
1

Java

Lecture 1

The Java Development Kit – JDK

In order to get started in Java programming, one needs to get a recent copy of the Java JDK. This can

be obtained for free by downloading it from the Sun Microsystems website, http://java.sun.com /

Once you download and install this JDK you are ready to get started. You need a text editor as well and

Microsoft’s Notepad (standard with all Windows versions) suits fine .

My first Java program

Open your text editor and type the following lines of code:

/*

My first program

Version 1

*/

public class Example1 {

public static void main (String args []) {

System.out.println ("My first Java program");

}

}

Variables and Data Types

Variables
A variable is a place where the program stores data temporarily. As the name implies the value

stored in such a location can be changed while a program is executing (compare with constant).

class Example2 {

public static void main(String args[]) {

int var1; // this declares a variable

int var2; // this declares another variable

var1 = 1024; // this assigns 1024 to var1

System.out.println("var1 contains " + var1);

var2 = var1 / 2;

System.out.print("var2 contains var1 / 2: ");

System.out.println(var2);

}

}

2

Mathematical Operators
As we saw in the preceding example there are particular symbols used to represent operators when

performing calculations:

class Example4 {

public static void main(String args[]) {

int iresult, irem;

double dresult, drem;

iresult = 10 / 3;

irem = 10 % 3;

dresult = 10.0 / 3.0;

drem = 10.0 % 3.0;

System.out.println("Result and remainder of 10 / 3: " +

iresult + " " + irem);

System.out.println("Result and remainder of 10.0 / 3.0: "

+ dresult + " " + drem);

}

}

Predicted Output:

Result and Remainder of 10/3: 3 1

Result and Remainder of 10.0/3.0: 3.3333333333333335 1

Logical Operators
These operators are used to evaluate an expression and depending on the operator used, a particular output is

obtained. In this case the operands must be Boolean data types and the result is also Boolean. The following

table shows the available logical operators:

3

class Example5 {

public static void main(String args[]) {

int n, d;

n = 10;

d = 2;

if(d != 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n);

d = 0; // now, set d to zero

// Since d is zero, the second operand is not evaluated.

if(d != 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n);

/* Now, try same thing without short-circuit operator.

This will cause a divide-by-zero error.

*/

if(d != 0 || (n % d) == 0)

System.out.println(d + " is a factor of " + n);

}

}

Predicted Output:

2 is a factor of 10

Character Escape Codes
The following codes are used to represents codes or characters which cannot be directly accessible

through a keyboard:

class Example6 {

public static void main(String args[]) {

System.out.println("First line\nSecond line");

System.out.println("A \t B \t C");

System.out.println("D \t E\ t F") ;

}

}

4

Predicted Output:

First Line

Second Line

A B C

D E F

Data Types
The following is a list of Java’s primitive data types:

The ‘String’ type has not been left out by mistake. It is not a primitive data type, but strings (a

sequence of characters) in Java are treated as Objects.

class Example8 {

public static void main(String args[]) {

int var; // this declares an int variable

double x; // this declares a floating-point variable

var = 10; // assign var the value 10

x = 10.0; // assign x the value 10.0

System.out.println("Original value of var: " + var);

System.out.println("Original value of x: " + x);

System.out.println(); // print a blank line

// now, divide both by 4

var = var / 4;

x = x / 4;

System.out.println("var after division: " + var);

System.out.println("x after division: " + x);

}

}

Predicted output:

Original value of var: 10

Original value of x: 10.0

var after division: 2

x after division: 2.5

5

class Example9 {

public static void main(String args[]) {

char ch;

ch = 'X';

System.out.println("ch contains " + ch);

ch++; // increment ch

System.out.println("ch is now " + ch);

ch = 90; // give ch the value Z

System.out.println("ch is now " + ch);

}

}

Predicted Output:

ch is now X

ch is now Y

ch is now Z

6

class Example10 {

public static void main(String args[]) {

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed.");

b = false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

Predicted output:

b is false

b is true

This is executed

10 > 9 is true

7

Introducing Control Statements
These statements will be dealt with in more detail further on in this booklet. For now we will learn

about the if and the for loop.

