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Abstract 
Throughout this seminar we will study I-Lindelof spaces  and in its last part 

,investigates images and inverse images of I-Lindelof spaces under some 

considered type of functions. 

 

1- Preliminaries 
We need the definitions of lindelofness and definitions of some classes of 

generalized open sets . 

Definition 1-1[7]: 
A topological space X is said to be lindelof  if and only if every open cover of  

X possesses a countable sub cover. 

 

Definition 1-2[8]: 
Let  A be a subset of topological space X then A is called. 

(a) A regular-closed set if A = cl(int(A)). 
(b) A regular-open set if A = int(cl(A)). 

(c) A semi-open set if A ⊆ cl(int (A)). 

(d) A semi-closed set if int(cl(A)) ⊆ A. 

(e) A preopen set if A ⊆ int (cl(A)). 

(f) A preclosed set if cl(int (A)) ⊆ A. 

(g) A semi-preopen set or β-open set if A ⊆ cl(int(cl(A))). 

(h) A semi-preclosed set or β-closed set if int(cl(int(A))) ⊆ A. 

(i) A subset G is called regular semiopen if there exists a regular open set W 

such that W ⊆ G ⊆ cl(W). 

(j) RO(X,T) ,( SPO(X,T), resp.) is used to denote the family of all regular open 

(all semi-preopen, resp.) subsets of a space (X,T). 

 

Remark 1-3[7]: 
 
regular closed  ⇒ regular semiopen  ⇒ semiopen  ⇒ semi-preopen. 
 

 

 
 

 



2- I-lindelof spaces: 

 

Definition 2-1[7]: 
A space (X,T) is called I-Lindelof if every cover A of X by regular closed 

subsets of the space (X,T) contains a countable subfamily B  such that          

X = ∪{ int(A) : A ∈ B }.  
Example 2-2:  
Let T = { A⊆ R: 0∈A}∪{Ø}  is a topology on R  then (R ,T) is I-Lindelof . 

Let Ø ≠A⊂R 

(a) If 0 ∈ A  ⇒ A∈T ⇒ A=int(A), but cl(int(A))=R 

Thus A ≠cl(int(A)), A is not regular closed 

(b) If 0 ∈ A  ⇒ int(A)=Ø  ⇒cl(int(A))= Ø ≠A 

Thus  A is not regular closed 

Thus Ø  and R are only regular closed subsets of R  

Hence (R ,T) is I-Lindelof . 

Remark 2-3: 
I-Lindelof space  Lindelof space . 

Example 2-2 (R ,T) is I-Lindelof space but not Lindelof space . 

Since Ψ = { {o , x} , x ∈R } is an open cover of R  

Thus R = ∪{ {o , x} , x ∈R } , but Ψ has not countable subcover  

There fore (R ,T) is not lindelof. 

Theorem 2-4[7]: 
The following statements are equivalent for a space (X ,T). 

(a) (X ,T) is I-Lindelof. 

(b) Every cover A  of the space (X ,T) by semi-preopen subsets contains a 

countable subfamily B  such that X = ∪{ int(cl(A)) : A ∈B } 

(c) Every cover A  of the space (X ,T) by semiopen subsets contains a 

countable subfamily B   such that X = ∪{ int(cl(A)) : A ∈B }.  

(d) Every cover A  of the space (X ,T) by regular semiopen subsets contains a 

countable subfamily B such that X = ∪{ int(cl(A)) : A ∈B }. 

Its clear to show that by using (Remark 1-3) 

Remark 2-5[7]: 
Next we give another characterization of I-Lindelof spaces using the fact that 

a subset G is regular closed if and only if its complement is regular open. 



Theorem 2-6 : 
A space (X ,T) is I-Lindelof if and only if every family U of regular 

open subsets of (X ,T) with ∩{U : U ∈ U} = Ø contains a countable 

subfamily V  such that ∩{ cl(U) : U ∈V } = Ø .  

Proof: let U = {Uα : α ∈ A} be a family of regular open subsets 

of (X ,T) such that ∩{Uα : α ∈ A}=Ø ,Then the family {X− Uα : α ∈ A} forms a 

cover of the I-Lindelof space (X ,T) by regular closed subsets and therefore A 

contains a countable subset  B  such that X = ∪{ int(X− Uα ) : α ∈ B}. Then  

X−∪{int(X− Uα ) : α ∈ B}=Ø 

=∩{X− int(X− Uα ) : α ∈ B} =∩{ cl(Uα ) : α ∈ B}. 

