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Mathematical Logic: 
 

Some mathematical statements carry a logical value of being true or false, 

while some do not. For example, the statement “4+5 = 9” is true, whereas the 

statement “2 is odd” is false. However, a statement like “x2 −2x = 15” is neither 

true nor false, until further information is given concerning x.  

 

Definition: By a truth value we mean a logical value of true or false. A statement 

which possesses a truth value is called a proposition. Technically, of course, a 

proposition can be stated in any language, not necessarily mathematical; the only 

requirement is that the statement must be quantifiable as being true or false. 

This leads to the algebra of Boolean logic, in which we are dealing with 

entities whose values can either be 0 (false) or 1 (true). In fact, this reminds us of 

the binary number system and the underlying structure (on/off switches) of 

computing machines. 

 

 Propositional Logic: 
 

As with numbers, we now treat propositions as mathematical quantities, 

which can be operated one on another by a selection of proposition operators, or 

logic operators. The first and simplest operator is analogous to taking the negative 

of a number. 

 

Definition: Let p denote a proposition. The negation of p is the proposition given 

by the statement “not p” and whose value is opposite that of p. The negation of p 

can simply be called not p and is denoted by ￢p. 

 

Example: We give two propositions, one in mathematics and another in English, 

each with its negation. 

 

    p : 4 + 5 = 9 q : The earth is flat. 

￢p : 4 + 5 6= 9 ￢q : The earth is not flat. 

 

Note that each proposition has the opposite truth value from that of its negation; 

If  p is true then ￢p is false, and vice versa. 

 



.............................................................................م.م. الآء حسين خليل  111/ المقرر: ر 1رياضيات متقطعة  

2 
 

Logic Operators and Truth Tables 

 

A logic operator can be given by a table which displays the output value 

for every possible combination of the input values. The truth table for The 

negation operator, for instance, is given below. 

Table 1: Truth table for ￢p. 

 

 
 

A number of logic operators will now be given by their truth tables. In general, 

the resulting proposition obtained by applying these operators will be called a 

compound proposition. 

 

Definition: Let p and q be two propositions. The conjunction p ∧ q and 

disjunction p ∨ q yield the compound statements p and q, respectively, p or q, and 

whose values are given according to the following table. 

 

Table 2: Truth tables for p ∧ q and p ∨ q. 

 
Example: Suppose p : 4+5 = 9 and q : 2 is odd. Write the statement and find the 

value of the compound proposition (a) ￢p ∧ q (b) p ∨ ￢q. 

 

 Solution. Note that p has value true and q false. The first statement is false   

(F ∧ F) and the second true (T ∨ T), and they are given by: 

 

a) ￢p ∧ q : 4 + 5 6= 9 and 2 is odd 

b) p ∨ ￢q : 4 + 5 = 9 or 2 is not odd 

 

Exercise: Suppose p is true and q is false. Determine true or false for 

each compound proposition below. 



.............................................................................م.م. الآء حسين خليل  111/ المقرر: ر 1رياضيات متقطعة  

3 
 

a) ￢p ∨ ￢q 

b) (p ∧ ￢q) ∨ ￢p 

c) (p ∧ q) ∨ (￢p ∧ ￢q) 

d) (￢p ∨ (q ∨ p)) ∧ (p ∧ q) 

Example: Construct a truth table to determine the possible output values 

of the compound proposition given by (p ∨ ￢q) ∧ (￢p ∨ q). 

 

Solution: There are four possible rows. We show the intermediate steps according 

to the order in which the logic operations apply, as follows. 

 
Exercise: Construct the truth table for each given compound proposition. 

a) ￢(￢p ∧ ￢q) 

b) ￢p ∨ (p ∧ ￢q) 

c) (p ∧ ￢q) ∨ (￢p ∨ q) 

d) (p ∨ q) ∧ (￢p ∧ ￢q) 

 

Definition: The implication p → q yields a compound proposition whose truth 

value is given in Table 3. The statement p → q is read if p then q, or sometimes, 

p implies q. Implication is also called the if-then operator. 

 

Table 3: Truth table for p → q 

 
 

Exercise: Suppose p : 4 + 5 = 9 and q : 2 is odd. Write the statement and determine 

the value of each compound proposition below. 

a) p → q 
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b) q → p 

c) ￢p → q 

d) ￢q → ￢p 

 

 
Exercise: Construct the truth table for each given compound proposition. 

a) ￢q → ￢p 

b) (p ∧ q) → (p ∨ q) 

c) (p ∨ q) → r 

d) (￢p → q) ∧ (￢p → r) 

 

Definition: The compound propositions p ↔ q (read p if and only if q, orp iff q) 

and p⊕q (read p exclusive or q, or p xor q) are given by their truthtables, 

respectively, next. 

Table 4 Truth tables for p ↔q and p ⊕ q 

 
 

In the English language, the exclusive or is often translated p or q but not both, 

since the table shows that p ⊕ q is true when exactly one of them is true, not 

both. Moreover, a proposition of the form p↔q is called a biconditional 
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statement, and is used to connect two statements whose truth values are the same, 

i.e., p is true if q is true, and p is false if q is false. Note that these two compound 

propositions have opposite values for each pair (p,q). To help remember, p ↔ q 

is true exclusively when p and q have identical values, whereas p ⊕ q is true 

exactly when p and q have unequal truth-values. 

