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Ordinary Differential Equations
Objectives

These notes provide an introduction to the analytical solution of ordinary
differential equations. Emphasis is placed on simple equations of first and
second order, with emphasis on equations with constant coefficients. Brief
treatment is given to nonhomogeneous equations of second and higher orders.

Background and basic definitions

A differential equation is an equation, which contains a derivative. The
simplest kind of a differential equation is shown below:

ﬂ:f(x) with  y=y,at x=X, [1]

dx

In general, differential equations have an infinite number of solutions. In
order to obtain a unique solution one or more initial conditions (or boundary
conditions) must be specified. In the above example, the statement that y =
Yo at X = Xo is an initial condition. (The difference between initial and
boundary conditions, which is really one of naming, is discussed below.) The
differential equation in [1] can be “solved” as a definite integral.

Y-Yo = | F(dx [2]

Xo

The definite integral can be either found from a table of integrals or solved
numerically, depending on f(x). The initial (or boundary) condition (y =y, at
X = Xo) enters the solution directly. Changes in the values of y, or X, affect the
ultimate solution fory.

A simple change — making the right hand side a function of x and y, f(x,y),
instead of a function of x alone — gives a much more complicated problem.
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%zf(x,y) with  y=y,at x=x, [3]
X

We can formally write the solution to this equation just as we wrote equation
[2] for the solution to equation [1].

Y-Yo = | f(x y)dx [4]

X0

Here the definite integral can no longer be evaluated simply. Thus, alternative
approaches are needed. Equation [4] is used in the derivation of some
numerical algorithms. The (unknown) exact value of f(x,y) is replaced by an
approximate interpolation polynomial which is a function of x only.

In the theory of differential equations, several approaches are used to provide
analytical solutions to the differential equations. Regardless of the approach
used, one can always check to see a proposed solution is correct by
substituting a proposed solution into the original differential equation and
determining if the solution satisfies the differential equation and the initial or
boundary conditions. For example, without knowing how to solve the
following differential equation and initial conditions,

2
d—¥+2ﬂ+101y:10.4e" with y=1.1and ﬂ=—0.9 atx=0 [5]
dx dx dx

You can verify that the equation below satisfies the differential equation and
boundary conditions.

y =e *c0s10x + 0.1e* [6]

To show this we first set x = 0 to find that y(0) =1 + 0.1 = 1.1 as required by
the first initial condition for y. Taking the first derivative of the proposed
solution gives.

% =—e *c0s10x —10e *sin10x + 0.1e* [7]
X

Evaluating the first derivative at x = 0 gives dy/dX|x=o =-1+ 0+ 0.1 =-0.9 as
required by the second initial condition. We need the second derivative to
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show that the solution satisfies the differential equation. This is found by
taking the first derivative of equation [7].

2

3—3’ =e *cosl0x +10e *sin10x +10e *sin10x —100e * cos10x + 0.1e*
X
=e7*c0s10x + 20e *sin10x —100e * cos10x + 0.1e*

[8]

Substituting equations [6], [7], and [8] into the original differential equation
in [5], shows, after some cancellation, that the original differential equation is
satisfied by the solution in equation [6].
d*y , ,dy x i i '
o +2 ax +101y =e " c0s10x +20e " sin10x —100e™" cos10x + 0.1e
- 2[— e * c0s10x —10e *sin10x + 0.1e* ]+101[e_x cos10x + 0.1e* ] =

[1-100 -2 +101]e * cos10x +[20 — 20fe *sin10x + [0.1+ 0.2 +10.1]e* =10.4¢"

In the remainder of these notes we will be interested in showing how
analytical solutions to differential equations can be obtained in some simple
cases. However, you should recognize that the proof of a solution is the
demonstration that the solution satisfies the differential equation and the
boundary or initial conditions.

Ordinary differential equations involve functions, which have only one
independent variable. Thus they contain only ordinary derivatives. Partial
differential equations involve functions with more than one independent
variable. Thus, they contain partial derivatives. The abbreviations ODE and
PDE are used for ordinary and partial differential equations, respectively.

In an ordinary differential equation we use the general notation that we are
trying to solve for a function, y(x), where the equation involves derivatives of
y with respect to x. We call y the dependent variable and x the independent
variable. Of course, engineering problems will use different symbols,
appropriate to the physical problem, in place of x and y. The most common
example is the use of the symbol t, suggesting time, as the independent
variable.

The order of the differential equation is the order of the highest derivative
in the equation. Equations [1] and [3] are first-order differential equations. A

[9]



Lalie ) ALl ey slea + ) el College of Computer Science & Mathematics
214, 18l a8

ald s ¥ 0,0 1 Ral) (upda

differential equation with first, second and third order derivatives only would
be a third order differential equation.

