Hyers-Ulam Stability of Second-Order Linear Differential Equations with Boundary Conditions

Qusuay H. Alqifiary and Soon-Mo Jung

College of Mathematics, University of Belgrade, Belgrade, Serbia Work: University of Al-Qadisiyah, Al-Diwaniya, Iraq E-mail: qhaq2010@gmail.com

Mathematics Section, College of Science and Technology, Hongik University, 339–701 Sejong, Republic of Korea

E-mail: smjung@hongik.ac.kr

Abstract

In this paper, we establish the Hyers-Ulam stability of linear differential equations of second order with boundary conditions.

2010 Mathematics Subject Classification: 44A10; 39B82; 34A40; 26D10.

Key words and phrases: differential equation; Hyers-Ulam stability; linear differential equation; differential equation of second order.

1 Introduction

In 1940, Ulam [24] posed a problem concerning the stability of functional equations: "Give conditions in order for a linear function near an approximately linear function to exist."

A year later, Hyers [5] gave an answer to the problem of Ulam for additive functions defined on Banach spaces: Let X_1 and X_2 be real Banach spaces and $\varepsilon > 0$. Then for every function $f: X_1 \to X_2$ satisfying

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon \quad (x, y \in X_1),$$

there exists a unique additive function $A: X_1 \to X_2$ with the property

$$||f(x) - A(x)|| \le \varepsilon \quad (x \in X_1).$$

After Hyers's result, many mathematicians have extended Ulam's problem to other functional equations and generalized Hyers's result in various directions (see [3, 6, 10, 18]). A generalization of Ulam's problem was recently proposed by replacing functional equations with differential equations: The differential equation $\varphi(f, y, y', \dots, y^{(n)}) = 0$ has the Hyers-Ulam stability if for given $\varepsilon > 0$ and a function y such that

$$\left|\varphi(f, y, y', \dots, y^{(n)})\right| \le \varepsilon,$$

SYLWAN. English Edition Printed in Poland

there exists a solution y_0 of the differential equation such that $|y(t)-y_0(t)| \leq K(\varepsilon)$ and $\lim_{\varepsilon \to 0} K(\varepsilon) = 0$.

Obloza seems to be the first author who has investigated the Hyers-Ulam stability of

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of linear differential equations (see [14, 15]). Thereafter, Alsina and Ger published their paper [1], which handles the Hyers-Ulam stability of the linear differential equation y'(t) = y(t): If a differentiable function y(t) is a solution of the inequality $|y'(t) - y(t)| \le \varepsilon$ for any $t \in (a, \infty)$, then there exists a constant c such that $|y(t) - ce^t| \le 3\varepsilon$ for all $t \in (a, \infty)$.

Those previous results were extended to the Hyers-Ulam stability of linear differential equations of first order and higher order with constant coefficients in [12, 22, 23] and in [13], respectively. Furthermore, Jung [7, 8, 9] has also proved the Hyers-Ulam stability of linear differential equations (see also [4]). Rus investigated the Hyers-Ulam stability of differential and integral equations using the Gronwall lemma and the technique of weakly Picard operators (see [20, 21]). Recently, the Hyers-Ulam stability problems of linear differential equations of first order and second order with constant coefficients were studied by using the method of integral factors (see [11, 25]). The results given in [8, 11, 12] have been generalized by Cimpean and Popa [2] and by Popa and Raşa [16, 17] for the linear differential equations of nth order with constant coefficients. Furthermore, the Laplace transform method was recently applied to the proof of the Hyers-Ulam stability of linear differential equations (see [19]).

In this paper, we prove the Hyers-Ulam stability of the second-order linear differential equations (3.1), (3.5), and (3.17) with boundary conditions.