 

Exercise Suppose that we have the following propositions. 

 

p : It is hot today. 

q : It is windy today. 

r : It will rain tomorrow. 

 

Translate the following sentences using the variables p, q, r, and the appropriate 

logic operators. 

a) If today is hot and windy, then it will rain tomorrow. 

b) Tomorrow will rain if and only if today is not windy. 

c) Either today is hot or tomorrow will rain, but not both. 

d) If today is neither hot nor windy, then it will not rain tomorrow. 

 

Exercise Construct the truth table for each given compound proposition. 

 

a) (p ↔ q) ∧ (p ⊕ q) 

b) (p ↔ ￢q) → (￢p ⊕ ￢q) 

c) (p ⊕ q) ⊕ r 

d) [(￢p ∧ q) ∨ (￢r → p)] ↔ (r ⊕ ￢q) 

 

Tautology and Contradiction: 

 

Definition: A tautology is a compound proposition whose truth table consists of 

all true values. 

 

Consider the compound proposition (p∧q) → p, whose truth table, displayed 

below, happens to show all true values. This is an example of a tautology. 
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Definition. The counterpart of a tautology is a contradiction, i.e., a compound 

proposition that shows all false values in the truth table. 

 

 

 
 

Incidentally, a compound proposition whose table contains a mix of true and  

false, like most that we have seen thus far, is called a contingency. 

 

Exercise Identify each compound proposition as a tautology, contra- 

diction, or contingency. 

 

 

 
 

Example. Assume the following two premises. 

 

P1 : Tomorrow is not Friday. 

P2 : If today is not Sunday then tomorrow is Friday. 
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Therefore, we claim the following conclusion. 

 

Q : Today is Sunday. 

 

Is the above argument valid? 

 

Solution. Let us fix the following propositions. 

 

p : Today is Sunday. 

q : Tomorrow is Friday. 

 

The two premises and the conclusion are then represented by, respectively, 

 

P1 : ￢q 

P2 : ￢p → q 

Q : p 

 

We need now study the truth table of the compound proposition 

 (P1 ∧ P2) → Q : (￢q ∧ (￢p → q)) → p 

given below. 

 
 

The table shows that (P1 ∧ P2) → Q is indeed a tautology, establishing the 

validity of the argument. 

 

Example. Assume that every even number is composite. Can we conclude that 

all odd numbers are prime? 

 

Solution. Let p denote the statement “n is even” and q the statement “n is co-

mposite.” Note that the premise is given by p → q, and the conclusion  

￢p →￢ q. We look at the truth table, and find a contingency. Hence, the 

argument is not valid. 
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Exercise Determine the validity of each given argument. 

a) Premises: Today is not Sunday. Today is Sunday if and only if tomorrow is 

Tuesday. Conclusion: Tomorrow is not Tuesday. 

b) Premises: If you like Discrete Mathematics, you will like Calculus. You like 

neither Discrete Mathematics nor Calculus. Conclusion: If you like Calculus, you 

will like Discrete Mathematics. 

c) Premises: If n is even then n is composite. If n is prime then 2n + 1 is also 

prime. Conclusion: If 2n + 1 is composite then either n is prime or odd. 

d) Premises: Either prime numbers are infinitely many or composites are, but not 

both. There are infinitely many primes. If composites are finitely many, so are 

even numbers. Conclusion: Both composites and even numbers are finitely many. 

 

Logical Equivalence 

 

Sometimes it may well be the case that two compound propositions have 

look-alike truth tables. Can you see, for instance, why the table for p⊕q is no 

different that that for ￢(p ↔ q)? Such a relation between two propositions is an 

important concept and shall be given a special name 

 

Definition. Two propositions are called equivalent to each other if their 

truth tables are identical. We employ the symbol ≡ to denote this relation. 

Hence, for example, we have ￢(p ↔ q) ≡ p ⊕ q. 

 

Example. Prove the relation p → q ≡ ￢p ∨ q. 

 

Solution. We have to create the two tables and arrive at the same results. 

To save some space, we will juxtapose the two tables into one as follows. 
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Note that both final columns show identical entries, justifying the equivalence 

between the two propositions. 

 

Exercise Verify the equivalence in each of the following statements. 

a) ￢p ∧ q ≡ ￢(p ∨ ￢q) 

b) p ↔ q ≡ (p → q) ∧ (q → p) 

c) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

d) p → (q → r) ≡ q → (p → r) 

 

Exercise Prove that all of the following compound propositions are equivalent 

one to another. 

 

a) p → ￢q 

b) q → ￢p 

c) ￢p ∨ ￢q 

d) ￢(p ∧ q) 

 

The following theorem lists a few conditional statements which are rather well-

known tautologies. They can be used as models for a valid argument, and are 

sometimes refered to as rules of inference. 

 

Theorem 1. Each of the following propositions is a tautology. 

(p ∧ q) → p p → (p ∨ q) 

￢p → (p → q) ￢(p → q) → p 

(p ∧ (p → q)) → q (￢q ∧ (p → q)) → ￢p 

(￢p ∧ (p ∨ q)) → q ((p → q) ∧ (q → r)) → (p → r) 

 

Theorem 2. An implication is always equivalent to its contrapositive. 