class Example11 {

public static void main(String args[]) {

int a,b,c;

a = 2;

b = 3;

c = a - b;

if (c >= 0) System.out.println("c is a positive number");

if (c < 0) System.out.println("c is a negative number");

System.out.println();

c = b - a;

if (c >= 0) System.out.println("c is a positive number");

if (c < 0) System.out.println("c is a negative number");

}

}

Predicted output:

c is a negative number

c is a positive number

class Example12 {

public static void main(String args[]) {

int count;

for(count = 0; count < 5; count = count+1)

System.out.println("This is count: " + count);

System.out.println("Done!");

}

}

Predicted Output:

This is count: 0

This is count: 1

This is count: 2

This is count: 3

This is count: 4

Done!

8

The following table shows all the available shortcut operators:

Blocks of Code
Whenever we write an IF statement or a loop, if there is more than one statement of code which has

to be executed, this has to be enclosed in braces, i.e. ‘, …. -’

class Example13 {

public static void main(String args[]) {

double i, j, d;

i = 5;

j = 10;

if(i != 0) {

System.out.println("i does not equal zero");

d = j / i;

System.out.print("j / i is " + d);

}

System.out.println();

}

}

Predicted Output:

i does not equal to zero

j

25

Array

Declaring Array Variables

To use an array in a program, you must declare a variable to reference the array, and you must specify the type

of array the variable can reference. Here is the syntax for declaring an array variable In Java, here is how we can

declare an array .

dataType arrayName ;][

 •dataType - it can be primitive data types like int, char, double, byte,etc .

 •arrayName - it is an identifier

For example,double data;][

Another example :int intArray[]; //declaring array

intArray = new int[20]; // allocating memory to array

OR

int intArray[] = new int[20]; // combining both statements in one

type[] name = new type[length]; int[] numbers = new int[5];

 you can declare arrays of other types:

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

You can also place the brackets after the array's name:

// this form is discouraged

float anArrayOfFloats[];

+++++++++++++++++++++++++

class Main {

 public static void main(String[] args) {

 // create an array

 int[] age = {12, 4, 5, 2, 5};

26

 // access each array elements

 System.out.println("Accessing Elements of Array:");

 System.out.println("First Element: " + age[0]);

 System.out.println("Second Element: " + age[1]);

 System.out.println("Third Element: " + age[2]);

 System.out.println("Fourth Element: " + age[3]);

 System.out.println("Fifth Element: " + age[4]);

 }

}

Accessing Elements of Array:

First Element: 12

Second Element: 4

Third Element: 5

Fourth Element: 2

Fifth Element: 5

+++

class Main {

 public static void main(String[] args) {

 // create an array

 int[] age = {12, 4, 5};

 // loop through the array

 // using for loop

 System.out.println("Using for Loop:");

 for(int i = 0; i < age.length; i++) {

 System.out.println(age[i]);

 }

 }

27

} Using for Loop:

12

4

5

+++

class Main {

 public static void main(String[] args) {

 // create an array

 int[] age = {12, 4, 5};

 // loop through the array

 // using for loop

 System.out.println("Using for-each Loop:");

 for(int a : age) {

 System.out.println(a);

 }

 }

}Using for-each Loop:

12

4

class Main {

 public static void main(String[] args) {

 int[] numbers = {2, -9, 0, 5, 12, -25, 22, 9, 8, 12};

 int sum = 0;

 Double average;

 // access all elements using for each loop

 // add each element in sum

28

 for (int number: numbers) {

 sum += number;

 }

 // get the total number of elements

 int arrayLength = numbers.length;

 // calculate the average

 // convert the average from int to double

 average = ((double)sum / (double)arrayLength);

 System.out.println("Sum = " + sum);

 System.out.println("Average = " + average);

 }

}Sum = 36

Average = 3.6

Inside the loop, we are calculating the sum of each element. Notice the line,

int arrayLength = number.length;

Here, we are using the length attribute of the array to calculate the size of the

array. We then calculate the average using:

average = ((double)sum / (double)arrayLength);

Multidimensional Arrays

Arrays we have mentioned till now are called one-dimensional arrays. However,

we can declare multidimensional arrays in Java.