2 Preliminaries

Lemma 2.1 Let I = [a, b] be a closed interval with $-\infty < a < b < \infty$. If $y \in C^2(I, \mathbb{R})$ and y(a) = 0 = y(b), then

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{8} \max_{x \in I} |y''(x)|.$$

Proof. Let $M := \max_{x \in I} |y(x)|$. Since y(a) = 0 = y(b), there exists $x_0 \in (a, b)$ such that $|y(x_0)| = M$. By the Taylor's theorem, we have

$$y(a) = y(x_0) + y'(x_0)(a - x_0) + \frac{y''(\xi)}{2}(a - x_0)^2,$$

$$y(b) = y(x_0) + y'(x_0)(b - x_0) + \frac{y''(\eta)}{2}(b - x_0)^2$$

for some $\xi, \eta \in [a, b]$. Since y(a) = y(b) = 0 and $y'(x_0) = 0$, we get

$$|y''(\xi)| = \frac{2M}{(a-x_0)^2}, \quad |y''(\eta)| = \frac{2M}{(b-x_0)^2}.$$

If $x_0 \in (a, (a+b)/2]$, then we have

$$\frac{2M}{(a-x_0)^2} \ge \frac{2M}{\left(\frac{b-a}{2}\right)^2} = \frac{8M}{(b-a)^2}.$$

If $x_0 \in [(a+b)/2, b)$, then we have

$$\frac{2M}{(b-x_0)^2} \ge \frac{2M}{\left(\frac{b-a}{2}\right)^2} = \frac{8M}{(b-a)^2}.$$

Hence, we obtain

$$\max_{x \in I} |y''(x)| \ge \frac{8M}{(b-a)^2} = \frac{8}{(b-a)^2} \max_{x \in I} |y(x)|.$$

Therefore,

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{8} \max_{x \in I} |y''(x)|,$$

which ends the proof.

Lemma 2.2 Let I = [a, b] be a closed interval with $-\infty < a < b < \infty$. If $y \in C^2(I, \mathbb{R})$ and y(a) = 0 = y'(a), then

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{2} \max_{x \in I} |y''(x)|.$$

Proof. By the Taylor's theorem, we have

$$y(x) = y(a) + y'(a)(x - a) + \frac{y''(\xi)}{2}(x - a)^2$$

for some $\xi \in [a, b]$. Since y(a) = y'(a) = 0 and $(x - a)^2 \le (b - a)^2$, we get

$$|y(x)| \le \frac{|y''(\xi)|}{2}(b-a)^2$$

for any $x \in I$. Thus, we obtain

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{2} \max_{x \in I} |y''(x)|,$$

which completes the proof.

3 Main results

In the following theorems, we prove the Hyers-Ulam stability of the following linear differential equation

$$y''(x) + \beta(x)y(x) = 0 (3.1)$$

with boundary conditions

$$y(a) = 0 = y(b) (3.2)$$

or with initial conditions

$$y(a) = 0 = y'(a) (3.3)$$

where $I = [a, b], y \in C^2(I, \mathbb{R}), \beta \in C(I, \mathbb{R}), \text{ and } -\infty < a < b < \infty.$

Theorem 3.1 Given a closed interval I = [a, b], let $\beta \in C(I, \mathbb{R})$ be a function satisfying $\max_{x \in I} |\beta(x)| < 8/(b-a)^2$. If a function $y \in C^2(I, \mathbb{R})$ satisfies the inequality

$$|y''(x) + \beta(x)y(x)| \le \varepsilon, \tag{3.4}$$

for all $x \in I$ and for some $\varepsilon \geq 0$, as well as the boundary conditions in (3.2), then there exist a constant K > 0 and a solution $y_0 \in C^2(I, \mathbb{R})$ of the differential equation (3.1) with the boundary conditions in (3.2) such that

$$|y(x) - y_0(x)| \le K\varepsilon$$

for any $x \in I$.

Proof. By Lemma 2.1, we have

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{8} \max_{x \in I} |y''(x)|.$$

Thus, it follows from (3.4) that

$$\begin{aligned} \max_{x \in I} |y(x)| & \leq \frac{(b-a)^2}{8} \max_{x \in I} |y''(x) + \beta(x)y(x)| + \frac{(b-a)^2}{8} \max_{x \in I} |\beta(x)| \max_{x \in I} |y(x)| \\ & \leq \frac{(b-a)^2}{8} \varepsilon + \frac{(b-a)^2}{8} \max_{x \in I} |\beta(x)| \max_{x \in I} |y(x)|. \end{aligned}$$

Let $C := \frac{(b-a)^2}{8}$ and $K := \frac{C}{1-C\max|\beta(x)|}$. Obviously, $y_0 \equiv 0$ is a solution of (3.1) with the boundary conditions in (3.2) and

$$|y(x) - y_0(x)| \le K\varepsilon$$

for any $x \in I$.

