

TopologicalTransformation Group Samir A.Gubair Department of Mathematics College of Computer Science and Mathematics Dephartment University of $\not \mathcal{A L}$-Qadisiya M.Sc. class

Abstract

In this paper, we introduce the concept of topological transformation group and clearing the properties of this concept, Also we give the concept of compact topological transformation groups and study the properties of it.

KeyWords : Topological group ,compact topological transformation groups,Gspaces.

Introduction:

In [4]P.J.Higgins introduced the concept of topological group . Throughout this paper , the spaces x is topological spaces. In [4] P.J.higgins, A coset set $G / H^{\text {is topological group if }}$ H normal subgroup .In [1] Bredon .E.Glen ,(let X be Hausdorff G-space, where G is compact topological group then map $\pi: X \rightarrow X / G$ is a closed map.

topological transformation Group

Definition 1.1[5] Topological group is aset \mathbf{G} with two structures:
i) G is group with respect to . , ${ }^{-1}, \mathrm{e}$
ii) G is a topological space.

And multiplication map
$\mu: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ and the inversion map $\mathrm{v}: \mathrm{G} \rightarrow \mathrm{G}$ are both continuous .

Example 1.2 Let $\mathrm{G}=\mathrm{R}$ be the real number then R is agruop with usual addition + and has the usual metric topology So ($\mathrm{R},+, \mathrm{T}_{\mathrm{u}}$) is a topological group .

Definition 1.3 [5]: Let G be a topological group, and let X be a topological space. By an action of G on X we mean a continuous map $\varnothing: G \times X \rightarrow X$

1) $\quad \varnothing(e, x)=x$, for all $x \in X$.
2) $\emptyset\left(g_{1}, \emptyset\left(g_{2}, x\right)\right)=\emptyset\left(g_{1} g_{2}, x\right)$, for all $x \in X, g_{1}, g_{2} \in G$ We call the triple (G,X, \varnothing) a topological transformation group, and we also express this same thing by simply saying that X is a $\mathrm{G}-$ space.

Remark 1.4 [5]

1)The difference between the left and right action is not trivial one (at least for non-abelian topological groups)
However there is aone to one correspondence between them as follows:
If \emptyset is aleft action of G on X then
$\varnothing^{\prime}: X \times G \rightarrow X$ defined by

$$
\varnothing^{\prime}(x, g)=\varnothing\left(g^{-1}, x\right)
$$

is a right action of Gon X similarly for right action Thus for every left action there is aconjugate right action and vice-versa so every theorem that is true of left action has aconjugate theorem for right action Because of this, We will usually use aleft action.
2)We shall use the notation $g x$ to denote and so $\varnothing(g, x)$ the conditions (iand ii)becomes
i) ex $=x$ for all $\mathrm{x} \in \mathrm{X}$.
ii) $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$ for all $x \in X . g_{1} g_{2} \in G$.

Example 1.5 : Let G be a topological group. Then G acts on itself by multiplication,
$\varnothing: G \times G \rightarrow G,\left(g, g^{\prime}\right) \mapsto g g^{\prime} \quad$,We have
1)eg' $=g^{\prime}$,forall $\mathrm{g}^{\prime} \in \mathrm{G}$
2) $g_{1}\left(g_{2} g^{\prime}\right)=\left(g_{1} g_{2}\right) g^{\prime}$, forall $g_{1}, g_{2} \in G, g^{\prime} \in G$
3) \varnothing is continuous

Here 1) just expresses a property of the identity element of G, and 2) just expresses the fact that the multiplication in G is associative.
SO (G,G, \varnothing) is topological transformation group.