A multidimensional array is an array of arrays. That is, each element of a

multidimensional array is an array itself. For example,

double[][] matrix = {{1.2, 4.3, 4.0},

http://stackoverflow.com/questions/8755812/array-length-in-java

29

 {4.1, -1.1}

};

import java.util.Scanner;

public class ArrayInputExample1

{

public static void main(String[] args)

{

int n;

Scanner sc=new Scanner(System.in);

System.out.print("Enter the number of elements you want to store: ");

n=sc.nextInt(); //reading the number of elements from the that we want to ente

int array[] = new int[10]; //creates an array in the memory of length 10

System.out.println("Enter the elements of the array: ");

for(int i=0; i<n; i++)

{

array[i]=sc.nextInt(); //reading array elements from the user

}

System.out.println("Array elements are: ");

// accessing array elements using the for loop

for (int i=0; i<n; i++)

{

System.out.println(array[i]);

}

}

}

 +++

What are the contents of numbers after executing this code?

int[] numbers = new int[8];

numbers[1] = 3;

numbers[4] = 7;

numbers[6] = 5;

int x = numbers[1];

numbers[x] = 2;

numbers[numbers[4]] = 9;

// 0 1 2 3 4 5 6 7

A. {0, 3, 0, 2, 7, 0, 5, 9}

B. {0, 3, 0, 0, 7, 0, 5, 0}

C. {3, 3, 5, 2, 7, 4, 5, 0}

D. {0, 3, 0, 2, 7, 6, 4, 4}

int[] numbers = new int[8];

for (int i = 0; i < numbers.length; i++) {

30

numbers[i] = 2 * i;

}

index 0 1 2 3 4 5 6 7

value 0 2 4 6 8 10 12 14

+++++++++++++++++++++++

public void run() {

int[] numbers = new int[7];

fillArray(numbers);

println(Arrays.toString(numbers));

}

private void fillArray(int[] arr) {

for (int i = 0; i < arr.length; i++) {

arr[i] = 2 * i;

}

}

+++

public void run() {

int[] array = new int[5];

...

swapElements(array[0], array[1]);

...

}

private void swapElements(int x, int y) {

int temp = x;

x = y;

y = temp;

}

+++

for(i=0; i < temperature.length; i++)

{

temperature[i] = 0;

}

for(i=0; i < temperature.length; i++)

{

temperature[i] = Math.random()*100;

}

for(i=0; i < temperature.length; i++)

System.out.println(temperature[i]);

double total = 0;

for(i=0; i < temperature.length; i++)

{

31

total += temperature[i];

}

double max = temperature[0];

double min = temperature[0];

for(i=0; i < temperature.length; i++)

{

if(temperature[i] > max) max = temperature[i];

if(temperature[i] < min) min = temperature[i];

}

double max = temperature[0];

int indexOfMax = 0;

for(i=0; i < temperature.length; i++)

{

if(temperature[i] > max)

{

max = temperature[i];

indexOfMax = i;

}

}

double temp = temperature[0];

for(i=0; i < temperature.length; i++)

{

temperature[i - 1] = temperature[i];

}

Lecture 3

Using the Scanner Class

In Java 5 a particular class was added, the Scanner class. This class allows users to create an

instance of this class and use its methods to perform input. Let us look at the following

example which performs the same operation as the one above (works out the average of

three numbers):

import java.util.Scanner;

Refrence_Variable = new Scanner(System.in);

Scanner read = new scanner(system.in);

import java.util.Scanner;

public class ScannerInput {

public static void main(String[] args) {

//... Initialize Scanner to read from console.

