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1 Introduction

In 1940, Ulam [24] posed a problem concerning the stability of functional equations: “Give
conditions in order for a linear function near an approximately linear function to exist.”

A year later, Hyers [5] gave an answer to the problem of Ulam for additive functions
defined on Banach spaces: Let X1 and X2 be real Banach spaces and ε > 0. Then for every
function f : X1 → X2 satisfying

∥f(x + y) − f(x) − f(y)∥ ≤ ε (x, y ∈ X1),

there exists a unique additive function A : X1 → X2 with the property

∥f(x) −A(x)∥ ≤ ε (x ∈ X1).

After Hyers’s result, many mathematicians have extended Ulam’s problem to other func-
tional equations and generalized Hyers’s result in various directions (see [3, 6, 10, 18]). A
generalization of Ulam’s problem was recently proposed by replacing functional equations
with differential equations: The differential equation φ

(
f, y, y′, . . . , y(n)

)
= 0 has the Hyers-

Ulam stability if for given ε > 0 and a function y such that∣∣∣φ(f, y, y′, . . . , y(n))∣∣∣ ≤ ε,
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there exists a solution y0 of the differential equation such that |y(t) − y0(t)| ≤ K(ε) and
lim
ε→0

K(ε) = 0.

Ob loza seems to be the first author who has investigated the Hyers-Ulam stability of
linear differential equations (see [14, 15]). Thereafter, Alsina and Ger published their paper
[1], which handles the Hyers-Ulam stability of the linear differential equation y′(t) = y(t): If
a differentiable function y(t) is a solution of the inequality |y′(t)−y(t)| ≤ ε for any t ∈ (a,∞),
then there exists a constant c such that |y(t) − cet| ≤ 3ε for all t ∈ (a,∞).

Those previous results were extended to the Hyers-Ulam stability of linear differential
equations of first order and higher order with constant coefficients in [12, 22, 23] and in [13],
respectively. Furthermore, Jung [7, 8, 9] has also proved the Hyers-Ulam stability of linear
differential equations (see also [4]). Rus investigated the Hyers-Ulam stability of differential
and integral equations using the Gronwall lemma and the technique of weakly Picard opera-
tors (see [20, 21]). Recently, the Hyers-Ulam stability problems of linear differential equations
of first order and second order with constant coefficients were studied by using the method
of integral factors (see [11, 25]). The results given in [8, 11, 12] have been generalized by
Cimpean and Popa [2] and by Popa and Raşa [16, 17] for the linear differential equations
of nth order with constant coefficients. Furthermore, the Laplace transform method was
recently applied to the proof of the Hyers-Ulam stability of linear differential equations (see
[19]).

In this paper, we prove the Hyers-Ulam stability of the second-order linear differential
equations (3.1), (3.5), and (3.17) with boundary conditions.

2 Preliminaries

Lemma 2.1 Let I = [a, b] be a closed interval with −∞ < a < b < ∞. If y ∈ C2(I,R) and

y(a) = 0 = y(b), then

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x)|.

Proof. Let M := max
x∈I

|y(x)|. Since y(a) = 0 = y(b), there exists x0 ∈ (a, b) such that

|y(x0)| = M . By the Taylor’s theorem, we have

y(a) = y(x0) + y′(x0)(a− x0) +
y′′(ξ)

2
(a− x0)

2,

y(b) = y(x0) + y′(x0)(b− x0) +
y′′(η)

2
(b− x0)

2

for some ξ, η ∈ [a, b]. Since y(a) = y(b) = 0 and y′(x0) = 0, we get

|y′′(ξ)| =
2M

(a− x0)2
, |y′′(η)| =

2M

(b− x0)2
.

If x0 ∈
(
a, (a + b)/2

]
, then we have

2M

(a− x0)2
≥ 2M(

b−a
2

)2 =
8M

(b− a)2
.
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If x0 ∈
[
(a + b)/2, b

)
, then we have

2M

(b− x0)2
≥ 2M(

b−a
2

)2 =
8M

(b− a)2
.

Hence, we obtain

max
x∈I

|y′′(x)| ≥ 8M

(b− a)2
=

8

(b− a)2
max
x∈I

|y(x)|.

Therefore,

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x)|,

which ends the proof. �

Lemma 2.2 Let I = [a, b] be a closed interval with −∞ < a < b < ∞. If y ∈ C2(I,R) and

y(a) = 0 = y′(a), then

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x)|.