Example 1.6 Let $\mathrm{G}=\mathrm{R}$ be the real additive topological group and $\mathrm{X}=\mathrm{R}$ then R is R -space by $\phi: \Re \times \Re \rightarrow \Re, \phi(r, t)=r+t$. for all $\mathrm{r}, \mathrm{t} \in R$.
Sol:

1) $\emptyset(e, t)=e+t=t$
2) $\phi\left(r_{1}, \phi\left(r_{2}, t\right)=\phi\left(r_{1}, r_{2}+t\right)\right.$

$$
\begin{gathered}
=r_{1}+r_{2}+t=\left(r_{1}+r_{2}\right)+t \\
=\phi\left(r_{1}+r_{2}, t\right)
\end{gathered}
$$

3) ϕ is continuous.

$\therefore \boldsymbol{R}$ is \mathbf{R}-space.

Definition 1.7 [5] let (G,X, \varnothing)be a topological transformation groups :
1.The orbit of $\mathrm{x} \in \mathrm{X}$ is defined to be the set
$G_{x}=\{\varnothing(g, x): \mathrm{g} \in G\} \subset X$.
2.the stabilizer of elements in G that fix x and denoted by S_{x}.
i.e.
$S_{x}=\{g \in G / \phi(g, x)=x\} \subset G$
3.The kernel of the action ϕ is the set
$\operatorname{Ker} \phi=\{g \epsilon G / \phi(g, x)=x$ for all $x \in X\}$.

Lemma 1.8 [5] :Let (G,X,ϕ) be topological transformation groups then :
i) $\quad S_{x}$ is a subgroup of G.
ii) $\operatorname{Ker} \phi$ is anormal sub group of G .
iii) $\operatorname{Ker} \phi=\bigcap_{x \in X} S_{x}$.

Proof: i) Let $\mathrm{g}_{1}, \mathrm{~g}_{2} \epsilon S_{x}$, then
$\phi\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mathrm{x}=\phi\left(\mathrm{g}_{1}, \phi\left(\mathrm{~g}_{2} \mathrm{x}\right)=\phi\left(\mathrm{g}_{1}, \mathrm{x}\right)=\mathrm{x}\right.$,
and hence $\mathrm{g}_{1} \mathrm{~g}_{2} \in S_{x}$.
Furthermore $\mathrm{e} \in S_{x}$; and if $\mathrm{g} \in S_{x}$ then $\mathrm{gx}=\mathrm{x}$, and therefore also
$\emptyset\left(g^{-1}, x\right)=\emptyset\left(g^{-1}, \emptyset(g, x)\right)$
$\phi\left(g^{-1}, x\right)=\varnothing\left(g^{-1} g, x\right)$
$=\emptyset(e, x)=x$
which shows that $g^{-1} \in S_{x}$.
There for S_{x} sub group of G.
ii)let $h \in G$
$h(k e r \varnothing) h^{-1} \subset \operatorname{ker} \phi$

Let $g \in \operatorname{Ker} \phi$
$\therefore\left(h g h^{-1}\right)_{(x)}=h\left(g\left(h^{-1} x\right)\right)=h\left(h^{-1}{ }_{x}\right)$
$=h h^{-1}(x)=x$
$\forall x \in X, h(\operatorname{Ker} \phi) h^{-1} \subset \operatorname{Ker} \phi$
But Ker $\phi \subset h \operatorname{Ker} \phi h^{-1}$
$\therefore \quad \operatorname{Ker} \phi=h \operatorname{Ker} \phi h^{-1}$
Then $\operatorname{Ker} \phi$ normal sub group of G .
iii)
$g \in \operatorname{Ker} \phi \leftrightarrow \phi(g, x)=x . \forall x \in X$
$\leftrightarrow g \in S_{x} \forall x \in X$
$\leftrightarrow g \in \cap S_{x}$

Lemma 1.9[5] let X be a G-space and assume that X is $T_{1 _}$speace Then
i) S_{x} Is a closed sub group of G.
ii) Then the kernel Kerø of the action \varnothing is a closed subgroup of G

