
 (223ر)1الزمر جبر في محاضرات
 ضياء غازي صالح. م.م:مدرس المقرر

1 

 

 

1 

 محاضرات في جبر الزمر

(1)جبر الزمر: ضياء غازي صالح             اسم المقرر . م.م: مدرس المقرر   
   223ر: رقم المقرر                                         3: عدد الوحدات 

  اسبوعيا    (ساعة واحدة مناقشة + ساعات نظري  3/ ) اسبوع  11: فترة الدراسة 

 

Abstract Group Theory 
 

0.1 Binary Operators 
            Let A be a set. A binary operator on A is a function   : A   A   A 
            A binary operator is simply something that takes two elements of a set and 
gives back a third element of the same set. 
Example 1  
             Let   be the set of real numbers. Then + :         , given by 
+(x , y) = x + y, is a binary operator. 
           Also   :        , given by   (x , y) = x y , is a binary operator. 
           
          In general, in the sets  ,        , and  , addition and multiplication are binary 
operators.  
Example 2 
             Let X be a set and let P(X) be the power set of X. Then union and intersection 
are binary operators on P(X); for example 
  : P(X)   P(X)   P(X) is defined by   (A,B) = A   B, where A,B   X.  
Definition 1 (permutation) 
             A permutation of a set X is a bijective function   : X   X. We call the set of all 
permutations of X, Sym(X). 
Example 3 
            Let X be a set and let Sym(X) be the set of all permutations of X. 
Then   is a binary operator on Sym(X), 
      : Sym(X)   Sym(X)   Sym(X)     is defined by      (   ) =      .  
           For example , let   X= { 1,2,3} , the set  Sym(X)=    of permutation operations 
that take 123 into 123, 132, 213, 312, 231, 321. The elements of the set are 

              e =         
       

         ,                 
       

  = (123) ,             
       

  = (132) , 

                       
       

  = (23)  ,            
       

  = (13)   ,              
       

  = (12)  . 

           The operation     means (for example) ;  

                         
       

       
     

       

       
          

       

       
           

                   
       

       
     

       

       
      

       

       
          

                         
       

            
       

             
       

           . 

 
            This operation on Sym(X) is associative, because composition of functions is 
always associative. It is also invertible. The identity element for this operation is the 
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identity function . The inverse of a permutation exists because bijective functions 
are always invertible. However, composition of permutations is not commutative.  
 
           Let A be a set and let  : A   A   A be a binary operator. As in the above 
examples, it is customary to write a   b instead of   (a, b), where a, b   A. However, 
we keep in mind that    is a function and that a  b   A. 
             Let  : A   A   A be a binary operator on a set A and let B   A. we say that B is 
closed under the operation of   if for every a , b   B, we have a  b   B. 
Example 4 
            Let   be the set of even integers. Then   is closed under the operations of 
addition and multiplication of integers. Indeed, the sum of even integers is even, and 
the product of even integers is even. 
             Let O be the set of odd integers. Then O is closed under multiplication. 
However, O is not closed under addition, because the sum of two odd integers is 
even.  
Example 5 

               Let                   . Then B is closed under addition and 

multiplication of real numbers. For example,  

If           and           are two element of B, then 

   (     )+(     ) =                    
and 

   (     )   (     ) =                         
Note that these results are in  B  because     itself is closed under addition and 
multiplication. Therefore           ,            .  
Example 6  
                Let X be a set and let Y   X. Then P(Y )   P(X), and the subset 
P(Y ) is closed under the operations of intersection and union of subset of X.  
Example 7 
               The real numbers have two binary operations, addition and multiplication. 
Each is commutative and associative. The additive identity is 0, and the 
multiplicative identity is 1. Every element a has an additive inverse -a, and if a  0,it 

has a multiplicative inverse      
  . 

Example 8 
              Let X be a set and consider intersection and union of subsets of X. These are 
operations on P(X) which are commutative and associative. Intersection has an 
identity element, which is the entire set X, since for A   X, we have A  X = A. Union 
also has an identity element, which is   .Neither of these operations supports 
inverses. 
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            However, the operation of symmetric difference on P(X), defined by  A   B = 
(A  B) - (A   B) , is commutative, associative, and invertable .The identity element is 
 , and the inverse of A   P(X) is itself.  
 Example 9 
            The standard dot product on    is defined by 

                             
where    = (          ) and      = (          ). Note that for n > 1, this is not a 
binary operator ! why ?   
Example 10   
              An m n matrix with entries in   is an array of elements of   with m rows 
and n columns. The entries of a matrix are often labeled     , where this is the entry 

in the     row and      column. We may write such a matrix with the notation (    ). 

            An  m n  matrix  A = (   )  may be added to an  m n  matrix B = (   ) to give 

an  m n  matrix  A+B = D = (   ) by the formula      =     +    . 