Proof. By the Taylor’s theorem, we have

y(x) = y(a) + y′(a)(x− a) +
y′′(ξ)

2
(x− a)2

for some ξ ∈ [a, b]. Since y(a) = y′(a) = 0 and (x− a)2 ≤ (b− a)2, we get

|y(x)| ≤ |y′′(ξ)|
2

(b− a)2

for any x ∈ I. Thus, we obtain

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x)|,

which completes the proof. �

3 Main results

In the following theorems, we prove the Hyers-Ulam stability of the following linear differential
equation

y′′(x) + β(x)y(x) = 0 (3.1)

with boundary conditions

y(a) = 0 = y(b) (3.2)
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or with initial conditions

y(a) = 0 = y′(a) (3.3)

where I = [a, b], y ∈ C2(I,R), β ∈ C(I,R), and −∞ < a < b < ∞.

Theorem 3.1 Given a closed interval I = [a, b], let β ∈ C(I,R) be a function satisfying

max
x∈I

|β(x)| < 8/(b− a)2. If a function y ∈ C2(I,R) satisfies the inequality

|y′′(x) + β(x)y(x)| ≤ ε, (3.4)

for all x ∈ I and for some ε ≥ 0, as well as the boundary conditions in (3.2), then there

exist a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential equation (3.1) with

the boundary conditions in (3.2) such that

|y(x) − y0(x)| ≤ Kε

for any x ∈ I.

Proof. By Lemma 2.1, we have

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x)|.

Thus, it follows from (3.4) that

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x) + β(x)y(x)| +
(b− a)2

8
max
x∈I

|β(x)|max
x∈I

|y(x)|

≤ (b− a)2

8
ε +

(b− a)2

8
max
x∈I

|β(x)|max
x∈I

|y(x)|.

Let C := (b−a)2

8 and K := C
1−Cmax |β(x)| . Obviously, y0 ≡ 0 is a solution of (3.1) with the

boundary conditions in (3.2) and

|y(x) − y0(x)| ≤ Kε

for any x ∈ I. �

Theorem 3.2 Given a closed interval I = [a, b], let β : I → R be a function satisfying

max
x∈I

|β(x)| < 2/(b− a)2. If a function y ∈ C2(I,R) satisfies the inequality (3.4) for all x ∈ I

and for some ε ≥ 0 as well as the initial conditions in (3.3), then there exist a solution

y0 ∈ C2(I,R) of the differential equation (3.1) with the initial conditions in (3.3) and a

constant K > 0 such that

|y(x) − y0(x)| ≤ Kε

for any x ∈ I.
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Proof. On account of Lemma 2.2, we have

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x)|.

Thus, it follows from (3.4) that

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x) + β(x)y(x)| +
(b− a)2

2
max
x∈I

|β(x)|max
x∈I

|y(x)|

≤ (b− a)2

2
ε +

(b− a)2

2
max
x∈I

|β(x)|max
x∈I

|y(x)|.

Let C := (b−a)2

2 and K := C
1−Cmax |β(x)| . Obviously, y0 ≡ 0 is a solution of (3.1) with the

initial conditions in (3.3) and

|y(x) − y0(x)| ≤ Kε

for all x ∈ I. �

In the following theorems, we investigate the Hyers-Ulam stability of the differential
equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (3.5)

with boundary conditions

y(a) = 0 = y(b) (3.6)

or with initial conditions

y(a) = 0 = y′(a) (3.7)

where y ∈ C2(I,R), p ∈ C1(I,R), q ∈ C(I,R), and I = [a, b] with −∞ < a < b < ∞.

Let us define a function β : I → R by

β(x) := q(x) − 1

2
p′(x) − 1

4
p(x)2

for all x ∈ I.

Theorem 3.3 Assume that there exists a constant L ≥ 0 with

−L ≤
∫ x

a
p(τ)dτ ≤ L (3.8)

for any x ∈ I and max
x∈I

|β(x)| < 8/(b− a)2. If a function y ∈ C2(I,R) satisfies the inequality

|y′′(x) + p(x)y′(x) + q(x)y(x)| ≤ ε (3.9)
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for all x ∈ I and for some ε ≥ 0 as well as the boundary conditions in (3.6), then there exist

a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential equation (3.5) with the

boundary conditions in (3.6) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.

