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Abstract Group Theory

0.1 Binary Operators

Let A be a set. A binary operator on A is a function * : A X A— A

A binary operator is simply something that takes two elements of a set and
gives back a third element of the same set.
Example 1

Let R be the set of real numbers. Then +: R X R = R, given by

+(x,y) =x +y, is a binary operator.

Also-: RX R - R, givenby - (x, y) =xy, is a binary operator.

In general, in the sets N, Z, Q, R, and C, addition and multiplication are binary
operators.
Example 2
Let X be a set and let P(X) be the power set of X. Then union and intersection
are binary operators on P(X); for example
N : P(X) X P(X) = P(X) is defined by N (4,B) =A N B, where A,B € X.
Definition 1 (permutation)
A permutation of a set X is a bijective function a : X = X. We call the set of all
permutations of X, Sym(X).
Example 3
Let X be a set and let Sym(X) be the set of all permutations of X.
Then o is a binary operator on Sym(X),
o:Sym(X) X Sym(X) - Sym(X) isdefinedby o (a,f)=acpf.
For example, let X={1,2,3},the set Sym(X)=S; of permutation operations
that take 123 into 123, 132, 213, 312, 231, 321. The elements of the set are

123 123 123
62(112233 ) a = (21321)3:(123), 'B = (3%22)3: (132)’
y=0(32)=23,6=(G5)=013), o0=(;73)=012).

The operation a o f means (for example) ;

cop = aweaw =50 (5] - (133 - -
cor=a @ (15 (153 - (35 ))- av=s
yea=@3e 2= (15;) ° (51) = G13)=02=0

This operation on Sym(X) is associative, because composition of functions is
always associative. It is also invertible. The identity element for this operation is the
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identity function . The inverse of a permutation exists because bijective functions
are always invertible. However, composition of permutations is not commutative.

Let Abe asetandlet *: A X A - A be a binary operator. As in the above
examples, it is customary to write a * b instead of * (a, b), where a, b € A. However,
we Keep in mind that * is a function and that a*x b € A.

Let *: A X A - A be a binary operator on a set A and let B € A. we say that B is
closed under the operation of * if for every a, b € B, we have ax b € B.
Example 4

Let E be the set of even integers. Then E is closed under the operations of
addition and multiplication of integers. Indeed, the sum of even integers is even, and
the product of even integers is even.

Let O be the set of odd integers. Then O is closed under multiplication.
However, O is not closed under addition, because the sum of two odd integers is
even.

Example 5
Let B = {a +bV2eER;abe Q}. Then B is closed under addition and
multiplication of real numbers. For example,
If a+bVv2 and c +dvV2 are two element of B, then
(@a+bV2)+(c+dV2)= (a+c)+ (b +d)V2 €B
and
(a+ bV2) - (c+dv2)= (ac + 2bd) + (bc + ad)V2 € B
Note that these results are in B because Q itself is closed under addition and
multiplication. Therefore (ac + 2bd), (bc + ad) € Q.
Example 6
Let Xbe asetand let Y € X. Then P(Y ) € P(X), and the subset
P(Y) is closed under the operations of intersection and union of subset of X.
Example 7
The real numbers have two binary operations, addition and multiplication.
Each is commutative and associative. The additive identity is 0, and the
multiplicative identity is 1. Every element a has an additive inverse -a, and if a #0,it

has a multiplicative inverse a™! = 1/ a-

Example 8
Let X be a set and consider intersection and union of subsets of X. These are

operations on P(X) which are commutative and associative. Intersection has an
identity element, which is the entire set X, since for A € X, we have A NX = A. Union
also has an identity element, which is @ .Neither of these operations supports
inverses.
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However, the operation of symmetric difference on P(X), defined by AAB =
(AUB) - (A N B), is commutative, associative, and invertable .The identity element is
@, and the inverse of A € P(X) is itself.

Example 9
The standard dot product on R" is defined by
VW=v;-W;+v, Wy+ -+ v, W,
where ¥ = (vq, vy, ..., V,) and W = (wy, Wy, ..., wy,). Note that for n > 1, this is not a
binary operator ! why ?
Example 10
An mXn matrix with entries in R is an array of elements of R with m rows
and n columns. The entries of a matrix are often labeled a;; , where this is the entry
in the i*" row and j'* column. We may write such a matrix with the notation (a; i)

An mxn matrix A = (a;;) may be added to an mxn matrix B = (b;;) to give
an mxn matrix A+B =D = (d;;) by the formula d;; = a;; + b;;.

An mxn matrix A = (a;;) may be multiplied by an nXp matrix B = (bj) to
give an mXp matrix AB = C = (¢;;) by the formula

n

Cik = z a;;bjk

j=1

thus the ik" entry of C is the dot product of the i*" row of A with the k* column of
B.

Let M,,(R) be the set of all nxn matrices over R .

Then addition of matrices is a binary operation on M,,(R) which is
commutative, associative, and invertible.