 

Proof. We show the equivalence p → q ≡ ￢q → ￢p by simply producing 
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their respective tables below. 

z 

 

Laws of Algebra of Propositions 

 

Identity: 

p V p ≡ p p Λ p ≡ p p → p ≡ T p ↔ p ≡ T  

p V T ≡ T p Λ T ≡ p p → T ≡ T p ↔ T ≡ p  

p V F ≡ p p Λ F ≡ F p → F ≡ ~p p ↔ F ≡ ~p 

  T → p ≡ p  

  F → p ≡ T 

Commutative: 

p V q ≡ q V p p Λ q ≡ q Λ p p → q ≠ q → p p ↔ q ≡ q ↔ p 

  

Complement: 

p V ~p ≡ T p Λ ~p ≡ F p → ~p ≡ ~p p ↔ ~p ≡  F 

  ~p → p ≡ p  

Double Negation: 

~(~p) ≡ p 

  

Associative: 

p V (q V r) ≡ (p V q) V r  

p Λ (q Λ r) ≡ (p Λ q) Λ r   

  

Distributive: 

p V (q Λ r) ≡ (p V q) Λ (p V r)  
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p Λ (q V r) ≡ (p Λ q) V (p Λ r)     

  

De Morgan’s: 

~(p V q) ≡ ~p Λ ~q  

~(p Λ q) ≡ ~p V ~q  

  

Equivalence of Contrapositive: 

p → q ≡ ~q → ~p  

  

Others: 

p → q ≡ ~p V q  

p ↔ q ≡ (p → q) Λ (q → p) 

 

 

Techniques of Proof 
 

Proving a mathematical statement is an art of writing. There is no strict 

convention as to how a proof should look like. However, there are commonly 

accepted methods of proof, which follow certain laws of logic. We look into a 

few of these methods, trying wherever possible to communicate in the language 

of propositions as we have learned it. 

 

Direct Proof and Contrapositive 

We will use these numbers to illustrate our first proof technique, called 

direct proof. The technique of direct proof applies to statements in the form of 

an implication p → q. It begins by assuming p and shows, through a succession 

of implications, that q inevitably follows.  
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Example(1): Prove that if x is even then x2 is also even. 
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Solution: If we let p denote the statement “x is even” and q the statement 

“x2 is even,” then we are to prove the proposition p → q. 

 

p : x is even 

→ x = 2n for some n ∈ Z                                     (definition of even numbers) 

→ x 2= 4n2                                                                  (by squaring both sides)  

→ x2 = 2m where m = 2n2 ∈ Z                                        (since n is integer) 

→ x2 is even : q                                                                        (by definition) 

 

Example(2): Prove that the product of two odd numbers is again odd. 

 

Solution: This statement does not look like an implication, but it really is. 

Simply let p : x and y are odd and q : xy is odd. The proposition to be 

proved is essentially p → q. 

 

p : x and y are odd 

→ x = 2n + 1 and y = 2m + 1 with both m, n ∈ Z 

→ xy = (2n + 1)(2m + 1) 

→ xy = 4nm + 2n + 2m + 1 

→ xy = 2(2nm + n + m) + 1 

→ xy = 2k + 1 where k = 2nm + n + m ∈ Z 

→ xy is odd : q 

 

Exercise: 

 Prove the following statements using direct proof. 

a) If x is odd, then x3 is also odd. 

b) If x is even, then so is x2 − 4x + 2. 

c) The sum of two odd numbers is even. 

d) The sum of two rational numbers is again rational.               

  

There are times when direct proof may not be the easiest way to establish p → q. 

In such cases, the contrapositive of this implication is often a useful substitute for 

the statement before we attempt to prove it. If you recall, Theorem 2 states that: 

p → q ≡ ￢q → ￢p 

 

Example(3): Let x be an integer. Prove that if x2 is even then so is x. 
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Solution. As before, we let p : x2 is even and q : x is even. We wish to prove the 

validity of  p → q.     Direct proof would start with  x2 = 2n and have us show that 

x = √2𝑛 is twice an integer. That would be hard. To circumvent this difficulty, 

we shall instead prove the equivalent statement ￢q → ￢p. 

 

￢q : x is odd (the integer x is not even) 

→ x = 2n + 1 for some n ∈ Z 

→ x2 = 4n2 + 4n + 1 

→ x2 = 2(2n2 + 2n) + 1 

→ x2 = 2m + 1 where m = 2n2 + 2n ∈ Z 

→ x2 is odd : ￢p 

 

At this point it is appropriate to remark that writing a mathematical proof need 

not be so formal as to represent every statement using p and q. The next example 

is simply meant to show how our writing style can be more casual for the sake of 

better readability. 

 

Example(4): Prove  that if 2n is an irrational number, then n is too. 

 

Solution.         We use contrapositive. Suppose that n is rational. We may write n 

= a/b for some integers a, b. Then 2n = 2a/b, which shows that 2n is also a rational 

number. This completes the proof. 

 

Exercise: Prove the following statements using contrapositive. 

a) If x3 is odd, then x is also odd. 

b) If x2 − 3 is irrational, so is x − 3. 

c) If the sum of two integers is odd, then one of them is odd. 

d) If the product of two integers is even, then one of them is even. 

 

Mathematical Induction 

 

The technique of mathematical induction applies to a statement involving 

a predicate and the quantifier ∀ with the domain of positive integers. For example, 

consider the statement 

1 + 2 + 3 + ・ ・ ・ + n =
𝑛(𝑛+1)

2
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for all n ∈ N 

Here, the predicate P(n) : 1+2+3+・ ・ ・+n = 
𝑛(𝑛+1)

2
 

 claims to hold for all integer values of n ≥ 1. How do we prove such a statement? 