            An  m n  matrix A = (   ) may be multiplied by an  n p  matrix  B = (   )  to 

give an m p matrix AB = C = (   ) by the formula 

           

 

   

 

thus the      entry of C is the dot product of the     row of A with the     column of 
B. 
             Let   ( ) be the set of all  n n matrices over   . 
            Then addition of matrices is a binary operation on   ( )  which is 
commutative, associative, and invertible.  
            Also, multiplication of matrices is a binary operation on   ( )  which is 
associative and has an identity. The identity is simply the matrix given by 

          = 
              
            

            e=  
   
   
   

   . 

 However, this operation is not commutative, and there are many elements which do 
not have inverses. 
Exercise 1 
              In each case, we define a binary operation   on  . Determine if   is 
commutative and/or associative, find an identity if it exists, and find any invertible 
elements. 
(a)   x   y = x y + 1 , 

(b)   x   y = 
 

 
 x y . 

Exercise 2 
              Consider the plane   . Define a binary operation   on    by 

(     )   (     ) =  
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Thus the "product" of two points under this operation is the point which is midway 
between them. Determine if   is commutative and/or associative, find an identity if 
it exists, and find any invertible elements. 
Exercise 3 
               Let I be the collection of all open intervals of real numbers. We 
consider the empty set to be an open interval. 
(a) Show that I is closed under the operation of   on P( ) ,  
(b) Show that I is not closed under the operation of   on P( ) . 
 
1.1  Groups 

            A non-empty set G, is said to form a group if in G there is defined 

a binary operation, called the product and denoted by ' ' such that 

i. Closure : if  a, b ∈ G implies a   b ∈ G. 

ii.  Associativity :  a, b, c ∈ G implies (a   b)   c = a   (b   c). 

iii.  Unit element : There exists an element e ∈ G 

 such that  a   e = e   a = a  for all a ∈ G. 

iv. Inverse : For every a ∈ G there exists an element     ∈ G 

 such that   a     =      a = e. 

            

           A group, which contains only a finite number of elements, is called a finite group, 

otherwise it is termed as an infinite group. By the order of a finite group we mean the 

number of elements in the group. 

             

            The following properties follow from the above definition: 

 

Pro.1. Left cancellation :  If ax = ay   then   x = y for all a in the group. 

Proof:    ax = ay 

                   (ax) =    (ay) 

                (   a)x = (   a)y 

                         ex = ey 

                           x = y     . 

Pro.2. Unit element on the right :  ae = a = ea. 

Proof: 

                 (ae) = (   a)e = ee = e =    a  

       and using the left cancellation law we have ae = a. 

Pro.3. Inverse element on the right: a    = e =    a. 

Proof: 

               (a   ) = (   a)     = e    =    =    e. 

          Using the left cancellation law,   a    = e. 
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Pro.4. Right cancellation :  If  xa = ya  then  x = y  for all a in the group. 

Proof: 

          xa = ya           (xa)     = (ya)             x(a   ) = y(a   ) 

                                xe = ye             x = y  . 

            

           We note the importance of associativity in the above proofs. 

            The following identity is often useful : 

                =        

 which follows from            (ab) = e               a =       

                                                                             =       . 

 

1.2  Abelian Group(commutative group) 

            Let G be a group. If a   b = b   a  for all a, b ∈ G, we call G 

an abelian group or a commutative group. 

 

1.3  Subgroup 

           A subgroup is a set of elements within a group which forms a group by 

itself. Evidently, the unit element forms a subgroup by itself. 

Example 11  

                  Integers under addition. The unit element e = 0 and the inverse of an element 

a is      = - a. This group is abelian and infinite. 

Example 12   

                   Let   be the set of rationals.   \{0} is a group under multiplication. This is 

an infinite group. 

Example 13  

                 A set of all  n  m  matrices       under matrix addition . The unit element is 

the zero matrix and the inverse of      is     . 

                 This group is abelian and infinite. 

Example 14  

                 A set of all  n  n  invertable matrices       under matrix multiplication. The 

unit element is the unit matrix and the inverse of   is    . This group is not abelian and 

infinite. 

Example 15  

                 The set    of permutation operations . The elements of the group are ; 

              e  =         
       

      ,                    
       

      ,                   
       

     , 

                       
       

     ,                    
       

      ,                    
       

     . 

                 The operation     means (for example) ;   

              

                The group (  ,  ) is not abelian and finite. Since .  .  .  
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    (123)  (132)  (23) (13) (12) 

    (123)  (132)  (23) (13) (12) 

(123)  (123)  (132)    (13) (12) (23) 

(132)  (132)    (123)  (12) (23) (13) 

(23) (23) (12) (13)   (132)  (123)  
(13) (13) (23) (12) (123)    (132)  
(12) (12)       (23) (132)  (123)    

 

 Example 16  

                  {e} and G are always subgroups of the group G , called the trivial 
subgroups. 
 

1.4  Center group 

              Let ( G,   ) be a group , S  be a subset of  G , we define the following set ; 

        Cent.G = { x ∈ G ;  x       x ,      G } 

 which is called center group .  