Also, multiplication of matrices is a binary operation on M,,(R) which is
associative and has an identity. The identity is simply the matrix given by

(1 ifi=j N
al-j —{ 0 : e=\ : . : .
otherwise (0 1)

However, this operation is not commutative, and there are many elements which do
not have inverses.
Exercise 1

In each case, we define a binary operation * on R. Determine if * is
commutative and/or associative, find an identity if it exists, and find any invertible
elements.
(@) x*y=xy+1,
(b) x*xy= %x y.
Exercise 2

Consider the plane R?. Define a binary operation * on R? by

+ +
(1, y1) * (X2, ¥2) = (%;%)



(YYY2)Y 3 o B & ualaa
e e slua a0 Al (ute

Thus the "product” of two points under this operation is the point which is midway
between them. Determine if * is commutative and/or associative, find an identity if
it exists, and find any invertible elements.
Exercise 3
Let I be the collection of all open intervals of real numbers. We
consider the empty set to be an open interval.
(a) Show that I is closed under the operation of N on P(R),
(b) Show that I is not closed under the operation of U on P(R) .

1.1 Groups
A non-empty set G, is said to form a group if in G there is defined

a binary operation, called the product and denoted by 's' such that
I. Closure : if a,b eGimpliesa *b €G.

ii. Associativity : a, b, c e G implies (a *b) xc=a = (b * c).
iii. Unit element : There exists an elemente € G
suchthat axe=e*xa=a foralla €G.

iv.  Inverse : For every a € G there exists an element a™! € G
suchthat a*a !'=alxa=e.

A group, which contains only a finite number of elements, is called a finite group,
otherwise it is termed as an infinite group. By the order of a finite group we mean the
number of elements in the group.

The following properties follow from the above definition:

Pro.1. Left cancellation : Ifax =ay then x =y forall a in the group.
Proof: ax=ay

= a l(ax) = a (ay)

= (a ta)x = (a ta)y

= ex = ey

= X=y .
Pro.2. Unit element on the right : ae =a =ea.
Proof:

al(ae)=(a"la)e=ee=e=a"la
and using the left cancellation law we have ae = a.
Pro.3. Inverse element on the right: aa™! = e = a™1a.
Proof:
al@)=(@ta)al=eat=at=ale.
Using the left cancellation law, aa™! =e.
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Pro.4. Right cancellation : If xa =ya then x =y forall a in the group.
Proof:
xa=ya = (xa)al=(a)a ! = x(aa ) =y(@a™?)
= Xe=ye = X=Vy.

We note the importance of associativity in the above proofs.
The following identity is often useful :
(ab) 1=p71q?
which follows from  (ab)"!(ab)=e = (ab)'a=b"!
= (ab) =b"1a71.

1.2 Abelian Group(commutative group)
LetGhbeagroup. Ifaxb=Dbx*a foralla,be G, wecall G
an abelian group or a commutative group.

1.3 Subgroup
A subgroup is a set of elements within a group which forms a group by

itself. Evidently, the unit element forms a subgroup by itself.
Example 11

Integers under addition. The unit element e = 0 and the inverse of an element
ais a~!=-a. This group is abelian and infinite.
Example 12

Let Q be the set of rationals. Q@ \{0} is a group under multiplication. This is

an infinite group.
Example 13

A setofall nx m matrices M,,,, under matrix addition . The unit element is
the zero matrix and the inverse of U is —U .

This group is abelian and infinite.
Example 14

A setofall nx n invertable matrices M,,,,, under matrix multiplication. The
unit element is the unit matrix and the inverse of U is U~1. This group is not abelian and
infinite.

Example 15
The set S; of permutation operations . The elements of the group are ;
123 123 123
chpg, 02 =hs) - U=l
(23)=(132 o 13)=(Gzy) » 02 =(213

The operation o means (for example) ;
(123) 0 (132) =e
The group (S5, o) is not abelian and finite. Since . . .
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o e [(123)](132)] 23) | 13) | (12)
e e [(123)](132)] (23) | (13) | (12)
(123) | (123) [ (132) | e | (13) | (12) | (23)
(132) | (132) | e [(123)] (12) | (23) | (13)
23) | 23y | (12) | 13) | e |(@132)](@123)
(13) | (13) | 23) | (12) |(123)] e |(132)
(12) | (12) | 13) | (23) [(132) | (123)] e

Example 16
{e} and G are always subgroups of the group G, called the trivial

subgroups.

1.4 Center group
Let (G, =) beagroup, S be asubset of G, we define the following set ;

CentG={xeG; x*xa=axx,VaeG}

which is called center group .
Remark 1
G abelian group & Cent.G=G .

Example 17
1- Cent.S3={(;23)}.
2- Cent.Z=7.
Remark 2
Let H,,H, are two subgroups of the group G, then
1- H; N H, is asubgroup of G,
2- H; U H, is not necessary a subgroup of G .

In general case , let H, ,H, ,H;, . . .are asubgroups of the group G then
N; H; is a subgroup of G .

1.5 Cyclic Groups
Let G be a group, S be a subset of G , we define the following set ;
(S)=n{H; Hisasubgroup of Gsuchthat SC H}
(S) is smallest subgroup of G contains S . Which is called the subgroup generated by
S. (ifSissubgroup then S=(S))
If Sis finite set, the subgroup (S) is finitely generated .
If S={a}, then we say that the subgroup (S) =({a}) = (a) is a cyclic group
generated by the element a.
A group of n elements is said to be cyclic if it can be generated from one element .
The elements of the group must be a, a?, a3,. . ., a™ =e. nis called the order of the
cyclic group.
A cyclic group is evidently abelian but an abelian group is not necessarily cyclic.
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Example 18
Integers under addition, (Z, + ), is a cyclic group generated by 1, (i.e. Z = (1)) .