Now, let A = {Gα : α ∈ A} be a cover of the space (X ,T) by regular 

closed subsets. Then {X− Gα : α ∈ A} is a family of regular open subsets of   

(X ,T) with ∩{X − Gα : α ∈ A_} = Ø , By assumption, there exists a countable 

subset B of A such that ∩{cl(X− Gα ) : α ∈ B} = Ø . 

So X = X−∩{cl(X− Gα ) : α ∈ B}  

= ∪{X−cl(X− Gα ) : α ∈ B} = ∪{int(Gα ) : α ∈ B}.This proves that (X ,T) is I-Lindelof. 

Definition 2-7[5]: 
A space (X ,T) is called rc-Lindelof  if  every cover A of X by regular closed 

subsets of the space (X ,T) contains a countable  subcover for X . 

Proposition 2-8[5]: 
Every I-Lindelof space is rc-Lindelof. 
Its clear to show that by (Definition 2-7 ) and (Definition 2-1) . 
Definition 2-9[5]: 
A space (X ,T) is extremally disconnected (e.d.) if cl(U) is open for each 

open U ∈ T. It is easy to show that a space (X ,T) is e.d. if and only if, given 

any two regular open subsets U and V with U∩V =Ø , cl(U)∩cl(V)=Ø . 

 Proposition 2-10 : 
Every I-Lindelof space (X ,T) is e.d. 

Proof: Suppose that (X ,T) is not e.d. Then we find U ,V ∈ RO(X ,T) such that 

U∩V =Ø but  cl(U)∩cl(V) ≠ Ø , say t ∈ cl(U)∩cl(V).                              

Now, the family {X −U,X−V} forms a cover of the I-Lindelof space (X ,T) by 

regular closed subsets. 

Thus X = int(X−U)∩int(X−V). 

Assume t ∈ int(X−U). But  t ∈ cl(U) and therefore Ø≠ int(X−U)∩U ⊆(X−U)∩U     

Its a contradiction. Thus a space (X ,T) is e.d. 



 

Theorem 2-11: 
A space (X ,T) is I-Lindelof if and only if it is an e.d , rc-Lindelof space . 

Proof: As necessity is clear, we prove only sufficiency. We let A be a cover 

of (X ,T) by regular closed subsets. If A ∈A then A is regular closed and can 

be written as A = cl(int(A)) Since (X,T) is e.d , the set A = cl(int(A)) is open.  

Now, since(X,T) is rc-Lindelof, the cover A contains a countable subfamily B 

such that X = ∪{A : A ∈ B} = ∪{int(A) : A ∈B } because A = int(A) for each 

A ∈A , This proves that (X,T) is I-Lindelof . 

 

Example 2-12: 

We construct an rc-Lindelof space which is not I-Lindelof. We let X 

be a countable infinite set and we fix a point t ∈ X. We provide X with the 

topology T={U ⊆ X : t ∉ U}∪{U ⊆ X : t ∈ U and X − U is finite}. 

It is immediate that (X ,T) is rc-Lindelof . 

To see that (X ,T) is not e.d , we write X = A∪B , where A and B are disjoint 

infinite subsets . 

Assume that t ∈ A ,Then B is an open subset of (X ,T) and cl(B) = B∪{t}. But 

cl(B) is not open and hence (X ,T) is not e.d. 

Therefore, by (Theorem 2-11) , is not I-Lindelof. 

Definition 2-13[6]: 
A space (X ,T) is called: 

(a) nearly Lindelof if every open cover U of (X ,T) contains a countable 

subfamily V such that X = ∪{int(cl(U)) : U ∈V } . 

(b) countably nearly compact if every countable open cover U of (X ,T) 

contains a finite subfamily V  such that X = ∪{int(cl(U)) : U ∈V }. 

(c) I-compact if every cover A OF the space by regular closed subsets 

contains a finite subfamily {A1,A2,...,An} such that  X =∪{ int(Ak) , k=1,2,…..n}. 

Proposition 2-14[1]: 
If a space (X ,T) is I-compact then it is I-Lindelof . 