Theorem 3.2 Given a closed interval I = [a,b], let $\beta : I \to \mathbb{R}$ be a function satisfying $\max_{x \in I} |\beta(x)| < 2/(b-a)^2$. If a function $y \in C^2(I,\mathbb{R})$ satisfies the inequality (3.4) for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the initial conditions in (3.3), then there exist a solution $y_0 \in C^2(I,\mathbb{R})$ of the differential equation (3.1) with the initial conditions in (3.3) and a constant K > 0 such that

$$|y(x) - y_0(x)| \le K\varepsilon$$

for any $x \in I$.

Proof. On account of Lemma 2.2, we have

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{2} \max_{x \in I} |y''(x)|.$$

Thus, it follows from (3.4) that

$$\max_{x \in I} |y(x)| \le \frac{(b-a)^2}{2} \max_{x \in I} |y''(x) + \beta(x)y(x)| + \frac{(b-a)^2}{2} \max_{x \in I} |\beta(x)| \max_{x \in I} |y(x)|$$

$$\le \frac{(b-a)^2}{2} \varepsilon + \frac{(b-a)^2}{2} \max_{x \in I} |\beta(x)| \max_{x \in I} |y(x)|.$$

Let $C := \frac{(b-a)^2}{2}$ and $K := \frac{C}{1-C\max|\beta(x)|}$. Obviously, $y_0 \equiv 0$ is a solution of (3.1) with the initial conditions in (3.3) and

$$|y(x) - y_0(x)| \le K\varepsilon$$

for all
$$x \in I$$
.

In the following theorems, we investigate the Hyers-Ulam stability of the differential equation

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0 (3.5)$$

with boundary conditions

$$y(a) = 0 = y(b)$$
 (3.6)

or with initial conditions

$$y(a) = 0 = y'(a) (3.7)$$

where $y \in C^2(I, \mathbb{R})$, $p \in C^1(I, \mathbb{R})$, $q \in C(I, \mathbb{R})$, and I = [a, b] with $-\infty < a < b < \infty$. Let us define a function $\beta : I \to \mathbb{R}$ by

$$\beta(x) := q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2$$

for all $x \in I$.

Theorem 3.3 Assume that there exists a constant $L \geq 0$ with

$$-L \le \int_{a}^{x} p(\tau)d\tau \le L \tag{3.8}$$

for any $x \in I$ and $\max_{x \in I} |\beta(x)| < 8/(b-a)^2$. If a function $y \in C^2(I, \mathbb{R})$ satisfies the inequality

$$|y''(x) + p(x)y'(x) + q(x)y(x)| \le \varepsilon \tag{3.9}$$

for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the boundary conditions in (3.6), then there exist a constant K > 0 and a solution $y_0 \in C^2(I, \mathbb{R})$ of the differential equation (3.5) with the boundary conditions in (3.6) such that

$$|y(x) - y_0(x)| \le Ke^L \varepsilon$$

for any $x \in I$.

Proof. Suppose $y \in C^2(I, \mathbb{R})$ satisfies the inequality (3.9) for all $x \in I$. Let us define

$$u(x) := y''(x) + p(x)y'(x) + q(x)y(x), \tag{3.10}$$

$$z(x) := y(x) \exp\left(\frac{1}{2} \int_{a}^{x} p(\tau) d\tau\right)$$
(3.11)

for all $x \in I$. By (3.10) and (3.11), we obtain

$$z''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z(x) = u(x)\exp\left(\frac{1}{2}\int_a^x p(\tau)d\tau\right)$$

for all $x \in I$.

Now, it follows from (3.8) and (3.9) that

$$\left|z''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z(x)\right| = \left|u(x)\exp\left(\frac{1}{2}\int_a^x p(\tau)d\tau\right)\right| \le \varepsilon e^{L/2},$$

that is,

$$|z''(x) + \beta(x)z(x)| \le \varepsilon e^{L/2}$$

for any $x \in I$. Moreover, it follows from (3.11) that

$$z(a) = 0 = z(b).$$

In view of Theorem 3.1, there exists a constant K > 0 and a function $z_0 \in C^2(I, \mathbb{R})$ such that

$$z_0''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z_0(x) = 0,$$

$$z_0(a) = 0 = z_0(b)$$
(3.12)

and

$$|z(x) - z_0(x)| \le K\varepsilon e^{L/2} \tag{3.13}$$

for all $x \in I$.