Let 2Z be the set of even integers, ( 2Z, + ), is a cyclic group generated by 2.
In general case , ( nZ, + ) is a cyclic group generated by n, (i.e.nZ =(n)).

Example 19
In general Q and R with addition and multiplication operators, (Q, +),

(Q\{0},.), (R, +)and (R\{0},.) all are not cyclic groups .
Example 20
Example of cyclic group are the subgroup of the permutation group in the
example 15.The subgroup (e, (123), (132)) is the same as ((123), (123)? =
(132), (123)3 = e).
Example 21
L, ={0,1,2, ..., p—1}, paprime, be the set of integers modulo
p. Z,\{0} is agroup under multiplication modulo p, ( Z,\{0},x,, ) , this is a finite cyclic
group of order p-1.
Exercise 4
1- (G, *)isanabeliangroup & (a * b)2 =a?+*b*> Va,b€eG.

2- If (G, *)is an group such that a®> = e Va €G (e=unitelement) = (G, =) is an
abelian group . And the inversion is not true .

3- If (G, *)is an group such that a®> = e Va €G (e=unitelement) = Cent.G =G .

4- Prove that ; (Q\{0},.) is not cyclic group .

5- Let (G, *)and (G,*) are two commutative groups . Define a binary
operation ® on the Cartesian product G X G = {(a,b);a € G,bE€ G} as
follows ; (a; ,b;)®(a,,b,) = (a; *a, by ¥b,) V(ay,by),(ay,b) EGXG

Prove that; (G X G,®) is a commutative group .

1.6 _Order of an Element
Let a #e be an element of a group. Form the products a?, a3, . . .
a? must be either e or a different element from a because if a? =a = a=ce.
If a? # e we continue forming a3. By a similar argument, , a®> must be either e or a

different element fromaand , a®. If a, a?,a3,. . ., a™ are distinct from each other
and , a™ = e then n is called the order of element a . These elements form a cyclic
group.

The order of an element a € G, o(a), is defined to be the minimal positive
integer n such that a™ = e. If no such n exists, we say a has infinite order .

We calls a subgroup H cyclic if there is an element h € H such that
H={h"; n€eZ} .
Note that H={h™ ;n € Z} is always a cyclic subgroup . We denote it by < h >.
Thus every group must have at least one cyclic subgroup. In the example 15
above, (123) and (132) are of order 3 and (12),(13) , and (23) are of order 2.

vV
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Example 22
Let G=(g;g®=1) beacyclic group of order 8 .

H=¢g?) ={g? g*, g°, 1} is subgroup of G.

1.7 Normal Subgroups
Let (G, *) be a group. A non-empty subset H of G is said to be a normal
subgroupof G,if Hxa=a*H Va € G orequivalently
H={a ! xhxa; Va €G & V h e H}.

If G is an abelian group or a cyclic group then all of its subgroups are normal in G.

Example 23
The subgroup H={ e, (123),(132) } given in example 15 is a normal
subgroup of S5 .
S;={el=e, (123)"1 =(132), (132)"1 = (123), (12)" 1 =(2), (13) 1 =
(13), 23)7'=(23)}
We must prove that Hoa =acH Vae S;, it is easy to show the following ;
He ={ece,(123) ce,(132) o e}={e,(123),(132)}
= H={eoe,eo(123),e0(132)} =eH
H(123) ={e o (123),(123) » (123),(132) o (123)}={ (123),(132) ,e }
= H ={(123) o e,(123) o (123),(123) o (132)} = (123)H

H(132) ={e - (132),(123) » (132),(132) o (132)} ={(132),e, (123) }

= H ={(132) o e,(132) o (123),(132) o (132)} = (132)H
H(12) ={e > (12),(123) o (12),(132) o (12)}={(12),(23), (13) }

={(12),(13),(23)} ={(12) 0 e,(12) 0 (123),(12) - (132)}=(12)H
H(23) ={e - (23),(123) o (23),(132) o (23)} ={(23),(13),(12) }

={(23),(12),(13)}={(23) o e,(23) 2 (123),(23) o (132)} = (23)H
H(13) ={e > (13),(123) - (13),(132) o (13)} ={(13), (12),(23) }

={(13),(23),(12)}={(13) o e,(13) o (123),(13)  (132)} =(13)H
Notation

Let S,, be the symmetric group of degree n. Then for n =2 5, each S,, has only

one normal subgroup, A4,, which is of order n;' called the alternating group.

Exercise 5
Prove that; there is only one normal subgroup of the group (S;, °) .

1.8 Simple Group

If G is a group, which has no normal subgroups then we say G is simple group.
Example 24

Let Z,;\{0}=¢{1, 2, ..., 10} be the group under multiplication
modulo 11. The group Z,,\{0} has no subgroups or normal subgroups.