We need only establish the following two propositions. 

1) P(1) 

2) P(n) → P(n + 1) 

Intuitively, the second statement, with n = 1 says that if P(1) holds, so does P(2). 

Since P(1) holds, i.e., by (1), then P(2) is true. But by (2) again, since P(2) is true, 

so is P(3). And again, P(3) implies P(4), then P(5), and on for all P(n), where n ∈ 

N. Proving (2) is what we call the induction step.  

Example 1: Let P be the proposition that the sum of the first n odd numbers Is 

n2; that is, 

                        P(n): 1 + 3 + 5 + … + (2n – 1) = n2 

Prove P (for n ≥ 1) 

Solution: (The nth odd number is 2n – 1, and the next odd number is 2n +1.) 

Observe that P(n) is true for n = 1, 

(i) n=1; P(1): 2*n-1 = 12 

(ii) n=k; Assuming P(k) is true, 

We add (2k-1)+2 = 2K + 1 to both sides of P(k), obtaining: 

1 + 3 + 5 + … + (2k – 1) + (2k + 1) = k2 +(2k + 1) 

                                                          = (k + 1)2 

Which is P(k + 1). That is, P(k + 1) is true whenever P(k) is true. By the principle 

of mathematical induction, P is true for all n ≥.k. 

Example(2). Prove that the identity 1+2+3+・ ・ ・+n =
𝑛(𝑛+1)

2
 holds for all 

integers n ≥ 1. 

Solution:  We let P(n) denote this predicate, 

P(n) : 1 + 2 + 3 + ・ ・ ・ + n =
𝑛(𝑛+1)

2
 

The statement we are to prove can be represented by ∀n ≥ 1 : P(n). Note that P(5), 

for instance, stands for the proposition 1+2+3+4+5 = 
5(5+1)

2
 , whose value is true. 

This is just an example. We proceed with the two parts of the proof. 

1) P(1) is the proposition 1 = [1(1+1)]/2 Obviously then, P(1) is true. 

 

 

 

 



.............................................................................م.م. الآء حسين خليل  111/ المقرر: ر 1رياضيات متقطعة  

16 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 



.............................................................................م.م. الآء حسين خليل  111/ المقرر: ر 1رياضيات متقطعة  

17 
 

Recursion Equations 
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Example: 

 

 

 

 
 

SETS  

A set is a collection of objects called the elements or members of the set. The 

ordering of the elements is not important and repetition of elements is ignored, 

for example {1, 3, 1, 2, 2, 1} = {1, 2, 3}. 

One usually uses capital letters, A,B,X, Y, . . . , to denote sets, and lowercase 

letters, a, b, x, y, . . ., to denote elements of sets. 

Below you'll see just a sampling of items that could be considered as sets: 

• The items in a store 

• The English alphabet 
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• Even numbers 

A set could have as many entries as you would like. It could have one entry, 10 

entries, 15 entries, infinite number of entries, or even have no entries at all! For 

example, in the above list the English alphabet would have 26 entries, while the 

set of even numbers would have an infinite number of entries. 

Each entry in a set is known as an element or member 

Sets are written using curly brackets "{" and "}", with their elements listed in 

between. For example the English alphabet could be written as 

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} 

and even numbers could be {0,2,4,6,8,10,...} (Note: the dots at the end indicating 

that the set goes on infinitely) 

Principles: 

∈ belong to 

∉ not belong to 

⊆ subset 

⊂ proper subset, For example, {a, b} is a proper subset of {a, b, c}, but {a, b, c} 

is not a proper subset of {a, b, c}. 

⊄ not subset 

So we could replace the statement "a is belong to the alphabet" with a ∈ 

{alphabet} and replace the statement "3 is not belong to the set of even numbers" 

with 3 ∉ {Even numbers} 

Now if    we named our sets we could go even further. Give the set consisting of 

the alphabet the name A, and give the set consisting of even numbers the name 

E.We could now write a ∈ A and 3 ∉ E. 

Problem 

Let A = {2, 3, 4, 5} and C = {1, 2, 3, . . ., 8, 9}, Show that A is a proper subset of 

C. 

Answer 

Each element of A belongs to C so A ⊆ C. On the other hand, 1 ∈ C but 1 ∉ A. 

Hence A ≠ C. Therefore A is a proper subset of C. 

There are three ways to specify a particular set: 

1) By list its members separated by commas and contained in braces{ }, (if it is 

possible), for example, A= {a,e,i,o,u} 

2) By state those properties which characterize the elements in the set, for 

example, A={x:x is a letter in the English alphabet, x is a vowel} 

3) Venn diagram: ( A graphical representation of sets). 
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Example (1) 

A={x:x is a letter in the English alphabet, x is a vowel} e ∈ A (e is belong to A) 

f ∉ A (f is not belong to A) 

Example (2) 

X is the set {1,3,5,7,9} 3 ∈ X and 4 ∉X 

Example (3) 

Let E = {x | xP2P − 3x + 2 = 0} → (x-2)(x-1)=0 → x=2 & x=1 

E = {2, 1}, and 2∈Ε 

Universal set, empty set: 

In any application of the theory of sets, the members of all sets under investigation 

usually belong to some fixed large set called the universal set. For example, in 

human population studies the universal set consists of all the people in the world. 