Remark 1 

               G abelian group     Cent.G = G  . 

Example 17 

1-   Cent.    =           
       

    . 

2-   Cent.   =   . 

Remark 2 

               Let         are two subgroups of the group G , then  

1-        is a subgroup of G , 

2-         is not necessary a subgroup of G . 

 

     In general case , let                        are a subgroups of the group G then  

     is a subgroup of G . 

 
1.5  Cyclic Groups 

               Let G be a group , S be a subset of G , we define the following set ; 

           =  { H ; H is a subgroup of G such that  S   H }  

            is smallest subgroup of G contains S . Which is called the subgroup generated by 

S . ( if S is subgroup then  S =     ) 
              If  S is finite set , the subgroup     is finitely generated . 

              If  S ={a} , then we say that the subgroup      =       =     is a cyclic group 

generated by the element  a . 

           A group of n elements is said to be cyclic if it can be generated from one element . 

The elements of the group must be   a,   ,   , .  .  . ,    = e . n is called the order of the 

cyclic group. 

           A cyclic group is evidently abelian but an abelian group is not necessarily cyclic.  
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Example 18 
         Integers under addition , (     + ) , is a cyclic group generated by 1 , (i.e.   =    ) .      
         Let      be the set of even integers , (      + ) , is a cyclic group generated by 2 .      
         In general case , (      + ) is a cyclic group generated by n ,          =    ) .     
Example 19 
              In general           with addition and multiplication operators, (  , +) , 
(      , .) , (  , +) and  (      , .) all are not cyclic groups . 
Example 20 

                 Example of cyclic group are the subgroup of the permutation group in the 

example 15.The subgroup (               ) is the same as (             
              ). 

Example 21 

                   = {0, 1, 2, … , p – 1}, p a prime , be the set of integers modulo 

p .    \{0}  is a group under multiplication modulo p, (   \{0},   ) , this is a finite cyclic 

group of order p-1. 

Exercise 4 
1- ( G,   ) is an abelian group                                   G . 
2- If  ( G,   ) is an group such that          G (e=unit element )    ( G,   ) is an 

abelian group . And the inversion is not true . 
3-  If  ( G,   ) is an group such that          G (e=unit element )    Cent.G = G  . 

4-  Prove that ; (      , .) is not cyclic group . 
5- Let  ( G,   ) and  (   ,    ) are two commutative groups . Define a binary 

operation   on the Cartesian product                              as 
follows ;                                                                  
  Prove that ;               is a commutative group .   
 

1.6  Order of an Element 

            Let a  e be an element of a group. Form the products    ,   , .  .  .  

    must be either e or a different element from a because if    = a    a = e. 

If      e we continue forming   . By a similar argument, ,    must be either e or a 

different element from a and ,   . If   a,   ,   , .  .  . ,     are distinct from each other 

and ,    = e  then n is called the order of element  a . These elements form a cyclic 

group.  

          The order of an element a   G, o(a) , is defined to be the minimal positive 
integer   such that    = e . If no such   exists, we say a has infinite order . 
         
           We calls a subgroup   H   cyclic if there is an element   h   H such that   
  H =            . 
          Note that  H =           is always a cyclic subgroup . We denote it by < h >.  
            Thus every group must have at least one cyclic subgroup. In the example 15 

above,       and       are of order 3 and            , and      are of order 2. 

 



 (223ر)1الزمر جبر في محاضرات
 ضياء غازي صالح. م.م:مدرس المقرر

8 

 

 

8 

Example 22 

                 Let   G = 〈   ;   = 1〉   be a cyclic group of order 8 .  

H=〈   〉   ={  ,   ,   , 1}  is subgroup of  G . 

 

1.7  Normal Subgroups 

            Let  ( G,   ) be a group. A non-empty subset  H  of  G  is said to be a normal 

subgroup of  G , if      H a = a H       G    or equivalently 

  H={    h a ;     G &   h ∈ H}.  

           If G is an abelian group or a cyclic group then all of its subgroups are normal in G. 

Example 23 

                 The subgroup H={                 } given in example 15 is a normal 

subgroup of     .  

       {                                                           
                   } 

               We must prove that  H a = a H     a ∈    , it is easy to show the following ; 

H  ={                     }={               }  

                                                        =  H  = {                      } =  H 

H      ={                                 }={                }  

              =  H  = {                                  } =       H 

H      = {                                 } = {                 } 

           =  H  = {                                  } =       H 

H     = {                              } = {                  } 

          = {                   }  = {                               } =     H 

H     = {                              } = {                   } 

          = {                 } = {                               } =     H 

H     = {                              } = {                   } 

          = {                } = {                               } =     H 

Notation 

              Let    be the symmetric group of degree n. Then for n ≥ 5, each     has only 

one normal subgroup,    which is of order  
  

 
 called the alternating group. 

Exercise 5 
                 Prove that ;  there is only one normal subgroup of the group (  ,  ) . 
 