In a linear differential equation, the terms involving the dependent variable
and its derivatives are all linear terms. The independent variable may have
nonlinear terms. Thus x3d?y/dx? + y = 0 is a linear, second-order differential
equation. ydy/dx + sin(y) = 0 is a nonlinear first-order differential equation.
(Either term in this equation — ydy/dx or sin(y) — would make the differential
equation nonlinear.)

Differential equations need to be accompanied by initial or boundary
conditions. An n order differential equation must have n initial (or
boundary) conditions in order to have a unique solution. Although initial and
boundary conditions both describe equations that give specific values to the
dependent variable (or its derivatives) at one or more points, the term “initial
conditions” is usually used when all the conditions are specified at one initial
point. The term “boundary conditions” is used when the conditions are
specified at two different values of the independent variable. For example, in
a second order differential equation for y(x), the specification that y(0) = a
and y’(0) = b, would be called two initial conditions. The specification that
y(0) = c and y(L) = d, would be called two boundary conditions. The initial
or boundary conditions can involve a value of the variable itself, lower-order
derivatives of the variable, or equations containing both values of the
dependent variable and its lower-order derivatives.

An equation that only has terms with the dependent variable and its derivatives
may be arranged so that all such terms are on the left-hand side and the right
hand side is zero. Such equations are called homogenous differential
equations. Differential equations that contain one or more terms in the
independent variable only are called non-homogeneous equations.

Some simple ordinary differential equations

From previous courses, you should be familiar with the following differential
equations and their solutions. If you are not sure about the solutions, just
substitute them into the original differential equation.

%:k with y=y,att=t, =  y=y,+k(t—t,) [10]
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d?y . dy kt?
7 Tkwithy=ypand —E=vpatt=0 = y="r+vt+y, [11]
dy : _ _ _ v p k(o)
o —ky  with y=y,att=t, = Y =Y,e [12]
d2y 2 ;
7" —k2y =N y = Asin(kx) + Bcos(kx) [13]
d?y
v k’y = y=Asinh(kx) + Bcosh(kx) = A'e” + B'e™ [14]
X

In equations [13] and [14] the constants A and B (or A’ and B’) are determined
by the initial or boundary conditions. We call solutions such as these general
solutions. A general solution of the differential equation has constants that
can be modified to represent any initial or boundary conditions. A particular
solution is sometimes defined as a solution that satisfies the differential
equation and boundary conditions. However, the term particular solution has
a slightly different meaning in some cases that we will consider later — the
solution of non-homogenous equations. Note that we have used t as the
independent variable in equations [10] to [12] and x as the independent
variable in equations [13] and [14].

There are four possible functions that can be a solution to equation [13]:
sin(kx), cos(kx), e, and e, where i> = -1. Similarly there are four possible
functions that can be a solution to equation [14]: sinh(kx), cosh(kx), e, and
e®. In each of these cases the four possible solutions are not linearly
independent.t The minimum number of functions with which all solutions to
the differential equation can be expressed is called a basis set for the solutions.
The solutions shown above for equations [13] and [14] each contain a pair of
functions that are basis sets for the solutions to those equations.

One final solution that is useful is the solution to general linear first-order
differential equation. This equation can be written as follows.

1 We have the following equations among these various functions:

) ex _ e—x ex + e—x ei>< _ e—ix eix + e—ix
sinh(x) =

sin(x) = cos(x) = 5

cosh(x) =
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Yt 0y =900 [15]
dx

This equation has the following solution, where the constant, C, is determined
from the initial condition.

y=el’ (X)dX[C + j(g(x)ej f (X)dxjdx} [16]

First-order equations

First order differential equations are often used to model rate processes. For
example, radioactive decay where the content of radioactive nuclei is denoted
by the symbol, n, is modeled by the following first-order differential equation.

dn
— =-kn 17
m [17]
For a positive constant, k, this equation tells us that the rate dn/dt is negative
and proportional to the amount of radioactive nuclei, n, present. If the initial
content at t = 0 is no we can multiply this equation by dt/n to obtain the
following form that can be integrated directly.

n t
M gt = @:—kjkdt N In(
n n 0

n

j =kt = n=ne™ [18]
No

No

The half-life for radioactive decay, ti/,, is defined as the time required for the
initial radioactivity, no, to decrease to half its original value. Equation [18]
shows us how to compute this half life.

No
In "y =In(%)=—ln(2):—ktl,2 N t1,2:¥ [19]

No
With equation [19], we can rewrite the final version of equation [18] to
introduce the half life.

t
n= noe t1/2 In(2) [20]
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Similar equations apply to chemical reactions and Newton’s law of cooling.