(YYY2)Y 3 o B & ualaa
e e slua a0 Al (ute

1.9 Congruent
Let G be agroup, Hasubgroup of G;for a,b € G wesay a is congruent

to b mod H , and writtenas a=bmodH if ab 1eH.

Lemmal
The relation a=b mod H is an equivalence relation .
Proof

We must verify the following three conditions ; foralla,b,c € G,
1-a=amodH,
2-a=bmodH = b=amodH,
3-a=bmodH ,b=cmodH= a=cmodH.

1- Since His asubgroup of G,ee G,andsinceaa '=e,aa 'leG= a=a
mod H .

2- Suppose a=bmodH i.e. ab~teH, but H is a subgroup of G, that is
(ab™H)leH = (ab™H) 1= Htat=ba tand hence ba e G so
b=amodH.

3- Suppose a=bmodH ,b=cmodH = ableH, bcleH

but H is a subgroup of G, thatis (ab~1)(bc™1) eH, now

ac™'=a(e)c '=a(b 'b)c = (@b ') (bc™') = ac"'eH thatisa=cmodH.

1.10 coset
Let (H, *) is a subgroup of the group (G, *) and let a e G, the set

H+a={h*a ; h e H} is called a right cosetof H in G.

In a similar fashion , we can define the left coset axH of H .
Lemma 2

Forallae G, Ha={xeG; a=xmodH}.
Proof

Let [a] ={xeG; a=xmodH }.wemustprove Ha=[a] .

First,let he H= a(ha) '=a(a *h ')=h"1eH since H is subgroup of G. By
definition of congruence mod H = a=ha mod H, that is
ha € [a] foreveryhe H,and so Ha c [a] .

second , let x € [a] . Thus, by definitionof modH = ax e H =
(ax D l=xa leH.Thatisxa '=h forsome he H,

= x = (xa Ha=hae Ha,and so [a] € Ha. Therefore Ha = [qa] .
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Theorem 1
If (H, %) is a subgroup of the group (G, ), then axH=H < aeH.
proof
(=) weknowthat eeH —a=a*xe e axH=H.
(=) LetaeH = axH < H ('since H is a subgroup ) . Any element h eH may be
writtenas h=a=*(a 1=h).But al+«h eH (sincea,h eH and H is a subgroup)
= h € axH, and therefore H < axH .
Theorem 2
If (H, =) is a subgroup of the group (G, *) ,then axH=bxH < a 1*xb eH.
proof
(=) Assume that axH =bxH . Then, if ax hyea*H =bxH so
there existan h,eH suchthat axh, = b h, .
= a lx(@xh)*h, "=alx(bxhy)*xh, '=h;xh, '=alxb
but hy * h, 'eH (since (H, *) isasubgroup) = a~1*b eH.
(=) if al+«beH,thenby Theorem 1 we have (a ! * b)xH =H,
=VheH, h=(a"'*b)xh,, forsome hyeH= axh = b h,.

Thus each product a* h in the coset a<H is equal to an element of the form
b * h, , and consequently lies in the coset bxH .= axH =bxH .
Remark
If (H, %) is a subgroup of the group ( G, * ), then the following statement are
equivalent ;
1- (H, =) is a normal subgroup of ( G, * ),

2- axH=Hxa,VaeG,

3-asHxa 1cH,VaeG,

4- axhxa ™l eH,VaeG,VheH.
Theorem 3

If (H, *) is a subgroup of the group (G, ) ,then Va,b eG
either axH N bxH =@ or axH = bxH

Example 25
47 = (4) is a subgroup of the group (Z, +) , then from Theorem 1 we have
M+ 47 = 47 ifmedZ (ie. =—8+4Z=—-4+4Z=4Z=0+4Z=4+4Z=8+4Z= )

1+47 ={---,-7,-3,1,59,-}=—7+4Z = -3 +4Z =5+4Z =9+ 4Z = ---
2+ 47 = {---,—6,—2,2,6,10,- - }=—6 +4Z = -2+ 4Z =6+ 4Z =10+ 4Z = ---
3+47Z = {---,=5,—-1,3,711,--}=—5+4Z =—-1+4Z =7+ 4Z =11+ 4Z = ---



(YYY2)Y 3 o B & ualaa
e e slua a0 Al (ute

47 1+ 47
Z Z =470V 1+ 47V 2+ 47 U 3+ 47 .
2+ 47 3+ 47

Theorem 4
If (H, *) is a subgroup of the group ( G, * ), the left (right) cosetof H in G
form a partition of the set G .
Example 26
Let Z,, ={0,1, 2, ..., 10,11} be the group under addition modulo12. ({0,4,8},+1,)
Is a subgroup of the group (Z,,,+1,) , the left coset of H ={0,4,8} in Z,, are
0O+,,H={048}=4+,, H=8+,, H,
1+, H={159=54+,, H=94+, H,
2+, H={2,6,10}=6+4+,, H=10+,, H,
3+,,H={3,7,11}=7+,, H=11+,, H.
Itis clear that Z,, ={0,4,8} U {1,5,9} U {2,6,10} U {3,7,11}.
Remark
If (G, =) beafinite group, and let o(G)=order of G =n. (H, *) is a subgroup
of the group ( G, =) of order k,i.e. o(H) =K.
We can then decompose the set G into a union of a finite number of left cosets of H ;

G=(a;*H)U(a, *H)U. . .U (a,*H) ,fora; €G

1.11 index

If H isasubgroup of G, the index of H in G is the number of distinct left
cosetsof H in G. We shall denote itby i;(H) .

