
Artificial Intelligence
Lecture:

 1

Introduction to Artificial Intelligence
The Artificial Intelligence (AI) can be defined as the study of how to make

computers do things which, at the moment, people do better. Or can be defined as

the branch of computer science that is concerned with automation of intelligent

behavior. Some of the task domains of Artificial Intelligence includes are listed

below:

1. Formal Tasks such as:-

 Games (Chess, Backgammon, Checkers – Go).

 Mathematics (Geometry, Logic, Integral calculus).

2. Mundane Tasks such as :-

 Perception (Vision, Speech). Perceptual tasks are difficult because they

involve analog (rather than digital) signals; the signals are typically very

noisy.

 Natural Language (Understanding, Generation, Translation): - the problem

of understanding spoken language is a perceptual problem and is hard to

solve. It is extremely difficult because it required to know a lot about of

the language (Vocabulary, Grammar).

 Commonsense reasoning: - it is includes reasoning about physical objects

and their relationships to each other. Also reasoning about actions and

their consequences.

 Robot control

3. Experts Tasks

 Engineering (Design, fault Finding, Manufacturing planning).

 Scientific analysis

 Medical diagnosis

 Financial analysis

Artificial Intelligence
Lecture:

 2

AI Technique
 Search :- Providing a way of solving problems for which no more direct

approach is a available, as well as a framework into which any direct

techniques that are available can be embedded.

 Use of Knowledge :- provides a way of solving complex problems by

exploiting the structures of objects that are involved.

 Abstraction :- Provides a way of separating important features and

variations from the many unimportant ones that would otherwise

overwhelm any process.

Artificial Intelligence
Lecture:

 3

Introduction to Programming in Logic
There are two types of programming language paradigms:-

1) Procedural:- Traditional programming languages are said to be procedural. In

procedural language the programmer has to specify in detail how to solve

problem. FORTRAN, C, and even – object oriented languages fall under this

general approach.

2) Declarative: in declarative paradigm, declarative programming language

means that rather than describing how to compute the solution, a program

consist of database of facts and logical relationships (rules), which describes

the relationships. Which holds for given application. Prolog and LDL are

examples of declarative languages. Logic programming is a declarative

paradigm.

The logic program dealing with relation rather than functions. Logic

programming functionality can be represented as the following:-

Algorithm = Logic + Control

The Logic refers to the facts and rules specifying what the algorithm does,

and the control refers to how algorithm can be implemented by applying the rules

in a particular order.

The idea of logic programming is to use a computer for drawing

conclusions from declarative descriptions.

Definitions of Prolog (PROgramming in LOGic)
Prolog: is a declarative programming language, it considered one of the

most widely used programming languages in Artificial Intelligence (AI) research,

A prolog program consists of facts and rules. There is no structure imposed

on a Prolog program, there is no main procedure, and there is no nesting

Artificial Intelligence
Lecture:

 4

definitions. All facts and rules are global in scope and the scope of a variable is

the fact or rule in which it appears.

The main features of Prolog are:
1. Rule based programming: the rule based programming allows the program

code to be written in a form which is more declarative than procedural.

2. Built in a pattern matching: this is an important features of prolog.

3. Backtracking execution: Backtracking provides for the flow of control in

the program.

4. Ability to deduction.

Applications of Prolog
The main applications of Prolog are:

• Intelligent database retrieval

• Natural language understanding

• Expert systems (ES)

• Specification language

• Machine learning

• Automated reasoning

• Problem solving

Prolog Program
Prolog program consists of the following parts :-

1. Domains: define global parameter used in the program. Like

Domains

I= integer

C= char

S = string

R = real

2. Predicates: define rule and fact used in the program (declaration), like

mark(symbol, integer).

Artificial Intelligence
Lecture:

 5

male (string).

parent (string, string).

xor(integer, integer, integer).

