$$
\left|y(x)-y_{0}(x)\right| \leq K \varepsilon
$$

for all $x \in I$.
In the following theorems, we investigate the Hyers-Ulam stability of the differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0 \tag{3.5}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(a)=0=y(b) \tag{3.6}
\end{equation*}
$$

or with initial conditions

$$
\begin{equation*}
y(a)=0=y^{\prime}(a) \tag{3.7}
\end{equation*}
$$

where $y \in C^{2}(I, \mathbb{R}), p \in C^{1}(I, \mathbb{R}), q \in C(I, \mathbb{R})$, and $I=[a, b]$ with $-\infty<a<b<\infty$.
Let us define a function $\beta: I \rightarrow \mathbb{R}$ by

$$
\beta(x):=q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}
$$

for all $x \in I$.

Theorem 3.3 Assume that there exists a constant $L \geq 0$ with

$$
\begin{equation*}
-L \leq \int_{a}^{x} p(\tau) d \tau \leq L \tag{3.8}
\end{equation*}
$$

for any $x \in I$ and $\max _{x \in I}|\beta(x)|<8 /(b-a)^{2}$. If a function $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality

$$
\begin{equation*}
\left|y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)\right| \leq \varepsilon \tag{3.9}
\end{equation*}
$$

for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the boundary conditions in (3.6), then there exist a constant $K>0$ and a solution $y_{0} \in C^{2}(I, \mathbb{R})$ of the differential equation (3.5) with the boundary conditions in (3.6) such that

$$
\left|y(x)-y_{0}(x)\right| \leq K e^{L} \varepsilon
$$

for any $x \in I$.

Proof. Suppose $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality (3.9) for all $x \in I$. Let us define

$$
\begin{align*}
u(x) & :=y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x), \tag{3.10}\\
z(x) & :=y(x) \exp \left(\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \tag{3.11}
\end{align*}
$$

for all $x \in I$. By (3.10) and (3.11), we obtain

$$
z^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z(x)=u(x) \exp \left(\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)
$$

for all $x \in I$.
Now, it follows from (3.8) and (3.9) that

$$
\left|z^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z(x)\right|=\left|u(x) \exp \left(\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)\right| \leq \varepsilon e^{L / 2}
$$

that is,

$$
\left|z^{\prime \prime}(x)+\beta(x) z(x)\right| \leq \varepsilon e^{L / 2}
$$

for any $x \in I$. Moreover, it follows from (3.11) that

$$
z(a)=0=z(b) .
$$

In view of Theorem 3.1, there exists a constant $K>0$ and a function $z_{0} \in C^{2}(I, \mathbb{R})$ such that

$$
\begin{gather*}
z_{0}^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z_{0}(x)=0, \tag{3.12}\\
z_{0}(a)=0=z_{0}(b)
\end{gather*}
$$

and

$$
\begin{equation*}
\left|z(x)-z_{0}(x)\right| \leq K \varepsilon e^{L / 2} \tag{3.13}
\end{equation*}
$$

for all $x \in I$.
We now set

$$
\begin{equation*}
y_{0}(x):=z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) . \tag{3.14}
\end{equation*}
$$

Then, since

$$
\begin{align*}
y_{0}^{\prime}(x)= & z_{0}^{\prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)-\frac{1}{2} p(x) z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \tag{3.15}\\
y_{0}^{\prime \prime}(x)= & z_{0}^{\prime \prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)-p(x) z_{0}^{\prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \tag{3.16}\\
& -\frac{1}{2} p^{\prime}(x) z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)+\frac{1}{4} p(x)^{2} z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right),
\end{align*}
$$

it follows from (3.12), (3.14), (3.15), and (3.16) that

$$
\begin{aligned}
& y_{0}^{\prime \prime}(x)+p(x) y_{0}^{\prime}(x)+q(x) y_{0}(x) \\
& =\left(z_{0}^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z_{0}(x)\right) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& =0
\end{aligned}
$$

for all $x \in I$. Hence, y_{0} satisfies (3.5) and the boundary conditions in (3.6).
Finally, it follows from (3.8) and (3.13) that

$$
\begin{aligned}
\left|y(x)-y_{0}(x)\right| & =\left|z(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)-z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)\right| \\
& =\left|z(x)-z_{0}(x)\right| \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& \leq K \varepsilon e^{L / 2} \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& \leq K e^{L} \varepsilon
\end{aligned}
$$

for all $x \in I$.

