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1. ABSTRACT

In this paper, we show the degree of approximation by a single hidden layer feed
forward model with n units in the hidden layer is bounded below by the degree of
approximation by a linear combination of n ridge functions. We prove that there exists an
analytic, strictly monotone, sigmoidal activation function for which this lower bound is
essentially attained.

Also we extend the Kolmogorov’s existence theorem to be apply at any compact set,
(i.e., closed and bounded set) also we prove that a FFNN with one hidden layer can
uniformly approximate any continuous function of several variable, X¢x..., X,), which

is defined in compact set to any required accuracy.

2. INTRODUCTION
A ridge function is a multivariate function h * R> R of the simple form
h(xg, ..., xn) = g@xy+...+axn) = g@.x),
where g: R »R and a=(ay, ... , a,) € R"\{0}. In other words, it is a multivariate function

constant on the parallel hyperplanes a.x=¢e R
The vector a=R" \ {0} is generally called the direction. Ridge functions appear in various
areas and under various guises. We find them in the area of partial differential equations
(where they have been known for many, many years under the name of plane waves ). We
also find them used in computerized tomography , in statistics (where they appear in
projection pursuit algorithms ), in neural networks, and of course in approximation theory.
More about ridge functions may be found in Pinkus, and references therein.

When dealing with ridge functions, one is generally interested in one of three
possible sets of functions.[1],[2]

The first is given by
R@....,a"N={>g (@.X):geCR):i-1,...m}.
i-1

That is, we fix a finite number of directions and consider linear combinations of ridge
functions with these directions. The functionarg the “variables". This is a linear space.

The second set is



Rn={ 2.0, (@ .X):d eR\{0}, gicC R ),i= 1, ....m }

Here, we fix m and choose both the functionargl the directions'.aThis is not a linear
space.
The third set is motivated by a model in neural networks. It is a subset of the second. We

fix o € C(R), called the transfer function in neural network literature, and let
Nm={> co(dx—b)deR\0},ci,heR,I1=1,..mh.
i=1

Here we also fix m and choose both the directidrfsadled the weights), and the shifts b
(called the thresholds). This is not a linear space.
3. DENSITY

In this section we will consider density questions associated with the single
hidden layer feed forward neural model. That is, for an activation funetjand, for any

f € C(R"), k compact subset of"Rand any > 0, there exists g o (w.x— 0 ), where

0 e R,we R", suchthat: max|f(x) — g(x)| <e
xeK

Firstly, we introduce definition of density:
Definition (1):
A subset D in C(X) is dense if and only if :
Vv f e C(X), V compact set K X andV ¢ > 0,3 ge D, such that |[f-glk <e¢

Remarks:
1. Density is the theoretical means the ability to approximate well.
2. Density dose not imply a good, efficient scheme for the approximation.
3. Lack density means that it is impossible to approximate a large class of functions, and
this effectively precludes any scheme based there on being in the least useful.
Now, we state Kolmogorov’s theorem:

Theorem (2) (Kolmogorov’s mapping Neural Network Existence Theorem)

Given any continuous function f : [0"}— RY, f(x) = y, f can be implemented
exactly by a three-layer feed forward neural network having n processing elements in the
first (x-input) layer, (2n + 1) processing elements in the middle layer, and m processing
elements in the top (y-output) layer.

Proof

The proof can be found in [3].



As stated in the above theorem, the Kolmogorov mapping network consists of
three layers of processing elements (input layer-hiddenlayer and output layer). The first
layer (input layer) consists of n input units. The second layer consists of 2n + 1 semilinear
units (i.e., the transfer function of these units is similar to a linear weighted sum). Finally,

the third (output) layer has M processing elements with highly nonlinear transfer functions.

The second layer implement the following transfer functipe Zkk\y(xj + ke) + K,
i1

where the real constaitand the continuous real monotonically increasing funaticare
independent of f ( although they do depend on n ). The corsgatrational number
0 <g <9, wheres is an arbitrarily chosen positive constant
No specific example of a functiom and constant are known (still an open
problem). The proof of the theorem is not constructive, so it does not tell us how to
determine these quantities. It is strictly an existence theorem. It tells us that such a three

layer mapping network must exist, but it doesn’t tell us how to find it.