We now set

$$y_0(x) := z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right).$$
 (3.14)

Then, since

$$y_0'(x) = z_0'(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) - \frac{1}{2} p(x) z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right), \tag{3.15}$$

$$y_0''(x) = z_0''(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau)d\tau\right) - p(x)z_0'(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau)d\tau\right)$$

$$-\frac{1}{2}p'(x)z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau)d\tau\right) + \frac{1}{4}p(x)^2 z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau)d\tau\right),$$
(3.16)

it follows from (3.12), (3.14), (3.15), and (3.16) that

$$y_0''(x) + p(x)y_0'(x) + q(x)y_0(x)$$

$$= \left(z_0''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z_0(x)\right) \exp\left(-\frac{1}{2}\int_a^x p(\tau)d\tau\right)$$

$$= 0$$

for all $x \in I$. Hence, y_0 satisfies (3.5) and the boundary conditions in (3.6). Finally, it follows from (3.8) and (3.13) that

$$|y(x) - y_0(x)| = \left| z(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) - z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) \right|$$

$$= |z(x) - z_0(x)| \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right)$$

$$\leq K\varepsilon e^{L/2} \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right)$$

$$\leq Ke^L \varepsilon$$

for all $x \in I$.

Theorem 3.4 Assume that there exists a constant $L \ge 0$ such that (3.8) holds for all $x \in I$. Assume moreover that $\max_{x \in I} |\beta(x)| < 2/(b-a)^2$. If a function $y \in C^2(I, \mathbb{R})$ satisfies the inequality (3.9) for all $x \in I$ and for some $\varepsilon \ge 0$ as well as the initial conditions in (3.7), then there exist a constant K > 0 and a solution $y_0 \in C^2(I, \mathbb{R})$ of the differential equation (3.5) with the initial conditions in (3.7) such that

$$|y(x) - y_0(x)| \le Ke^L \varepsilon$$

for any $x \in I$.

Proof. Suppose $y \in C^2(I, \mathbb{R})$ satisfies the inequality (3.9) for any $x \in I$. Let us define u(x) and z(x) as in (3.10) and (3.11), respectively. By (3.10) and (3.11), we obtain

$$z''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z(x) = u(x)\exp\left(\frac{1}{2}\int_a^x p(\tau)d\tau\right)$$

for all $x \in I$.

Now, it follows from (3.8) and (3.9) that

$$\left|z''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z(x)\right| = \left|u(x)\exp\left(\frac{1}{2}\int_a^x p(\tau)d\tau\right)\right| \le \varepsilon e^{L/2},$$

that is,

$$|z''(x) + \beta(x)z(x)| \le \varepsilon e^{L/2}$$

for all $x \in I$. Furthermore, in view of (3.11), we have

$$z(a) = 0 = z'(a).$$

By Theorem 3.2, there exists a constant K > 0 and a function $z_0 \in C^2(I, \mathbb{R})$ such that

$$z_0''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z_0(x) = 0,$$

$$z_0(a) = 0 = z_0'(a)$$

and

$$|z(x) - z_0(x)| \le K\varepsilon e^{L/2}$$

for any $x \in I$.

We now set

$$y_0(x) := z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right).$$

Moreover, since

$$y_0'(x) = z_0'(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) - \frac{1}{2} p(x) z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right)$$

and

$$y_0''(x) = z_0''(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) - p(x) z_0'(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) - \frac{1}{2} p'(x) z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) + \frac{1}{4} p(x)^2 z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right),$$

we have

$$y_0''(x) + p(x)y_0'(x) + q(x)y_0(x)$$

$$= \left(z_0''(x) + \left(q(x) - \frac{1}{2}p'(x) - \frac{1}{4}p(x)^2\right)z_0(x)\right) \exp\left(-\frac{1}{2}\int_a^x p(\tau)d\tau\right)$$

$$= 0$$

for any $x \in I$. Hence, y_0 satisfies (3.5) along with the initial conditions in (3.7).

