Abstract

The concepts of indX, IndX, dimX for a topological spaces X have been well studied.

In this work, these concepts will be extended by using S_{β} – open sets to define S_{β} – indX, S_{β} * – indX, S_{β} – IndX, S_{β} * – IndX, S_{β} – dimX and S_{β} * – dimX.

Then the relations among them and other concepts will be studied like $S_{\beta}-T_1$ space, $S_{\beta}-T_2$ space, S_{β} —regular space, S_{β}^* —regular space, S_{β}^* —normal space, S_{β}^* —normal space, S_{β}^* —normal space, S_{β}^* —normal space, S_{β} —compact. The behavior of these invariants will be studied under certain kinds of maps. The following are some of the main results:

- 1. Let X be a topological space, if S_{β} indX = 0 then X is S_{β} –regular.
- **2.** Let X be a topological space, if $S_{\beta} \operatorname{Ind} X = 0$, then X is S_{β}^* -normal space.
- **3.** Let X be a topological space, if X is regular, then $S_{\beta} \operatorname{ind} X \leq S_{\beta} \operatorname{Ind} X$.
- **4.** Let X be a topological space, if $X S_{\beta} T_1$ space, then $S_{\beta}^* \operatorname{ind} X \leq S_{\beta}^* \operatorname{Ind} X$.
- **5.** Let *X* be a topological space, if S_{β} -dim X = 0, then *X* is S_{β}^{**} -normal space.
- **6.** If X is an S_{β} -perfectly zero dimensional space ,then X is S_{β} -paracompact space and S_{β} dim X=0.
- 7. Let $f: X \to Y$ be S_{β} -perfect function .If X is Hausdorff ,then Y is S_{β} Hausdorff space.

- **8.** Let $f: X \longrightarrow Y$ be S_{β} perfect function .If X is regular space, then Y is S_{β} regular space.
- **9.** If $f: X \to Y$ is a continuous S_{β} -closed surjection function and X is a normal space, then Y is S_{β}^{**} -normal space.
- **10.** Let X be a perfect zero-dimensional space and $f: X \to Y$ be S_{β} -perfect function such that Y has a locally finite covering .Then Y is S_{β} -paracompact, S_{β}^{**} -normal space and S_{β} -regular space.
- 11. The following statements about a space X are equivalent:
- (i) $S_{\beta} dim X \leq n$.
- (ii) The S_{β} -vague order of identity mapping I_{x} of X is at most n.
- (iii) The S_{β} -vague order of every S_{β} -continuous surjection with range X is at most n.
- **12.** If X is a topological space such that $S_{\beta} dimX = 0$ and $f: X \longrightarrow Y$ is an S_{β} -continuous surjection mapping with order at most n then the S_{β} -vague order of f is at most n.