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1 Introduction

In 1940, Ulam [24] posed a problem concerning the stability of functional equations: “Give
conditions in order for a linear function near an approximately linear function to exist.”

A year later, Hyers [5] gave an answer to the problem of Ulam for additive functions
defined on Banach spaces: Let X1 and X5 be real Banach spaces and € > 0. Then for every
function f: X; — X, satisfying

[f(@+y) = fl@) = fWl <e (z,y€X),

there exists a unique additive function A : X1 — X5 with the property
[f(z) —Az)]| <& (ze€Xi).

After Hyers’s result, many mathematicians have extended Ulam’s problem to other func-
tional equations and generalized Hyers’s result in various directions (see [3, 6, 10, 18]). A
generalization of Ulam’s problem was recently proposed by replacing functional equations
with differential equations: The differential equation go( oy, y, ... ,y(”)) = 0 has the Hyers-
Ulam stability if for given € > 0 and a function y such that

‘s@(f,y,y’,--.,y(”))‘ <e,
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there exists a solution yg of the differential equation such that |y(t) — yo(t)| < K(e) and
ii_]% K(e) =0.

Obloza seems to be the first author who has investigated the Hyers-Ulam stability of
linear differential equations (see [14, 15]). Thereafter, Alsina and Ger published their paper
[1], which handles the Hyers-Ulam stability of the linear differential equation y'(t) = y(¢): If
a differentiable function y(t) is a solution of the inequality |y () —y(t)| < € for any ¢ € (a, 00),
then there exists a constant ¢ such that |y(t) — ce?| < 3¢ for all t € (a, o).

Those previous results were extended to the Hyers-Ulam stability of linear differential
equations of first order and higher order with constant coefficients in [12, 22, 23] and in [13],
respectively. Furthermore, Jung [7, 8, 9] has also proved the Hyers-Ulam stability of linear
differential equations (see also [4]). Rus investigated the Hyers-Ulam stability of differential
and integral equations using the Gronwall lemma and the technique of weakly Picard opera-
tors (see [20, 21]). Recently, the Hyers-Ulam stability problems of linear differential equations
of first order and second order with constant coefficients were studied by using the method
of integral factors (see [11, 25]). The results given in [8, 11, 12] have been generalized by
Cimpean and Popa [2] and by Popa and Rasa [16, 17] for the linear differential equations
of nth order with constant coefficients. Furthermore, the Laplace transform method was
recently applied to the proof of the Hyers-Ulam stability of linear differential equations (see
19)).

In this paper, we prove the Hyers-Ulam stability of the second-order linear differential
equations (3.1), (3.5), and (3.17) with boundary conditions.

2 Preliminaries

Lemma 2.1 Let I = [a,b] be a closed interval with —co < a < b < co. If y € C*(I,R) and
y(a) = 0=y(b), then

(b CL)2 "
max |y(x)| < max x)|.
zel |y( )’ - 8 zel |y ( )|

Proof. Let M := ma;<|y(x)|. Since y(a) = 0 = y(b), there exists o € (a,b) such that
xe
ly(xo)| = M. By the Taylor’s theorem, we have

/!

y(a) = y(xo) + ¥/ (x0)(a — o) + (a — ),

1/

y"(n)
2

y(b) = y(xo) + ¥ (20) (b — o) + (b — z0)?

for some &, 7 € [a,b]. Since y(a) = y(b) = 0 and v/ (xp) = 0, we get
vy 2M " . 2M
’y (£)| - (a_xo)gv |y (77)| - (b_xo)g'

If 2 € (a, (a + b)/2], then we have
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If 29 € [(a + b)/2,b), then we have

2M S 2M SM
G20 = (52) ~ b

Hence, we obtain

max|y"(2)] > —2 _— 8 (@)
zer “(b-a)?  (b—a)? zel YN
Therefore,
(b — a)2 "
<
max |y(z)| < =" max[y"(z)],
which ends the proof. O

Lemma 2.2 Let I = [a,b] be a closed interval with —co < a < b < co. If y € C*(I,R) and
y(a) = 0= y/(a), then

max|y” ()|

(b—a)?
<
max ly(x)] < 5

Proof. By the Taylor’s theorem, we have

y(@) = y(a) + ' (@)@ — a) + L& (@ ay?

2
for some ¢ € [a, b]. Since y(a) = y'(a) =0 and (z — a)? < (b—a)?, we get

PAGI

vl <

for any = € I. Thus, we obtain

b _ 2
max y(@)] < =Y max |y (2)],
zel 2 zel

which completes the proof. O

3 Main results

In the following theorems, we prove the Hyers-Ulam stability of the following linear differential
equation

y'(x) + Bx)y(z) =0 (3.1)

with boundary conditions
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or with initial conditions

y(a) =0=1y(a) (3.3)
where I = [a,b], y € C%(I,R), 3 € C(I,R), and —o00 < a < b < oo.