Incase G is a finite group , and o(G) =n. H is a subgroup of G, and
o(H)=k.then n =kXiz(H)
Theorem 5 ( Lagrange )

The order and index of any subgroup of a finite group divides the order of the
group .
Corollary

If (G, *) beagroup of order n then the order of any element

a €G isa factor of n;inaddition, a™ = e.

Proof
Let the element a have order k . By definition , the cyclic subgroup
((a), ) generated by a must also be of order k . According to the conclusion of

Lagrange's Theorem , k is a divisor of n ; that is n=rk for some r € Z, . Hence,
a*=a"* = ()" =e"=¢€.
Theorem 6

If (G, *) Dbe a finite group of composite order , then ( G, =) has nontrivial
subgroup .

R
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Corollary
Every group ( G, x) of prime order is cyclic .

Theorem 7 (Revisited)
Any noncommutative group has at least six elements .

1.12 quotient group (factor group)
If (H, %) is a normal subgroup of ( G, * ), then we shall denote the collection of

distinct cosets of H in G by G/H ={axH; acG}.

A rule of composition ® may be defined on G/H by the formula

(axH)QMb+H)=(axb)*H
Theorem 8

If (H, %) is a normal subgroup of ( G, %), then ( G/H ,® ) forms a group ,

known as the quotient group (factor group) of Gby H .
Proof

Let (a*H),(b*H) € G/H = (a*H)®Mb+H) =(axb)*HE G/H
Let (a*H),(b*H),(cxH) € G/H =

[(a* D)@ * H)]®(c * H) = [(a* b) * HI®(c * H)
:((a*b)*c)*H=(a*(b*C))*H
= (a*H)®((b *c) xH)
= (axH)Q[(b * H)®(c * H)]
The coset H = e = H is the identity element for the operation ® , since
(a*H)Q@(e+H)=(axe)xH=a*H=(exa)*H=(+H)Q(a*H)

Let (axH) € G/H=>(a‘1*H) € G/H,sinceaeG (G a group)

(a+xHQ@+H)=(axa ) *H=(*+H) =H
And hence (G/H,®) is a group .

Example 27
Let (nZ, + ) be a normal subgroup of an integers group (Z, + ) ,

Then ( Z/nz, ®) isagroup,
where 2/ . ={nZ1+nZ2+nZ, .. (n—1)+nZ}
={[Ol[1}.[2], .. ..[n-1] }

and ® =+,.
And hence (Z/nz,@)) = (Zy, +,,) .

'Y
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Exercise 6

Prove that; (53/((123)> ,°) isagroup.

1.13 Commutator subgroup (derived subgroup)
Givenagroup (G, ) and element a, b € G, the commutator of a and b is
defined to be the product a xb*xa 1+ b~ 1.
The symbol [a,b]=a*b*a 1«b71 ie. a*xb=[ab]*b=*a
The elements aand b commute  ifandonly if  [a,b] =e.
Now , the inverse of a commutator is again commutator ; [a, b] ~*=[b, a] .

The set [G,G] is defined by, [G,G]={I[a;,b;];a; b; € G}
The system ( [G,G], =) forms a group .
Theorem 9
The group ( [G,G], * ) is a normal subgroup of ( G, *) .
Remark

The quotient group ( G/[G G] ,®) is called the commutator quotient group .

Theorem 10
Let (H, *) is a normal subgroup of (G, * ), then

the quotient group (G/H,®) iIs commutative if and only if [G,G]€ H .

Corollary
For any group ( G, =) the commutator quotient group (G/[G G] ,® ) is

commutative .

1.14 Homomorphisms
Let (G, *) and (G', *") be two groups and f a function from G into G’,
f:G— G .Then f issaid to be a homomorphism

from (G, *) into (G', +") a,b = » axb €G
if and only if f f
flaxb)=f(a)+ f(b) ,VabeqaG.

f@),f(b)—=y flaxb)= f(a) ' f(b) € G
Remark
If f:G — G'isahomomorphism , then we say that
1- f is an epimorphism if f is surjective (onto) .
2- f is a monomorphism if f is injective (one-to-one) .

Example 28
For any group ( G, * ), define the function f: G — G by taking f(x)=1(xX)=x,
VY x € G . Itis easy to show that f is a homomorphism .

VY
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Example 29
Let (G, =) and (G', ') be two groups , define the function f: G —» G by

f(x)= e’ Vx € G. Itis easy to show that f is a homomorphism.

Example 30
Let (R, +)and (R \ {0}, .) be two groups, define the function f:R - R\ {0}
by ; fx)=e* =exp.(x) Vx€eR.