Separable equations — Equation [17] is an example of a separable differential
equation. This is a differential equation that can be separated into two sides,
each of which is a function of one variable only. Some examples of separable
equations and their general solutions are shown below. In each case, C
represents a constant that can be determined by specifying an initial condition.
(This comes from the usual constant in then general result for an indefinite
integral.)

d—y:f(x) = y=[f(x)dx+C

dx

%: F()g(y) = j%:jf(x)dx+c [21]
dy_ X %_ du

&‘h(xj = I lhw-u*©

Exact forms — describe a set of relations that provide an analytical solution
for a first order differential equation. Their use lies mainly in subsequent
analytical derivations. Here we consider a first-order differential equation of
the following form, where P(x,y) and Q(x,y) are arbitrary functions of x and

Y.

dy __P(.y) 2]
dx  Q(xy)
We see that we can rewrite this equation as
P(X, y)dx+Q(x, y)dy =0 [23]

The title “exact form” comes from the following relationship for a differential
df, which depends on dx and dy.

df =P(x, y)dx+Q(x, y)dy [24]

In this equation we may or may not be able to say that f is a function of x and
y, written as f(x,y). If fis a function of x and y we can write the following
equation for the total differential df.
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df :qu+§dy [25]
OX

oy

If f = f(X,y), the integral of df between any two points (x1,y1) and (xz,y2) will
be simply f(x2,y2) — f(x1,y1) and will not depend on the path chosen for the
integral. Such a differential is called an exact differential. This is the origin
of the term exact in the discussion of exact forms for first order differential
equations.

By comparing equations [24] and [25] we see that, for exact differentials,

Exact df = P(x,y)dx+Q(x,y)dy = P(x,y)= % and Q(x,y) = a

oy
[26]

Since the order of differentiation can be reversed for mixed second-order
partial derivatives, we can write the following formula for P(x,y) and Q(X,y)
in exact differentials only.

o°f _oP(xy) _ o°f _aQ(x.y)

For exact differentials : [27]
OyOX oy OXoy OX
Consider the following examples
d X2 +y? dy x?+y?
W S=-"" (@ ="") [28]
dx 2Xy dx 2Xy

If we compare equation [22] with the first example, we see that P(x,y) = x? +
yZ and Q(x,y) = 2xy for this example. In this case

P, Y) _ 5., _9Q(XY) _
o =2y =—_ =2y [29]

So the first example is an exact form. In the second example we can define
P(x,y) = x% + y? and Q(x,y) = -2xy. In this case

oP(x,y) _ oQ(x,y) _
T_Zyi—ax =-2y [30]
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This is not an exact differential. We would have reached the same conclusion
If we had used the minus sign in the definition of P rather than the definition

of Q.

Having defined an exact form and seen how to determine if we have such a
form, we can now see how to use this fact to integrate equation [22],
ay__PY) p P _Rjy this equation, we know that there is some
dx  Q(x,y) dy o

function f such that df = Pdx + Qdy, where P = 0f/ox and Q = 0f/0y.
Furthermore our differential equation, written in the form of equation [23]
tells us that this unknown function f, has the following equation: df = Pdx +
Qdy =0. That s, df is zero so f is a constant. Although we are not interested
in this mysterious function, f, we can use the results in this paragraph to
integrate equation [22] and get a relationship between x and y.

To integrate the exact form we start by considering an integration of the
differential equation holding y constant (so that dy = 0).

f=[df = [P(x,y)dx+g(y)=C, [31]

y=const

In this integration we have an unknown function of y, g(y), in place of the
usual constant of integration, because we are ignoring the y dependence of
P(x,y) in the integration. In addition, we have the result that f = C4, a constant,
since df = 0.

We next take the partial derivative of equation [31] with respect to y to obtain
the following expression for Q.

of

Q@y@y

[P(x y)dx] . ag@i/” [32]

y=const

Solving this equation for dg(y)/dy gives.

dg(y)

o - y)—a{ [P y)dx}— h(y) [33]

y=const
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Although P(x,y) and Q(x,y) involve X, our assumption of an exact form and
the resulting derivation tell us that the result for dg(y)/dy must be a function
of y only. We expect that when we evaluate this expression the terms
containing x will cancel. We will be left with an expression that we can
integrate to find g(y).

o) =% ey +c, = [y +¢, = | {Q(X,y)—%{ [P(x, y)dx}dwcz

y=const

[34]

We can now substitute this expression for g(y) into equation [31] for f.

f=[df = [P(xy)dxe {Q(x, y) —g{ [P(x y)dxﬂdwcz _c,

y=const y=const

[35]

We can combine the two constants into a single constant, C, and remove
references to the unwanted function, f, to obtain the following relationship
between x and y.