3. clauses: define the body of the program

parent(jane, alan). Fact

mother(P1,P2):- parent(P1,P2), female(P1). Rule

A clause consists of a head and sometimes a body. Facts don’t have a body

because they are always true. A predicate head consists of a predicate name and

sometimes some arguments contained within brackets and separated by commas.

parent(jane, alan).

4. Goal: can be internal or external, internal goal written after clauses portion,

external goal supported by the prolog compiler if the program syntax is correct.

This portion contains the rule that drive the program execution.

Programming in Prolog
• Declaring some facts about object and their relationships.

• Defining some rules about objects and their relationships.

• Asking questions about objects and their relationships

So, prolog language can be considered as a store house of facts and rules,

and it uses the facts and rules to answer questions.

The structure of Prolog language

A Prolog program consists of database of facts and rules, and queries(Question):-

1. Facts
Prolog consists of as series of facts and rules. Facts are either consist of a

particular item, or relation between items. A fact in every language is often a

Artificial Intelligence
Lecture:

 6

proposition like "Gold is valuable". Facts describe explicit relationships between

objects and properties objects might have.

Syntax of fact:

1. The name of all relationship and objects must begin with a lower-case

letter, for example likes (john, mary).

2. The relationship is written first, and the objects are written separated

by commas, and enclosed by a pair of round brackets.

Like (john, mary)

3. The full stop character ‘.’ Must come at the end of fact.

4. Objects also begin with lowercase letters.

Examples:

Gold is valuable valuable (gold).

Jane is female female (jane).

John owns gold owns (johns, gold).

Johns is the father of Mary father (john, marry).

The names of objects that are enclosed within the round brackets are called

arguments. And the name of relationship called predicates.

Relationship has arbitrary number of argument. If we want to define

predicate called play, were we mention two players and a game they play with

each other, it can be:

play (john, Mary, football).

2. Rules

Rule consists of a head (a predicate) and a body (a sequence of predicates

separated by commas). To build a rule, head can be represented as conclusion and

body can be represented as condition.

The word if used after the head and represented as “:-“ which separates the

Head and body, like every Prolog expression, a rule has to be terminated by a dot.

Artificial Intelligence
Lecture:

 7

The syntax of if statement

If (condition) then (conclusion)

[conclusion :- condition]. Rule

For Example:

It will rain if the sky is cloudy

conclusion condition

represent both as fact like:

wheatear(rain).

cloudy(sky).

wheatear(rain) :- cloudy(sky). Rule

I use the umbrella if there is rain

Conclusion condition

Represent both as fact like:

wheatear (rain).

use (umbrella)

use (Iam, umberella):-whether (rain).

3. Queries (Questions)

A query in prolog is the action of asking the program about information contain

within its database(facts and rules).

Type of questing in the goal

There are three type of question in the goal summarized as follow:

1. Asking with constant: prolog matching and return Yes/No answer.

male(ali).

male(ahmed).

Artificial Intelligence
Lecture:

 8

male(khalid).

male(samir).

Goal:

male(ali). Ans:- Yes

male(suha) . Ans :- No.

2. Asking with constant and variable: prolog matching and produce result for the

variable.

parent(ali, ahmed).

parent (ali, suha).

parent(ali, samir).

parent(ahmed, khalid).

Goal:

parent(X, ahmed). Ans:- X= ali.

parent(ali,X). Ans:- X= ahmed, X= suha, X= samir.

3. Asking with variable: prolog produce all possible results.

parent(ali, ahmed).

parent (ali, suha).

parent(ali, samir).

parent(ahmed, khalid).

Goal:

parent(X,Y). Ans:- X=ali, Y= ahmed.

 X=ali, Y= suha.

 X=ali, Y=samir.

 X=ahmed, Y= khalid.

Artificial Intelligence
Lecture:

 9

Variables in Prolog

If we want to get more interest information about fact or rule, we can use

variable to get more than Yes/No answer.

1. variables dose not name a particular object but stand for object that we

cannot name.

2. variable name must begin with capital letter.