1.8 Simple Group 

              If G is a group, which has no normal subgroups then we say  G  is simple group. 

Example 24 

              Let      \{0} = {1, 2, … , 10} be the group under multiplication 

modulo 11. The group     \{0}  has no subgroups or normal subgroups. 
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1.9  Congruent  

                 Let  G  be a group , H a subgroup of  G ; for  a , b  ∈ G we say  a is congruent 

to b mod H , and written as   a   b mod H  if  a   ∈ H . 

Lemma 1 

                 The relation   a   b mod H   is an equivalence relation . 

Proof 

          We must verify the following three conditions ;  for all a, b, c  ∈ G , 

1- a   a mod H , 

2- a   b mod H    b   a mod H , 

3- a   b mod H  , b   c mod H    a   c mod H . 

1- Since  H is a subgroup of  G , e ∈ G , and since a   =e , a   ∈ G    a   a 

mod H . 

2- Suppose   a   b mod H  i.e.  a   ∈ H , but H is a subgroup of  G, that is  

        ∈ H             =            =      and hence      ∈ G  so  

b   a mod H . 

3-  Suppose  a   b mod H  , b   c mod H    a   ∈ H, b   ∈ H   

but H is a subgroup of  G, that is  (a    ( b     ∈ H , now  

       a   = a(e)   = a(         = (a    ( b       a   ∈ H   that is a   c mod H . 

  

1.10  coset 

                Let  (H,  ) is a subgroup of the group ( G,   )  and let  a ∈ G , the set  

  H a={h a ; h ∈ H}   is called a right coset of  H  in  G . 

                In a similar fashion , we can define the left coset  a H of  H . 

Lemma 2 

                For all a ∈ G ,   Ha={ x ∈ G ;  a   x mod H } .   

Proof 

          Let      = { x ∈ G ;  a   x mod H } . we must prove  Ha =     . 

First , let  h ∈ H    a      = a(        =     ∈ H  since H  is  subgroup of  G .  By 

definition of congruence mod H    a   ha mod H , that is 

 ha ∈     for every h ∈ H , and so  Ha       . 

second , let  x ∈     . Thus, by definition of mod H        ∈ H    

        =      ∈ H . That is     = h  for some  h ∈ H , 

           = ha ∈ Ha , and so       Ha . Therefore  Ha =     . 
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Theorem  1 

             If   (H,  ) is a subgroup of the group ( G,   ) ,  then   a H = H           ∈ H . 

proof 

 (    we know that  e ∈ H      a = a e ∈  a H = H . 

 (    Let a ∈ H       a H   H ( since H is a subgroup ) . Any element    ∈ H  may be 

written as   h =         ) . But         ∈ H  (since a , h ∈ H  and  H is a subgroup) 

   h ∈  a H , and therefore   H   a H .                      

Theorem  2 

             If   (H,  ) is a subgroup of the group (G,  ) , then   a H = b H            ∈ H . 

proof 

 (      Assume that  a H = b H . Then , if  a   ∈ a H = b H   so  

there exist an    ∈ H  such that  a          . 

       (a       
                

  
       

         

but       
  ∈ H ( since (H,  ) is a subgroup )            ∈ H. 

(       if         ∈ H , then by Theorem 1  we have       ) H = H , 

      ∈ H ,  h =       )    , for some    ∈ H   a        . 

Thus each product a   in the coset a H is equal to an element of the form  

     , and consequently lies in the coset  b H .    a H = b H . 

Remark 

            If (H,  ) is a subgroup of the group ( G,   ), then the following statement are 

equivalent ; 

1-   (H,  ) is a normal subgroup of ( G,   ) , 

2-   a H = H   ,     ∈ G , 

3- a H       H ,     ∈ G , 

4- a h     ∈ H ,     ∈ G ,     ∈ H . 

Theorem  3 

                  If   (H,  ) is a subgroup of the group ( G,   ) , then      , b ∈ G   

     either     a H   b H =        or         a H = b H    . 

Example 25 

      =     is a subgroup of the group (    +) , then from Theorem 1 we have  

 m+        if m∈    ( i.e.  =                                  )    

 1+                     =                          

 2+                      =                           

 3+                      =                           
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                                                      1+                        

                                                                                    =      1+     2+     3+    .     

                                     2+             3+    

 

Theorem 4 

                  If   (H,  ) is a subgroup of the group ( G,   ) , the left (right) coset of  H  in  G  

form a partition of the set  G . 

Example 26 

          Let      = {0,1, 2, … , 10,11} be the group under addition modulo12. ({0,4,8},     
is a subgroup of the group (   ,     , the left coset of H ={0,4,8} in      are  

         0     H = {0,4,8} = 4     H = 8     H , 

         1     H = {1,5,9} = 5     H = 9     H , 

         2     H = {2,6,10} = 6     H = 10     H , 

         3     H = {3,7,11} = 7     H = 11     H . 

             It is clear that           = {0,4,8}   {1,5,9}   {2,6,10}   {3,7,11}. 