We will let the symbol U denotes the universal set. 

The set with no elements is called the empty set or null set and is denoted by ∅ 

or {} 

Subsets: 

Every element in a set A is also an element of a set B, then A is called a subset of 

B. We also say that B contains A. This relationship is written: 

A ⊂ B or B ⊃A 

If A is not a subset of B, i.e. if at least one element of A dose not belong to B, we 

write A ⊄ B. 

Example : 

Consider the sets. A = {1,3,4,5,8,9} B = {1,2,3,5,7} and C ={1,5} 

Then C⊂ A and C⊂ B since 1 and 5, the element of C, are also members of A 

and B. 

But B⊄ A since some of its elements, e.g. 2 and 7, do not belong to A. 

Furthermore, since the elements of A,B and C must also belong to the universal 

set U, we have that U must at least the set {1,2,3,4,5,7,8,9}. 

The notion of subsets is graphically illustrated below 
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A is entirely within B so A ⊂ B. 

Set of numbers: 

Several sets are used so often, they are given special symbols. 

N = the set of natural numbers or positive integers 

 
 

There Is and For All 

A predicate can also become a proposition when prefixed by a quantifier. 

There are two quantifiers, i.e., 

∃ read: there is or there exists 

∀ read: for all or for every 
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Example. Let P(x) : x2 = 4 and Q(x) : x2 > 0. Determine true or false. 

a) ∃x ∈ R : P(x) 

b) ∀x ∈ Z : P(x) 

c) ∃x ∈ Z : Q(x) 

d) ∀x ∈ R : Q(x) 

Solution. Note as follows how each statement is supposed to read. 

 

a) ∃x ∈ R : P(x) represents the statement “There is a real number x such that  

x2 = 4.” This statement is true because there does exist such a 

number x ∈ R, e.g., x = 2. (In fact there is another example, x = −2, 

but producing one example is enough.) 

 

b) ∀x ∈ Z : P(x) stands for “For all integers x, we have x2 = 4. This is 

false, for example consider x = 1, which gives “12 = 4.” (Sometimes this predicate 

can be true, e.g., for x = 2, but not always true.) 

 

c) ∃x ∈ Z : Q(x) is true; just let x = 3, for instance. (In fact, there are abundantly 

many examples, for as long as x 6= 0.) 

 

d) ∀x ∈ R : Q(x) is false, for when x = 0 we get “02 > 0” (even though x = 0 

is the only instance for which Q(x) becomes false). 

 

Exercise. For each predicate P(x) given below, determine the truth 

values of ∃x ∈ R : P(x) and ∀x ∈ R : P(x). 

a) P(x) : x > 2x 

b) P(x) : x4 < −1 

c) P(x) : 3x2 − 15x + 7c = 0 

d) P(x) : 2x2− 9x + 11 > 0 

 

Theorem 1: 

For any set A, B, C: 

1- ∅ ⊂ A ⊂ U. 

2- A ⊂ A. 

3- If A ⊂ B and B ⊂ C, then A ⊂ C. 

4- A = B if and only if A ⊂ B and B ⊂ A. 
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Set operations: 
 

1) UNION: 

The union of two sets A and B, denoted by A ∪ B, is the set of all elements which 

belong to A or to B; 

A ∪ B = { x : x ∈ A or x ∈ B} 

 

 
 

Example 

A={1,2,3,4,5} B={5,7,9,11,13} A ∪ B = {1,2,3,4,5,7,9,11,13} 

 

2) INTERSECTION 

The intersection of two sets A and B, denoted by A ∩ B, is the set of elements 

which belong to both A and B; 

A ∩ B = { x : x ∈A and x ∈B}. 

 

 
 

Example 1 

A={1,3,5,7,9} B={2,3,4,5,6} The elements they have in common are 3 and 5 

 A ∩ B = {3,5} 

 

3) THE DIFFERENCE: 

The difference of two sets A\B or A-B is those elements which belong to A but 

which do not belong to B. 

A\B = {x : x ∈A, x ∉ B} 
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4) COMPLEMENT OF SET: Complement of set APcP or A' , is the set of 

elements which belong to U but which do not belong to A . 

APcP = {x : x ∈ U, x ∉ A} 

 

 
Example: let A={1,2,3} 

B={3,4} 

U={1,2,3,4,5,6} 

Find: 

A ∪ B = {1, 2, 3, 4} 

A ∩ B = {3} 

A - B = {1, 2} 

APcP = {4, 5, 6} 
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Example. Let A = {1, 3, 5, 7},B = {0, 1, 2, 3}, and C = {0, 2}. Determine 

the output of each set operation given below. 

 

 

a) A ∪ B,A ∪ C,B ∪ C 

b) A ∩ B,A ∩ C,B ∩ C 

c) A − B,A − C,B − C 

d) A ⊕ B,A ⊕ C,B ⊕ C 

 

Solution. We refer to the four definitions given above. 

 

a) By definition, x ∈ A ∪ B if and only if x ∈ {1, 3, 5, 7} or x ∈ {0, 1, 2, 3}. 