Proof: i)We already Know that S_{x} is a supgroup of G . We shall show that S_{x} is closed in G consider the map

$$
\emptyset_{x}: G \rightarrow X . g \mapsto g x
$$

Then ϕ is continuous since

$$
\emptyset_{x}: G \cong G \times\{x\} \rightarrow G \times X \rightarrow X
$$

,and hence

$$
\begin{aligned}
& S_{x=\phi^{-1}\{x\}} \\
& \text { Is closed in } G .
\end{aligned}
$$

ii) since $\operatorname{Ker} \emptyset=\cap_{x \in X} S_{x}$ and S_{x} is closed sub group of G ,for each $x \in X$, the claim follows.
Now note that Kerø is in fact normal subgroup of G . Let $h \in G$. Then

$$
h(\operatorname{ker} \varnothing) h^{-1} \subset \operatorname{ker} \phi,
$$

for if $g \in \operatorname{ker} \phi$, We have that

$$
\begin{aligned}
\left(h g h^{-1}\right)(x)=h\left(g\left(h^{-1} x\right)\right) & =h\left(h^{-1}(x)\right) \\
& =\left(h h^{-1}\right)(x)=x,
\end{aligned}
$$

For all $x \in X$.Likewise $h^{-1}(\operatorname{ker} \varnothing) h \subset k e r \phi$, and therefore

$$
\operatorname{ker} \phi \subset h(\operatorname{ker} \phi) h^{-1}
$$

Thus

$$
\operatorname{ker} \phi=h(\operatorname{ker} \phi) h^{-1}
$$

for all $\mathrm{h} \in \mathrm{G}$, which shows that $\operatorname{Ker} \phi$ is a normal subgroup of G .
Definition 1.10 [5] Let (G,X, \varnothing) be a topological transformation groups then an action \emptyset of G on X is called :
i) Transitive if the orbit $G_{x}=\mathrm{X}$ for all $\mathrm{x} \in X$.
ii)Trivial if $\operatorname{Ker} \phi=G$.
iii)Effective if $\operatorname{Ker} \phi=\{\mathrm{e}\}$.
iv)Free if $S_{x}=\{e\}$ for all $\mathrm{x} \in X$.

Example 1.11 :Let G be topological group then G acts on itself by multiplication,
$\emptyset: G \times G \rightarrow G,(g, \grave{g}) \stackrel{\grave{g}}{ } \dot{g}$. The action is free and transitive .
Sol: To proof ϕ is free and transitive

$$
\begin{aligned}
\because S_{x}= & \left\{g \in G / \phi\left(g, g^{`}\right)=g\right. \\
& =\left\{g \in G /\left(g g^{`}\right)=\grave{g}\right\}=\{\mathrm{e}\} \\
& \therefore \phi \text { is free. }
\end{aligned}
$$

$*$ Let $\mathrm{g} \in G, G_{g} \subset G$
$\because \mathrm{g} \in G \Rightarrow g^{-1} \in G$ and $\grave{g}\left(g^{-1}\right) \in G$
Since G group $\phi\left(g g^{-1}, \grave{g}\right)=g g^{-1} \grave{g}=\grave{g}$
$\grave{g} \in G_{g} \rightarrow G \subset G_{g}$
$\mathrm{G}=\mathrm{Gg}$ for all $\mathrm{g} \in G$
$\therefore \phi$ transitive.
Example 1.12 Let G be a topological group. Then G acts on itself by conjugation,
$\varnothing: G \times G \rightarrow G,(g, \bar{g}) \mapsto g \bar{g} g^{-1}$.
i)the stabilizer is center lizer of h.
ii) $\operatorname{Ker} \phi$ is the center of G .

