Abstract

The concepts of indX, IndX, dimX for a topological spaces X have been well studied. In this work, these concepts will be extended by using N- open sets to defineN- ind X,N^*- ind X,N^*- Ind X,N^*- Ind X,N^*- IndX,N- dim X,N^*- dimX. Then the relations among them and other concepts will be studied like NT_1- space, NT_2- space, N- regular space, N^*- regular space, N^*- normal space, N^*- normal space, N^*- normal space, N^*- normal space, N- paracompact space, N- bicompact space. The behavior of these invariants will be studied under certain kinds of maps. The following are some of the main results:

- 1. If X is N paracmopact Hausdorff space, then X is N^{**} regular space.
- 2. If X is a N perfectly zero -dimensional space, then X is N paracmopact space and N dimX = 0.
- 3. If $f: X \to Y$ is a continuous N closed surjection mapping and X is a normal space, then Y is N normal space.
- 4. The following statements about a space X are equivalent:
 - 1. $N dimX \le n$.
 - 2. The N vague order of identity mapping I_x of X is at most n.
 - 3. The N vague order of every N continuous surjection with range X is at most n.
- 5. The following statements about a space X are equivalent:
 - 1. $N^* dimX \le n$.

- 2. The N^* vague order of identity mapping I_x of X is at most n.
- 3. The N^* vague order of every N^* continuous surjection with range X is at most n.
- 6. If X is normal space, Y is a T_1 -space and $f: X \to Y$ is an N-closed continuous open surjection mapping such that N-ind $f^{-1}(y) = 0$ for each y is f(x), then f is an N-decomposing mapping.
- 7. For any space X, then $N locindX = N^* indX$.
- 8. If X is an N^* regular space, then N^* ind $X \le N$ locIndX.
- 9. If X is an NT_1 space, then N^* ind $X \le N$ locIndX.
- 10. If X is an N^{**} normal space, then N locdim $X \leq N$ locIndX.
- 11. If A is an N closed set of a space X, then:
 - 1. $N locdimA \leq N locdimX$.
 - 2. $N locIndA \le N locIndX$.
- 12. If Y is an N open set of an N^{**} regular space X, then:
 - 1. $N locdimY \leq N locdimX$.
 - 2. $N locIndY \le N locIndX$.