For this to hold, x can be any one of the elements in either set. Hence, 

A ∪ B = {0, 1, 2, 3, 5, 7}. Similarly, A ∪ C = {0, 1, 2, 3, 5, 7} and B ∪ C = 

{0, 1, 2, 3} = B. 

 

b) Since x ∈ A ∧ x ∈ B is true if only if x is a common element of A and 

B, then we have A ∩ B = {1, 3}. Similarly, A ∩ C = ∅ and B ∩ C = C. 

 

c) Of the elements in A = {1, 3, 5, 7}, only 5 and 7 do not belong to B. 

Hence, A − B = {5, 7}. Similarly, A − C = A and B − C = {1, 3}. 

 

d) Note that x ∈ {1, 3, 5, 7}⊕x ∈ {0, 1, 2, 3} is true exactly when x belongs 

to one, but not both, of the two sets. So we have A ⊕ B = {0, 2, 5, 7}. 

Similarly, A ⊕ C = {0, 1, 2, 3, 5, 7} and B ⊕ C = {1, 3}. 

 

Definition. When A∩B = ∅, we say that the two sets A and B are disjoint. 

 

Example. Explain why A ⊕ B = A ∪ B if A and B are disjoint sets. 

Solution. We have x ∈ A ⊕ B exactly when x belongs to A or B but not 

both. The “both” part may be ignored, since A ∩ B is empty in this case. 

Therefore, A ⊕ B = A ∪ B. 

 

Theorem 2 : 

A ⊂ B , A ∩ B = A , A ∪ B = B are equivalent 

 

 



.............................................................................م.م. الآء حسين خليل  111/ المقرر: ر 1رياضيات متقطعة  

26 
 

Theorem 3: (Algebra of sets) 

Sets under the above operations satisfy various laws or identities, which are listed 

below: 
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We discuss two methods of proving equations involving set operations. The first 

is to break down what it means for an object x to be an element of each side, and 

the second is to use Venn diagrams. For example, consider the first of De 

Morgan's laws: 
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Power set 

The power set of some set S, denoted P(S), is the set of all subsets of S (including 

S itself and the empty set) 

 

Example 1: Let A = { 1,2 3} 

Power set of set A = P(A) = [{1},{2},{3},{1,2},{1,3},{2,3},{},A] 

 

Example 2: P({0,1})={{},{0},{1},{0,1}} 

 

Classes of sets: Collection of subset of a set with some properties 

 

Example: Suppose A = { 1,2 3} , let X be the class of subsets of A which contain 

exactly two elements of A. Then 

class X = [{1,2},{1,3},{2,3}] 

 

Cardinality  

Definition. The cardinality of a set A, denoted by |A|, is the number of elements 

in A, if finite. 

Hence for example, |{a, b, c}| = 3 and |∅| = 0. 

 

 

The cardinality of the power set 

Theorem: If |A| = n then |P(A)| = 2n (Every set with n elements has 2n subsets) 
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Example 

write the answers to the following questions. 

1. |{1,2,3,4,5,6,7,8,9,0}| 

2. |P({1,2,3})| 

3. P({0,1,2}) 

4. P({1}) 

Solution: 

1. 10 

2. 23=8 

3. {{},{0},{1},{2},{0,1},{0,1,2},{0,2},{1,2}} 

4. {{},{1}} 

 

Definition. Two sets A and B are identical, in which case we write A=B,when 

the following proposition holds for every element x.  

x ∈ A ↔ x ∈ B 

Now if we associate two propositions with these two sets, 

p : x ∈ A 

q : x ∈ B 

 

then we see that the four labels respectively correspond to the four rows of (p,q) 

values in the following truth table. 

 
Note that the table includes the truth values of the four set operations ∪,∩,−, and 

⊕. These give their Venn diagrams below, showing the regions where each 

resulting set contains its elements, i.e., where the truth value is true. 
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With Venn diagrams, we are able to give intuitive proofs to certain set identities. 

It is convincing enough, for instance, to deduce that (A − B) ∪ (A∩B) = A since 

both consist of regions 1 and 2 in the diagrams. The next theorem is another 

example. 

 

Theorem . Let A and B be any two sets. Then 

A ⊕ B = (A − B) ∪ (B − A) 

Proof. The proof is an easy visualization with Venn diagrams. Or, if you 

prefer truth tables to Venn diagrams, we may let p : x ∈ A and q : x ∈ B 

as before, and note that (A − B) ∪ (B − A) is given by the proposition 

(p∧￢q)∨(q∧￢p). The truth table below show that (p∧￢q)∨(q∧￢p) ≡ p⊕q, 

which defines the set A ⊕ B. ▽ 

 

 
 

Exercise. Use truth table to establish the set identity 

A ⊕ B = (A ∪ B) − (A ∩ B) 

 

Exercise. Use Venn diagrams to find the resulting set identical to 

each one given below. 

a) (A ∩ B) ⊕ (A − B) 

b) (A − (A − B)) ⊕ B 

c) (A ∪ B) ⊕ (A ∩ B) 

d) (A ∪ B) ⊕ (A ⊕ B) 

 

Definition. If A and B are two given sets, the direct product A × B, read 

A cross B, is defined by A × B = {(a, b) | a ∈ A ∧ b ∈ B}. 

For example, if A = {1, 2} and B = {3, 4} then 

A × B = {(1, 3), (1, 4), (2, 3), (2, 4)} 

B × A = {(3, 1), (3, 2), (4, 1), (4, 2)} 
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Relations 
The language of set theory plays a fundamental role in much of modern 

mathematics. We will study the idea of relations between elements of two sets.  