Finally, it follows that

$$|y(x) - y_0(x)| = \left| z(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) - z_0(x) \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right) \right|$$

$$= |z(x) - z_0(x)| \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right)$$

$$\leq K\varepsilon e^{L/2} \exp\left(-\frac{1}{2} \int_a^x p(\tau) d\tau\right)$$

$$< Ke^L \varepsilon$$

for all $x \in I$.

In a similar way, we investigate the Hyers-Ulam stability of the differential equation

$$y''(x) + \frac{k'(x)}{k(x)}y'(x) + \frac{l(x)}{k(x)}y(x) = 0$$
(3.17)

with boundary conditions

$$y(a) = 0 = y(b) (3.18)$$

or with initial conditions

$$y(a) = 0 = y'(a) (3.19)$$

where $y \in C^2(I, \mathbb{R})$, $k \in C^1(I, \mathbb{R} \setminus \{0\})$, $l \in C(I, \mathbb{R})$, and $-\infty < a < b < \infty$. Given a closed interval I = [a, b], we set

$$\beta(x) := \frac{l(x)}{k(x)} - \frac{1}{2} \frac{d}{dx} \frac{k'(x)}{k(x)} - \frac{1}{4} \left(\frac{k'(x)}{k(x)}\right)^2$$

for all $x \in I$.

Theorem 3.5 Assume that there exists a constant $L \geq 0$ with

$$-L \le \int_{a}^{x} \frac{k'(\tau)}{k(\tau)} d\tau \le L \tag{3.20}$$

for any $x \in I$ and $\max_{x \in I} |\beta(x)| < 8/(b-a)^2$. If a function $y \in C^2(I, \mathbb{R})$ satisfies the inequality

$$\left| y''(x) + \frac{k'(x)}{k(x)} y'(x) + \frac{l(x)}{k(x)} y(x) \right| \le \varepsilon, \tag{3.21}$$

for all $x \in I$ and some $\varepsilon \geq 0$, as well as the boundary conditions in (3.18), then there exist a constant K > 0 and a solution $y_0 \in C^2(I, \mathbb{R})$ of the differential equation (3.17) with the boundary conditions in (3.18) such that

$$|y(x) - y_0(x)| \le Ke^L \varepsilon$$

for any $x \in I$.

Proof. Suppose $y \in C^2(I, \mathbb{R})$ satisfies (3.21) for all $x \in I$. Let us define

$$u(x) := y''(x) + \frac{k'(x)}{k(x)}y'(x) + \frac{l(x)}{k(x)}y(x), \tag{3.22}$$

$$z(x) := y(x) \exp\left(\frac{1}{2} \int_{a}^{x} \frac{k'(\tau)}{k(\tau)} d\tau\right)$$
 (3.23)

for all $x \in I$. By (3.22) and (3.23), we obtain

$$z''(x) + \left(\frac{l(x)}{k(x)} - \frac{1}{2}\frac{d}{dx}\frac{k'(x)}{k(x)} - \frac{1}{4}\left(\frac{k'(x)}{k(x)}\right)^2\right)z(x) = u(x)\exp\left(\frac{1}{2}\int_a^x \frac{k'(\tau)}{k(\tau)}d\tau\right).$$

Further, it follows from (3.20) and (3.21) that

$$\left|z''(x) + \left(\frac{l(x)}{k(x)} - \frac{1}{2}\frac{d}{dx}\frac{k'(x)}{k(x)} - \frac{1}{4}\left(\frac{k'(x)}{k(x)}\right)^2\right)z(x)\right| = \left|u(x)\exp\left(\frac{1}{2}\int_a^x \frac{k'(\tau)}{k(\tau)}d\tau\right)\right|$$

$$\leq \varepsilon \exp\left(\frac{1}{2}\int_a^x \frac{k'(\tau)}{k(\tau)}d\tau\right)$$

$$\leq \varepsilon e^{L/2},$$

that is,

$$|z''(x) + \beta(x)z(x)| \le \varepsilon e^{L/2}$$

for all $x \in I$. Moreover, it follows from (3.18) and (3.23) that

$$z(a) = 0 = z(b).$$

By Theorem 3.1, there exists a constant K>0 and a function $z_0\in C^2(I,\mathbb{R})$ such that

$$z_0''(x) + \left(\frac{l(x)}{k(x)} - \frac{1}{2}\frac{d}{dx}\frac{k'(x)}{k(x)} - \frac{1}{4}\left(\frac{k'(x)}{k(x)}\right)^2\right)z_0(x) = 0,$$

$$z_0(a) = 0 = z_0(b)$$

and

$$|z(x) - z_0(x)| \le K\varepsilon e^{L/2}$$

for any $x \in I$.