Proof. Suppose y ∈ C2(I,R) satisfies the inequality (3.9) for all x ∈ I. Let us define

u(x) := y′′(x) + p(x)y′(x) + q(x)y(x), (3.10)

z(x) := y(x) exp

(
1

2

∫ x

a
p(τ)dτ

)
(3.11)

for all x ∈ I. By (3.10) and (3.11), we obtain

z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x) = u(x) exp

(
1

2

∫ x

a
p(τ)dτ

)
for all x ∈ I.

Now, it follows from (3.8) and (3.9) that∣∣∣∣z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x)

∣∣∣∣ =

∣∣∣∣u(x) exp

(
1

2

∫ x

a
p(τ)dτ

)∣∣∣∣ ≤ εeL/2,

that is,

|z′′(x) + β(x)z(x)| ≤ εeL/2

for any x ∈ I. Moreover, it follows from (3.11) that

z(a) = 0 = z(b).

In view of Theorem 3.1, there exists a constant K > 0 and a function z0 ∈ C2(I,R) such
that

z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x) = 0, (3.12)

z0(a) = 0 = z0(b)

and

|z(x) − z0(x)| ≤ KεeL/2 (3.13)

for all x ∈ I.
We now set

y0(x) := z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
. (3.14)
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Then, since

y′0(x) = z′0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− 1

2
p(x)z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
, (3.15)

y′′0(x) = z′′0 (x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− p(x)z′0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
(3.16)

− 1

2
p′(x)z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
+

1

4
p(x)2z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
,

it follows from (3.12), (3.14), (3.15), and (3.16) that

y′′0(x) + p(x)y′0(x) + q(x)y0(x)

=

(
z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x)

)
exp

(
− 1

2

∫ x

a
p(τ)dτ

)
= 0

for all x ∈ I. Hence, y0 satisfies (3.5) and the boundary conditions in (3.6).
Finally, it follows from (3.8) and (3.13) that

|y(x) − y0(x)| =

∣∣∣∣z(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)∣∣∣∣
= |z(x) − z0(x)| exp

(
− 1

2

∫ x

a
p(τ)dτ

)
≤ KεeL/2 exp

(
− 1

2

∫ x

a
p(τ)dτ

)
≤ KeLε

for all x ∈ I. �

Theorem 3.4 Assume that there exists a constant L ≥ 0 such that (3.8) holds for all x ∈ I.

Assume moreover that max
x∈I

|β(x)| < 2/(b − a)2. If a function y ∈ C2(I,R) satisfies the

inequality (3.9) for all x ∈ I and for some ε ≥ 0 as well as the initial conditions in (3.7),

then there exist a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential equation

(3.5) with the initial conditions in (3.7) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.

Proof. Suppose y ∈ C2(I,R) satisfies the inequality (3.9) for any x ∈ I. Let us define u(x)
and z(x) as in (3.10) and (3.11), respectively. By (3.10) and (3.11), we obtain

z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x) = u(x) exp

(
1

2

∫ x

a
p(τ)dτ

)
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for all x ∈ I.

Now, it follows from (3.8) and (3.9) that∣∣∣∣z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x)

∣∣∣∣ =

∣∣∣∣u(x) exp

(
1

2

∫ x

a
p(τ)dτ

)∣∣∣∣ ≤ εeL/2,

that is,

|z′′(x) + β(x)z(x)| ≤ εeL/2

for all x ∈ I. Furthermore, in view of (3.11), we have

z(a) = 0 = z′(a).

By Theorem 3.2, there exists a constant K > 0 and a function z0 ∈ C2(I,R) such that

z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x) = 0,

z0(a) = 0 = z′0(a)

and

|z(x) − z0(x)| ≤ KεeL/2

for any x ∈ I.

We now set

y0(x) := z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
.

Moreover, since

y′0(x) = z′0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− 1

2
p(x)z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
and

y′′0(x) = z′′0 (x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− p(x)z′0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− 1

2
p′(x)z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
+

1

4
p(x)2z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
,

we have

y′′0(x) + p(x)y′0(x) + q(x)y0(x)

=

(
z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x)