A relation is a set of ordered pairs. For example: (1, a), (2, b), (3, c). The set of 

first elements is called the domain: {1, 2, 3} and the set of second elements is 

called the range: {a, b, c}. 

Relations can be represented on arrow diagrams 

 
The three main types of relations are shown in the following arrow diagrams 

 

Binary Relations 

There are many relations in mathematics :"less than" , "is parallel to ","is a subset 

of", etc. These relations consider the existence or nonexistence of a certain 

connection between pairs of objects taken in a definite order. We define a relation 

simply in terms of ordered pairs of objects 

 

Definition. Let A and B be two sets. A relation R from A to B means a subset R 

⊆ A × B. 

 

Product sets: 

Consider two arbitrary sets A and B. The set of all ordered pairs (a,b) where a∈A 

and b∈B is called the product, or cartesian product, of A and B. 

A × B = {(a,b) : a∈A and b∈B} 
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Example: Let A = {1,2} and B = {a ,b ,c} then 

A × B = {(1,a), (1,b),(1,c),(2,a),(2,b),(2,c)} 

Also, A × A = {(1, 1), (1, 2), (2, 1), (2, 2)} 

The order in which the sets are considered is important, so A×B ≠ B ×A.Let A 

and B be sets. A binary relation, R, from A to B is a subset of A×B. If (x,y) ∈R, 

we say that x is R-related to y and denote this by xRy if (x,y) ∉R, we write x Ř y 

and say that x is not R-related to y . 

if R is a relation from A to A ,i.e. R is a subset of A × A, then we say that R is a 

relation on A. 

 

The domain of a relation R is the set of all first elements of the ordered pairs 

which belong to R, and the range of R is the set of second elements 

 

Example 1: 

Let A = {1, 2, 3, 4}. Define a relation R on A by writing (x, y) ∈ R if x < y. Then 

R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. 

 

Example 2: 

let A = {1,2,3} and R = {(1,2),(1,3),(3,2)}. Then R is a relation on A since it is a 

subset of A×A with respect to this relation: 

1R2, 1R3, 3R2 but (1,1)∉R & (2,1)∉R 

The domain of R is {1,3} and 

The range of R is {2,3} 

 

Example 3: 

Let A = {1, 2, 3}. Define a relation R on A by writing (x, y) ∈ R , such that a≥b, 

list the element of R 

aRb ↔ a≥b , a,b∈A 

∴ R = {(1,1),(2,1), (2,2), (3,1), (3,2), (3,3)} 
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Properties of relations: 
Let R be a relation on the set A 

1) Reflexive : R is reflexive if : ∀ a ∈A → aRa or (a,a) ∈ R ; ∀ a, b ∈A. . Thus R 

is not reflexive if there exists a ∈ A such that (a, a) ∉ R. 

2) Symmetric : aRb → bRa ∀ a,b ∈A. if whenever (a, b) ∈ R then (b, a) ∈ R. 

Thus R is not symmetric if there exists a, b ∈ A such that (a, b) ∈ R but (b, a) ∉ 

R. 

3) Transitive : aRb ∧ bRc → aRc. that is, if whenever (a, b), (b, c) ∈ R 

then (a, c) ∈ R. Thus R is not transitive if there exist a, b, c ∈ R such that (a, b), 

(b, c) ∈ R but (a, c) ∉ R. 

4) Equivalence relation : it is Reflexive & Symmetric & Transitive. That is, R is 

an equivalence relation on S if it has the following three properties: 

a - For every a ∈S, aRa. 

b- If aRb, then bRa. 

c- If aRb and bRc, then aRc. 

5) Irreflexive : ∀ a ∈A (a,a) ∉ R 

6) AntiSymmetric : if aRb and bRa → a=b 

the relations ≥,≤ and ⊆ are antisymmetric 

 

Example : Consider the relation of C of set inclusion on any collection of sets: 

1) A ⊂ A for any set, so ⊂ is reflexive 

2) A ⊂ B dose not imply B ⊂ A, so ⊂ is not symmetric 

3) If A ⊂ B and B ⊂ C then A ⊂ C, so ⊂ is transitive 

4) ⊂ is reflexive, not symmetric & transitive, so ⊂ is not equivalence relations 

5) A ⊂ A, so ⊂ is not Irreflexive 

6) If A ⊂ B and B ⊂ A then A = B, so ⊂ is anti-symmetric 

 

Example : If A ={1,2,3} and R={(1,1),(1,2),(2,1),(2,3)} 

Is R equivalence relation ? 

1) 2 is in A but (2,2) ∉ R, so R is not reflexive 

2) (2,3) ∈ R but (3,2) ∉ R, so R is not symmetric 

3) (1,2) ∈ R and (2,3) ∈ R but (1,3) ∉ R, so R is not transitive 

So R is not Equivalence relation 
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Example  : What is the properties of the relation  

1) a=a for any element a ∈ A, so = is reflexive 

2) If a = b then b = a, so = is symmetric 

3) If a = b and b = c then a = c, so = is tra-nsitive 

4)R  is (reflexive + symmetric + transitive), so = is equivalence 

5) If a = b and b = a then a = b, so = is anti-symmetric 

The adjective binary indicates that there are two sets involved. Since we are not 

interested in studying relations with more than two sets, from now on we agree 

that the term relation always refers to a binary relation. Since relations are sets, 

with two relations R and S we are allowed to operate on them, e.g., using the 

operator union or intersection. We now introduce a new set operator which is 

customized to relations. 