Sol:
i)Let $\mathrm{g} \in G . S_{g}=\{\mathrm{g} \in G / \phi(g \bar{g})=\bar{g}\}$
$=\left\{g \in G / g \bar{g} g^{-i} g=g \bar{g}\right\}=\{g \in G / g \bar{g} e=g \bar{g}\}$
$=\{\mathrm{g} \in G / g \bar{g}=g \bar{g}\}=$ center lizer of \bar{g}
ii) $\operatorname{Ker} \phi=\{\mathrm{g} \in G / \phi(g, \bar{g})=\bar{g} \forall \bar{g} \in G\}$
$=\left\{g \in G / g \bar{g} g^{-1}=\bar{g} \forall \bar{g} \in G\right\}=\left\{g \in G / g \bar{g} g^{-1} g=\bar{g} g \forall \bar{g} \in G\right\}$
$=\{\mathrm{g} \in G / g \bar{g}=\bar{g} g \forall \bar{g} \in G\}=$ center of G
Example 1.13: If H be sub group of G then G is H -space by right translation and this action is free.
Sol:
$\emptyset: G \times H \rightarrow G, \varnothing(g, h)=R_{h}(g)=g h$

1) $\emptyset(g, h)=R_{e}(g)=g e \forall g \in G$.
2) $\varnothing\left(\varnothing\left(g, h_{1}\right) h_{2}\right)=\varnothing\left(R_{h_{1}}(g), h_{2}\right)$
$=\varnothing\left(g h_{1}, h_{2}\right)=R_{h 2}\left(g h_{1}\right)$
$=\mathrm{g} h_{1} h_{2}=R_{h 1 h 2}(g)$

$$
=\emptyset\left(g, h_{1} h_{2}\right)
$$

4) \emptyset is continuous . (R_{H} homeomorphism)
$\therefore \phi$ action of H on G .
To prove ϕ is free. $\quad S_{g}=\{h \in H: \emptyset(\boldsymbol{g}, \boldsymbol{h})=g \forall g \in G\}$

$$
\begin{aligned}
&=\left\{h \in H: R_{h}(g)=g \forall g \in G\right\} \\
&=\{h \in H:(g h)=g \forall g \in G\} \\
&=\{h \in H:(h)=e \forall g \in G\}=\{\mathrm{e}\} \\
& \therefore \phi \text { is free. }
\end{aligned}
$$

Remark 1.14 [5]

Let X be a G -space. We define a relation \sim in X as follows:
$\mathrm{x}_{1} \sim \mathrm{X}_{2} \leftrightarrow$, there exists $\mathrm{g} \in \mathrm{G}$ such that $\emptyset\left(\mathrm{g}, \mathrm{x}_{1}\right)=\mathrm{x}_{2}$.
We claim that \sim is an equivalence relation in X .

1) ~ i s reflexive: We have $x \sim x$, for every $x \in X$, since $\emptyset(e, x)=x$.
2) \sim is symmetric: Suppose that $x_{1} \sim x_{2}$, then there exists $g \in G$ such that $\emptyset\left(\mathrm{g}, \mathrm{x}_{1}\right)=\mathrm{x}_{2}$.
Then $\mathrm{x}_{1}=\emptyset\left(\mathrm{e}, \mathrm{x}_{1}\right)=\emptyset\left(\left(g^{-1} g\right), \mathrm{x}_{1}\right)=\emptyset\left(g^{-1}, \emptyset\left(\mathrm{~g}, \mathrm{x}_{1}\right)\right)=\emptyset\left(g^{-1}, \mathrm{x}_{2}\right)$. Thus $\emptyset\left(g^{-1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}$, which shows that $\mathrm{x}_{2} \sim \mathrm{x}_{1}$.
3) \sim is transitive: Suppose that $x_{1} \sim x_{2}$ and $x_{2} \sim x_{3}$. Then there exist $\mathrm{g}, \grave{g} \in \mathrm{G}$ such that $\emptyset\left(\mathrm{g}, \mathrm{x}_{1}\right)=\mathrm{x}_{2}$
and $\emptyset\left(\grave{g} \quad, \mathrm{x}_{2}\right)=\mathrm{x}_{3}$. Now $\emptyset\left((\grave{g} \mathrm{~g}), \mathrm{x}_{1}\right)=\emptyset\left(\grave{g} \quad, \emptyset\left(\mathrm{~g}, \mathrm{x}_{1}\right)\right)=\emptyset\left(\grave{g}, \mathrm{x}_{2}\right)=\mathrm{x}_{3}$, which shows that $\mathrm{x}_{1} \sim \mathrm{x}_{3}$.