Theorem 3.4 Assume that there exists a constant $L \geq 0$ such that (3.8) holds for all $x \in I$. Assume moreover that $\max _{x \in I}|\beta(x)|<2 /(b-a)^{2}$. If a function $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality (3.9) for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the initial conditions in (3.7), then there exist a constant $K>0$ and a solution $y_{0} \in C^{2}(I, \mathbb{R})$ of the differential equation (3.5) with the initial conditions in (3.7) such that

$$
\left|y(x)-y_{0}(x)\right| \leq K e^{L} \varepsilon
$$

for any $x \in I$.

Proof. Suppose $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality (3.9) for any $x \in I$. Let us define $u(x)$ and $z(x)$ as in (3.10) and (3.11), respectively. By (3.10) and (3.11), we obtain

$$
z^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z(x)=u(x) \exp \left(\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)
$$

for all $x \in I$.
Now, it follows from (3.8) and (3.9) that

$$
\left|z^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z(x)\right|=\left|u(x) \exp \left(\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)\right| \leq \varepsilon e^{L / 2}
$$

that is,

$$
\left|z^{\prime \prime}(x)+\beta(x) z(x)\right| \leq \varepsilon e^{L / 2}
$$

for all $x \in I$. Furthermore, in view of (3.11), we have

$$
z(a)=0=z^{\prime}(a) .
$$

By Theorem 3.2, there exists a constant $K>0$ and a function $z_{0} \in C^{2}(I, \mathbb{R})$ such that

$$
\begin{gathered}
z_{0}^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z_{0}(x)=0, \\
z_{0}(a)=0=z_{0}^{\prime}(a)
\end{gathered}
$$

and

$$
\left|z(x)-z_{0}(x)\right| \leq K \varepsilon e^{L / 2}
$$

for any $x \in I$.
We now set

$$
y_{0}(x):=z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) .
$$

Moreover, since

$$
y_{0}^{\prime}(x)=z_{0}^{\prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)-\frac{1}{2} p(x) z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)
$$

and

$$
\begin{aligned}
y_{0}^{\prime \prime}(x)= & z_{0}^{\prime \prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)-p(x) z_{0}^{\prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& -\frac{1}{2} p^{\prime}(x) z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)+\frac{1}{4} p(x)^{2} z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& y_{0}^{\prime \prime}(x)+p(x) y_{0}^{\prime}(x)+q(x) y_{0}(x) \\
& =\left(z_{0}^{\prime \prime}(x)+\left(q(x)-\frac{1}{2} p^{\prime}(x)-\frac{1}{4} p(x)^{2}\right) z_{0}(x)\right) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& =0
\end{aligned}
$$

for any $x \in I$. Hence, y_{0} satisfies (3.5) along with the initial conditions in (3.7).

Finally, it follows that

$$
\begin{aligned}
\left|y(x)-y_{0}(x)\right| & =\left|z(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)-z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right)\right| \\
& =\left|z(x)-z_{0}(x)\right| \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& \leq K \varepsilon e^{L / 2} \exp \left(-\frac{1}{2} \int_{a}^{x} p(\tau) d \tau\right) \\
& \leq K e^{L} \varepsilon
\end{aligned}
$$

for all $x \in I$.
In a similar way, we investigate the Hyers-Ulam stability of the differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)+\frac{k^{\prime}(x)}{k(x)} y^{\prime}(x)+\frac{l(x)}{k(x)} y(x)=0 \tag{3.17}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
y(a)=0=y(b) \tag{3.18}
\end{equation*}
$$