3. using variable we can get all possible answer about a particular fact or rule.

4. variable can be either bound or not bound.

Variable is bound when there is an object that the variable stands for.

The variable is not bound when what the variable stand for is not yet known.

Data Types in Prolog.
Prolog supports the following data type to define program entries.

1. Integer: to define integer value like 1, 20, 0,-3,-50, etc.

2. Real: to define the decimal value like 2.4, 3.0, 5,-2.67, etc.

3. char: to define single character, the character can be of type small letter or

capital letter or even of type integer under one condition it must be surrounded

by single quota. For example, ‘a’,’C’,’1’.

4. string: to define a sequence of character.

5. Symbol: is similar to string, it deals with sequences of character, or single

character.

For example:

domains

I=integer.

S=string.

Y=char.

Example computes the relation of this family

Artificial Intelligence
Lecture:

 10

domains

 X=string.

predicates

 male(X).

 female(X).

 parent(X,X).

 father(X,X).

 mother(X,X).

 son(X,X).

 daughter(X,X).

 brother(X,X).

 sister(X,X).

 grandfather(X,X).

 grandmother(X,X).

 grandchild(X,X).

 uncle(X,X).

 aunt(X,X).

 cousin(X,X).

Bill * Ann

Jim Tom Suha

Maha
Liza Jack

Adam

Artificial Intelligence
Lecture:

 11

clauses

 male(bill).

 male(tom).

 male(jim).

 male(jack).

 male(adam).

 female(ann).

 female(suha).

 female(liza).

 female(maha).

 parent(bill,tom).

 parent(bill,jim).

 parent(bill,suha).

 parent(ann,tom).

 parent(ann,jim).

 parent(ann,suha).

 parent(jim,jack).

 parent(jim,liza).

 parent(suha,maha).

 parent(tom,adam).

 father(X,Y):- parent(X,Y),male(X).

 mother(X,Y):- parent(X,Y),female(X).

 son(X,Y):- parent(Y,X), male(X).

 daughter(X,Y):-parent(Y,X), female(X).

 brother(X,Y):- father(Z,X),father(Z,Y),X<>Y,male(X).

 sister(X,Y):- father(Z,X),father(Z,Y),X<>Y,

 female(X).

 grandfather(X,Y):-parent(X,Z),parent(Z,Y),male(X).

 grandmother(X,Y):-parent(X,Z),parent(Z,Y),female(X).

Artificial Intelligence
Lecture:

 12

 grandchild(X,Y):-?.

 uncle(X,Y):-?.

 aunt(X,Y):-?.

 cousin(X,Y):-?.

Artificial Intelligence
Lecture:

 13

Recursion in Prolog Language:-
In prolog language there are no iterative constructs (for, while, …,etc),

instead of which it uses Recursion. The recursion in any language is a function

that can call itself until the goal has been succeed. In Prolog, recursion appears

when a predicate contain a goal that refers to itself. There are two types of

recursion:

1.Tail Recursion: We place the predicate that cause the recursion in the tail of the

rule as shown below:

Example 1: Write a prolog program to print the number from n to 1.

domains

 I=integer.

predicates

 print(I).

clauses

 print(0):-!.

 print(N):- write(N),nl,N1=N-1, print(N1).

Goal: print(10).

10

Artificial Intelligence
Lecture:

 14

9
8
7
6
5
4
3
2
1
yes

Homework: Write a prolog program to print the number from 1 to n.

Example 2: Write a prolog program to find the factorial of 5! = 5*4*3*2*1

domains

I= integer

predicates

fact(I, I, I)

clauses

fact(1, F, F):-!.

fact(N,F,R):- F1=F*N , N1=N-1, fact(N1,F1,R).

Goal: fact(5,1,F).

Output: F = 120

homework: Write a prolog program to find the s = n+(n-1)+(n-2)+…+1.