Scanner input = new Scanner(System.in);

System.out.print("Enter first number : ");

int a = input.nextInt();

System.out.print("Enter second number: ");

int b = input.nextInt();

System.out.print("Enter last number : ");

int c = input.nextInt();

System.out.println("Average is " + (a+b+c)/3);

}

}

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 // creates an object of Scanner

 Scanner input = new Scanner(System.in);

 System.out.print("Enter your name: ");

 // takes input from the keyboard

 String name = input.nextLine();

 // prints the name

 System.out.println("My name is " + name);

 // closes the scanner

 input.close();

 }

}

The following simple example utilizes the Scanner4 for input:

//import package containing scanner

import java.util.*;

//read an integer and return it to user

public class Scan {

public static void main (String args[]){

//creating instance

Scanner kb = new Scanner(System.in);

System.out.println("Enter a number: ");

//read integer

int x = kb.nextInt();

System.out.println("Number: " + x);

}

}

Here, we have created an object of Scanner named input.

The System.in parameter is used to take input from the standard input. It works just like

taking inputs from the keyboard.

We have then used the nextLine() method of the Scanner class to read a line of text from

the user.

Now that you have some idea about Scanner, let's explore more about it.

Java Scanner Methods to Take Input

The Scanner class provides various methods that allow us to read inputs of different types.

Method Description

nextInt() reads an int value from the user

nextFloat() reads a float value form the user

nextBoolean() reads a boolean value from the user

nextLine() reads a line of text from the user

next() reads a word from the user

nextByte() reads a byte value from the user

nextDouble() reads a double value from the user

nextShort() reads a short value from the user

nextLong() reads a long value from the user

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 // creates a Scanner object

 Scanner input = new Scanner(System.in);

 System.out.println("Enter an integer: ");

 // reads an int value

 int data1 = input.nextInt();

 System.out.println("Using nextInt(): " + data1);

 input.close();

 }

}

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 // creates an object of Scanner

 Scanner input = new Scanner(System.in);

 System.out.print("Enter Double value: ");

 // reads the double value

 double value = input.nextDouble();

 System.out.println("Using nextDouble(): " + value);

 input.close();

 }

}

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 // creates an object of Scanner

 Scanner input = new Scanner(System.in);

 System.out.print("Enter your name: ");

 // reads the entire word

 String value = input.next();

 System.out.println("Using next(): " + value);

 input.close();

 }

}

Enter your name: Jonny Walker

Using next(): Jonny

import java.util.Scanner;

class Main {

 public static void main(String[] args) {

 // creates an object of Scanner

 Scanner input = new Scanner(System.in);

 System.out.print("Enter your name: ");

 // reads the entire line

 String value = input.nextLine();

 System.out.println("Using nextLine(): " + value);

 input.close();

 }

}

public class Powers

{

public static void main(String[] args)

{

// I will use println for simple fixed text

System.out.println("Table of powers");

for (int i=0; i<10; i++)

// .. and printf to incorporate values within a template

{ System.out.printf("%dˆ%d = %d%n", i, i,

power(i, i));

}

}

static int power(int x, int n)

{ if (n == 0) return 1;

int y = power(x, n/2);

if ((n % 2) != 0) return x*y*y;

else return y*y;

}

}

18

Lecture 4

Control Statements - The if Statement
if(condition) statement;

else statement;

Note:

•

•

else clause is optional
targets of both the if and else can be blocks
of statements.

The general form of the if, using blocks of statements, is:

if(condition)

{

statement sequence

}

else

{

statement sequence

}

class Guess2 {

public static void main(String args[])

throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");

System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // get a char

if(ch == answer) System.out.println("** Right **");

else System.out.println("...Sorry, you're wrong.");

}

}

class Guess3 {

public static void main(String args[])

throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");

System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // get a char

if(ch == answer) System.out.println("** Right **");

else {

System.out.print("...Sorry, you're ");

// a nested if

if(ch < answer) System.out.println("too low");

else System.out.println("too high");

19

}

}

}

A sample run is shown here:

I'm thinking of a letter between A and Z.