We now set

$$y_0(x) := z_0(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right).$$

Then, since

$$y_0'(x) = z_0'(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right) - \frac{1}{2} \frac{k'(x)}{k(x)} z_0(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right)$$

and

$$y_0''(x) = z_0''(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right) - \frac{k'(x)}{k(x)} z_0'(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right) - \frac{1}{2} \left(\frac{k'(x)}{k(x)}\right)' z_0(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right) + \frac{1}{4} \left(\frac{k'(x)}{k(x)}\right)^2 z_0(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right),$$

we have

$$y_0''(x) + \frac{k'(x)}{k(x)}y_0'(x) + \frac{l(x)}{k(x)}y_0(x)$$

$$= \left(z_0''(x) + \left(\frac{l(x)}{k(x)} - \frac{1}{2}\left(\frac{k'(x)}{k(x)}\right)' - \frac{1}{4}\left(\frac{k'(x)}{k(x)}\right)^2\right)z_0(x)\right) \exp\left(-\frac{1}{2}\int_a^x \frac{k'(\tau)}{k(\tau)}d\tau\right)$$

$$= 0$$

Hence, y_0 satisfies (3.17) along with the boundary conditions in (3.18). Finally, it follows that

$$|y(x) - y_0(x)| = \left| z(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right) - z_0(x) \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right) \right|$$

$$= |z(x) - z_0(x)| \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right)$$

$$\leq K\varepsilon e^{L/2} \exp\left(-\frac{1}{2} \int_a^x \frac{k'(\tau)}{k(\tau)} d\tau\right)$$

$$< Ke^L \varepsilon$$

for all $x \in I$.

By a similar method as we applied to the proof of Theorem 3.4, we can prove the following theorem. Hence, we omit the proof.

Theorem 3.6 Assume that $\max_{x \in I} |\beta(x)| < 2/(b-a)^2$ and there exists a constant $L \geq 0$ for which the inequality (3.20) holds for all $x \in I$. If a function $y \in C^2(I, \mathbb{R})$ satisfies the inequality (3.21) for all $x \in I$ and for some $\varepsilon \geq 0$ as well as the boundary conditions in (3.19), then there exist a constant K > 0 and a solution $y_0 \in C^2(I, \mathbb{R})$ of the differential equation (3.17) with the boundary conditions in (3.19) such that

$$|y(x) - y_0(x)| \le Ke^L \varepsilon$$

for any $x \in I$.

Acknowledgements. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2005557).

References

- [1] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373–380.
- [2] D. S. Cimpean and D. Popa, On the stability of the linear differential equation of higher order with constant coefficients, Appl. Math. Comput. 217 (2010), 4141–4146.
- [3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.
- [4] P. Gavruta, S.-M. Jung and Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electronic J. Differential Equ. 2011 (2011), 1–5.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Soc. USA 27 (1941), 222–224.
- [6] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
- [7] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135-1140.
- [8] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311 (2005), 139–146.
- [9] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), 854–858.
- [10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- [11] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010), 306–309.
- [12] T. Miura, S. Miyajima and S. E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286 (2003), 136–146.
- [13] T. Miura, S. Miyajima and S. E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90–96.
- [14] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993), 259–270.
- [15] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141–146.
- [16] D. Popa and I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381 (2011), 530–537.
- [17] D. Popa and I. Raşa, Hyers-Ulam stability of the linear differential operator with non-constant coefficients, Appl. Math. Comput. 219 (2012), 1562–1568.
- [18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [19] H. Rezaei, S.-M. Jung and Th. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), 244–251.

- [20] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), 305–320.
- [21] I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai Math. 54 (2009), 125–134.
- [22] S. E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y' = \lambda y$, Bull. Korean Math. Soc. **39** (2002), 309–315.
- [23] S. E. Takahasi, H. Takagi, T. Miura and S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl. 296 (2004), 403–409.
- [24] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Scince Editors, Wiley, New York, 1960.
- [25] G. Wang, M. Zhou and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21 (2008), 1024–1028.