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Abstract

In this paper ,we introduce the concept of topological transformation group and
clearing the properties of this concept ,Also we give the concept of compact

topological transformation groups and study the properties of it.
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spaces.

Introduction:
In [4]P.J.Higgins introduced the concept of topological group . Throughout this paper , the

spaces x is topological spaces. In [4] P.J.higgins , A coset set G / H is topological group if
H normal subgroup .In[1] Bredon .E.Glen ,(let X be Hausdorff G-space , where G is

compact topological group then map 7T: X — X / G is a closed map.



topological transformation
Group



Definition 1.1[5] Topological group is aset G with two structures:
i) G is group with respectto . , 1,e
ii) G is a topological space.
And multiplication map
1w:GxG—G and the inversion map v:G—G are both
continuous .

Example 1.2 Let G=R be the real number then R is agruop
with usual addition + and has the usual metric topology
So (R,+,Tu) is a topological group .



Definition 1.3 [5]: Let G be a topological group, and let X be a

topological space. By an action of G on X we mean a continuous map
B:GxX->X

) YD, x)=x, forall x eX.

2) (Z)(gl,@(gz,x)) = 0(g192,x), forallx €X,g9,,9, €G

We call the triple (G,X,2) a topological transformation group, and we

also express this same thing by simply saying that X is a G-space.

Remark 1.4 [5]
1)The difference between the left and right action is not trivial one (at
least for non-abelian topological groups)
However there is aone to one correspondence between them as follows:
If @ is aleft action of G on X then
&' X xG — X defined by

&'(x,9)=2(g " x)

Is a right action of Gon X similarly for right action Thus for every left
action there is aconjugate right action and vice-versa so every theorem
that is true of left action has aconjugate theorem for right action Because
of this ,We will usually use aleft action.

2)We shall use the notation gx to denote and so @(g, x)the
conditions (iand ii)becomes
1) ex=x for all xe X.

i) g1(92x) = (g1 g2)x forallx € X.g; g, €G.

Example 1.5 : Let G be a topological group. Then G acts on itself by
multiplication,

@:G xG —»G,(g,g)—gg’ ,We have

Deg'=g',forall g' € G

2)0,(9,9") =(9,9,) 9", forallg,,9, € G,9" € G

3) @ Is continuous

Here 1) just expresses a property of the identity element of G, and 2) just
expresses the fact that the multiplication in G is associative.

SO (G,G,0) is topological transformation group.

Example 1.6 Let G=R be the real additive topological group

and X=RthenRisR-spaceby p: R xR >R, ¢(r,t) =r+t. forall
rteR.

Sol:



1) d(e,t) =e+t=t
2) p(r, P(ry,t) = Pp(ry,ry + 1)
=r1+r2+t=(r1+r2)+t
= ¢(r1 + ra, t)
3) ¢ is continuous.
~ R is R-space.

Definition 1.7 [5] let (G,X,@)be a topological transformation
groups :

1.The orbit of xe X is defined to be the set

G,={2(g9,x):g€ G}C X.

2.the stabilizer of elements in G that fix x and denoted by S, .
e.
Sx {g€eG/p(gx) =x}cG

3.The kernel of the action ¢ is the set
Kerg = {geG/¢p(g,x) = x for all xeX}.

Lemma 1.8 [5] :Let (G,X ,¢) be topological transformation groups then :

) S, is asubgroup of G.
i)  Kerg¢ is anormal sub group of G .
)  Kere =Nyex Sy -

Proof: i) Let g1, g2 €Sy, then
$(9:92)% =¢ (92,9(92%) =¢ (91,X) = X,
and hence g:92 € S,.
Furthermoree € S, ;andifg € S, then gx = X, and therefore also
B(g~"x) =08(97" 0(g,x))
6(g~1x) =08(g" g, x)
=0(e,x) = x
which shows that g~ € S,.
There for S, sub group of G.



ii)let h € G
h(ker®)h™! c ker¢

Let g € Ker¢

 (hgh™)=h(g(h"'x)) = h(h™*)
=hh 1(x) =x

Vx€X,h( Ker¢p)h™! c Ker¢

But Ker¢p ¢ hKer¢ h™?!

Ker¢p = hKer¢p h™1
Then Kerg normal sub group of G .

i)

g € Kerp & ¢p(g,x) =x.VxeX
o g€E S, VxeX
S gEeENS,

Lemma 1.9[5] let X be a G-space and assume that X is
T,_speace Then

1) S, Isaclosed subgroup of G.

i) Then the kernel Kers of the action @ is a closed subgroup of G

Proof: i)We already Know that S, is a supgroup of G . We shall
show that S, isclosed in G .consider the map

DG - X.gm gx
Then ¢ is continuous since

DG =G X{x}>GXxXX->X
,and hence
Sx=¢p'(x)
Is closed in G .

i) since Ker@ =n,cx S, .and S, is closed sub group of G ,for
each x € X, the claim follows.