It is easy to show that f is a homomorphism ,since
fix +y)=e*"V =e*.e¥ =f(x).fy) Vx,y€ER
Example 31
Let (Z, + ) be the group of integers and (Z,,, +,, ) be the group of integers
modulo n . Define f:Z - Z,, by f(xX)=[x],
It is easy to show that f is a homomorphism ,since
fx +y)=[x + y] = [x]+aly] = f(X) +5 f(y)
Remark
For any group ( G, * ), define the set of all homomorphisms from G into itself ;
Hom(G)={ f: G = G , fis homomorphism } .
Theorem 11
The pair (Hom(G),°) forms a semigroup with identity ,
(where o denotes functional composition) .
Proof
1) Letf,ge Hom(G) , Va,beG

(gofaxb)=g(flaxb))=g(f@*f®)=g(f(@)*g(f®))
=(ge°f)a)*(gef)b)

= gof € Hom(G)
2) By Example 28 I(x)=x,Vx € G = [ € Hom(G)
3) Itis easy to show that, if f,g,h € Hom(G) , then
(gef)eh= ge(feh)€e Hom(G)
Remark
For any group ( G, =), define the set of all one-to-one homomorphisms from G
onto itself ; A(G)={f:G — G , fis epimorphism & monomorphism } .
Theorem 12
The system (A(G),°) is a subgroup of the symmetric group (sym(G),e) (where o
denotes functional composition) .
Hint : let f € A(G) we must prove f~! e A(G)
If @a,b € G=3a,beGsuchthat a = f(a) and b = f(b) ,since f € A(G)

Therefore f~(ax* b) = f1(f(a) * f(b)) = f*(fla*b)) =ax*b
=f4@ *f(b).

Theorem 13
If f:(G,*) - (G', ") isahomomorphism, then
1-  f(e)=¢€’,

2- fl@™l= f(a!) Vaeag.
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Example 32
Let (Z, + ) be the group of integers , define f: Z - Z by f(x)=2x,

it is clear that f is a homomorphism .
Example 33

Let (R— {0}, .)and ({1}, *) e
be two groups , where -
Define 1101

fH(R=(0), )~ ({L1h) by fGO = {22,
it is clear that f is a homomorphism .
Example 34
A group of all 2x2 invertable matrices M, under matrix multiplication.
The unit element is the unit matrix and the inverse of A is A~1. This group is not abelian .
Define f:(M,y,,X) = (R—{0},.) by
f(A)=|A| (where |A]|=ay a;; — az1a42 )
it is easy to show that f is a homomorphism .
Theorem 14
If f:(G,*) - (G’', *")isahomomorphism, then
1- If (H, =) is a subgroup of ( G, =), then (f(H),*") is a subgroup of (G',*").
2- If (H', ") is a subgroup of (G', "), then (f =1 (H"),*) is a subgroup of (G, *) .
Hint :

f(H)={f(h);he H} , f1(H)={a€G ;f(a)e H'}
and
f@«fM) ' =f@~fb=flaxb™")Ef(H),VabeH
Let a, b€ f1(H)
= flaxb™ ) =f(@)+ f(b™") =f(a)+ f(b)"" €H’
That is axb lef 1 (H).
Corollary *
1- If (H', ") is a normal subgroup of (G’, "), then (f =1 (H'),*) is a normal subgroup
of (G, ).
2- Let f(G)=G', if (H, %) is a normal subgroup of ( G, ), then (f(H),*") is a normal
subgroup of (G',*").
Remark
Let f:(G,*) —» (G', ") beahomomorphism, define the set
kerf={a € G ;f(@a=e'} which is called the kernel of f.

Theorem 15
If f:(G,*) - (G', *")isahomomorphism, then
f is monomorphism if and only if ker.f = {e}.
proof

!

(=) we know that e eker.f . Suppose 3 a eker.f sothat f(a)=e
but fl@)=e' =f(e) = a=e.
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(<) suppose ker.f ={e} . Leta,b € G and f(a) = f(b)
= f(@) ' f(B)"'=f(B) + f(b)™' =1(@) «' fF(b~)=f(b) +' f(B™Y)
= flaxb™ ) =fb*xb™)=f(e)=e' = axb Lekerf={e}
= a*bl=e = a=b.
Theorem 16
If f:(G,*) - (G, ") isahomomorphism, then
The pair ( ker.f, *) is a normal subgroup of (G, *).

Proof

We know ( {e'}, #' ) is a normal subgroup of ( G', ") , and
kerf={a€G;f(@)=e'}= kerf=f"1(e’)sofrom Corollary *
we have (ker.f, %) is a normal subgroup of (G, * ).
Example 35

Let f:(Z +)—(R— {0}, ) defined by ; f(n) = {

it is clear that f is a homomorphism , and
kerf={a€eG;f@=e}={nezZ; f(n)=1}=1Z,.
It is clear that ( ker.f, x) = (Z,,+ ) is a normal subgroup of (Z, + ),
and (f(Z), .) = ({1,—1}, .) is a subgroup of (R — {0}, .) .
Theorem 17

If (H, %) is a normal subgroup of ( G, * ), then the mapping

fH:(G’*)_)(G/H;®) definedby fy(a) =axH , Va€G

1 if neZ,
-1 if n€eZ,

fy 1s a homomorphism from ( G, =) onto (G/H,®) ,and ker. fy=H.