[P y)dx+ | {Q(x, y)- %{ [P(x y)dx:l}dy —c  [36]

y=const y=const

To see how we could apply this, consider the exact example in equation [28].
That example had P(x,y) = x? + y? and Q(x,y) = 2xy. We first find the integral
of P(x,y)dx at constant y.

3
IP(X, y)dx = I (x2 + yz)dx Xy y2X [37]
y=const y=const 3

To evaluate the function g(y) we have to take the partial derivative of equation
[37], with respect to y, and subtract the result from Q(x,y).

h(y)=d%—§w=Q(X’y)—i{ jP(xw)dx}M—%{%ny}=2xy—2yx:o

[38]
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Having h(y) = 0 gives a particularly simple result for our solution.

JP(x, y)dx+J'{Q(x, y)—%{ jP(x y)dx]}dy——+y Xx+0=C[39]

y=const y=const

We can solve this equation for y as follows.

C
=, |——— 40
Y=1% "3 [40]
We can verify that this is a solution of our original differential equation,
dy x? +y
dx 2Xy
equation [40] to introduce y into the result gives.

dy_1(c_x* (Ei}i{&&ji c 2
dx 2(x 3 x> 3) 2yl x* 3) 2yx| x 3

We can rearrange this equation, using equation [39] to replace C, to obtain the
result below; this result shows that our solution satisfies the original
differential equation.

dy 1 ]1(x o) 2% 1 x> 5, 2x° X2+ y?
Rt A [t A @ [y P (AT Ve T PR
dx  2yx| x| 3 3 2yx| 3 3 2yX

[42]

as follows. Taking the first derivative of equation [40] and using

In summary, the steps used for solving equations using the exact form are
outlined below.

To solve & ——PUY) first check to see if P and Q satisfy the equation:
d  Q(xy)

P _Q

oy
satisfied, proceed with the steps below.

. If this equation is not satisfied you cannot use this method. Ifitis
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1. Integrate P(X,y)dx holding y constant. Call this result u(x,y) = jP(x, y)dx

y=const

2. Obtain ou/Oy by taking the y derivative of the result from step 1.

3. Find h(y) defined as Q(x,y) — ou/dy. If the result for h(y) contains the
variable x, there is some error in the calculations so far.

4. Integrate the expression just found for h(y) to obtain [h(y)dy.

5. The solution to the differential equation is u(x,y) + jh(y)dy = C, where C
is found from the initial condition.

Integrating factors — It is sometimes possible to obtain a factor, F, which can
convert a inexact differential equation in the form of equation [22] into an
exact form. This F factor is used to multiply the entire equation when the
values of P and Q in the equation do not satisfy the requirements for using the
exact-form method. If we multiply both P and Q by a factor, F, we obtain the
following differential equation in place of equation [22].

dx FQ(X,y)

Equation [43] will have the exact form if the following equation holds.

dy __FP(x.y) .

o(FP) _ o(FQ)
oy X

We want to find a factor F that will satisfy equation [44]. Once we find such
a factor, we can use the method outlined above for solving the exact form
where we replace P and Q by FP and FQ. Integrating factors can be found by
trial and error. In certain cases the integrating factor will be a function of only
one variable (x or y). In the derivations below, we show how to compute the
integrating factor when this occurs.

[44]

Consider first the case where the result will be a function of x only. If we
apply the product rule to equation [44], divide the result by FQ, set 0F/0y =0
and rearrange, we obtain the following result.
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8P oF oP 8Q

+P—=F—=F Q—

oy oy OX OX [45]
10F _ 1dF dInF _1(oP Q) _ _R(X)
Fox Fadx  dx Qloy ox

If (0P/0y — 0Q/0x)/Q is a function of x only, we can integrate equation [45] to
obtain the integrating factor as In F = JR(x)dx or

ejR(x)dx

F= [46]

In a similar fashion, we can obtain the following result if we assume F is a
function of y only.

P _OF _oP _0Q

F—+P—=F—=F— Q—

oy oy oy OX OX [47]
la_ind_F:dlnF_ @_8_P S(y)
Foy Fdy dy PlLox oy

If (0Q/0x — OP/dy)/P is a function of y only, we can integrate equation [47] to
obtain the integrating factor as In F = [S(y)dy or

eJS(y)dy

F= [48]

To apply the results of equations [46] or [48] we must first assume that the
integrating factor is a function of x only or y only. To do this we compute
(0P/0y — 0Q/0x)/Q; if this is a function of x only then we can apply equation
[46] to get F. If this does not work, we can compute (0Q/0x — OP/dy)/P. If
this is a function of y only then we can apply equation [48]. Once we find the
integrating factor, we then have to apply the solution process for the exact
form. If neither approach works, then any possible integrating factor is a
function of both x and y.