**

2. Non Tail Recursion (Stack Recursion)

Artificial Intelligence
Lecture:

 15

 is recursion in which the recursive call is not the last step in the procedure.

This type of recursion use the stack to hold the value of the variables till the

recursion is complete. The statement is self – repeated as many times as the

number of items in the stack. This type of recursion using less number of variable

than Tail recursion.

Example 4: factorial program using non-tail recursion.

Predicates

Fact (integer, integer)

Clauses

Fact (0,1) :-!.

Fact (N,F):- N1= N-1, fact (N1,F1), F= N1*F1.

Goal:

Fact (5,F)

Output:

F =120.

**

Example 5: power program using non-tail recursion.

Predicates

Power (integer, integer, integer)

Clauses

Power (_,0,1):-!.

Power (X,Y,Z) :- Y1=Y -1, power (X,Y1,Z1), Z= X*Z1.

Goal:

Power (3,2,Z)

Artificial Intelligence
Lecture:

 16

Output

Z = 9.

**

Homework

1) By using the non tail recursion print the number from 1 to n.

2) By using the non tail recursion print the number from n to 1.

3) By using the non tail recursion compute the following

 S= 1/(N)!+1/(N-1)!+…..+1/(1)!.

 S=1- (2^n/2!)+…..±(X^n/X!).

Artificial Intelligence
Lecture:

 17

Built in Function in prolog
Prolog has a rang of built in function, the table below explain some of these

function and predicates.

Function Description

X mod Y This function return the remainder of x divided by Y.

 X div Y This function return the value of division X by Y.

abs(X) return the absolute value of X

cos(x) return the cosine value of angle X in rad.

sin(x) return the sin value of X

tan(X) return the tan value of X

arctan(X) return the arc tan of X

exp(X) return the exponential of x

log(X) logarithm of X base 10

sqrt(X) square root of X

ln(X) logarithm of X with base e

Read and write function

Read function:

readint(Var) : read integer variable.

readchar(Var) : read character variable.

readreal(Var) : read real(decimal) variable.

readln(Var) : read string.

Write function

Write(Var) : write variable of any type.

Artificial Intelligence
Lecture:

 18

Example 1: write prolog program to read integer value and print it.

Domains

 I = integer

Predicates

 print.

Clauses

 Print:- write (“please read integer number”),

readint(X), write(“you read”,X).

Goal

 Print.

 Output:

 Please read integer number 4

 You read 4

Cut Function

Sometimes it is desirable to selectively turn off backtracking.

Prolog provides a predicate that performs this function. It is called the

cut, represented by an exclamation point (!) .

The cut effectively tells Prolog to freeze all the decisions made so

far in this predicate. That is, if required to backtrack, it will

automatically fail without trying other alternatives.

Domains

 I= integer.

Predicates

Artificial Intelligence
Lecture:

 19

no(I)

Clauses

no(5):-!.

no(7).

no(10).

Goal: no (X).

Output: X=5.

domains

 S=string.

predicates

 parent(X,X).

 male(X).

 father(X,X).

clauses

 male(ali).

 male(ahmed).

 male(khalid).

 parent(ali, ahmed).

 parent(ali, khalid).

 father(X,Y):-parent(X,Y), male(X),!.

Goal: father(X,Y).

Output: X= ali, ahmed.

Artificial Intelligence
Lecture:

 20

1 solution

Fail Structure in Prolog.
The fail predicates causes the failure of the rule and this will be forever,

nothing can change the statement of this predicate. The fail function is used to

enforce backtracking, place always in the end of rule, produce false and can be

used with internal goal to produce all possible solution.

Ex.

domains

 Y=integer.

predicates

 x(Y).

clauses

 x(1).

 x(2).

 x(3).

 loop:-x(A), write(A),fail.

Goal:-loop

Output:1 2 3 No

Artificial Intelligence
Lecture:

 21

String in Prolog.
Prolog provides several standard predicates for powerful and efficient string

manipulations. This section summarizes the standard predicates available for

string manipulating and type conversion.