Hint :
It is clear that f is a homomorphism which is onto , since
fulaxb) =(axb)*H=(axH) Qb x*H) = fyla) fy(b)
and G/H:{a*H ; a€G} so

‘v’xEG/H daeG suchthat fy(a) =axH =x

Now ker. fy ={a€G; fy(a) =exH =H}
={a€eG;axH=H}=H ,since (H, ) is a normal subgroup .
Theorem 18
If (H, %) is a normal subgroup of ( G, ), then there exist a group
(G', "), and a homomorphism f from ( G, =) onto (G’, *") ,such that ker.f = H.
Hint :
We take (G', ') to be the quotient group (G/H,®) ,and f=fy inabove

Theorem 17 .
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1.15 Isomorphisms

Two groups (G, ) and (G', +") are said to be isomorphic , denoted
(G, *) = (G', #") , if there exists a one-to-one homomorphism f of (G, ) onto(G’', =) .
Such a homomorphism f is called an isomorphism (epimorphism & monomorphism) .
Example 36

Let two groups (Z,4, +4 ) and (G, x), *< 1 -1 [ -i

where G={1,-1,i,-i} 1 1 -1 i -i
and the operation * be defined by the table ; 11 1 - i
[ [ -i -1 1

-i -i [ 1 -1

1) Defined function f:(Zs, +4)— (G, *) by

f0)=1 , f(1)=i , f(2)=-1 , f(3)=-1 . Consequently (Z,, +,) = (G, *).

2) Defined function g:(Z4, +4)— (G, *) by

g(0)=1,9(1)=-1 , g(2)=-1,9(3)=1i . Consequently (Z,, +,) = (G, ).
Example 37

Let (G, x),where G={e,a,b,c}

And the operation * be defined by the table ;

( G, *) known as Klein's four-group .

QDO [T|IT
DD T|I0 |0

O |IT|QD || *
O || (|
ool |

1) Defined the function f: (Z4, +4)— (G, *) by
f(0O)=e , f(1)=a , f(2)=b , f(3)=c, itiseasyto
show that f is not homomorphism, since f(1+,3)=e # b =f(1) = f(3) .

2) Defined the function g: (Z4, +4)— (G, *) by
g(0)=e , g(1)=b , g(2)=c , g(3)=a, itis easy to show that g is not
homomorphism , since g(1+,3)=¢e # c =9g(1) * g(3) .
3) Defined the function h: (Z, +,)— (G, *) by
h(0)=e , h(1)=b , h(2)=a , h(3)=c, itis easy to show that h is a not
homomorphism , since h(1 4+, 3)=¢e # a = h(1) * h(3) .
Exercise 38
Show that (Z4, +4,) % (G, ), where (G, *) Klein's four-group .

Hint :
Suppose that (Z,, +,) = (G, *), so there is an isomorphism say
f:(Zy, +4) = (G, +) and hence f(x +,y) =1(x) xf(y) Vx,y €Z,

1-1
Le. f(x 4+4 X) = f(x) = f(x) = e = f(0) fls:> X+,x=0 Vxe€Z,,contradiction .

Remark

A standard procedure for showing that two groups are not isomorphic is to find
some property of one , not possessed by the other , which by its nature would necessarily
be shared if these groups were actually isomorphic .

In the present case , the group (Z,, +, ) and the Klein's four-group are
differentiated by the fact the former is a cyclic group whereas the latter is not .

\R%
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Example 39

Let (G, *),where G={e,a,b,c}
And the operation = be defined by the table ;
It is clear that ( G, =) is a cyclic group , since

(a) ={c) =G
And we know that the group (Z,, +, ) is cyclic,
since (1) =(3) =17,
1) Defined the function f: (Z4, +4)— (G, *) by
f(0)=e , f(1)=a , f(2)=b , f(3)=c, itiseasy to show that f isisomorphism,
hence (Zy, +,) = (G, *)
2) Defined the function g:(Zs, +4)— (G, *) by
g(0)=e , g(1)=c , g(2)=b , g(3)=a, itis easy to show that g is isomorphism,

hence (Zy, +,) = (G, *).
Example 40

The two groups (Z, + ) and (Q\{0},.) are notisomorphic.
Suppose there exists a one-to-one onto function f: (Z, +) - (Q\{0}, .)
with the property f(a+b)=f(a).f(b) Va,b€Z.
let x € Z , such that f(x)=-1, then f(2x)=f(x+x)=f(x). f(x)=(-1).(-1)=1
= 2x=0 (since f is a homomorphism) = x=0
i.e. f(0)=-1 and f(0)=1, contradicting , because f is one-to-one .

QDO | T|T
T (D 00

O || || *
O ||| |m
D0 |T|lo|o

Theorem 19
Every finite cyclic group of order n is isomorphic to (Z,, +,, ) and every
infinite cyclic group is isomorphic to (Z, + ) .