To illustrate this we will derive the solution for equation [15],

% + f(x)y = g(x). We can write this in the form of equation [23] as follows.

dy +[f(x)y—g(x)]dx=0 [49]
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Comparing this with equation [23] we see that we have defined P(x,y) = f(x)y-
g(x) and Q(x,y) = 1, giving dP/dy = f(x) and 6Q/0x = 0. So the equation as
proposed is not an exact form. Let’s see if we have an integrating factor that
Is a function of x only. To do this, we see if R(x) as defined in equation [45]
Is truly a function of x only.

1P R 1 sy ol
R(x)—Q(ay axj_l(f(x) OJ_f(x) [50]

Since R(x) is a function of x only, we can apply equation [46] to obtain the
integrating factor.

E_ ejR(x)dx _ ej f (x)dx [51]

Applying this integrating factor to P and Q, we have the following values for
FP and FQ.

FP=[F oy -9k @ FQ=el ™" [52]

We can now apply the steps for integrating the first-order differential equation

corresponding to the exact form, following the steps outlined on page 12,

replace P and Q in those steps by the values of FP and FQ shown in equation

[52].

1. Integrate FP(x,y)dx holding y constant. Here we obtain u(x,y) =
I FP(x,y)dx =

y=const

[[f(0y-g (X)]ej %y = y[ f (x)eI 0%y - Q(x)eI OO gy

y=const

We can simplify the integral with f(x) by noting that
d(ej f (X)dxj _ o) 009 (x)dx 50 that

[ £ 0elPax=[del "~ el This gives the following

expression: u(x,y) = yejf(x)dX - I g(X)eIf(X)dde
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2. Obtain Ou/0y by taking the y derivative of the result from step 1. Here
a_u e j f (x)dx

oy
3. Find h(y) defined as FQ(X,y) — du/dy. In this example we have FQ _%u =
ejf(x)dx _ejf(x)dx —0=h(y)

4. Integrate the expression just found for h(y) to obtain [h(y)dy. Since we
found h(y) = 0 in the previous step, its indefinite integral will also be zero.

5. The solution to the differential equation is u(x,y) + jh(y)dy = C, where C
is found from the initial condition. With the result for u(x,y) from part one
and Jh(y)dy = 0, we have

u(x,y) +Ih(y)dy =C = yeIf(X)dX - I g(X)le(x)dxdx =C

Dividing this equation by el 1% ang rearranging gives the solution for y.
y = el (X)dX[C + j g(x)eI f (X)dxdx}

This is the result that was given previously in equation [16].
Existence and uniqueness of solutions to first order equations

Linear or nonlinear first-order differential equations may be written in the
form dy/dx = f(x,y) with the initial condition that y(xo) = yo. Although we
have solved such equations above, more complex first-order differential
equations may have to be solved numerically. Regardless of the complexity
of the equation we are interested in knowing if the equation has a solution and
if the solution is unique. The existence and uniqueness of the solutions to this
differential equation depend on the properties of f(x,y) and its partial
derivative of/oy.

e In order for solutions to exist, f(x,y) must be continuous and [f(x,y)|
must be less than some number, say K.
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¢ In order for the solutions to be unique, the partial derivative of/0y must
be continuous and |0f/dy| must be less than some other number, say M.

e The function f(x,y) and derivative of/oy must be continuous in a
rectangular region, R, about the initial point, (Xo, Yo); the rectangular
region is defined by the area |Xx — Xo| <a and |y — yo| <b.

e The solution to the differential equation exists for at least all x in the
interval |X — Xo| < [J, where [ is the minimum of a and b/K.

We are generally interested in having a solution in some range |[X — Xo| around
the initial condition. We see that we will have a solution so long as f(x,y) is
continuous for [X — Xg| < a and the maximum absolute value of the derivative
is less than the ratio b/K. In this ratio b represents the maximum expected
value of y and K is the maximum expected value of |f(x,y)|. The solution we
obtain will be unique so long as |6f/dy| remains bounded in the region of the
solution.

Second order equations

Second-order differential equations are among the most common in
mechanical engineering applications. Many of these equations arise from
Newton’s second law of motion, F = ma, where the acceleration is the second
derivative of the displacement. We start by considering linear, second-order
differential equations. The most general such equation has the following
form.