1. str_len (String ,Length) :Determines the length of String.

str_len(“prolog”,X)

X=6.

2. str_int (String ,Integer) : Converts a string of one character

to ASCII code or vice versa.

str_int(“A”,X)

X=65.

3. char_int (char,integer): Converts a character to ASCII code or

vice versa.

char_int(‘A’,X)

X=65.

4. str_char(string,char): convert the string (of one char) to char

and the opposite.

str_char("A",X)

X='A'

str_char(X,'A')

X="A"

5. isname (string): test if the content of the string is name or not

isname(“s2”) return YES.

isname(“4r”) return NO.

6. frontchar(String,Char,RestString) (string,char,string):

Extracts the first character from a string, the remainder is matched with

Rest String.

frontchar (“prolog”, C, R).

Artificial Intelligence
Lecture:

 22

C=’p’, R=”rolog”.

7. fronttoken (String,Token,RestString)

(string,string,string): Skips all white space characters

(blanks, tabs) and separates from the resulting string the first valid token.

The remainder is matched with Rest String.

fronttoken (“complete prolog program”,T,R)

T=”complete”, R=”prolog program”.

8. frontstr (StrLen,String,FrontStr,RestStr): Extracts

the first n characters from a string.

frontstr(3,”cdab2000”,T,R)

T=”cda”, R=”b2000”.

9. concat (Str1,Str2,ResStr) (string,string,string):

Concat two string together to produce one string.

concat (“prolog”,”2011”,R)

R=”prolog2011”.

10. Upper_lower (string,string): Convert the string in upper case

(in capital letter) to the lower case (small letter) and the opposite.

Upper_lower(capital_letter,small_letter)

Upper_lower("ABC",X)

X="abc"

Upper_lower("Abc",X)

X="abc"

Upper_lower(X,"abc")

X="ABC"

Artificial Intelligence
Lecture:

 23

Turbo Prolog Language Components.
Standard Names:- such as abs, log, sin, cos,…,etc.

Reserved words:- such as predicate, goal, fail, …,etc.

Identifiers:- all facts name and rules, as well as, the variables declared in

domains field.

Variables:- such as X, Y, Age, …,etc.

String Constants:- such as "PROLOG means PROgramming in LOGic", "a12",

'y', …,etc.

Numeric Constants:- such as 60,-50, 3.14, …,etc.

Comments:- such as /* this is a comment*/, % this is a comment, …,etc.

List in Prolog
In prolog, a list is an data structure (object) that contains an arbitrary

number of terms (any data types) within it and that can have any length, it is like

array in another language. A list is either empty or it is a structure that has two

components: the head H and tail T.

Syntax of List

List always defined in the domains section of the program as follow:

domains

list = integer*

1) ‘*’ refer to list object which can be of length zero or undefined.

2) The type of element list can be of any standard defined data type like integer,

char … etc.

3) List element surrounded with square brackets and separated by comma as

follow: L = [1, 2, 3, 4].

Artificial Intelligence
Lecture:

 24

4) List consist of two parts head and tail, the head represent the first element in

the list and the tail represent the remainder (i.e. head is an element but tail is a

list). for the following list :

L = [1,2,3]

H = 1 T =[2,3]

H =2 T =[3]

H =3 T=[]

[] refer to empty list.

List can be written as [H|T] in the program

Example1 program to print all list element

domains

 L=integer*.

predicates

 write_list(L).

clauses

 write_list([]):-!.

 write_list([H|T]):-write(H),nl,write_list(T).

**

Example2 program to print Head and Tail of any List

domains

 L=integer*.

predicates

 write_list(L).

clauses

 write_list([]):-!.

Artificial Intelligence
Lecture:

 25

 write_list([H|T]):-write("The Head=",H),nl,

write("The Tail =",T),nl,write_list(T).