Now note that Kera is in fact normal subgroup of G . Let he G .
Then



h(ker@)h™! c kerg,

for if g € ker¢,We have that
(hgh™)(x) = h(g(h™*x)) = h(h™*(x))
= (hh™H)(x) = x,

For all x € X.Likewise h™1(ker®)h c ker¢,and therefore

ker¢ c h(ker¢p)h™?!
Thus

kerep = h(ker¢)h™!

for all h € G, which shows that Kerg is a normal subgroup of G.
Definition 1.10 [5] Let (G,X,®) be a topological transformation groups
then an action @ of G on X is called :

I)Transitive if the orbit G, =X for all xe X .

i)Trivial if Ker¢ = G.

lii)Effective if Ker¢ ={e}.

iv)Free if S, = {e} forall xe X.

Example 1.11 :Let G be topological group then G acts on itself by
multiplication ,

0:G xG - G ,(g,9) » gg.The action is free and transitive .
Sol: To proof ¢ is free and transitive
©5,={g€G/p(g.9)=g}

={9€G/ (g9 )=g }={e}

~ ¢ is free.

xLetge G ,G, G
“gEG =g '€Gand g(g") €G
Since G group ¢(gg™",9) =99 ' g = ¢
g€G, -GGy
G=Ggforallge G
. ¢ transitive .

Example 1.12 Let G be a topological group. Then G acts on itself by
conjugation,

&:G xG —»G,(9,7) — gdg .

I)the stabilizer is center lizer of h .

i)Kerd is the center of G .

Sol:

Letg€G .5, ={g€G/¢(99) =3}
={0€G/999 '9g=939}-{0€G/gge =93}



={ g€ G/gg = gg}=center lizer of g
iKer¢p ={g€G/P(9.9)=g Vg €G]}

={9€G/9g 97" =g Vg €G}={9€G/9g7 g7'g=ggVvg €G}
={g€eG/gg =gg Vg € G }=center of G
Example 1.13: If H be sub group of G then G is H-space by right
translation and this action is free.
Sol:
@:G xH - G,9(g,h) =R,(g) = gh
1)@(g,h) = R.(9) = geVg €G.
2)0(@(g, h1)h,) = O(Rp1(g), hy)

=0(ghy, hy) = Rpa(ghy)

=ghih; =Rp1p2(9)

= 0(g, h1hy)

) @ is continuous .(R; homeomorphism)
~ ¢ action of H on G.
Toprove ¢ is free. S, ={heH: @(g,h) =gV g€ G}

={heH: Ry(9) =gV ygEG}

={heH: (gh)=gV gEG}

={heH: (h)=eVge€G}={e}

~ @ is free.

Remark 1.14 [5]

Let X be a G—space. We define a relation ~ in X as follows:

X1~ Xpe> , there exists g € G such that @(g,x1) = Xo.

We claim that ~ is an equivalence relation in X.

1) ~ i s reflexive: We have x ~ x, for every x € X, since @ (e ,X) = X.

2) ~ is symmetric: Suppose that x; ~ X, then there exists g€ G such that
@ (g,X1) = Xa.

Then X1 =@( e,x1) =@ ((97"9)x1)=B( g~ B(9,x1)) = B(g~"X2). Thus
B(g~1 2 )= X1, which shows that x, ~ X;.

3) ~ s transitive: Suppose that X; ~ X, and X, ~ Xs. Then there exist
9,9 € Gsuch that @ (g,x1) = X2

and@(g , %2)=Xs. Now @((g 9).x1) =B(g D(g.X1)) =B (g, Xz = X,
which shows that x; ~ Xxs.

Thus~ is an equivalence relation in X, and we have that the equivalence
class [x] of a point x € X equals



[X]={ye X:x~ y}={y€ Xy=0(g,x), g € G}=G,

Thus the equivalence class of x under ~ is exactly the orbit Gx of x. By
X/G (or more accurately by G\X)

we denote the set of equivalence classes under ~, that is X/G

denotes the set of orbits in X. We call X/G the orbit space of the
G-space X. BY m:X - X/G X P GX,

we denote the natural projection onto the orbit space. We give X/G the
quotient topology induced by m:X —X/G.

Remark 1.15 [5] let X be a G-space then the law of action @ defines the
following mapping :

I. A homeomorphism

@g:X — X defined by ¢, (x) = @(g,x) which has inverse is ¢, _;.

i.e. (pg°(pg_1:(pg°gog_1 = Iy.

Where I, is the identity map on X .

ii. A continuous map ¢,: G — X defined by ¢, (g) = ¢(g,x)

foreachxe X .(since p,: G =G xX{x}c G XX ke X.)
Note that S, = @71 ({x}) and G, ¢, (G).

Iii. open continuous surjection map m: X — X/G

Sol: let V open in X we show that (V) openin X/G :
To prove = *(m(V))open in X.

n‘l(n(V)) =Ugec gVv-

wvopenin X = Ugee gvopenin X,

~ ™ (m(V)) openin X .