Theorem 3.1 Given a closed interval I = [a,b], let f € C(I,R) be a function satisfying
max |B(x)| < 8/(b—a)?. If a function y € C*(I,R) satisfies the inequality
TEe

ly" (@) + B(x)y(x)| <, (3-4)

for all x € I and for some € > 0, as well as the boundary conditions in (3.2), then there
exist a constant K > 0 and a solution yo € C*(I,R) of the differential equation (3.1) with
the boundary conditions in (3.2) such that

ly(z) — yo(z)| < Ke

for any x € I.

Proof. By Lemma 2.1, we have

< !
max |y(z)] < ——="— max[y"(z)|
Thus, it follows from (3.4) that
_ )2 _ 2
marc (@) < U ma v (@) + Bay(e)] + L ma (@) max ()
(b—a)?  (b—a)

< .
< g et g max|f(z)| max|y(z)]

Let C := (b}ap and K := #XW(@\ Obviously, yo = 0 is a solution of (3.1) with the

boundary conditions in (3.2) and

ly(x) — yo(x)| < Ke
for any x € 1. (]

Theorem 3.2 Given a closed interval I = [a,b], let 5 : I — R be a function satisfying
max |B(x)| < 2/(b—a)?. If a function y € C*(I,R) satisfies the inequality (3.4) for all x € T
and for some € > 0 as well as the initial conditions in (3.3), then there exist a solution
yo € C*(I,R) of the differential equation (3.1) with the initial conditions in (3.3) and a
constant K > 0 such that

ly(z) — yo(z)| < Ke

foranyxel.
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Proof. On account of Lemma 2.2, we have

(b—a)?

< "(z)].
max |y(z)| < ~———— max[y"(z)|

Thus, it follows from (3.4) that
(b—a)? (b—a)?

max ly(z)] <

ne max |5(z)| max [y(z)]

e+ 5 max|f(z)| max|y(z)].

Let C := (b—2a)2 and K := #XIB(%)\ Obviously, yo = 0 is a solution of (3.1) with the

initial conditions in (3.3) and

ly(x) — yo(z)| < Ke

for all z € I. O

In the following theorems, we investigate the Hyers-Ulam stability of the differential

equation
y"(z) + px)y'(z) + q(z)y(z) = 0 (3.5)
with boundary conditions
y(a) =0 =y(b) (3.6)
or with initial conditions
yla) =0=y'(a) (3.7)

where y € C?(I,R), p € CY(I,R), ¢ € C(I,R), and I = [a,b] with —00 < a < b < oo.
Let us define a function g : I — R by

forall z € I.

Theorem 3.3 Assume that there exists a constant L > 0 with
X
L< / p(r)dr < L (3.9)
a

for any x € I and max |B(z)| < 8/(b—a)?. If a function y € C*(I,R) satisfies the inequality
Te

ly" () + p(x)y'(z) + q(z)y(z)| < (3.9)
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for all x € T and for some € > 0 as well as the boundary conditions in (3.6), then there exist
a constant K > 0 and a solution yy € C%(I,R) of the differential equation (3.5) with the

boundary conditions in (3.6) such that
ly(a) —yo(w)| < Kele

for any x € I.

Proof. Suppose y € C%(I,R) satisfies the inequality (3.9) for all € I. Let us define

u(z) :=y"(z) + p(x)y' (z) + q(x)y(2), (3.10)
z(x) = y(x) exp(é/a p(T)dT) (3.11)
for all z € I. By (3.10) and (3.11), we obtain
o)+ (a(o) = 30/(0) = ol )ale) = ey exo (5 [ atryar)

for all z € I.
Now, it follows from (3.8) and (3.9) that

() + (ale) = 0 - 19l ot2)

that is,
|2 (z) + B(x)z(x)| < cel/?

for any = € I. Moreover, it follows from (3.11) that

z(a) =0 = z(b).
In view of Theorem 3.1, there exists a constant K > 0 and a function zy € C?(I,R) such
that
s§(a) + (060 - 59/(0) = Jpla) ) o) =0, (3.12)
zo(a) = 0 = 2z0(b)
and
|2(z) — z0(z)| < Keel/? (3.13)
for all z € I.

We now set
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Then, since

o) =z exo( 5 [ pirar) = ozt e - [ o). (3.15)
) =sg@en( 5 [ pmar) ~szs@en( -5 [ o) (3.16)

it follows from (3.12), (3.14), (3.15), and (3.16) that

Yo () + p(x)yo(x) + q(x)yo(z)
20 ()

+ (060 59/ = 39l )aale) o = 5 [ atryr)

for all = € I. Hence, yo satisfies (3.5) and the boundary conditions in (3.6).
Finally, it follows from (3.8) and (3.13) that

0

960) = o) = s exp( = 5 [ ptryar) — so@rexn( = 5 [ oty )|
— |2(x) - 20(a) exp( = mp@m)
< Keel/? eXp< - % /axp(f)dT)
< Kele
for all z € I. 0

Theorem 3.4 Assume that there exists a constant L > 0 such that (3.8) holds for all x € I.
Assume moreover that I;léi;(‘ﬁ(x)‘ < 2/(b—a)? If a function y € C*(I,R) satisfies the
inequality (3.9) for all x € I and for some € > 0 as well as the initial conditions in (3.7),
then there exist a constant K > 0 and a solution yo € C*(I,R) of the differential equation
(3.5) with the initial conditions in (3.7) such that

ly(z) — yo(x)| < Kele

for any x € 1.