Remark 

            If  ( G,   )   be a finite group , and let o(G)=order of G = n . (H,  ) is a subgroup 

of the group ( G,   ) of order  k , i.e.  o(H) = k . 

We can then decompose the set  G  into a union of a finite number of left cosets of  H ; 

              G = (   H )   (   H )   .  .  .   (   H )  , for    ∈ G 

 

1.11  index 

            If  H  is a subgroup of  G , the index of  H  in  G  is the number of distinct left 

cosets of  H  in  G .  We shall denote it by        . 
           In case  G is a finite group , and o(G) = n . H  is a subgroup of  G , and 

o(H) = k . then     n  = k           . 
Theorem 5 ( Lagrange ) 

           The order and index of any subgroup of a finite group divides the order of the 

group . 

Corollary  

                  If  ( G,   )   be a group of order   n ,then the order of any element  

  ∈ G  is a factor of  n ; in addition ,     .  

Proof 

          Let the element  a  have order k . By definition , the cyclic subgroup  

( (a),   )  generated by a  must also be of order k . According to the conclusion of 

Lagrange's Theorem , k  is a divisor of n ; that is n=rk for some  r ∈     . Hence ,     

                  . 

Theorem 6 

               If  ( G,   )   be a finite group of composite order , then ( G,   )  has nontrivial 

subgroup .  
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Corollary  

                Every group ( G,   )   of prime order is cyclic .    

Theorem 7 (Revisited) 

                 Any noncommutative group has at least six elements . 

 

1.12  quotient group (factor group) 

              If (H,  ) is a normal subgroup of ( G,   ) , then we shall denote the collection of 

distinct cosets of  H  in  G  by                 ∈ G} . 

                A rule of composition     may be defined on      by the formula 

                    

Theorem 8 

                  If (H,  ) is a normal subgroup of ( G,   ) , then            forms a group , 

known as the quotient group (factor group) of G by  H . 

Proof 

          Let                                                    

          Let                                   

                                            

                                                                              

                                                                     
                                                                         
        The coset         is the identity element for the operation   , since 

                                                   

        Let                                  , since   ∈ G  (G a group) 

                                    H 

        And hence              is a group . 

Example 27 

              Let  (  ,   ) be a normal subgroup of an integers group ( ,   ) , 

 Then             is a group , 

 where                                        

                             = { [0],[1],[2], . . . ,[n-1] } 

and           . 

            And hence               = (  ,    ) . 
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Exercise 6  

                 Prove that ;  (
  

           )  is a group . 

 

1.13  Commutator subgroup (derived subgroup) 

               Given a group ( G,   ) and element      ∈ G , the commutator of a and b is 

defined to be the product              . 

         The symbol [a,b] =             . i.e.       [a,b]      

         The elements  a and b commute      if and only if      [a,b] =e . 

  Now , the inverse of a commutator is again commutator ;         = [b, a] . 

   

        The set  [G,G] is defined by ,  [G,G]={                    } 

The system  ( [G,G] ,   ) forms a group . 

Theorem 9 

                 The group ( [G,G] ,   ) is a normal subgroup of ( G,   ) . 

Remark 

             The quotient group                is called the commutator quotient group .   

Theorem 10 

                  Let  (H,  ) is a normal subgroup of ( G,   ) , then 

the quotient group           is commutative  if and only if   [G,G]   .  

Corollary  

                For any group ( G,   ) the commutator quotient group                 is 

commutative  .   

 

1.14  Homomorphisms   

          Let  (G,  ) and (  ,   ) be two groups and  f  a function from G into   , 

        . Then  f  is said to be a homomorphism                   

 from  ( G,   )  into  (   ,    )                                                                         

        if and only if                                            f                                     f 

                    ,         .      
                                                                                                   =                 

 Remark 

             If         is a homomorphism , then we say that  

1- f  is an epimorphism if  f  is surjective (onto) . 

2- f  is a monomorphism if  f  is injective (one-to-one) . 

                                                                                              

Example 28 

             For any group ( G,   ) , define the function       by taking  f(x)=I(x)=x , 

      . It is easy to show that f  is a homomorphism . 
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Example 29 

                Let  ( G,   )  and (   ,    ) be two groups , define the function         by  

f(x)=          . It is easy to show that f  is a homomorphism. 

Example 30 

          Let  (  , +) and (      , .) be two groups , define the function                 
by ;         f(x)=                        . 

                It is easy to show that f  is a homomorphism ,since  

          f(x + y)=             f(x). f(y)                

Example 31 

               Let  ( ,   ) be the group of integers and (  ,    )  be the group of integers 

modulo n . Define          by    f(x)= [x] ,   

                It is easy to show that f  is a homomorphism ,since  

          f(x + y)=                   f(x)    f(y)       

Remark 

              For any group ( G,   ) , define the set of all homomorphisms from G into itself  ;    

Hom(G)={       , f is homomorphism } . 