**

Example3 program to compute the length of any list

domains

 L=integer*.

predicates

 len(L,Integer).

clauses

 len([],0):-!.

 len([_|T],L):-len(T,L1), L=L1+1.

**

Example 4 program to compute the maximum number in any

list

domains

 L=integer*.

predicates

 max(Integer,L).

clauses

 max(X,[X]):-!.

 max(X,[H1,H2|T]):-H1>H2, max(X,[H1|T]).

 max(X,[H1,H2|T]):- H2>H1,max(X,[H2|T]).

**

H.W program to compute the minimum number in any list

**

Example5 program to delete the first element from any

list

Artificial Intelligence
Lecture:

 26

domains

 L=integer*.

predicates

 delete_first(L,L).

clauses

 delete_first([_|T],T):-!.

**

H.W. program to delete the last element of any list.

**

Example6 program to add new element to beginning of

any list

domains

 L=integer*.

predicates

 add_first(integer,L,L).

clauses

 add_first(X,L,[X|L]):-!.

**

H.W program to add new element to the last of any list

**

Example7 program to delete specific element from any

list // the list contain individual elements.

domains

 L=integer*.

predicates

 delete(integer,L,L).

clauses

Artificial Intelligence
Lecture:

 27

 delete(_,[],[]):-!.

 delete(X,[X|T],T):-!.

 delete(X,[H|T1],[H|T2]):-delete(X,T1,T2).

**

Example8 program to find specific element in a list

domains

 L=integer*.

predicates

 find(integer,L).

clauses

 find(_,[]):-write("The Element is Not Found"),nl,!.

 find(X,[X|_]):-write("The Element is Found"),nl,!.

 find(X,[_|T1]):-find(X,T1).

**

Example9 program to append two lists into one list

domains

 L=integer*.

predicates

 append(L,L,L).

clauses

 append([],[],[]):-!.

 append([],[H|T1],[H|T2]):- append([],T1,T2).

 append([H|T1],T2,[H|T3]):- append(T1,T2,T3).

**

H.W. program to append three lists in one list

**

Artificial Intelligence
Lecture:

 28

Example10:-program to append two lists into one list

without repetition the numbers.

domains

 L=integer*.

 X=integer.

predicates

 member(X,L).

 union(L,L,L).

clauses

 member(X,[X|_]):-!.

 member(X,[_|T]):-member(X,T).

 union([],T2,T2):-!.

 union([H|T1],T2,T3):-member(H,T2), union(T1,T2,T3).

 union([H|T1],T2,[H|T3]):-

not(member(H,T2)),union(T1,T2,T3).

**

Example10 program to divide a list of integer into two

lists, the first one contains the even number, the

second one contains the odd number.

domains

 L=integer*.

predicates

 divide(L,L,L).

clauses

 divide([],[],[]):-!.

 divide([H|T1],[H|T2],T3):-H mod 2 =0,

divide(T1,T2,T3).

Artificial Intelligence
Lecture:

 29

 divide([H|T1],T2,[H|T3]):-H mod 2 =1,

divide(T1,T2,T3).

**

Example11 program to reverse a list.

domains

 L=integer*.

 X=integer.

predicates

 del_last(X,L,L).

 reverse(L,L).

clauses

 del_last(X,[X],[]):-!.

 del_last(X,[H|T1],[H|T2]):- del_last(X,T1,T2).

 reverse([],[]):-!.

 reverse(L1,[X|L2]):-

del_last(X,L1,L3),reverse(L3,L2).

**

Example12 program to sort a list descending

domains

 L=integer*.

 X=integer.

predicates

 max(X,L).

 delete(X,L,L).

 sort(L,L).

clauses

 max(X,[X]):-!.

Artificial Intelligence
Lecture:

 30

 max(X,[H1,H2|T1]):- H1>H2, max(X,[H1|T1]).

 max(X,[H1,H2|T1]):- H2>H1, max(X,[H2|T1]).

 delete(X,[X|T1],T1):-!.

 delete(X,[H|T1],[H|T2]):-delete(X,T1,T2).

 sort([],[]):-!.

 sort(L1,[X|L2]):-

max(X,L1),delete(X,L1,L3),sort(L3,L2).