Theorem 2-15[6]: 
A space (X ,T) is I-compact if and only if it is I-Lindelof and countably 

nearly compact. 

Its clear to show that . 

 



Theorem 2-16 : 

 A space (X ,T) is I-Lindelof if and only if it is an e.d , nearly Lindelof 

space. 

Proof:  To prove necessity, we see that (X ,T) is, by (Proposition 2-10), e.d. 

Now, let U be an open cover of (X ,T). Then {cl(U) : U ∈V } is a cover of the 

I-Lindelof space(X ,T) by regular closed subsets. So U contains a countable 

subfamily V  such that X = ∪{int(cl(U)) : U ∈V }. This proves that (X ,T) is 

nearly Lindelof. 

Next, 

we let A be a cover of (X ,T) by regular closed subsets. Since (X ,T) is e.d  

Then each A ∈A is open. So A is an open cover of the nearly Lindelof space (X ,T) 

and therefore A contains a countable subfamily B such that                                   

X = ∪{int(cl(A)) : A ∈B } =∪{int(A) : A ∈B } and we conclude that (X,T) is I-Lindelof. 

Theorem 2-17[6]: 

Let (X,T) be e.d. Then the following statements are equivalent: 

(a) (X,T) is I-Lindelof; 

(b) (X,T) is rc-Lindelof; 

(c) (X,T) is nearly Lindelof. 

Its clear to show that .  

Proposition 2-18[3]: 

Every regular open (and hence every regular closed) subspace of an 

I-Lindelof space is I-Lindelof. 

Theorem 2-19 : 
If a space (X,T) is a countable union of open I-Lindelof subspaces, 

then it is I-Lindelof. 

Proof: Assume that X = ∪{Un : n ∈ N}, where (Un,T|Un) is an I-Lindelof subspace 

for each n∈ N. Let A be a cover of the space (X ,T) by regular closed subsets. 

For each n ∈ N, the family {A∩Un : A ∈A } is a cover of Un by regular closed 

subsets of  the I-Lindelof subspace (Un,T|Un) So we find a countable subfamily 

An of A such that Un=∪{intUn(A∩Un) : A ∈An}. Put B=∪{An : n ∈ N}.   

Then B  is a countable subfamily of A . 

Since X=∪{Un : n ∈ N}= ∪n∈N {∪{intUn(A∩Un) : A ∈An}} 

⇒ = ∪n∈N {∪{intx(A∩Un) : A ∈An}}⊆∪{intx(A) : A ∈B }⊆X . 

That is, X=∪{int(A) : A ∈B }. Therefore (X ,T) is I-Lindelof. 



Remark 2-20[7]: 
If {(Xα,Tα ) : α ∈ A} is a family of spaces, we let ⊕α∈AXα denote their 

topological sum. 

Theorem 2-21 : 
The topological sum ⊕α∈AXα of a family {(Xα,Tα ) : α ∈ A} is I-Lindelof 

if and only if (Xα,Tα ) is I-Lindelof for each α ∈ A and that A is a countable set.  

Proof:  

Its clear to show that ⊕α∈AXα of a family {(Xα,Tα ) : α ∈ A} is I-Lindelof by 

using (Theorem 2-19) . 

Now ,since (Xα,Tα ) is a regular open subspace of the I-Lindelof space ⊕α∈AXα 

Therefore (Xα,Tα ) is ,by (Theorem 2-18) ,I-Lindelof for each α ∈ A. 

Since the family {Xα : α ∈ A} forms a cover of the rc-Lindelof space ⊕α∈AXα 

by mutually disjoint regular closed subsets and therefore must contain a 

countable subfamily whose union is ⊕α∈AXα . Thus A must be a countable set. 

 

 

3- Images and inverse images of I-lindelof spaces: 

 

Definition 3-1[2]: 
Let 𝒇: (X,T) → (Y ,M),is function then: 

(a) 𝒇 is called almost open if 𝒇−𝟏(cl(V)) ⊆ cl(𝒇−𝟏(V)) for each V ∈M.   

(b) 𝒇 is called (weakly) semi-preclosed if 𝒇(A) is a semi-preclosed subset of   

(Y ,M) for each regular closed subset A of (X ,T). 