Theorem 11 

              The pair  (Hom(G), ) forms a semigroup with identity ,  

 (where   denotes functional composition) . 

Proof 

      1)    Let  f ,      Hom(G)  ,           

                                                                                                                                                                                                                                                                                                                                                                                                  

                                                                                                            
                   Hom(G)   

       2)  By  Example 28   I(x)=x ,                 Hom(G)   

       3)  It is easy to show that , if   f ,   , h     Hom(G)  , then  

                                  Hom(G)   

Remark 

         For any group ( G,   ) , define the set of all one-to-one homomorphisms from G 

onto itself  ;  A(G)={       , f is epimorphism & monomorphism } . 

Theorem 12 
         The system (A(G), ) is a subgroup of the symmetric group (sym(G), )  (where   
denotes functional composition) . 

Hint : let  f   A(G) we must prove        A(G) 

If                      such that          and          ,since f   A(G) 

Therefore                                                                                                                            

                                                                                                                         . 

Theorem 13 

               If  f : ( G,   )    (   ,    ) is a homomorphism , then 

1-     f(e)=   , 
2-                          . 
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Example 32 

               Let  ( ,   ) be the group of integers , define          by  f(x)= 2x ,   

it is clear that  f  is a homomorphism . 

 Example 33 

                Let  (      , .) and ( {1,-1},   )                       

         be two groups , where                                                                            

               Define  

 f : (      , .)   ( {1,-1},   )  by         
             

         
  

it is clear that  f  is a homomorphism . 

Example 34  

                 A group of all  2 2  invertable matrices       under matrix multiplication. 

The unit element is the unit matrix and the inverse of   is    . This group is not abelian . 

                 Define   f :              (      , .)       by           

                      f( )=                    ( where     =               ) 

it is easy to show  that  f  is a homomorphism . 

Theorem 14 

               If  f : ( G,   )    (   ,    ) is a homomorphism , then 

1-  If (H,  ) is a subgroup of ( G,   ), then (f(H),  ) is a subgroup of (  ,   . 
2-  If (  ,   ) is a subgroup of (  ,    ), then (    (  ), ) is a subgroup of ( G,   ) .  

Hint :   

              f(H)={f(h) ; h      ,        (  )={a    ; f(a)    } 

and   

                                                         
   Let            (  ) 

                                                         

         That  is               (  ) . 

Corollary * 

1- If (  ,   ) is a normal subgroup of (  ,    ), then (    (  ), ) is a normal subgroup 

of  ( G,   ) . 

2-  Let   f(G)=    , if (H,  ) is a normal subgroup of ( G,   ), then (f(H),  ) is a normal 

subgroup of (  ,   . 
Remark 

              Let   f : ( G,   )    (   ,    ) be a homomorphism , define the set 

       ker.f = {     ; f(a)=   }   which is called the kernel of f . 

 

Theorem 15 

               If  f : ( G,   )    (   ,    ) is a homomorphism , then 

       f   is monomorphism     if and only if         ker.f = {e} .  

proof 

          (    we know that  e ∈ ker.f  . Suppose   a ∈ ker.f  so that  f(a)=    

 but    f(a)=             a = e . 

   1 -1 

 1  1 -1 

-1 -1  1 
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          (   suppose ker.f = {e} . Let        and  f(a) =      
     f(a)          =               f(a)          =              

                                   ∈ ker.f = {e}   

              a = b . 

Theorem 16 

               If  f : ( G,   )    (   ,    ) is a homomorphism , then 

      The pair   ( ker.f ,    is a normal subgroup of ( G,   ) . 

Proof 

         We know (     ,    ) is a normal subgroup of (   ,    ) , and 

 ker.f = {     ; f(a)=   }     ker.f =     (  ) so from Corollary * 

 we have   ( ker.f ,    is a normal subgroup of ( G,   ) . 

Example 35  

     Let  f : ( ,   )  (      , .) defined by          
              
          

  

it is clear that  f  is a homomorphism , and  

ker.f = {     ; f(a)=   }={             } =   . 

It is clear that ( ker.f ,             is a normal subgroup of ( ,   ) , 

and ( f( ), .) = (       , .) is a subgroup of (      , .) . 
Theorem 17 

                If  (H,  ) is a normal subgroup of ( G,   ), then the mapping  

      ( G,   )               defined by                 ,         

    is a homomorphism from ( G,   )   onto            , and   ker.    = H . 

Hint : 

         It is clear that       is a homomorphism which is onto , since  

                                                 

 and                ;       }    so  

          
        a ∈       such that                

Now  ker.    = {                  H }  

                     = {            H } = H    , since (H,  ) is a normal subgroup . 

Theorem 18 

                If  (H,  ) is a normal subgroup of ( G,   ), then there exist a group 

(   ,    ) , and a homomorphism  f  from ( G,   ) onto (   ,    ) ,such that  ker.f  = H .  