)
exp

(
− 1

2

∫ x

a
p(τ)dτ

)
= 0

for any x ∈ I. Hence, y0 satisfies (3.5) along with the initial conditions in (3.7).
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Finally, it follows that

|y(x) − y0(x)| =

∣∣∣∣z(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)
− z0(x) exp

(
− 1

2

∫ x

a
p(τ)dτ

)∣∣∣∣
= |z(x) − z0(x)| exp

(
− 1

2

∫ x

a
p(τ)dτ

)
≤ KεeL/2 exp

(
− 1

2

∫ x

a
p(τ)dτ

)
≤ KeLε

for all x ∈ I. �

In a similar way, we investigate the Hyers-Ulam stability of the differential equation

y′′(x) +
k′(x)

k(x)
y′(x) +

l(x)

k(x)
y(x) = 0 (3.17)

with boundary conditions

y(a) = 0 = y(b) (3.18)

or with initial conditions

y(a) = 0 = y′(a) (3.19)

where y ∈ C2(I,R), k ∈ C1(I,R\{0}), l ∈ C(I,R), and −∞ < a < b < ∞.
Given a closed interval I = [a, b], we set

β(x) :=
l(x)

k(x)
− 1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2

for all x ∈ I.

Theorem 3.5 Assume that there exists a constant L ≥ 0 with

−L ≤
∫ x

a

k′(τ)

k(τ)
dτ ≤ L (3.20)

for any x ∈ I and max
x∈I

|β(x)| < 8/(b− a)2. If a function y ∈ C2(I,R) satisfies the inequality∣∣∣∣y′′(x) +
k′(x)

k(x)
y′(x) +

l(x)

k(x)
y(x)

∣∣∣∣ ≤ ε, (3.21)

for all x ∈ I and some ε ≥ 0, as well as the boundary conditions in (3.18), then there exist

a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential equation (3.17) with the

boundary conditions in (3.18) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.
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Proof. Suppose y ∈ C2(I,R) satisfies (3.21) for all x ∈ I. Let us define

u(x) := y′′(x) +
k′(x)

k(x)
y′(x) +

l(x)

k(x)
y(x), (3.22)

z(x) := y(x) exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
(3.23)

for all x ∈ I. By (3.22) and (3.23), we obtain

z′′(x) +

(
l(x)

k(x)
− 1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2)
z(x) = u(x) exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
.

Further, it follows from (3.20) and (3.21) that∣∣∣∣z′′(x) +

(
l(x)

k(x)
− 1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2)
z(x)

∣∣∣∣ =

∣∣∣∣u(x) exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)∣∣∣∣
≤ ε exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
≤ εeL/2,

that is,

|z′′(x) + β(x)z(x)| ≤ εeL/2

for all x ∈ I. Moreover, it follows from (3.18) and (3.23) that

z(a) = 0 = z(b).

By Theorem 3.1, there exists a constant K > 0 and a function z0 ∈ C2(I,R) such that

z′′0 (x) +

(
l(x)

k(x)
−1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2)
z0(x) = 0,

z0(a) = 0 = z0(b)

and

|z(x) − z0(x)| ≤ KεeL/2

for any x ∈ I.

We now set

y0(x) := z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
.

Then, since

y′0(x) = z′0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− 1

2

k′(x)

k(x)
z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
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and

y′′0(x) = z′′0 (x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− k′(x)

k(x)
z′0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− 1

2

(
k′(x)

k(x)

)′
z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
+

1

4

(
k′(x)

k(x)

)2

z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
,

we have

y′′0(x) +
k′(x)

k(x)
y′0(x) +

l(x)

k(x)
y0(x)

=

(
z′′0 (x) +

(
l(x)

k(x)
− 1

2

(
k′(x)

k(x)

)′
− 1

4

(
k′(x)

k(x)

)2)
z0(x)

)
exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
= 0.

Hence, y0 satisfies (3.17) along with the boundary conditions in (3.18).
Finally, it follows that

|y(x) − y0(x)| =

∣∣∣∣z(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)∣∣∣∣
= |z(x) − z0(x)| exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
≤ KεeL/2 exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
≤ KeLε

for all x ∈ I. �

By a similar method as we applied to the proof of Theorem 3.4, we can prove the following
theorem. Hence, we omit the proof.

Theorem 3.6 Assume that max
x∈I

|β(x)| < 2/(b − a)2 and there exists a constant L ≥ 0 for

which the inequality (3.20) holds for all x ∈ I. If a function y ∈ C2(I,R) satisfies the

inequality (3.21) for all x ∈ I and for some ε ≥ 0 as well as the boundary conditions in

(3.19), then there exist a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential

equation (3.17) with the boundary conditions in (3.19) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.
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