or with initial conditions

$$
\begin{equation*}
y(a)=0=y^{\prime}(a) \tag{3.19}
\end{equation*}
$$

where $y \in C^{2}(I, \mathbb{R}), k \in C^{1}(I, \mathbb{R} \backslash\{0\}), l \in C(I, \mathbb{R})$, and $-\infty<a<b<\infty$.
Given a closed interval $I=[a, b]$, we set

$$
\beta(x):=\frac{l(x)}{k(x)}-\frac{1}{2} \frac{d}{d x} \frac{k^{\prime}(x)}{k(x)}-\frac{1}{4}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{2}
$$

for all $x \in I$.

Theorem 3.5 Assume that there exists a constant $L \geq 0$ with

$$
\begin{equation*}
-L \leq \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau \leq L \tag{3.20}
\end{equation*}
$$

for any $x \in I$ and $\max _{x \in I}|\beta(x)|<8 /(b-a)^{2}$. If a function $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality

$$
\begin{equation*}
\left|y^{\prime \prime}(x)+\frac{k^{\prime}(x)}{k(x)} y^{\prime}(x)+\frac{l(x)}{k(x)} y(x)\right| \leq \varepsilon, \tag{3.21}
\end{equation*}
$$

for all $x \in I$ and some $\varepsilon \geq 0$, as well as the boundary conditions in (3.18), then there exist a constant $K>0$ and a solution $y_{0} \in C^{2}(I, \mathbb{R})$ of the differential equation (3.17) with the boundary conditions in (3.18) such that

$$
\left|y(x)-y_{0}(x)\right| \leq K e^{L} \varepsilon
$$

for any $x \in I$.

Proof. Suppose $y \in C^{2}(I, \mathbb{R})$ satisfies (3.21) for all $x \in I$. Let us define

$$
\begin{align*}
u(x) & :=y^{\prime \prime}(x)+\frac{k^{\prime}(x)}{k(x)} y^{\prime}(x)+\frac{l(x)}{k(x)} y(x), \tag{3.22}\\
z(x) & :=y(x) \exp \left(\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \tag{3.23}
\end{align*}
$$

for all $x \in I$. By (3.22) and (3.23), we obtain

$$
z^{\prime \prime}(x)+\left(\frac{l(x)}{k(x)}-\frac{1}{2} \frac{d}{d x} \frac{k^{\prime}(x)}{k(x)}-\frac{1}{4}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{2}\right) z(x)=u(x) \exp \left(\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) .
$$

Further, it follows from (3.20) and (3.21) that

$$
\begin{aligned}
\left|z^{\prime \prime}(x)+\left(\frac{l(x)}{k(x)}-\frac{1}{2} \frac{d}{d x} \frac{k^{\prime}(x)}{k(x)}-\frac{1}{4}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{2}\right) z(x)\right| & =\left|u(x) \exp \left(\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right)\right| \\
& \leq \varepsilon \exp \left(\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \\
& \leq \varepsilon e^{L / 2},
\end{aligned}
$$

that is,

$$
\left|z^{\prime \prime}(x)+\beta(x) z(x)\right| \leq \varepsilon e^{L / 2}
$$

for all $x \in I$. Moreover, it follows from (3.18) and (3.23) that

$$
z(a)=0=z(b) .
$$

By Theorem 3.1, there exists a constant $K>0$ and a function $z_{0} \in C^{2}(I, \mathbb{R})$ such that

$$
\begin{gathered}
z_{0}^{\prime \prime}(x)+\left(\frac{l(x)}{k(x)}-\frac{1}{2} \frac{d}{d x} \frac{k^{\prime}(x)}{k(x)}-\frac{1}{4}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{2}\right) z_{0}(x)=0, \\
z_{0}(a)=0=z_{0}(b)
\end{gathered}
$$