**

H.W. program to convert a list of char into a list of

ASCII.

**

Files in Prolog
To deals with files in prolog language, you must do the following:-

1. define the file in define the file in the domains part.

domains

 file= first;

 file =second;

 for every file there is two name, one used to deal with it in the program,

while the other it is the real name for the file (represent the name that found

on the hard disk.

2. open the file for different operation,

 open file for writing in it.

openwrite(Symbolic File Name, Real File Name)

Symbolic File Name, used to deal with file
in the program.

Artificial Intelligence
Lecture:

 31

this instruction cause to create new file when the file is not created before.

Or open exist file with delete all it component. To write in file that is

aleardy opened for writing we use the following instruction:-

writedevice (Symbolic File Name)

**

example of how to open file to store

domains

 file = first.

predicates

 goal1.

 goal2.

clauses

 goal1:- openwrite(first,"E:\\profile.txt"),goal2.

 goal2:- writedevice(first), write("Name

:\t"),readln(Name), Name <> "%",!,write(Name),nl,

 write("Age :\t"), readint(Age),

write(Age),nl, write("Tel :\t"), readint(Tel),

 write(Tel),nl,nl,goal2.

 goal2:- closefile(first).

**

 Open file for reading from it.

To read from exist file we use the following instructions

openread(Symbolic File Name, Real File Name)

readdevice (Symbolic File Name)

This function used to close file, is
necessary to write it.

Artificial Intelligence
Lecture:

 32

example program to read from file

domains

 file = first.

predicates

 goal1.

 goal2.

clauses

 goal1:- openread(first,"E:\\profile.txt"),

 goal2.

 goal2:- readdevice(first), not(eof(first)),

readln(A), write(A),nl,goal2.

 goal2:- readdevice(keyboard),readchar(_).

**

 Open file for append text to it

To append text to exist file we use the following instruction

openappend(Symbolic File Name, Real File Name)

writedevice (Symbolic File Name)

example program to append text to file.

domains

 file = first.

predicates

 goal1.

 goal2.

clauses

 goal1:-

openappend(first,"E:\\profile.txt"),goal2.

Artificial Intelligence
Lecture:

 33

 goal2:- writedevice(first), write("Name

:\t"),readln(Name), Name <> "%",!,write(Name),nl,

 write("Age :\t"), readint(Age),

write(Age),nl, write("Tel :\t"), readint(Tel),

 write(Tel),nl,nl,goal2.

 goal2:- closefile(first).

**

 Mode of File :- to know the mode of file we use the following instruction

filemode(Symbolic File Name, fm)

fm = 0 to text file

fm = 1 to binary file

**

 ExistFile this function check if the file is exist (created before) or not.

existfile("E:\f1.txt")

if exist it returns Yes, otherwise return No

**

 renamefile this function used to rename the file, it's format :-

renamefile(oldrealname, newrealname).

**

 deletefile this function used to delete the file, it's format :-

deletefile(RealFileName).

Artificial Intelligence
Lecture:

 34

Database in Prolog Language
To deal with dynamic database in prolog we must declare data base in the

database field in program

domains

 X=...

database

 no(X).

predicates
.
.
.

To add value to database we use assert instruction

To save database to file we use save instruction

To load database file for reading we use consult instruction

**
Example program to read number from keyboard and store

in database file

domains

 X=integer.

database

 no(X).

predicates

 r

clauses

 r:- readint(X), X<>0, assert(no(X)),r.

 r:- save("input.db").

**

Artificial Intelligence
Lecture:

 35

program to open database file and print its content

domains

 X=integer.

database

 no(X).

predicates

 r1

 r2

clauses

 r1:- consult("input.db"),r2.

 r2:- no(X), write(X),nl,fail.

 r2:-!.