Hint :
1) Defined f:(a) > (Z,, +,) by f(a®¥)=[k],0<k<n,
where (a) ={e,a,a? ...,a" 1}.
2) Defined f:{a) = (Z,+) by f(a")=n ,Vnez
where (a) ={e,a,a? ...,a" ... }.
Corollary
Any two cyclic groups of the same order are isomorphic .
Remark

Let (G, *)beanygroupand a €G.
defined a function f, : G- G by f,(x) =a*x,Vx€G,
andlet Fo={f,;a € G} .
The system (F,o) to form a group , (where o denotes functional composition) .
Example 41
Let (Z4, +,) be the group of integers modulo 4 and ({a), *) be any finite cyclic
group of order 8 .
Assume f: (Z,, +4)— ((a), *) is define as ; f(0)=f(2) =e , f(1)=f(3)= a*.
) Prove that f is a homomorphism,
i)  Describe the subgroup (ker. f, +, ) and (f(Z,), *) .
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Example 42
Let (Zg, +4 ) be the group of integers modulo 8 and ({a), *) be any finite cyclic

group of order 12 . Assume f: (Zg, +4)— ((a), *)

isdefineas; f0)=f3)=e , fQ1)=f@)=a* , f£(2)=f(5)=a®
1)  Prove that f is a homomorphism,
i)  Describe the subgroup (ker. f, +¢) and (f (Ze), * ),

iii) If H={e, a*, a®}, show that the pair ( f"1(H) , +¢ ) is a subgroup of (Zg, +¢) .

Theorem 20 ( Cayley theorem)
If (G, *)beanygroup,then (G, *x) = (Fg;,°).
Hint :
Define the mapping f: G —» F; bytherule f(@)=f, VaeG.
1) f isonto, since let f, € F; then a € G suchthatf (a) = f,
2) f is one-to-one, suppose f(a) =f(b) = f, = f,
= axx=bxx,Vx€G
but e€eG = a=axe=bxe=h.
3) f isahomomorphism, since f (ax b) = f.p=f, ° fp=1f(a) o f(b) .

Exercise 7
Described the following functions . Is a homomorphism or not ;
1) f:(Z,+)- (Q,+) where f(x) = 2x,
2) f:(Z,+)- (Z,+) where f(X) =nx,
3) f:(R\{0},.)» (R*, ) where f(x) = |x]|,
4) f:(Z,+)- (Z,+) where f(x)= x2.
Exercise 8
Let (Zg, +5) be the group of integers modulo 8 and ({a), *) be any finite cyclic
group of order 12 . Assume f: (Zg, +g)— ({a), *) is define as;
f0)=f@)=e , fQ)=fG)=a®> , ff2)=f6)=a® , fB)=f(7)=a°.
1- Prove that f is a homomorphism,
2- Describe the subgroup (ker. f, +g ) and (f(Zg), * ),
3- If H={e, a®}, show that the pair ( f ~1(H) , +g ) is a subgroup of (Zg, +g) .

1.15 The fundamental theorems
Let f: (G,*)—- (G’ «")isanonto homomorphism (f(G)=G") from ( G, *)
onto (G', ")

Theorem 21 (Factor theorem)
Let (H, *) is a normal subgroup of ( G, * ) such that H < ker.f . then there

exist a unique homomorphism f : (G/H,®) — (G', ") with the property

f=f o fy.( fy maintain in Theorem 17)

V4
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(G, x) —— (G',+")
Hint : /,'
Defined f: (/. @)~ (6 %) lﬂ T

by F(a+H)= f(a), a€G (6/y.®)

1)  Itis well-defined , since
suppose a*H=bxH for a,b€G = a lxbeH ckerf

= f(b)=f(a*xa ™ «b)=f(a)*f(a™  *b) =f(a) * e’ = f(a).
2) f isahomomorphism, since
Fllax M® (bxH)=Fl(axb)«H] = f(axb) = f(a)* f(b)
_ = Flaxm¥F (bxH).
3) Foreach a€G, f(a)=f(axH)=f({fyg(@) = ° fu)@).

Corollary B
The function f is one-to-one if and only if ker.f € H.

Theorem 22 (fundamental theorem)
If f: (G,*)—-(G', ") isonto homomorphism ( f(G)=G") . then
(%/rer.f ®)= (G +).
Hint :
Defined h: (G/ker_f ,®) = (G *)
by h(axker.f )= f(a) , a€G.

Corollary
If f: (G,*)—-(G',+")isahomomorphism. then

rer.f @)= (1€)+).

Example 43
Let f:(Z, +)—>(R—{0},.)defined by ; f(n) = {_1 ;}:;EEZZB

it is clear that f is a homomorphism, and
kerf={aeG;f@=e}={neZ; f(n)=1}=17Z,.

It is clear that ( ker.f, x) = (Z,,+ ) is a normal subgroup of (Z, + ) ,
and (f(Z), .) = ({1,—-1}, .) is a subgroup of (R — {0}, .) .

So that <Z/ze ,®) = (Z/ker_f ®)= (f(Z), ) =({1,-1},.)

Example 44
Let (Z, + ) be the group of integers and (Z,,, +,, ) be the group of integers

modulon. Define f:Z - Z,, by
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f(x) = [x] Is onto homomaorphism ( see example 30)
kerf={x€Z;fX)=[0]}={x€Z;[X]=[0]}={x€Z;x€EnZ}=nZ.
Therefore
(Z/nZ ,®) = (Z/ker.f ,®) = (Zy, +,) -
Exercise 9

Consider the two groups (Z, + ) and ({1, -1, 1, -1 }, .) . show that the mapping
defined by f(n) =i™ for n € Z is a homomorphism which is onto, and determine ker.f
? attain fundamental theorem ?
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