Definition 3-2[4]: 
(a) A space (X ,T) is km-perfect if, for each U∈RO(X ,T) and each point x ∈ X – U , 

there exists a sequence {Un : n ∈ N} of open subsets of (X ,T) such that 

∪{Un : n ∈ N} ⊆ U ⊆ ∪{cl(Un) : n ∈ N} and x ∉ ∪{cl(Un) : n ∈ N}. 

(b) A space (X ,T) is P-space if every countable union of closed subsets 

is closed . 

Proposition 3-3[4]: 
 every e.d space is km-perfect space . 

corollary 3-4 : 
every I-Lindelof space is km-perfect space . 

Its clear to show that by using (Proposition 2-10 )and(Proposition 3-3). 

 



Theorem 3-5 : 
If (X ,T) is a km-perfect P-space ,then (X ,T) is e.d. 

Proof:  We show that cl(U) is open for each U ∈ T. Note that int(cl(U)) is 

regular open and if x ∉ int(cl(U)), then, since (X ,T) is km-perfect, there exists 

a sequence {Un : n ∈ N} of open subsets such that  

∪{Un : n ∈ N} ⊆int(cl(U))⊆∪{cl(Un) : n ∈ N} and x ∉ ∪{cl(Un) : n ∈ N}.          

and x ∉ ∪{cl(Un) : n ∈ N}. Since (X ,T) is a P-space, then ∪{cl(Un) : n ∈ N} is 

closed and contains int(cl(U)) and so it contains cl(int(cl(U))). 

Thus x ∉ cl(int(cl(U))) and 

we obtain that cl(int(cl(U))) = int(cl(U)). But U ⊆ int(cl(U)) and therefore   

cl(U) ⊆cl(int(cl(U))) = int(cl(U)) ⊆ cl(U), that is, cl(U) = int(cl(U)), 

which shows that cl(U) is open ,thus (X ,T) is e.d. 

Proposition 3-6[2]: 
A function 𝒇: (X ,T) → (Y ,M) is weakly semi-preclosed if and only if, 

for every y ∈ Y and for each (U ∈ RO(X,T)) U ∈ T with 𝒇−𝟏(y) ⊆ U, there 

exists W ∈ SPO(Y ,M) such that y ∈W and 𝒇−𝟏(W) ⊆ U. 

Theorem 3-7 : 
Let (X ,T) be a km-perfect P-space. Let 𝒇: (X,T)→(Y ,M) be weakly 

semi-preclosed almost open with 𝒇−𝟏(y) an rc-Lindelof set for each y ∈ Y.  

   If (Y ,M) is I-Lindelof, then so is (X ,T). 

Proof: 

It is clear, by (Theorem 3-5 ), that (X ,T) is e.d. and therefore we only show 

that (X ,T) is rc-Lindelof (Theorem 2-11) 

We let A be a cover of X by regular closed subsets of the space (X,T) . 

For each y ∈ Y , A forms a cover of the rc-Lindelof subset 𝒇−𝟏(y) so we 

find a countable subfamily Ay of A such that 𝒇−𝟏(y)⊆ ∪{A : A ∈Ay} = Gy . 

Then Gy is open, because (X ,T) is e.d. and therefore RC(X,T) = RO(X,T). 

But 𝒇−𝟏(y) ⊆ Gy ,then we find, by (Proposition 3-6), a subset Vy ∈ SPO(X ,T) 

such that  y ∈ Vy and 𝒇−𝟏(Vy) ⊆ Gy . 

Now, the family {Vy : y ∈ Y} forms a cover of Y by semi-preopen subsets of 

the rc- Lindelof space (Y ,M) ,it contains a countable 

subfamily {Vyn : n ∈N} such that Y = ∪{cl(Vyn) : n ∈ N}.                            

We put B = ∪{Ayn : n ∈ N} ,Then B  is countable and B  is a cover of X. 

To see this ,let x ∈ X and let y = 𝒇(x). Choose k ∈ N such that y ∈ cl(Vyk ).   

Since 𝒇is almost open Then x ∈𝒇−𝟏(cl(Vyk)) ⊆ cl(𝒇−𝟏(Vyk)) ⊆ cl(Gyk ) = Gyk 



(because (X ,T) is a P-space and Gyk is a countable union of closed subsets).   

We have x ∈ Gyk= ∪{A : A ∈Ayk} ⊆ ∪{A : A ∈B }. The proof is now complete. 
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