Proof. Suppose y € C%(I,R) satisfies the inequality (3.9) for any x € I. Let us define u(x)
and z(x) as in (3.10) and (3.11), respectively. By (3.10) and (3.11), we obtain

)+ (4(o) - 3p/(0) = ol )ale) = o) exo (5 [ wtryar)
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for all z € I.
Now, it follows from (3.8) and (3.9) that

() + (ale) = 50 - 19l ()

that is,
2"(2) + Blx)2(x)]| < ceb?
for all x € I. Furthermore, in view of (3.11), we have
z(a) = 0= 2(a).
By Theorem 3.2, there exists a constant K > 0 and a function zg € C?(I,R) such that

400+ (ato) = /)~ 0(0)? ) 2oe) =,

and

for any z € I.
We now set

and

we have

for any z € I. Hence, yo satisfies (3.5) along with the initial conditions in (3.7).
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Finally, it follows that

ly(z) = yo(z)| = |2(x) eXp< - % /;p(T)dT> — 2o(x) exp< -3 /jp(T)dr)‘
~+to) ~ @l exp (- 5 [ pirar )
< Keel/? exp< - % / ' p(T)dT)
< Kele '
for all z € I. -

In a similar way, we investigate the Hyers-Ulam stability of the differential equation

@)+ @)+ ) =0 (3.17)
with boundary conditions
y(a) = 0 = y(b) (3.18)
or with initial conditions
yla) =0=y'(a) (3.19)

where y € C*(I,R), k € C1(I,R\{0}), 1 € C(I,R), and —00 < a < b < c0.
Given a closed interval I = [a, b], we set

(@) 1dE(@) 1K)
o815 1 (55)

for all z € I.

Theorem 3.5 Assume that there exists a constant L > 0 with

L< /a ' 1:((:)) dr < L (3.20)

for any x € I and max 1B(x)| < 8/(b—a)?. If a function y € C*(I,R) satisfies the inequality
e

Y @)+ ) < e 321

for all x € I and some € > 0, as well as the boundary conditions in (3.18), then there exist

a constant K > 0 and a solution yo € C*(I,R) of the differential equation (3.17) with the

y' () +

boundary conditions in (3.18) such that
ly(z) — yo(@)| < Ke'e

foranyxel.
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Proof. Suppose y € C?(I,R) satisfies (3.21) for all z € I. Let us define

ule) =1/ (@) + oy @)+ o) (3.22)
z2(z) = y(x) exp(é ’ IZ,((:)) dr (3.23)

for all z € I. By (3.22) and (3.23), we obtain

o (15~ E 5845 o - ).

Further, it follows from (3.20) and (3.21) that

that is,
2" (z) + B(w)z(x)| < e
for all z € I. Moreover, it follows from (3.18) and (3.23) that
z(a) = 0= z(b).

By Theorem 3.1, there exists a constant K > 0 and a function zy € C?(I,R) such that

(@) + (,i((g—;;i’;((g - i(’,‘;'g;)z)zo(x) o,

and

for any z € 1.
We now set

Then, since

() = 2 () exp< - / Z((;) N
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and
Yo (2) = 2 (x) exp( — % /: IZ/((TT)) dT) - ]:c/((af)) #() eXp( - 1/; ]Z:((TT)) dT)
el A
Yo 1)
we have

() + (o) + o)
(sr+ (5653565 156 )i )3 [ )
0.

Hence, 3o satisfies (3.17) along with the boundary conditions in (3.18).
Finally, it follows that

2(x) exp( = % /: ’;:((TT)) dT) — 20(x) exp< - ;/j IZ((TT)) dT)‘

8

ly(z) —yo(x)| =

1 [Tk (r)
= |z(x) — z0(x)| exp< —5 0 dT)
1 T /
< Keel/? exp( —3 ’ IZ((:_—)) dT)
< Kele
for all z € 1. O

By a similar method as we applied to the proof of Theorem 3.4, we can prove the following
theorem. Hence, we omit the proof.

Theorem 3.6 Assume that I;lg;(‘ﬁ(.%‘)‘ < 2/(b—a)? and there exists a constant L > 0 for
which the inequality (3.20) holds for all x € I. If a function y € C?*(I,R) satisfies the
inequality (3.21) for all x € I and for some ¢ > 0 as well as the boundary conditions in
(3.19), then there exist a constant K > 0 and a solution yo € C*(I,R) of the differential
equation (3.17) with the boundary conditions in (3.19) such that

ly(a) —yo(w)| < Kele
foranyxel.
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