Y4 p00 Y + a9y =r( 53]

Here we assume that, if the physical model has a factor multiplying the second
derivative, we can divide the entire equation by that factor. The resulting
equation has no factor multiplying the second derivative. A simpler class of
differential equations results if the right hand side term, r(x) is zero. This is
called the linear, second-order, homogenous differential equation.

ok d
T2 T PO +a(x)y =0 [54]
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For this linear homogenous differential equation we have the general result
that any linear combination of linearly independent solutions to the equation
Is also a solution. For example, if y; and y, are solutions, then the linear
combination y = c1y; + Cyy- is also a solution. This is true for the linear
homogenous equation only.

For the solution of second-order, linear, homogenous equations, we will
generally have two linearly independent solutions that provide a basis for all
solutions of the differential equation. These two independent solutions can be
added in the form shown above, y = c1y1 + CaY2, to give a general solution to
the differential equation. The values of c; and c; are then found by fitting
initial conditions or boundary conditions for the problem. Two such
conditions are required. Initial conditions typically specify the value of y and
its first derivative at some (initial) value of x. Boundary conditions specify
the value of y at two different x locations.

Constant coefficients — The easiest case to consider is the equation with
constant coefficients shown below.

2
%+aﬂ+by:0 [55]

X dx

Two solutions to this equation are shown below.
y, =e™" y, =e™?* [56]

Where [1; and[1[], are the roots to the following quadratic equation.

. 2 _ 2
A, = 2EVA D a2 [57]
4

2 2

The general solution to equation [55] is a linear combination of the two
solutions in equation [56].

y=Cy, +C,y, = Cleklx + Czkzx [58]

The two solutions in equation [56] will not be linearly independent if [;
=[1015; this will occur if a = 4b so that [; =110, = -a/2 and y; = e®/2, In this
case we use a method known as reduction of order to find the second solution.
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We start by writing the second solution, y,, in terms of the first solution, yi,
and an unknown function, u(x). The derivation shown below finds an
expression for u(x) that gives us our second solution.

y, =Uy; = ue’” =ue /2 [59]

Substituting this equation into equation [55] gives.

szz +adY2
d

2 2
Y X+by2:ud A dudy1+2 du dy,
X

+
dx? N dx? dx Ldx dx
[60]

We can combine the three terms multiplied by u to get a factor which is the
same as the original differential equation.

d2y1 oI d?u du( dy )
ul —= + by, |+ 2—2L43q 61
{ dx2 dx e dx?  dx\ dx Y [61]

Since y; is a solution of the differential equation in [56], the term in brackets
is zero. Setting this term to zero and substituting y; = €®% and dy./dx = (-
a/2) e gives the result, shown below, that e®/2d?u/dx? = 0.

2 2
e—ax/2 d_sz + dU 2( Ee—aXIZJ + ae—ax/2 — e—ax/2 d_sz _ O [62]
dx® dx 2 dx

Equation [62] can only be satisfied if

2
d—u:O = Uu=Ax+B [63]
dx?

Since y, = uy;, we have the following solution for y,.
Yo =Uy, = (AX"' B)e_aX/z [64]

The general solution to equation [55] when a? = 4b is given by a linear
combination of the solution in equation [64] and y; = e/, Since the solution
for y; is contained as a linear factor in the solution for y,, we can use the
following pair of solutions for equation [55] in the double root case, when a2
= 4b. Both solutions are then used to give the general solution.
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y _e—ax/2 y, = Xe—ax/2
1~ 2

65
y=C,y;, +C,y, =C,e ™2 +C,xe /2 =(C, + C,x)e /2 [65]

When a? < 4b, the argument of the square root in equation [57] is negative and
we will have complex values for [1; and[1[],. In this case we can define the
argument of the square root as —[12, and use this definition to write the values
for [1; and[1 [, as shown below, where i2 = 1.

ol =b-2 Kl,K2:7aiioo [66]

We can get a modified form of the solution in equation [56] in this case, that
gives a better indication of the actual behavior. To do this we use the Euler
relationship for complex exponentials.

e =cosO+isin® [67]

Substituting equation [66] into equation [56] gives the following result.?

y, =" =g /2% =g */2[cos e +isin o]
y, =" =g /21 — g/ 2[cog(— x)+ i sin(— wx)] = e ' ?[coswx — i sin wX]
[68]

The general solution is a linear combination of the two solutions in equation
[68].

—ax/2[ —ax/2[

y =C,y, +C,Y, = Cie ' ?[cosmx + isin ox]+ C,e ™ 2[coswx — i sin wx]

y =e *'2[Acosox + Bsin ox]
[69]

In the final step of this derivation, we have defined A=C; + C; and B =i(C;
- C2). However, in practice, we can use the final form of equation [69] as the
general solution when a? < 4b and use initial or boundary conditions to
determine the constants A and B.