Can you guess it: Z

...Sorry, you're too high

if-else-if Ladder
if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

// Demonstrate an if-else-if ladder.

class Ladder {

public static void main(String args[]) {

int x;

for(x=0; x<6; x++) {

if(x==1)

System.out.println("x is one");

else if(x==2)

System.out.println("x is two");

else if(x==3)

System.out.println("x is three");

else if(x==4)

System.out.println("x is four");

else

System.out.println("x is not between 1 and 4");

}

}

}

The program produces the following output:

x is not between 1 and 4

x is one

x is two

x is three

x is four

x is not between 1 and 4

20

 Declared as follows:

Exp1 ? Exp2 : Exp3;

Exp1 would be a boolean expression, and Exp2 and Exp3 are expressions of any type other than void. The type

of Exp2 and Exp3 must be the same, though. Notice the use and placement of the colon. Consider this example,

which assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then absval will be

assigned the negative of that value (which yields a positive value)

The same code written using the if-else structure would look like this:

if(val < 0) absval = -val;

else absval = val;

e.g. 2 This program divides two numbers, but will not allow a division by zero.

// Prevent a division by zero using the ?.

class NoZeroDiv {

public static void main(String args[]) {

int result;

for(int i = -5; i < 6; i++) {

result = i != 0 ? 100 / i : 0;

if(i != 0)

System.out.println("100 / " + i + " is " + result);

}

}

}

The output from the program is shown here:

100 / -5 is -20

100 / -4 is -25

100 / -3 is -33

100 / -2 is -50

100 / -1 is -100

100 / 1 is 100

100 / 2 is 50

100 / 3 is 33

100 / 4 is 25

100 / 5 is 20

switch Statement (case of)
The switch provides for a multi-way branch. Thus, it enables a program to select among several

alternatives. Although a series of nested if statements can perform multi-way tests, for many

situations the switch is a more efficient approach.

switch(expression) {

case constant1:

statement sequence

break;

case constant2:

statement sequence

21

break;

case constant3:

statement sequence

break;

...

default:

statement sequence

}

// Demonstrate the switch.

class SwitchDemo {

public static void main(String args[]) {

int i;

for(i=0; i<10; i++)

switch(i) {

case 0:

System.out.println("i is zero");

break;

case 1:

System.out.println("i is one");

break;

case 2:

System.out.println("i is two");

break;

case 3:

System.out.println("i is three");

break;

case 4:

System.out.println("i is four");

break;

default:

System.out.println("i is five or more");

}

}

}

The output produced by this program is shown here:

i is zero

i is one

i is two

i is three

i is four

i is five or more

i is five or more

i is five or more

i is five or more

i is five or more

22

Execution will continue into the next case if no break statement is present.

You can have empty cases, as shown in this example:

switch(i) {

case 1:

case 2:

case 3: System.out.println("i is 1, 2 or 3");

break;

case 4: System.out.println("i is 4");

break;

}

Nested switch
switch(ch1) {

case 'A': System.out.println("This A is part of outer

switch.");

switch(ch2) {

case 'A':

System.out.println("This A is part of inner

switch");

break;

case 'B': // ...

} // end of inner switch

break;

case 'B': // ...

he for Loop
Loops are structures used to make the program repeat one or many instructions for ‘n’ times as
specified in the declaration of the loop.
The for Loop can be used for just one statement:
for(initialization; condition; iteration) statement;

or to repeat a block of code:
for(initialization; condition; iteration)

{

statement sequence

}

•

Initialization = assignment statement that sets the initial value of the loop control variable,

(counter)
Condition = Boolean expression that determines whether or not the loop will repeat
Iteration = amount by which the loop control variable will change each time the loop is
repeated

•

•

// Show square roots of 1 to 99 and the rounding error.

class SqrRoot {

public static void main(String args[]) {

double num, sroot, rerr;

23

for(num = 1.0; num < 100.0; num++) {

sroot = Math.sqrt(num);

System.out.println("Square root of " + num +

" is " + sroot);

// compute rounding error

rerr = num - (sroot * sroot);

System.out.println("Rounding error is " + rerr);

System.out.println();

}

}

}

‘For’ loop counters (loop control variables) can either increment or decrement,

// A negatively running for loop.

class DecrFor {

public static void main(String args[]) {

int x;

for(x = 100; x > -100; x -= 5)

System.out.println(x);

}

}

// Loop until an S is typed.

class ForTest {

public static void main(String args[])

throws java.io.IOException {

int i;

System.out.println("Press S to stop.");

for(i = 0; (char) System.in.read() != 'S'; i++)

System.out.println("Pass #" + i);