Hint : 

        We take  (   ,    ) to be the quotient group           , and    f =     in above  

Theorem 17 . 
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1.15  Isomorphisms    

              Two groups (G,  )  and  (  ,   ) are said to be isomorphic , denoted 

(G,  )   (  ,   ) , if there exists a one-to-one homomorphism  f  of (G,  ) onto(  ,   ) . 
Such a homomorphism  f  is called an isomorphism (epimorphism & monomorphism) .             

Example 36 

               Let two groups   (  ,    ) and  ( G,   ) , 

 where  G = { 1, -1, i, -i } 

and the operation    be defined by the table ;  

    

 

1)   Defined function    f : (  ,    )    ( G,   )   by  

     f(0)=1  ,  f(1)=i  ,  f(2)=-1  ,   f(3)=-i  . Consequently (  ,    )    ( G,   ) . 

2)   Defined function    g : (  ,    )    ( G,   )   by  

     g(0)=1 , g(1)=-i  ,  g(2)=-1 , g(3)= i  . Consequently (  ,    )    ( G,   ) . 

Example 37 

               Let ( G,   ) , where  G = { e ,a ,b ,c } 

And the operation     be defined by the table ; 

    ( G,   ) known as Klein's four-group . 

 

   1)    Defined the function    f : (  ,    )    ( G,   )  by  

     f(0)=e  ,  f(1)=a  ,  f(2)=b  ,   f(3)=c , it is easy to 

show that  f  is not homomorphism , since   f(1    3)      f(1)   f(3) . 

   2)     Defined the function    g : (  ,    )    ( G,   )   by  

     g(0)=e  ,  g(1)=b  ,  g(2)=c  ,   g(3)=a , it is easy to show that  g  is not 

homomorphism , since   g(1    3)      g(1)   g(3) . 

   3)      Defined the function    h : (  ,    )    ( G,   )   by  

     h(0)=e  ,  h(1)=b  ,  h(2)=a  ,   h(3)=c , it is easy to show that  h  is a not 

homomorphism , since   h(1    3)      h(1)   h(3) . 

Exercise 38 

            Show that  (  ,    )    ( G,   ) , where ( G,   ) Klein's four-group . 

Hint : 

          Suppose that  (  ,    )    ( G,   ) , so there is an isomorphism say 

f : (  ,    )    ( G,   )  and hence   f(x    y)   f(x)   f(y)            

i.e.  f(x    x) = f(x)   f(x) = e = f(0) 
        
         x    x = 0          , contradiction . 

 

 Remark  

          A standard procedure for showing that two groups are not isomorphic is to find 

some property of one , not possessed by the other , which by its nature would necessarily 

be shared if these groups were actually isomorphic . 

          In the present case , the group (  ,    ) and the Klein's four-group are 

differentiated by the fact the former is a cyclic group whereas the latter is not . 

 

  1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i i 

i i -i -1 1 

-i -i i 1 -1 

  e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 
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Example 39 

               Let ( G,   ) , where  G = { e ,a ,b ,c } 

And the operation     be defined by the table ; 

It is clear that ( G,   ) is a cyclic group , since  

                     G  

And we know that the group (  ,    ) is cyclic , 

since                

   1)     Defined the function    f : (  ,    )    ( G,   )   by  

     f(0)=e  ,  f(1)=a  ,  f(2)=b  ,   f(3)=c , it is easy to show that   f   is isomorphism , 

hence (  ,    )    ( G,   ) 

   2)     Defined the function    g : (  ,    )    ( G,   )   by  

     g(0)=e  ,  g(1)=c  ,  g(2)=b  ,   g(3)=a , it is easy to show that   g   is isomorphism , 

hence (  ,    )    ( G,   ) . 

Example 40 

               The two groups  ( ,   ) and  (      , .)   are not isomorphic . 

 Suppose there exists a one-to-one onto function  f : ( ,   )    (      , .) 
with the property     f(a+b)=f(a ). f(b)             . 

let       , such that  f(x)=-1 , then   f(2x)=f(x+x)=f(x ). f(x)=(-1).(-1)=1  

   2x=0  (since f  is a homomorphism)     x=0   

i.e.  f(0)=-1  and  f(0)=1 , contradicting , because  f  is one-to-one . 

 

Theorem 19 

               Every finite cyclic group of order  n  is isomorphic to (  ,    ) and every 

infinite cyclic group is isomorphic to ( ,   ) . 

Hint : 

  1)        Defined   f :       (  ,    )   by   f (   ) = [ k ] ,       , 

 where        e , a ,   , . . . ,      } . 

  2)        Defined   f :                by   f (   ) =  n  ,         

 where        e , a ,   , . . . ,   , . . .  }  . 

Corollary  

            Any two cyclic groups of the same order are isomorphic . 

Remark  

            Let  ( G,   ) be any group and  a    G . 

 defined a function     : G    G  by            ,      G , 

 and let                       . 
            The system  (  , ) to form a group , (where   denotes functional composition) . 