(m(v)) openin X/..
Definition 1.16 [1] let X be G- space then
1) we say that X is free G- space on X if the action of G on X is free.
2) we say that X is effective G- space on X is effective G- space if
the action of G on X is effective.
3) We say that X is transitive G-space if the action of G a X is
transitive .
Remark 1.17 [1] let (G,X,¢) be a topological transformation
groups then :
1.1f Homeo(x) represent the set of all homeomorphism on X which
is group under the composition law of functions Then the map
¢ G— Homeo(x) ,g— ¢, is homomorphism of groups since

¢ (91,92) = Pg1g2 = Pg10Pg2
®(g91)0 ¢ (g2).



2.1f HEG and A< X we put HA=¢(H X A) = {@(h,a): heH , acA}
and A is called invariant under H if and only if HAC A.

Definition 1.18 [5] Let (G,X, ¢) be topological transformation group
H be a supgroup of G and A c X. such that A is invariant under H and
@ =@ /uxa Then (HA, ¢ ) is called sub topological transformation
group .
Remark 1.19 [5] Let X be a G-Space then the law of action ¢ define the
following mapping
9:G XX ->XXX,9(g,x)=(x,8(g,x))

. The map 9 is continuous since

Ic,'XA QX
GXX—DGECXXXX—DXXX=XXX

(9,%x) — (g,x,x) — (p(g,x),x) » (x,0(g,x))

Ii.  Theimage 9 is the graph of the equivalence relation defined by
the a action ¢ .
ii.  If X is free G-Space then 9 injective function .
Proof:
TO prove 9 is injective
Let 9(g1,x1) = 9(g2, x2)
(x1;(P(g1»x1)) = (x2,9(g2,%2))
= x1 = X, and ¢(gq1, X1) = ¢(g2, X2)
Letx; =x, =x = ¢(g1,x) = ¢(g2, x)
Now and ¢ (g1 g2 %) = ¢(g12, (92", %)
ple,x) =x = g1 g, € s, = {e}
=gi'g.=e=g1=9;
(91, %1) = (g2, X2)
~ 9 is injective.



Theorem 1.20 [1] Let G be a compact topological group, and let
@:GxX— X be an action of G on a Hausdorff space X Then
1) ¢ isaclosed map.
i) If Abeaclosedsubsetof X. Then GA={ga/g € G,ac€ A}is
closed in X.

i) If A is compact, then GA is compact.

Proof:

If A is a closed subset of X, then G x A is a closed subset of G x X.
Hence GA =¢ (G x A)is closed in X.

If A is compact, then G x A is compact, and hence

GA = ¢ (G x A) is compact.

Theorem 1.21 [1] Let X be a Hausdorff G—space, where G is a compact
topological group.

Then:

1) Themapm: X — X/G Is a closed map

2) The orbit space X/G is Hausdorff.

3themap r: X — X/G IS compact map .

(If B c X/G is a compact sup set of X/G then m~1is compact)

4)X is compact iff X/G IS compact.



Proof :
1) To prove m: X — X/G closed map
“ Ais closed inX to prove m(A)closed in X/G
i.e.t~(m(A))closed in X

w7 ((A4)) = Ugeg gA = GA

v GA is closed = m(A)is closed in G/X

~ 1 is closed

2) Letx,y € X/ 22 # y
Let X,y € X such that m(x) = x,m(y) = ythenn (%) =
Gx andt~'(y) =G, .
the orbit G, and G, are compact and dis joint (i.e. GG, =
¢.~ Ju,vopensetinX 3 G, S u,G, Sv.withunG, =
¢.since  is closed map . then n(%)is closed in X/G .thus X/G —
n(%)is open neghborhood of y in X/G .50 r(u)open in X/G =)
X € n(u).X/G — n(it)open in X/G =)

y € (X/G — n(ﬂ)). and m(w) N
X/G — () = ¢.this completes the proof of (2) .

Remark 1.22 [1] Let X be Hausdorff a G- Space ,where G is a
compact topological group Then

I. The mapg,: G — X is closed map.

ii.each orbit is compact since G, = ¢, (G) .

iii.The stabilizer S, is closed since S, =¢@;1({x}) and
{x}is closed in X AlsoS, is compact .(closed sub space in
compact space )

Proof :
. Let Aisclosed in G.
A closed and G is compact .



s~ AcompactinG .

o @ (A)compact in X .

v @, (A)compact and Xis Hausdorff.
~ @, (A) is closed.

i) @G > X.= Qox(G) = {(px(g):g € G} = orbitG = G,
since G closed and @, closed map.

¢, (G) = G, is closed .

~ @, (G)compact.

lii. G — X, p,(9)=0X.(g, x)is continuous and surjective .
X is H ausdorf .= X is T; — space .

s {x}isclosedinXVvVx€eX.

@ IS continuous .

w7 ({x}) =S, is closed inG .

S, closed in G and G is compact and @, continuous.
~ S, compact . m
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