Thus~ is an equivalence relation in X, and we have that the equivalence class [x] of a point $\mathrm{x} \in \mathrm{X}$ equals

$$
[x]=\{y \in X: x \sim y\}=\{y \in X: y=\emptyset(g, x), g \in G\}=G_{x}
$$

Thus the equivalence class of x under \sim is exactly the orbit $G x$ of x. By X/G (or more accurately by $G \backslash X$) we denote the set of equivalence classes under \sim, that is X / G denotes the set of orbits in X. We call X/G the orbit space of the G-space X . BY $\pi: X \rightarrow X /{ }_{G}, . \mathrm{x} \mapsto \mathrm{Gx}$, we denote the natural projection onto the orbit space. We give X / G the quotient topology induced by $\pi: \mathrm{X} \rightarrow \mathrm{X} / \mathrm{G}$.

Remark 1.15 [5] let X be a G-space then the law of action \emptyset defines the following mapping :
i. A homeomorphism
$\varphi_{g}: X \rightarrow X$ defined by $\varphi_{g}(x)=\varphi(g, x)$ which has inverse is φ_{g-1}.
i.e. $\varphi_{g}{ }^{\circ} \varphi_{g-1}=\varphi_{g}{ }^{\circ} \varphi_{g-1}=I_{x}$.

Where I_{x} is the identity map on X .
ii. A continuous map $\varphi_{x}: G \rightarrow X$ defined by $\varphi_{x}(g)=\varphi(g, x)$
for each $\mathrm{x} \in X$. (since $\varphi_{x}: G \cong G \times\{x\} \subset G \times X \xrightarrow{\varphi} X$.)
Note that $S_{x}=\varphi_{x}^{-1}(\{x\})$ and $G_{x=} \varphi_{x}(G)$.
iii. open continuous surjection map $\pi: X \rightarrow X / G$

Sol: let V open in X we show that $\pi(V)$ open in $X /{ }_{G}$.
To prove $\pi^{-1}(\pi(V))$ open in X .
$\because \pi^{-1}(\pi(V))=\bigcup_{g \in G} g v$.
\because v open in $\mathrm{X} \Rightarrow \mathrm{U}_{g \in G} g v$ open in X .
$\therefore \pi^{-1}(\pi(V))$ open in X .
$(\pi(V))$ open in X / G.
Definition 1.16 [1] let X be G- space then

1) we say that X is free G- space on X if the action of G on X is free.
2) we say that X is effective G- space on X is effective G- space if the action of G on X is effective.
3) We say that X is transitive G-space if the action of G a X is transitive .
Remark 1.17 [1] let (G, X, φ) be a topological transformation groups then :
1.If Homeo(x) represent the set of all homeomorphism on X which is group under the composition law of functions Then the map $\varphi^{\prime}: \mathrm{G} \longrightarrow \operatorname{Homeo}(\mathrm{x}), \mathrm{g} \longmapsto \varphi_{g}$, is homomorphism of groups since
$\dot{\varphi}\left(g_{1}, g_{2}\right)=\varphi_{g 1 g 2}=\varphi_{g 1} o \varphi_{g 2}$
$\grave{\varphi}\left(g_{1}\right) o \grave{\varphi}\left(g_{2}\right)$.
2.If $\mathrm{H} \subseteq \mathrm{G}$ and $\mathrm{A} \subseteq X$ we put $\mathrm{HA}=\varphi(H \times A)=\{\varphi(h, a): h \in H, a \in A\}$ and A is called invariant under H if and only if $\mathrm{HA} \subseteq A$.