}

}

Interesting For Loop Variations
It is possible to leave out parts of the loop declaration:

// Example 1 - Parts of the for can be empty.

class Empty {

public static void main(String args[]) {

int i;

for(i = 0; i < 10;) {

System.out.println("Pass #" + i);

i++; // increment loop control var

}} }

// Example 2 - Parts of the for can be empty.

class Empty2 {

public static void main(String args[]) {

24

int i;

i = 0; // move initialization out of loop

for(; i < 10;) {

System.out.println("Pass #" + i);

i++; // increment loop control var

} } }

Initialising the loop out of the ‘for’ statement is only required when the value needs to be a result of

another complex process which cannot be written inside the declaration.

Infinite Loops
Sometimes one needs to create an infinite loop, i.e. a loop which never ends! (However it can be

stopped using the break statement). An example of an infinite loop declaration is as follows:

for(;;)

{

// … statements

}

N.B. Using break to terminate an infinite loop will be discussed later on in the course.

No ‘Body’ Loops
Loops can be declared without a body. This can be useful in particular situations, consider the

following example:

// Loop without body.

class Empty3 {

public static void main(String args[]) {

int i;

int sum = 0;

// sum the numbers through 5

for(i = 1; i <= 5; sum += i++) ;

System.out.println("Sum is " + sum);

} }

Predicted Output:

Sum is 15

// Declare loop variable inside the for.

class ForVar {

public static void main(String args[]) {

int sum = 0;

int fact = 1;

// compute the factorial of the numbers through 5

for(int i = 1; i <= 5; i++) {

sum += i; // i is known throughout the loop

fact *= i;

}

// but, i is not known here.

System.out.println("Sum is " + sum);

System.out.println("Factorial is " + fact);

}

}

25

Class Fundamentals

Definition
A class is a sort of template which has attributes and methods. An object is an instance of a class,

 class classname {

// declare instance variables

type var1;

type var2;

// ...

type varN;

// declare methods

type method1(parameters) {

// body of method

}

type method2(parameters) {

// body of method

}

// ...

type methodN(parameters) {

// body of method

}

}

class Vehicle {

int passengers; //number of passengers

int fuelcap; //fuel capacity in gallons

int mpg; //fuel consumption

}

Please note that up to this point there is no OBJECT. By typing the above code a new data type is

created which takes three parameters. To create an instance of the Vehicle class we use the

following statement:

Vehicle minivan = new Vehicle ();

To set the values of the parameters we use the following syntax:

minivan.fuelcap = 16; //sets value of fuel capacity to 16

Note the general form of the previous statement: object.member

Using the Vehicle class

Having created the Vehicle class, let us create an instance of that class:

class VehicleDemo {

public static void main(String args[]) {

Vehicle minivan = new Vehicle();

int range;

// assign values to fields in minivan

minivan.passengers = 7;

 minivan.mpg = 21;

26

Till now we have created an instance of Vehicle called ‘minivan’ and assigned values to passengers,

fuel capacity and fuel consumption. Let us add some statements to work out the distance that this

vehicle can travel with a tank full of fuel:

// compute the range assuming a full tank of gas

range = minivan.fuelcap * minivan.mpg;

System.out.println("Minivan can carry " +

minivan.passengers + " with a range of " + range);

}

}

Creating more than one instance

It is possible to create more than one instance in the same program, and each instance would have

its own parameters. The following program creates another instance, sportscar, which has different

instance variables and finally display the range each vehicle can travel having a full tank.

class TwoVehicles {

public static void main(String args[]) {

Vehicle minivan = new Vehicle();

Vehicle sportscar = new Vehicle();

int range1, range2;

// assign values to fields in minivan

minivan.passengers = 7;

minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar

sportscar.passengers = 2;

sportscar.fuelcap = 14;

sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas

range1 = minivan.fuelcap * minivan.mpg;

range2 = sportscar.fuelcap * sportscar.mpg;

System.out.println("Minivan can carry " +

minivan.passengers +

" with a range of " + range1);

System.out.println("Sportscar can carry " +

sportscar.passengers +

" with a range of " + range2);