 

Definition. Suppose that R ⊆ A × B and S ⊆ B × C are two relations. 

Then S ◦ R is the relation from A to C given by 

S ◦ R = {(a, c) | (a, b) ∈ R ∧ (b, c) ∈ S} 

The notation S ◦ R is read R circle S (yes, right to left!) and we refer to this set 

operation as the composition of R with S. 

 

Example. Let A = {1, 2, 3, 4}, B = {x, y, z}, and C = {4, 5, 9}. Consider 

two relations R and S given below, and find the elements of the relation 

S ◦ R ⊆ A × C. 

R = {(1, y), (1, z), (2, x), (2, y), (4, z)} ⊆ A × B 

S = {(x, 4), (x, 9), (y, 5), (z, 5), (z, 9)} ⊆ B × C 

Solution. The first element (1, y) ∈ R matches with the element (y, 5) ∈ S, 

resulting in the new element (1, 5) ∈ S ◦ R. Next, (1, z) ∈ R and (z, 5) ∈ S yield 

the same (1, 5), whereas (1, z) and (z, 9) give (1, 9). In all, seven elements are 

composed in this manner which make up the resulting set. 

S ◦ R = {(1, 5), (1, 9), (2, 4), (2, 5), (2, 9), (4, 5), (4, 9)} 
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There is an arrow (path) from 2 to d which is followed by an arrow from d to z    

2Rd and dSz ⇒ 2(R ° S) z and 3(R◦S)x and 3(R◦S)z 

So       R ° S = {(3,x),(3,z),(2,z)} 
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R ° S = {(2,z),(3,x),(3,z)} 

 

Definition. By the inverse of a relation R ⊆ A × B, we mean the relation from B 

to A given by R−1 = {(b, a) | (a, b) ∈ R}. For example, the inverse of R = {(1, 0), 

(5, 5), (9,−2)} ⊆ N × Z is the relation R−1 = {(0, 1), (5, 5), (−2, 9)} ⊆ Z × N. 

 

 

Definition. Given a set A, we define the identity relation on A to be the special 

relation A0 = {(a, a) | a ∈ A}. Any relation R on A is then called: 

 

1) Reflexive if A0 ⊆ R. 

2) Symmetric if R−1 = R. 

3) Anti-symmetric if R ∩ R−1 ⊆ A0. 

4) Transitive if R2 ⊆ R. 
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Example. Let A = {1, 2, 3, 4}. For each relation R ⊆ A × A given below, 

determine whether R is reflexive, symmetric, anti-symmetric, or transitive. 

 

a) R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (3, 3), (4, 2)}  

b) R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)}  

c) R = {(a, b) ∈ A × A | a ≤ b} 

  

Solution. We note that A0 = {(1, 1), (2, 2), (3, 3), (4, 4)}. 

1) R is symmetric since R−1 = R but not reflexive as (4, 4) ∉ R. Antisymmetric is 

false, e.g., (1, 2) ∈ R ∩ R−1. So is transitive false, because the composition of (4, 

2) with (2, 4) yields (4, 4) ∉R. 

2) You can check that R is reflexive, symmetric, and transitive. Only 

antisymmetric is false. 

3) R is reflexive since a ≤ a for all a ∈ A. Now if a ≠ b, either a < b or b < a but 

never both. It follows that R is anti-symmetric, but not symmetric. Lastly, R is 

transitive for if a ≤ b and b ≤ c, then a ≤ c. 

 

Theorem . Let R be a relation on a set A. Then 

1) R is reflexive if and only if ∀a ∈ A : (a, a) ∈ R. 

2) R is symmetric if and only if ∀a, b ∈ A : (a, b) ∈ R → (b, a) ∈ R. 

3) R is anti-symmetric if and only if (a, b) ∈ R → (b, a) ∉ R for all a, b ∈ A with 

a ≠ b. 

4) R is transitive if and only if (a, b) ∈ R ∧ (b, c) ∈ R → (a, c) ∈ R for all a, b, c 

∈ A. 
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Hence there are only two distinct classes, i.e., {1, 3, 5} and {2, 4, 6} 

 

 

 

 

A function f is a rule that assigns to each element x in a set D exactly one element, 

called f(x), in a set R. 

The range R is the set of all possible values of f(x), when x varies over the entire 

domain D. 

The functions we consider have the domain and range as subsets of the real 

numbers. The real numbers are denoted (∞, −∞) or R. 

We often use y = f(x) as dependent variable (it's called dependent) because it 

depends on the value of x (denoted as independent variable). 



.............................................................................م.م. الآء حسين خليل  111/ المقرر: ر 1رياضيات متقطعة  

39 
 

 
 

 

 
 

 

H = {(1,3),(2,1),(1,2),(3,1)} 

H is not a function 
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Graph of y = f(x):  

 

A graph of y = f(x) pictorially represents the relationship between ordered 

pairs, where the first element in the pair  

is the domain, the second element the range: {(x,f(x))|x∈ 𝐷 } read: “the set of 

ordered pairs (x; f(x)) such that x is an element of D which is the domain." 
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Example: 
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