Example 41 

          Let  (  ,    )  be the group of integers modulo 4 and  (   ,  ) be any  finite cyclic 

group of order 8 .  

Assume   f :  (  ,    )  (   ,  )  is define as ;  f(0)=f(2) = e  ,  f(1)=f(3)=   . 

i) Prove that  f  is a homomorphism , 

ii) Describe the subgroup (     ,    ) and  (     ,   ) . 

  e a b c 

e e a b c 

a a b c e 

b b c e a 

c c e a b 
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Example 42 

          Let  (  ,    )  be the group of integers modulo 8 and  (   ,  ) be any  finite cyclic 

group of order 12 . Assume   f :  (  ,    )  (   ,  )   

is define as ;     f(0)=f(3) = e     ,     f(1)=f(4)=       ,     f(2)=f(5)=          . 

i)     Prove that  f  is a homomorphism , 

ii)     Describe the subgroup (     ,    ) and  (     ,   ) , 

iii)  If  H={ e,      }, show that the pair (        ,    ) is a subgroup of  (  ,    )  . 

 

Theorem 20 ( Cayley theorem) 

            If   ( G,   ) be any group , then  ( G,   )   (  , ) . 
Hint : 

         Define the mapping  f : G     by the rule  f (a) =          G . 

1)  f  is onto , since let       then     G such that f (a) =     

2)  f  is one-to-one , suppose  f(a) = f(b)            

          ,      G   

but     G     a =         = b . 

3)  f   is a homomorphism ,  since f (a  ) =     =      = f(a)   f(b) .  

 

Exercise 7 

          Described the following functions . Is a homomorphism or not ; 

1)    f : (  ,   )    (     )     where        f(x)  =   
 
   ,    

2)    f : (  ,   )    (  ,   )      where       f(x)  =      ,  

3)    f : (     , .)   (       )   where      f(x)  =      ,  
 4)    f : (  ,   )    (  ,   )       where       f(x) =     .  

Exercise 8 

          Let  (  ,    )  be the group of integers modulo 8 and  (   ,  ) be any  finite cyclic 

group of order 12 . Assume   f :  (  ,    )  (   ,  )  is define as ; 

    f(0)=f(4) = e     ,     f(1)=f(5)=       ,     f(2)=f(6)=       ,       f(3)=f(7)=    . 

1- Prove that  f  is a homomorphism , 

2- Describe the subgroup (     ,    ) and  (     ,   ) , 

3- If  H={ e,   } , show that the pair (        ,    ) is a subgroup of  (  ,    )  . 

 

1.15  The fundamental theorems 

              Let   f :  ( G,   )   (   ,    ) is an onto homomorphism ( f(G)=    ) from ( G,   ) 

onto (   ,    ) 
 

Theorem 21 (Factor theorem) 

               Let  (H,  ) is a normal subgroup of ( G,   ) such that H    ker.f  . then there 

exist a unique homomorphism     :              (   ,    ) with the property   

  f =         . (     maintain in Theorem 17 )                                      
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                                                                                                      ( G,   )       f        (   ,    )  
Hint : 

          Defined      :              (   ,    )                                                                     

       by                  ,    G                                                          

1)     It is well-defined , since  

 suppose              for        G           ∈ H    ker.f 

   f(b) =f                                       . 
2)         is a homomorphism , since  

               (   )] =                  f                      
                                                                                                         (   ) . 

3)     For each     G ,                                     (a) . 

Corollary  

               The function      is one-to-one  if and only if   ker.f    H . 

 

Theorem 22 (fundamental theorem) 

              If    f :  ( G,   )   (   ,    ) is onto homomorphism ( f(G)=    ) . then 

                   (   ,    ) . 

Hint :  

          Defined    :                    (   ,    )                                               

       by                        ,       G  . 

  

Corollary 

               If    f :  ( G,   )   (   ,    ) is a homomorphism . then 

                   ( f(G),   ) . 

Example 43  

     Let  f : ( ,   )  (      , .) defined by          
              
          

  

it is clear that  f  is a homomorphism , and  

ker.f = {     ; f(a)=   }={             } =   . 

It is clear that ( ker.f ,             is a normal subgroup of ( ,   ) , 

and ( f( ), .) = (       , .) is a subgroup of (      , .) . 

      So that           
                         ( f( ), .) = (       , .) 

Example 44 

               Let  ( ,   ) be the group of integers and (  ,    )  be the group of integers 

modulo n .   Define            by     
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                                    f(x) = [x]        is onto homomorphism ( see example 30) 

ker.f = {     ; f(x)= [0]} = {     ; [x]= [0]} = {     ;      }=    . 

            Therefore   

                                (  ,    ) . 

 

Exercise 9    

             Consider the two groups ( ,   ) and ({1, -1, i, -i } , .) . show that the mapping 

defined by   f(n) =     for        is a homomorphism which is onto, and determine  ker.f  

? attain  fundamental theorem ? 
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