}

}

Creating Objects
In the previous code, an object was created from a class. Hence ‘minivan’ was an object which was

created at run time from the ‘Vehicle’ class – vehicle minivan = new Vehicle() ; This statement

allocates a space in memory for the object and it also creates a reference. We can create a

reference first and then create an object:

27

Vehicle minivan; // reference to object only

minivan = new Vehicle (); // an object is created

Reference Variables and Assignment
Consider the following statements:

Vehicle car1 = new Vehicle ();

Vehicle car2 = car 1;

We have created a new instance of type Vehicle named car1. However note that car2 is NOT

another instance of type Vehicle. car2 is the same object as car1 and has been assigned the same

properties,

car1.mpg = 26; // sets value of mpg to 26

If we had to enter the following statements:

System.out.println(car1.mpg);

System.out.println(car2.mpg);

The expected output would be 26 twice, each on a separate line

Vehicle car1 = new Vehicle();

Vehicle car2 = car1;

Vehicle car3 = new Vehicle();

car2 = car3; // now car2 and car3 refer to the same object.

Methods
Methods are the functions which a particular class possesses. These functions usually use the data

defined by the class itself.

// adding a range() method

class Vehicle {

int passengers; // number of passengers

int fuelcap; // fuel capacity in gallons

int mpg; // fuel consumption in miles per gallon

// Display the range.

void range() {

System.out.println("Range is " + fuelcap * mpg);

}

}

Note that ‘fuelcap’ and ‘mpg’ are called directly without the dot (.) operator. Methods take the

following general form:

ret-type name(parameter-list) {

// body of method

}

‘ret-type’ specifies the type of data returned by the method. If it does not return any value we write

void. ‘name’ is the method name while the ‘parameter-list’ would be the values assigned to the

variables of a particular method (empty if no arguments are passed).

class AddMeth {

public static void main(String args[]) {

28

Vehicle minivan = new Vehicle();

Vehicle sportscar = new Vehicle();

int range1, range2;

// assign values to fields in minivan

minivan.passengers = 7;

minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar

sportscar.passengers = 2;

sportscar.fuelcap = 14;

sportscar.mpg = 12;

System.out.print("Minivan can carry " +

minivan.passengers + ". ");

minivan.range(); // display range of minivan

System.out.print("Sportscar can carry " +

sportscar.passengers + ". ");

sportscar.range(); // display range of sportscar.

}

}

Main program:

class RetMeth {

public static void main(String args[]) {

Vehicle minivan = new Vehicle();

Vehicle sportscar = new Vehicle();

int range1, range2;

// assign values to fields in minivan

minivan.passengers = 7;

minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar

sportscar.passengers = 2;

sportscar.fuelcap = 14;

sportscar.mpg = 12;

// get the ranges

range1 = minivan.range();

range2 = sportscar.range();

System.out.println("Minivan can carry " +

minivan.passengers + " with range of " + range1 + "

Miles");

System.out.println("Sportscar can carry " +

sportscar.passengers + " with range of " + range2 +

" miles"); }

}

29

Updated vehicle class:

class Vehicle {

int passengers; // number of passengers

int fuelcap; // fuel capacity in gallons

int mpg; // fuel consumption in miles per gallon

// Return the range.

int range() {

return mpg * fuelcap;

}

// Compute fuel needed for a given distance.

double fuelneeded(int miles) {

return (double) miles / mpg;

} }

Main Program:

class CompFuel {

public static void main(String args[]) {

Vehicle minivan = new Vehicle();

Vehicle sportscar = new Vehicle();

double gallons;

int dist = 252;

// assign values to fields in minivan

minivan.passengers = 7;

minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar

sportscar.passengers = 2;

sportscar.fuelcap = 14;

sportscar.mpg = 12;

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan

needs " +

gallons + " gallons of fuel.");

gallons = sportscar.fuelneeded(dist); //overwriting same

variable

System.out.println("To go " + dist + " miles sportscar

needs " +

gallons + " gallons of fuel.");

}

}

Predicted Output:To go 252 miles minivan needs 12.0 gallons of fuel.

 To go 252 miles sportscar needs 21.0 gallons of fuel.