If we are given the initial values of y and dy/dx as y, and vy, respectively, then
we can find the constants in the general solution for each of the three cases

2 In the final step we use the trigonometric relations that cos(—x) = cos(x) and sin(—x) = —sin(x)
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considered above: (1) two distinct real roots, (2) the double root, and (3) two
complex roots.

For two distinct, real roots, equation [58] gives the following equations for
the initial conditions.

Yo =Y(0) = Clexl(o) + szzm) =C; +C,

70
Vg = ayl A,Ce"@ 42,0, =, C, +1,C, [70]
dx|,_o
Solving for C; and C; gives.
ArYo—V Vg —A
L= A2Yo Vo C. = Vo —MYo [71]

Substituting these results into equation [58] gives the general solution for two
distinct real roots in terms of the initial conditions on y and dy/dx.

y=Ce™™* +C," = mem L Vo~ MYo ohoX [72]
Ao = Ay Ay =My

When there is a double root, the solution is given by equation [65]. Using that
equation for the initial conditions on y and dy/dx gives the following result.

y0 =y(0)=(C, +C,(0)e "2 =C,
C,+C (O))( ) —a(O)/2+C2e—a(0)/2 =—%C1+C2 [73]

VO:_

dx

x=0

Here, C; = yo, and C, = v + ayo/2, and the solution for y is.

y= {yo (Vo + %) }e_aX/z [74]

Finally, in the case of complex solutions, equation [69] gives the following
equations for the initial conditions on yo and vo.
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yo =€ 2O"2[Acosw(0) + Bsin o(0)]= A

Vp = (— %)e‘a(o)’z [Acosw(0) + Bsin o(0) ]+ e 2/ ?w[B coswm(0) — Asin w(0)]= —% +oB

[75]

This gives A = yo and B = (vo + ayo/2)/[J so that the general solution for the
specified initial conditions is.

y = e—""x’{yO COS®X + 1(vo + a—;ojsin mx} [76]
Q)

Linear combinations of sine and cosine of [Jx can be written in terms of
cos([1X — [J) by using the trigonometric formula for the cosine of the
difference of two angles.

C cos(wx — &)= C cosdcoswx + C sin §sin wx

) [77]
C cos(ox —8) = AcosX + Bsin wx

The two expressions for Ccos([1x — [1) in the above equations are equivalent
if the following two equations hold.
A=Ccosd B=Csind [78]

The relationships between the constants A and B for the sine and cosine
expression and the constants C and [ for the cos([/x — []) expression are
shown below.

A? +B%=C%c0s’8+C?sin?8=C? = C?*=A%*+B? [79]

B_CSNS s = s—tant2 [80]
A Ccosd A
We can rewrite equation [76] as follows
y =Ce /2 cos(cox — ) [81]

where the values of C and [] can be found by comparing equation [76] with
equations [80] and [81].
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2
:Jyg+ L) e {1 (Lﬂ 2]
o’ 2 Y, 2

The solutions can be cast into dimensionless forms. In the case where the
initial displacement, yo is nonzero, we can divide by this initial condition to
obtain a solution in terms of y/y,. If yp = 0, then vy must be nonzero to have
a solution other than y = 0. In this case we can divide the solution for y by
avo/b to get a solution in terms of the dimensionless quantity by/avy. Here we
consider only the case where yy is nonzero and divide equation [74] for the
double root by y, to obtain

Y _ {1+£V—°+ij}ea"’2 {1+(2V° +1] }eam [83]
Yo Yo 2 ayo 2

This equation gives the dimensionless form for y/y, as a function of ax/2 with
2Volayy as a parameter.

Dividing equation [76] for the trigonometric solution by yo gives.

Y _ eax’{cosoox + (V—O + ijsin ooX} [84]
Yo oYy 20

From the definition of w in equation [66], we can write

2
oazzb—aZ - co:g/A'—E—l [85]
a

Substituting this result into equation [84] gives.

el () e )

[86]

In this case the dimensionless form gives y/y, as a function of ax/2 with two
dimensionless parameters: vo/[1yo and 4b/a? —

Non-homogenous equations
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The solution to a linear non-homogenous equation such as the second-order
equation shown below,

2

d
Y4 p00 Y + a9y =r( [87]
can be written in terms of the solution, yy, to the homogenous equation

d®y,
dx?

+p00 i+ (), =0 88

The total solution is the sum of the homogenous solution and a particular
solution, yp, that satisfies equation [87].