4. DIRECT APPROACHESTO DENSITY
In this section, we introduce several proofs of the density result, by considering

the one-dimensional case. We start with the following theorem:

Theorem (3)

Let BY denote the unit ball inRi.e., B ={x: HXHZ <1} and S its boundary ,i.e.,
St={x: HXHZ =1}

There exists a functio® which is C°, strictly increasing and sigmoidal satisfying

the follawing . Given fe C[-1,1] ande > O, there exist real constantsintegers r and

. d+l )
vectors W e S, i =1,..., d+1 ,such tha}f (X)—2 cd(W'X~—r) <e forall x e

i=1 i

BY.
Proof

The space C[-1,1] is separable .That is ,it contains a countable dense subset .Let

{u ., be asubset .Thus to eack fC[-1,1] and eachs > 0 there exists m (dependent
upon f ande ) for which ‘f (t) - um(t)\ < ¢ forall te [-1,1] .Assume eachs in C*

[-1,1] .(we can ,for example , choose the&}{‘p:l from among the set of all polynomials

with rational cofficients ).



We will now construct a sigmoidal functiah, i.e., for which!im d(t)=0 andl!m O(H)=1

, Which is strictly increasing and in“@nd is such that for eactefC[-1,1] and eacle >0

there exists an integer m and real coefficient&,a; such that
(1) — @'9(t) +ard(t))| < & forallte [1,1].

We do this by constructing so thatajk o(t)+ a§ o(t) =u, (t) , for each k .

Let h be anyC” ,strictly monotone (with h' (x)>0 for all x) ,sigmoidal function .

We defined(t) = b, +c t+d u, (t) for t e [-1,1]. Where we choose the constants
b, ,c, ,d, so that

1) o(k)=h(k)

2) 0<¢'(t)<h'(t) on [k,k+2] .
This is easily done. We make one further assumption .On the intervals [-1,1]and [-2,0] we
demand that again satisfy conditions (1), (2), as above , and be linear , angl(thae
linearly independent on [-1,1] .From the construction there exists , for eath teal &
s, for which a ¢(t) + aj o(t) = U, (t) .for all te [-1,1]
Thus for some £ C[-1,1] and Ae S, j=1,2,..., d+1.

From the above construction ¢fthere exist constants! tb) and an integer, such that
‘f (X)- (bip@x—r )+bld@Ex- r,.))\ <g. for al x eBY . Now each

d@.x—r ) ,j=12..,d+l is alinear function , i.e., a linear combination ofy1, x

X2,..., X4 . Thus <g¢ forallxe B?,

f0-% co(W'x—)

Theorem (4) [4]

There exists a constant ¢ such tidte C[0,1].
[If— ahlbe < c w(f, 1/n).

(Note that: Here the uniform norm is taken on the interval [0, 1] and c is independent of f ).

Remarks



1. There are two well known methods of passing from one- dimensional to higher-
dimensional approximations: the blending operator and the tensor product [5]. We can
not illustrate both the idea here.

2. Suppose we have two sets of basis functiams ¢, ..., ¢} and {y1, yo, ..., y}
whereo i, y; : R—— R The tensor product basis is the sqiof functions:

(X, ¥) = 0i(X) Wi(y)

Sometimes one can construct a two-dimensional approximation using the tensor
product basis by applying a one-dimensional approximation operator in each dimension.

In practice the two sets are usually the same type of function (e.g. both
polynomials or both trigonometric functions) althouglandv may of course be different.
Now, what happens if we apply this construction to ridge functions. For simplicity we
assume that the same functi@iis to be used for x and y. So typical one-dimensional ridge
functions will bec(ax + G) ando(byy + d). The tensor product basis thus considts o
functions of the forns(ax + G) o(by + d).

In general this does not give a two-dimensional ridge function so we will not land

up with a ANN approximation of the form :
K

g(x) = zl vo(W'x+c) 1)
=

Where y denote the weight connecting j-th hidden unit to the output and
activation functions used in practice have the property of being monotonic increasing,
bounded and sigmoidal, which means that the limitscat-+o are 1 and O respectively.

However, there is one particular choicesdor which the construction does work,
namelyc(x) = exp(x). Then we get:
o(ax +c) o(by + d) = exp(ax + c) exp(hy + d)

=exp (& +hy + g + d)
=o(ax +thy + G + d)

The above observation has been used by several authors to produce an n-
dimensional ridge function approximations. The basic idea is to prove that the density of
the ridge functions for the special cases0f) = exp(x) and then to use a one-dimensional
result such as theorem (4) to approximate the exponential function by linear Combinations
of the desired.

Now, we introduce the following definition:

Definition (5)



A set of functions is said to be fundamental in a given space if a linear
combinations of them are dense in that space.