Definition 1.18 [5] Let (G,X, φ) be topological transformation group H be a supgroup of G and $\mathrm{A} \subset X$. such that A is invariant under H and $\grave{\varphi}=\varphi /_{H \times A}$ Then (H,A, $\left.\grave{\varphi}\right)$ is called sub topological transformation group.
Remark 1.19 [5] Let X be a G-Space then the law of action φ define the following mapping
$\vartheta: G \times X \rightarrow X \times X, \vartheta(g, x)=(x, \emptyset(g, x))$
i. The map ϑ is continuous since

$$
\begin{aligned}
& \vartheta: G \times X \xrightarrow{I_{G} \times \Delta} G \times X \times X \xrightarrow{\varphi \times I_{x}} X \times X \cong X \times X \\
& \quad(g, x) \mapsto(g, x, x) \mapsto(\varphi(g, x), x) \mapsto(x, \varphi(g, x))
\end{aligned}
$$

ii. The image ϑ is the graph of the equivalence relation defined by the a action φ.
iii. If X is free G -Space then ϑ injective function .

Proof:
TO prove ϑ is injective
Let $\vartheta\left(g_{1}, x_{1}\right)=\vartheta\left(g_{2}, x_{2}\right)$

$$
\left(x_{1}, \varphi\left(g_{1}, x_{1}\right)\right)=\left(x_{2}, \varphi\left(g_{2}, x_{2}\right)\right)
$$

$\Rightarrow x_{1}=x_{2}$ and $\varphi\left(g_{1}, x_{1}\right)=\varphi\left(g_{2}, x_{2}\right)$
Let $x_{1}=x_{2}=x \Rightarrow \varphi\left(g_{1}, x\right)=\varphi\left(g_{2}, x\right)$
Now and $\varphi\left(g_{1}^{-1} g_{2}, x\right)=\varphi\left(g_{12}, \varphi\left(g_{2}^{-1}, x\right)\right.$

$$
\begin{aligned}
& \varphi(e, x)=x \Rightarrow g_{1}^{-1} g_{2} \in s_{x}=\{e\} \\
& \Rightarrow g_{1}^{-1} g_{2}=e \Rightarrow g_{1}=g_{2} \\
& \left(g_{1}, x_{1}\right)=\left(g_{2}, x_{2}\right)
\end{aligned}
$$

$\therefore \vartheta$ is injective.

Theorem 1.20 [1] Let G be a compact topological group, and let $\varphi: \mathrm{G} \times \mathrm{X} \rightarrow \mathrm{X}$ be an action of G on a Hausdorff space X Then
i) φ is a closed map.
ii) If A be a closed subset of X . Then $\mathrm{GA}=\{g a / g \in G, a \in A\}$ is closed in X .
iii) If A is compact, then GA is compact.

Proof:
If A is a closed subset of X, then $G \times A$ is a closed subset of $G \times X$. Hence $\mathrm{GA}=\varphi(\mathrm{G} \times \mathrm{A})$ is closed in X .
If A is compact, then $\mathrm{G} \times \mathrm{A}$ is compact, and hence $\mathrm{GA}=\varphi(\mathrm{G} \times \mathrm{A})$ is compact.

Theorem 1.21 [1] Let X be a Hausdorff G-space, where G is a compact topological group.
Then:

1) The map $\pi: X \rightarrow X / G$ is a closed map
2) The orbit space X / G is Hausdorff.
3)the map $\pi: X \rightarrow X / G$ is compact map .
(If $B \subset X / G$ is a compact sup set of X / G then π^{-1} is compact)
3) X is compact iff X / G is compact.