Y=YutYp [89]

We can see that this is the solution to equation [87] by substituting equation
[89] into equation [87]. This gives

0 tYe) | g A £Ye) gy, 1y,)-
dx? dx [90]

d2
) n y“ F Q)Y +—2F

d? d
o PO+ A0 Ye =1(x)

d 2

Since yy satisfies equation [88], the first three terms in the second row of
equation [90] are zero and the remaining terms give the result defined for yp:
yp satisfies equation [87].

The solution to the non-homogenous equation, then, proceeds by first finding
the solution to the homogenous equation then by finding the particular
solution. An important part of this process is that the arbitrary constants in
the homogenous solution should not be determined until the final solution, the
sum of the homogenous and particular solution is found.

One method for finding the particular solution is known as the method of
undetermined coefficients. In this method, a trial solution for yp is proposed
using the trial solutions shown in the table below.

For these r(x) Start with this yp as a trial solution
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r(x) = Ae™ yp = Be®

r(x) = Ax" Vp=an+taix ... +apX"
r(x) = Asin [Ix yp =B sin [x + C cos [Ix

r(x) = Acos [Ix

r(x) = Ae®sin [x Yp = e (B sin Ox + C cos Ox)
r(x) = Ae®Xcos [x

If r(x) contains more than one of the terms shown on the left, include the
corresponding yp terms in the general solution for ye. If r(x) contains an n
order polynomial in X, yp should include a polynomial with all possible
powers of x from x° to x".

If any term in r(x) is proportional to part of the solutions for yy multiply the
proposed yp in the table above by x. E.g., if both r(x) and yy have a term in
e®, with the same value of a, yp should contain a term in xe* instead of e**.

The solutions proposed for ypr in the table above have undetermined
coefficients. These coefficients are found by substituting the proposed
solution in to the differential equation and equating coefficients of like terms
on both sides of the resulting equation.

For example, we can apply the method of undetermined coefficients to the
solution of the following equation.

2

d-y dy 2
— 432 4+2y=x 91
dx?  dx y [91]

First we find the solution to the homogenous equation.

d?yy dy
+32H 12y =0 92
dx? dx y [92]

We have previously show that the solution to this equation is given by
equations [55] and [56], where we have to find the roots of the characteristic
equation from equation [57]. For this problem, those roots are found as
follows.
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_—axal-4b -3+3F-4(2)

A, =
1 A2 5 5

=-1-2 [93]

Thus the solution to the homogenous equation is given by the following
equation.

y, =Ce ' +Ce™ [94]

Since r(x) is a second order polynomial in x, we have to use the following
equation for yp(X).

Yo =8y + X +ayx [95]

Substituting this particular solution into the original differential equation in
[91] gives

dZYP
dx?

390 2y, 200) sy v ) (6
X

Setting terms in like powers of on both sides of the equation equal to each
other gives.

x’terms:  2a,+3a, +2a,=0
x'terms:  6a,+2a, =0 [97]
x° terms : 2a, =1

We can easily solve these equations, starting with the last one and working
backwards, to find a; = %2, a; = -3/2, and ap = 7/4. This gives the particular
solution shown below.

7 3 1,
=——>X+=X 98
Ye 4 2 2 [98]

You can substitute this solution into equation [91] to verify that it satisfies the
differential equation. The solution to the differential equation is the sum of
the particular solution just found the homogenous solution from equation [94].
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y=y4+Yp=Ce " +C,e +£—gx+—x [99]

Only after we have the combined solution can we match the initial or
boundary conditions. If we have an initial condition on both y and dy/dx as
Yo and go, we have to satisfy the following equations.

y(0) =y, =C,e ®+C,e?® o1 —§(0) + 1(0) =C,+C, + !
3 [100]

d ) oo 3
d_iozg":_cle "2 -2+ (0)=-C,-2C, -

Solving this pair of equations for the two unknowns gives C; = 2y, + go — 2,
and C, = Y4 - yo — go. Substituting these values into equation [99] gives the
solution to equation [91] that satisfies the initial conditions that y(0) =y, and
dy/dx|o = go as follows.

(1 7 3 1
y:(2y0+go—2)e +(z‘Yo_gojez "‘Z‘EX"‘EXZ [101]

Higher order equations with constant coefficients

Higher order differential equations, with constant coefficients, can be written
in the following form.

dny n-1 dmy
+ > a =r(X 102
o mZO n (X) [102]

Here we use the notation that the zeroth derivative of a function is the function
itself. The solution to this equation is given, as before, as the sum of a
homogenous and particular solution. The homogenous solution is written as
follows.

yH = Zcmexmx [103]

Where [, are the roots of the following characteristic equation.
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n-1
A+ > a A" =0 [104]
m=0

The particular solution can be found by the method of undetermined
coefficients as described previously.