Theorem (6)

Let K be a compact set in"RThen the set E of functions of the forpax) = exp(dx) ,
where ae R", is fundamental in C(K).
Proof

By the Stone-Weierstrass theorem we need only show that the set forms an
algebra and separates points. SupposeKx First, we have:
exp(dx) exp(Hx) = exp(dx + b'x) = exp((d + b")x).
The set also contains the function “1” simply choose a = 0. This establishes that E is an
algebra. It remains to show that E separates the points of K. So let K, with x # y. Set
a=(x—Y). Then 4(x —y) # 0, so &x = a'y. Thus exp(&) = exp(dy).
The proof is complete. [

Before considering more constructive versions of this result we complete the

density proof.

Theorem (7)

Let K be a compact set in'RThen the set F of functions of the form g(x), defined
by (1) withc as a continuous sigmoidal function is dense in C(K).
Proof

Let f € C(K). For anye > 0, there exists (by theoren) & finite number m of

vectors g such that:

- Sortn

€
< —
2

o0

since there are only m scalﬂéx, we may find a finite interval including all of them.

Thus there exists a numbesuch that exp&iTX)zexp(Fy)

where

y = (aiTx/r) e [0,1]. Then theorem (6) tells us that the function ekp) (can be
approximated by linear combinations functions of the fm(’nVVjTX + q)with a uniform

error less than/2m, from which the desired result easily follows.

Remarks



1. Theorem (7) tells us one hidden layer is sufficient to approximate any continuous
function to any required accuracy.

2. T'inthe proof of theorem (7) can be chosen to be an integer

3. The only open problem of the previous paragraph is to show that the vectors a in
theorem (6) can be chosen with rational elements.

4. The question of rate of convergence of approximations is obviously of considerable
importance. If f is smooth and we use smooth approximating functions such as (2) we
might hope to get better convergence than the simple O(1/n) which implied by
theorem (4.

5. INTERPOLATION

The ability to have a good approximation to a continuous function f is related to

the ability to be interpolated by another simpler function (e.g., polynomial). If one can
approximate well, then one expects to be able to interpolate (the inverse need not, in

general hold).

Assume we are givess € C(R). For k distinct points{xi };c R", and associated

data {di }Ii(zl c R, can we always find m{Wj};il < R"and {Cj}J—l

ni , {91-};:1 c R for
which

m
D cio(Wx; —0;)=d; ,fori=1,2, .k
=1
Furthermore, what is the relationship between k and m ?
If o is sigmoidal, continuous and non-decreasing, one can always interpolate with
m = k. But the open problem is extend this result to any bounded, continuous, norrlinear
which has a limit at infinity. In other word we can define the interpolation as the following:
Given a set of k ordered pairs,®), i=1, 2, ....k withx; e R"and de R, the
problem of interpolation is to find a function F " R— R that satisfies the interpolation
condition F(x) = d;, i=1, 2, ..., k. For strict interpolation, the function F is constrained to
pass through all the k data points. The definition can be easily extended to the case where
the output is m-dimensional. The desired function is then "R R™.
In practice, the function F is unknown and must be determined by using the given
data (x, d),i =1, 2, ..., k. A typical neural network implementation of this problem is a

two-step process: Training, where the neural network learns how to construct the function



F from the given training data fxd}, and generalization, where the neural network
predicts the output for a lest input.

6.COMPARISON OF RBFE NETWORKS AND MULTILAYER FEED FORWARD
NEURAL NETWORK WITH RIDGE BASISFUNCTION:-
Both RBFNN and FFNN with ridge basis function are non linear layered networks

having universal approximation properties ,

The most important differences between them are :

1- An RBFNN has a single hidden layer , while an FFNN with ridge basis function can
have several hidden layers.

2- The computational nodes in the FFNN with ridge basis function are similar in various
layers , while in the RBFNN they are quite different in the output and hidden layers .

3- In the RBFNN , the output layer is linear , while it may be nonlinear in an FFNN with
ridge basis function .This has two consequences :

(a) RBF output layer training is simple .
(b) Model selection becomes almost analytic for RBF's , where as Cross Validation with
full network optimization is needed for FFNN with ridge basis functions .

4- In each hidden node ,the activation function of RBFNN computes an Euclidean distance
,while in FFNN with ridge basis functions an inner product between the input and the
weight vector is computed.

5- FFNN with ridge basis function construct global approximations ,while RBFNN 's
approximation locally nonlinear input-output mappings .

6- FFNN with ridge basis function may require less parameters than the RBFNN for
achieving the same accuracy .

7- RBFNN are usually faster to train .
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