and

$$
\left|z(x)-z_{0}(x)\right| \leq K \varepsilon e^{L / 2}
$$

for any $x \in I$.
We now set

$$
y_{0}(x):=z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) .
$$

Then, since

$$
y_{0}^{\prime}(x)=z_{0}^{\prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right)-\frac{1}{2} \frac{k^{\prime}(x)}{k(x)} z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right)
$$

and

$$
\begin{aligned}
y_{0}^{\prime \prime}(x)= & z_{0}^{\prime \prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right)-\frac{k^{\prime}(x)}{k(x)} z_{0}^{\prime}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \\
& -\frac{1}{2}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{\prime} z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \\
& +\frac{1}{4}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{2} z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& y_{0}^{\prime \prime}(x)+\frac{k^{\prime}(x)}{k(x)} y_{0}^{\prime}(x)+\frac{l(x)}{k(x)} y_{0}(x) \\
& =\left(z_{0}^{\prime \prime}(x)+\left(\frac{l(x)}{k(x)}-\frac{1}{2}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{\prime}-\frac{1}{4}\left(\frac{k^{\prime}(x)}{k(x)}\right)^{2}\right) z_{0}(x)\right) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \\
& =0 .
\end{aligned}
$$

Hence, y_{0} satisfies (3.17) along with the boundary conditions in (3.18).
Finally, it follows that

$$
\begin{aligned}
\left|y(x)-y_{0}(x)\right| & =\left|z(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right)-z_{0}(x) \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right)\right| \\
& =\left|z(x)-z_{0}(x)\right| \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \\
& \leq K \varepsilon e^{L / 2} \exp \left(-\frac{1}{2} \int_{a}^{x} \frac{k^{\prime}(\tau)}{k(\tau)} d \tau\right) \\
& \leq K e^{L} \varepsilon
\end{aligned}
$$

for all $x \in I$.

By a similar method as we applied to the proof of Theorem 3.4, we can prove the following theorem. Hence, we omit the proof.

Theorem 3.6 Assume that $\max _{x \in I}|\beta(x)|<2 /(b-a)^{2}$ and there exists a constant $L \geq 0$ for which the inequality (3.20) holds for all $x \in I$. If a function $y \in C^{2}(I, \mathbb{R})$ satisfies the inequality (3.21) for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the boundary conditions in (3.19), then there exist a constant $K>0$ and a solution $y_{0} \in C^{2}(I, \mathbb{R})$ of the differential equation (3.17) with the boundary conditions in (3.19) such that

$$
\left|y(x)-y_{0}(x)\right| \leq K e^{L} \varepsilon
$$

for any $x \in I$.

Acknowledgements. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2005557).

References

[1] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373-380.
[2] D. S. Cimpean and D. Popa, On the stability of the linear differential equation of higher order with constant coefficients, Appl. Math. Comput. 217 (2010), 4141-4146.
[3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.
[4] P. Gavruta, S.-M. Jung and Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electronic J. Differential Equ. 2011 (2011), 1-5.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Soc. USA 27 (1941), 222-224.
[6] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[7] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135-1140.
[8] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311 (2005), 139-146.
[9] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), 854-858.
[10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[11] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010), 306-309.
[12] T. Miura, S. Miyajima and S. E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286 (2003), 136-146.
[13] T. Miura, S. Miyajima and S. E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90-96.
[14] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993), 259-270.
[15] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141-146.
[16] D. Popa and I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381 (2011), 530-537.
[17] D. Popa and I. Raşa, Hyers-Ulam stability of the linear differential operator with non-constant coefficients, Appl. Math. Comput. 219 (2012), 1562-1568.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[19] H. Rezaei, S.-M. Jung and Th. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), 244-251.
[20] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), 305-320.
[21] I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai Math. 54 (2009), 125-134.
[22] S. E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc. 39 (2002), 309-315.
[23] S. E. Takahasi, H. Takagi, T. Miura and S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl. 296 (2004), 403-409.
[24] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Scince Editors, Wiley, New York, 1960.
[25] G. Wang, M. Zhou and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21 (2008), 1024-1028.