Proof:

1) To prove $\pi: X \rightarrow X / G$ closed map
$\because A$ is closed in X to prove $\pi(A)$ closed in X / G
i.e. $\pi^{-1}(\pi(A))$ closed in X
$\because \pi^{-1}(\pi(A))=\cup_{g \in G} g A=G A$
$\because G A$ is closed $\Rightarrow \pi(A)$ is closed in G / X
$\therefore \pi$ is closed
2) Let $\grave{x}, \grave{y} \in X / G$ $\ni \grave{x} \neq \grave{y}$

Let $\mathrm{x}, \mathrm{y} \in X$ such that $\pi(x)=\grave{x}, \pi(y)=\grave{y}$ then $\pi^{-1}(\grave{x})=$ G_{X} and $\pi^{-1}(\grave{y})=G_{y}$.
the orbit G_{x} and G_{y} are compact and dis joint (i.e. $G_{x} \cap G_{y}=$ $\phi . \therefore \exists u, v$ open set in $X \ni G_{x} \subseteq u, G_{y} \subseteq v$. with $\bar{u} \cap G_{y}=$ ϕ. since π is closed map then $\pi(\bar{u})$ is closed in $X / G \cdot$ thus $X /{ }_{G}-$ $\pi(\bar{u})$ is open neghborhood of y in X / G.SO $\pi(u)$ open in X / G Э $\bar{x} \in \pi(u) \cdot{ }^{X} /{ }_{G}-\pi(\bar{u})$ open in X / G Э

$$
\bar{y} \in(X / G-\pi(\bar{u})) . \quad \text { and } \pi(u) \cap
$$

$X /{ }_{G}-\pi(\bar{u})=\phi$.this completes the proof of (2).

Remark 1.22 [1] Let X be Hausdorff a G- Space, where G is a compact topological group Then
i. The $\operatorname{map} \varphi_{x}: G \rightarrow X$ is closed map.
ii.each orbit is compact since $G_{x}=\varphi_{x}(G)$.
iii.The stabilizer S_{x} is closed since $S_{x}=\varphi_{x}^{-1}(\{x\})$ and $\{\mathrm{x}\}$ is closed in X Also S_{x} is compact .(closed sub space in compact space)

Proof :
i. Let A is closed in G .
$\because A$ closed and G is compact .
$\therefore A$ compact in G.
$\therefore \varphi_{x}(A)$ compact in X.
$\because \varphi_{x}(A)$ compact and Xis Hausdorff.
$\therefore \varphi_{x}(A)$ is closed.
ii) $\varphi_{x}: G \rightarrow X . \Rightarrow \varphi_{x}(G)=\left\{\varphi_{x}(g): g \in G\right\}=$ orbit $G=G_{x}$
since G closed and φ_{x} closed map.
$\varphi_{x}(G)=G_{x}$ is closed.
$\therefore \varphi_{x}(G)$ compact.
iii. $\varphi_{x}: G \rightarrow X, \varphi_{x}(\mathrm{~g})=\mathrm{gx} . \varphi(\mathrm{g}, x)$ is continuous and surjective.
$\because X$ is H ausdorf.$\Rightarrow X$ is T_{1} - space .
$\therefore\{x\}$ is closed in $X \forall x \in X$.
$\because \varphi$ is continuous .
$\therefore \varphi_{x}^{-1}(\{x\})=S_{x}$ is closed in G.
$\because S_{x}$ closed in G and G is compact and φ_{x} continuous.
$\therefore S_{x}$ compact.

References

[1] Bredon. E. Glen; "INTRRODUCTION TO COMPACT TRANSFORMATION GROUPS, PURE AND APPLIED MATHEATICS ASCRIES of Monographs and Text 6ooks. Vol.46,1972.
[2] KoszuL. L. J.,"Groups ofTransformation Tata Institute of FundamentalResearch, Bombay 1965.
[3] Karl Heinrich \mathcal{H} ofmann. "Introduction to Topological Groups", 2005.
[4] P.J.Higgins ,"An Introduction Topological Groups ",(1974), Cambrridge University Press.
[5] Soren I11man, "TopologicalTransformation Groups I",2002, University of $\mathcal{H e}$ esik,:

