
Logic Design Lecture One

1

Lecture One

Digital Logic Design

A digital computer stores data in terms of digits (numbers) and proceeds in discrete

steps from one state to the next. The states of a digital computer typically involve

binary digits which may take the form of the presence or absence of magnetic

markers in a storage medium, on-off switches or relays. In digital computers, even

letters, words and whole texts are represented digitally.

Digital Logic is the basis of electronic systems, such as computers and cell phones.

Digital Logic is rooted in binary code, a series of zeroes and ones each having an

opposite value. This system facilitates the design of electronic circuits that convey

information, including logic gates. Digital Logic gate functions include and, or and

not. The value system translates input signals into specific output. Digital Logic

facilitates computing, robotics and other electronic applications.

Numeric Systems and Conversion

The numeric system we use daily is the decimal system, but this system is not

convenient for machines since the information is handled codified in the shape of

on or off bits; this way of codifying takes us to the necessity of knowing the

positional calculation which will allow us to express a number in any base where

we need it. A base of a number system or radix defines the range of values that a

digit may have.

In the binary system or base 2, there can be only two values for each digit of a

number, either a "0" or a "1".

In the octal system or base 8, there can be eight choices for each digit of a number:

"0", "1", "2", "3", "4", "5", "6", "7".

Logic Design Lecture One

2

In the decimal system or base 10, there are ten different values for each digit of a

number: "0", "1", "2", "3", "4", "5", "6", "7", "8", "9".

In the hexadecimal system, we allow 16 values for each digit of a number: "0", "1",

"2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", and "F".

Where “A” stands for 10, “B” for 11 and so on.

Conversion among Numeric Systems

1. Convert from Decimal to Any Base

Let’s think about what you do to obtain each digit. As an example, let's start with a

decimal number 1234 and convert it to decimal notation. To extract the last digit,

you move the decimal point left by one digit, which means that you divide the

given number by its base 10. 1234/10 = 123 + 4/10 The remainder of 4 is the last

digit. To extract the next last digit, you again move the decimal point left by one

digit and see what drops out. 123/10 = 12 + 3/10 The remainder of 3 is the next last

digit. You repeat this process until there is nothing left. Then you stop. In

summary, you do the following:

Now, let's try a nontrivial example. Let's express a decimal number 1341 in binary

notation. Note that the desired base is 2, so we repeatedly divide the given decimal

number by 2.

Logic Design Lecture One

3

Let's express the same decimal number 1341 in octal notation.

Let's express the same decimal number 1341 in hexadecimal notation.

Logic Design Lecture One

4

2. Convert From Any Base to Decimal

Let's think more carefully what a decimal number means. For example, 1234

means that there are four boxes (digits); and there are 4 one's in the right-most box

(least significant digit), 3 ten's in the next box, 2 hundred's in the next box, and

finally 1 thousand's in the left-most box (most significant digit). The total is 1234:

Thus, each digit has a value: 10^0=1 for the least significant digit, increasing to

10^1=10, 10^2=100, 10^3=1000, and so forth. Likewise, the least significant digit

in a hexadecimal number has a value of 16^0=1 for the least significant digit,

increasing to 16^1=16 for the next digit, 16^2=256 for the next, 16^3=4096 for the

next, and so forth. Thus, 1234 means that there are four boxes (digits); and there

are 4 one's in the right-most box (least significant digit), 3 sixteen's in the next box,

2 256's in the next, and 1 4096's in the left-most box (most significant digit). The

total is:

1*4096 + 2*256 + 3*16 + 4*1 = 4660

In summary, the conversion from any base to base 10 can be obtained from the

formulae

𝑥10 = ∑ 𝑑𝑖 𝑏𝑖

𝑛−1

𝑖=−𝑚

Logic Design Lecture One

5

Where 𝑏 is the base, 𝑑𝑖 the digit at position 𝑖, 𝑚 the number of digit after the

decimal point, 𝑛 the number of digits of the integer part and 𝑥10 is the obtained

number in decimal. This form the basic of the polynomial method of converting

numbers from any base to decimal

Example. Convert 234.14 expressed in an octal notation to decimal.

2*8
2
 + 3*8

1
 + 4*8

0
+1*8

-1
 + 4*8

-2
 = 2*64 +3*8 +4*1 +1/8 +4/64 =156.1875

Example. Convert the hexadecimal number 4B3 to decimal notation. What about

the decimal equivalent of the hexadecimal number 4B3.3?

Example. Convert 234.14 expressed in an octal notation to decimal.

Relationship between Binary - Octal and Binary-hexadecimal

As demonstrated by the table below, there is a direct correspondence between the

binary system and the octal system, with three binary digits corresponding to one

octal digit. Likewise, four binary digits translate directly into one hexadecimal

digit.

Logic Design Lecture One

6

With such relationship, In order to convert a binary number to octal, we partition

the base 2 number into groups of three starting from the radix point, and pad the

outermost groups with 0’s as needed to form triples. Then, we convert each triple

to the octal equivalent.

For conversion from base 2 to base 16, we use groups of four.

Consider converting 101102 to base 8:

101102 = 0102 1102 = 28 68 = 268

Notice that the leftmost two bits are padded with a 0 on the left in order to create a

full triplet.

Logic Design Lecture One

7

Now consider converting 101101102 to base 16:

101101102 = 10112 01102 = B16 616 = B616

(Note that ‘B’ is a base 16 digit corresponding to 1110. B is not a variable.)

The conversion methods can be used to convert a number from any base to any

other base, but it may not be very intuitive to convert something like 513.03 to

base 7. As an aid in performing an unnatural conversion, we can convert to the

more familiar base 10 forms as an intermediate step, and then continue the

conversion from base 10 to the target base. As a general rule, we use the

polynomial method when converting into base 10, and we use the remainder and

multiplication methods when converting out of base 10.

Logic Design Lecture Two

1

Lecture Two

Binary Arithmetic Operations

Arithmetic operations in digital systems are usually done in binary because design

of logic circuits to perform binary arithmetic is much easier than for decimal.

Binary arithmetic is carried out in much the same manner as decimal, except the

addition and multiplication tables are much simpler.

The addition table for binary numbers is

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 and carry 1 to the next column

Carrying 1 to a column is equivalent to adding 1 to that column.

Example: Add 1310 and 1110 in binary.

1111 carries

1310 = 1101

1110 = 1011

11000 = 2410

The subtraction table for binary numbers is

0- 0 = 0

0 -1 = 1 and borrow 1 from the next column

1- 0 = 1

1- 1 = 0

Borrowing 1 from a column is equivalent to subtracting 1 from that column.

Example:

Logic Design Lecture Two

2

The multiplication table for binary numbers is:

Example:

The following example illustrates division of 14510 by 1110 in binary:

Logic Design Lecture Two

3

Boolean Algebra

The basic mathematics needed for the study of the logic design of digital systems

is Boolean algebra. Boolean algebra has many other applications including set

theory and mathematical logic. Because all of the switching devices which we will

use are essentially two-state devices (such as a transistor with high or low output

voltage), we will study the special case of Boolean algebra in which all of the

variables assume only one of two values. This two-valued Boolean algebra is often

referred to as switching algebra. George Boole developed Boolean algebra in 1847

and used it to solve problems in mathematical logic. Claude Shannon first applied

Boolean algebra to the design of switching circuits in 1939.

We will use a Boolean variable, such as X or Y, to represent the input or output of

a switching circuit. We will assume that each of these variables can take on only

two different values. The symbols “0” and “1” are used to represent these two

different values. Thus, if X is a Boolean (switching) variable, then either X = 0 or

X = 1.

The symbols “0” and “1” used in Boolean algebra do not have a numeric value;

instead they represent two different states in a logic circuit and are the two values

of a switching variable. In a logic gate circuit, 0 (usually) represents a range of low

voltages, and 1 represents a range of high voltages. In a switch circuit, 0 (usually)

represents an open switch, and 1 represents a closed circuit. In general, 0 and 1 can

be used to represent the two states in any binary-valued system.

Basic Operations

The basic operations of Boolean algebra are AND, OR, and complement (or

inverse). The complement of 0 is 1, and the complement of 1 is 0. Symbolically,

we write:

Logic Design Lecture Two

4

0′ = 1 and 1′ = 0

where the prime (′) denotes complementation. If X is a switching variable,

X′ = 1 if X = 0 and X′ = 0 if X = 1

An alternate name for complementation is inversion, and the electronic circuit

which forms the inverse of X is referred to as an inverter. Symbolically, we

represent an inverter by:

where the circle at the output indicates inversion. If a logic 0 corresponds to a low

voltage and a logic 1 corresponds to a high voltage, a low voltage at the inverter

input produces a high voltage at the output and vice versa. Complementation is

sometimes referred to as the NOT operation because X = 1 if X is not equal to 0.

The AND operation can be defined as follows:

 0 .0= 0 0 .1= 0 1.0 =0 1.1=1

where “. ” denotes AND. (Although this looks like binary multiplication, it is not,

because 0 and 1 here are Boolean constants rather than binary numbers.) If we

write the Boolean expression C = A .B, then given the values of A and B, we can

determine C from the following table:

Note that C =1 iff (if and only if) A and B are both 1, hence, the name AND

operation. A logic gate which performs the AND operation is represented by:

Logic Design Lecture Two

5

The dot symbol (.) is frequently omitted in a Boolean expression, and we will

usually write AB instead of A .B. The AND operation is also referred to as

logical (or Boolean) multiplication.

The OR operation can be defined as follows:

0 + 0=0 0+ 1 =1 1+ 0=1 1+ 1 = 1

where “ + ” denotes OR. If we write C = A + B, then given the values of A and B,

we can determine C from the following table:

Note that C = 1 iff A or B (or both) is 1, hence, the name OR operation. This type

of OR operation is sometimes referred to as inclusive-OR. A logic gate which

performs the OR operation is represented by

Boolean Expressions and Truth Tables

Boolean expressions are formed by application of the basic operations to one or

more variables or constants. The simplest expressions consist of a single constant

Logic Design Lecture Two

6

or variable, such as 0, X, or Y′. More complicated expressions are formed by

combining two or more other expressions using AND or OR, or by complementing

another expression. Examples of expressions are

𝐴𝐵′ + 𝐶 (1)

[𝐴(𝐶 + 𝐷)]′ + 𝐵𝐸 (2)

Parentheses are added as needed to specify the order in which the operations are

performed. When parentheses are omitted, complementation is performed first

followed by AND then OR. Thus in Expression (2-1), B′ is formed first, then AB′,

and finally AB′ + C.

Each expression corresponds directly to a circuit of logic gates. Figure below gives

the circuits for Expressions (1) and (2).

An expression is evaluated by substituting a value of 0 or 1 for each variable. If

A = B = C = 1 and D= E = 0, the value of Expression (2) is

Logic Design Lecture Two

7

[A(C + D)]′ + BE = [1(1 + 0)]′ + 1 . 0 = [1(1)]′ + 0 = 0 + 0 = 0

Each appearance of a variable or its complement in an expression will be referred

to as a literal. Thus, the following expression, which has three variables, has 10

literals:

𝑎𝑏′𝑐 + 𝑎′𝑏 + 𝑎′𝑏𝑐′ + 𝑏′𝑐′

When an expression is realized using logic gates, each literal in the expression

corresponds to a gate input.

A truth table (also called a table of combinations) specifies the values of a Boolean

expression for every possible combination of values of the variables in the

expression. The name truth table comes from a similar table which is used in

symbolic logic to list the truth or falsity of a statement under all possible

conditions. We can use a truth table to specify the output values for a circuit of

logic gates in terms of the values of the input variables. The output of the circuit in

Figure (1)a is F = A′ + B. Figure 1(b) shows a truth table which specifies the

output of the circuit for all possible combinations of values of the inputs A and B.

The first two columns list the four combinations of values of A and B, and the next

column gives the corresponding values of A′. The last column, which gives the

values of A′ + B, is formed by ORing together corresponding values of A′ and B in

each row.

Logic Design Lecture Three

1

Lecture Three

Logic Gates

Digital systems are said to be constructed by using logic gates. These gates are the

AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations

are described below with the aid of truth tables.

The AND gate is an electronic circuit that gives a high output (1) only if all its

inputs are high. A dot (.) is used to show the AND operation i.e. A.B. Bear in

mind that this dot is sometimes omitted i.e. AB

Logic Design Lecture Three

2

The OR gate is an electronic circuit that gives a high output (1) if one or more of

its inputs are high. A plus (+) is used to show the OR operation.

The NOT gate is an electronic circuit that produces an inverted version of the input

at its output. It is also known as an inverter. If the input variable is A, the

inverted output is known as NOT A. This is also shown as A', or A with a bar over

the top, as shown at the outputs. The diagrams below show two ways that the

NAND logic gate can be configured to produce a NOT gate. It can also be done

using NOR logic gates in the same way.

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate.

The outputs of all NAND gates are high if any of the inputs are low. The symbol is

Logic Design Lecture Three

3

an AND gate with a small circle on the output. The small circle represents

inversion.

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The

outputs of all NOR gates are low if any of the inputs are high. The symbol is an

OR gate with a small circle on the output. The small circle represents inversion.

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not

both, of its two inputs are high. An encircled plus sign () is used to show the EOR

operation.

The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a

low output if either, but not both, of its two inputs are high. The symbol is an

EXOR gate with a small circle on the output. The small circle represents inversion.

Logic Design Lecture Three

4

Logic Design Lecture Three

5

Laws and Theorems of Boolean Algebra

Example : simplify the expression 𝐹 = 𝐴(𝐴′ + 𝐵) using algebra theorem.

𝐹 = 𝐴(𝐴′ + 𝐵)

= 𝐴𝐴′ + 𝐴𝐵 (8. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝐿𝑎𝑤)

𝐹 = 𝐴𝐵 (5𝐷. 𝐴𝐴′ = 0)

Logic Design Lecture Three

6

DeMorgan’s Laws

The inverse or complement of any Boolean expression can easily be found by

successively applying the following theorems, which are frequently referred to as

DeMorgan’s laws:

(𝑋 + 𝑌)′ = 𝑋′𝑌′

(𝑋𝑌)′ = 𝑋′ + 𝑌′

We will verify these laws using a truth table:

DeMorgan’s laws are easily generalized to n variables:

(𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋𝑛)′ = 𝑋1
′ 𝑋′2 𝑋′3 … 𝑋𝑛′

(𝑋1 𝑋2 𝑋3 … 𝑋𝑛)′ = 𝑋1
′ + 𝑋2

′ + 𝑋3 … + 𝑋𝑛′

For example, for n=3,

(𝑋1 + 𝑋2 + 𝑋3)′ = (𝑋1 + 𝑋2)′ 𝑋3
′ = 𝑋1

′ 𝑋2
′ 𝑋3′

Referring to the OR operation as the logical sum and the AND operation as logical

product, DeMorgan’s laws can be stated as:

The complement of the product is the sum of the complements.

The complement of the sum is the product of the complements.

Logic Design Lecture Four

1

Lecture Four

Simplification and Boolean Functions

When a function is realized using AND and OR gates, the cost of realizing the

function is directly related to the number of gates and gate inputs used. The

Karnaugh map techniques developed in this unit lead directly to minimum cost

two-level circuits composed of AND and OR gates. An expression consisting of a

sum of product terms corresponds directly to a two-level circuit composed of a

group of AND gates feeding a single OR gate. Similarly, a product-of sums

expression corresponds to a two-level circuit composed of OR gates feeding a

single AND gate. Therefore, to find minimum cost two-level AND-OR gate

circuits, we must find minimum expressions in sum-of-products or product-of-

sums form. A minimum sum-of-products expression for a function is defined as a

sum of product terms which has a minimum number of terms and of all those

expressions which have the same minimum number of terms, has a minimum

number of literals. The minimum sum of products corresponds directly to a

minimum two-level gate circuit which has a minimum number of gates and a

minimum number of gate inputs.

Minimization of Boolean expressions

The minimization will result in reduction of the number of gates (resulting from

less number of terms) and the number of inputs per gate (resulting from less

number of variables per term). The minimization will reduce cost, efficiency and

power consumption.

Logic Design Lecture Four

2

Karnaugh Maps - Rules of Simplification

The Karnaugh map also known as Veitch diagram or simply as K map is a two

dimensional form of the truth table, drawn in such a way that the simplification of

Boolean expression can be immediately be seen from the location of 1’s in the

map.

The Karnaugh map provides a simple and straight-forward method of minimizing e

Boolean expressions. With the Karnaugh map Boolean expressions having up to

four and even six variables can be simplified.

A Karnaugh map provides a pictorial method of grouping together expressions

with common factors and therefore eliminating unwanted variables. The Karnaugh

map can also be described as a special arrangement of a truth table.

The diagram below illustrates the correspondence between the Karnaugh map and

the truth table for the general case of a two variable problem.

Logic Design Lecture Four

3

The Karnaugh map uses the following rules for the simplification of expressions

by grouping together adjacent cells containing ones.

 Groups may not include any cell containing a zero

 Groups may be horizontal or vertical, but not diagonal.

 Groups must contain 1, 2, 4, 8, or in general 2
n
 cells.

That is if n = 1, a group will contain two 1's since 2
1
= 2.

If n = 2, a group will contain four 1's since 2
2
 = 4.

Logic Design Lecture Four

4

 Each group should be as large as possible.

 Each cell containing a one must be in at least one group.

 Groups may overlap.

Logic Design Lecture Four

5

 Groups may wrap around the table. The leftmost cell in a row may be grouped

with the rightmost cell and the top cell in a column may be grouped with the

bottom cell.

 There should be as few groups as possible, as long as this does not contradict any

of the previous rules.

Logic Design Lecture Four

6

Summary

1. No zeros allowed.

2. No diagonals.

3. Only power of 2 numbers of cells in each group.

4. Groups should be as large as possible.

5. Everyone must be in at least one group.

6. Overlapping allowed.

7. Wrap around allowed.

8. Fewest number of groups possible

Example 1:

 𝐴′𝐵′𝐶′ + 𝐴′𝐵′𝐶 = 𝐴′𝐵′(𝐶′ + 𝐶)

 = 𝐴′𝐵′

Example 2:

Logic Design Lecture Four

7

Example 3

Example 4:

Example 5:

Example 6:

Logic Design Lecture Four

8

Example 7:

Example 8:

Simplifying Boolean Equations with Karnaugh Maps

Example1: simplify the logic using a Karnaugh map.

Logic Design Lecture Four

9

Logic Design Lecture Five

1

Lecture Five

The following corresponds to the Boolean expression

Example 1:

 𝑄 = 𝐴′𝐵𝐶′𝐷 + 𝐴′𝐵𝐶𝐷 + 𝐴𝐵𝐶′𝐷′ + 𝐴𝐵𝐶′𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷′ +

 𝐴𝐵′𝐶𝐷 + 𝐴𝐵′𝐶𝐷′

The expression for the groupings above is 𝑄 = 𝐵𝐷 + 𝐴𝐶 + 𝐴𝐵 this expression

requires 3 2-input AND gates and 1 3-input OR gate.

Example 2:

𝐹 = 𝐴𝐵 + 𝐴′𝐵𝐶′𝐷 + 𝐴′𝐵𝐶𝐷 + 𝐴𝐵′𝐶′𝐷′

 = 𝐵𝐷 + 𝐴𝐵 + 𝐴𝐶′𝐷′

Logic Design Lecture Five

2

Example 3:

𝐹 = 𝐴𝐶′𝐷′ + 𝐴′𝐵′𝐶 + 𝐴′𝐶′𝐷 + 𝐴𝐵′𝐷

Example 4:

 𝐹 = 𝐴′𝐵′𝐶′𝐷′ + 𝐴𝐵′𝐶′𝐷′ + 𝐴′𝐵𝐶′𝐷 + 𝐴𝐵𝐶′𝐷 + 𝐴′𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷

Logic Design Lecture Five

3

Gate Delays and Timing Diagrams

When the input to a logic gate is changed, the output will not change

instantaneously. The transistors or other switching elements within the gate take a

finite time to react to a change in input, so that the change in the gate output is

delayed with respect to the input change. If the change in output is delayed by

time,𝜖 , with respect to the input, we say that this gate has a propagation delay of 𝜖.

In practice, the propagation delay for a 0 to 1 output change may be different than

the delay for a 1 to 0 change. Propagation delays for integrated circuit gates may

be as short as a few nanoseconds (1 nanosecond = 10
-9

 second), and in many cases

these delays can be neglected. However, in the analysis of some types of sequential

circuits, even short delays may be important.

Timing diagrams are frequently used in the analysis of sequential circuits. These

diagrams show various signals in the circuit as a function of time. Several variables

are usually plotted with the same time scale so that the times at which these

variables change with respect to each other can easily be observed.

Figure below shows the timing diagram for a circuit with two gates. We will

assume that each gate has a propagation delay of 20 ns (nanoseconds).This timing

diagram indicates what happens when gate inputs 𝐵 and 𝐶 are held at constant

values 1 and 0, respectively, and input 𝐴 is changed to 1 at 𝑡 = 40 ns and then

changed back to 0 at 𝑡 =100 ns. The output of gate 𝐺1 changes 20 ns after 𝐴

changes, and the output of gate 𝐺2 changes 20 ns after 𝐺1 changes.

Logic Design Lecture Five

4

Figure below shows a timing diagram for a circuit with an added delay element.

The input X consists of two pulses, the first of which is 2 microseconds (2 ×10
6

second) wide and the second is 3 microseconds wide. The delay element has an

output Y which is the same as the input except that it is delayed by 1 microsecond.

That is Y changes to a 1 value 1 microsecond after the rising edge of the X pulse

and returns to 0 1 microsecond after the falling edge of the X pulse. The output (Z)

of the AND gate should be 1 during the time interval in which both X and Y are 1.

If we assume a small propagation delay in the AND gate (𝜀), then Z will be as

shown in Figure below.

Logic Design Lecture Five

5

Example 1:

Complete the timing diagram for the given circuit. Assume that both gates have a

propagation delay of 5ns.

Example 2: for the following circuit:

Assume that the inverters have a delay of 1 ns and the other gates have a delay of 2

ns. Initially A = 0 and B = C = D = 1, and C changes to 0 at time = 2 ns. Draw a

timing diagram.

Logic Design Lecture Five

6

Example 3: Draw the timing diagram for V and Z for the circuit. Assume that the

AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns.

Example 4: Complete the timing diagram for the given circuit. Assume that both

gates have a propagation delay of 5 ns.

Logic Design Lecture Six

1

Lecture 6

Sequential Logic circuits

Digital circuits can be classified into two types:

 Combinational Logic Circuits

 Sequential Logic Circuits

1. Combination Logic Circuits:

Are made up from basic gates (AND, OR, NOT) or universal gates (NAND, NOR)

gates that are "combined" or connected together to produce more complicated

switching circuits. These logic gates are the building blocks of combinational logic

circuits. An example of a combinational circuit is a decoder, which converts the

binary code data present at its input into a number of different output lines, one at a

time producing an equivalent decimal code at its output.

 In these circuits “the outputs at any instant of time depends on the inputs present

at that instant only.”

 For the design of Combinational digital circuits Basic gates (AND, OR, NOT) or

universal gates (NAND, NOR) are used. Examples for combinational digital

circuits are Half adder, Full adder, Half subtractor, Full subtractor, Code

converter, Decoder, Multiplexer, Demultiplexer, Encoder, ROM, etc.

Figure 1.1: combinational Logic Circuit

Logic Design Lecture Six

2

Figure 1.2: Classification of Combinational Logic Circuit

2. Sequential Logic Circuits

 Sequential logic differs from combinational logic in that the output of the logic

device is dependent not only on the present inputs to the device, but also on past

inputs; i.e., the output of a sequential logic device depends on its present internal

state and the present inputs. This implies that a sequential logic device has some

kind of memory of at least part of it’s ``history’’ (i.e., its previous inputs).

Figure 1.3: sequential logic circuit

 A simple memory device can be constructed from combinational devices with

which we are already familiar. By a memory device, we mean a device which

Combinational Logic Circuit

Arithmetic & Logical

Functions
Code Converters Data Transmission

Adders

Subtractor

Comparators

Binary

BCD

7-segment

Multiplexers

Demultiplexers

Encoders
Decoders

Logic Design Lecture Six

3

can remember if a signal of logic level 0 or 1 has been connected to one of its

inputs, and can make this fact available at an output. A very simple, but still

useful, memory device can be constructed from a simple OR gate , as shown in

Figure below:

Figure 1.4 Sequential Logic Circuit

 In this memory device, if A and Q are initially at logic 0, then Q remains at logic

0. However if the single input A ever becomes a logic 1, then the output Q will

be logic 1 ever after, regardless of any further changes in the input at A. In this

simple memory, the output is a function of the state of the memory element

only; after the memory is ``written'' then it cannot be changed back. However, it

can be ``read.'' Such a device could be used as a simple read only memory,

which could be ``programmed'' only once. Often a state table or timing diagram

is used to describe the behavior of a sequential device.

 Note that the output of the memory is used as one of the inputs; this is called

feedback and is characteristic of programmable memory devices. (Without

feedback, a ``permanent'' electronic memory device would not be possible.) The

use of feedback in a device can introduce problems which are not found in

strictly combinational circuits.

 The word “Sequential” means that things happen in a “sequence”, one after

another and in Sequential Logic circuits, the actual clock signal determines when

things will happen next. Simple sequential logic circuits can be constructed from

standard Bistable circuits such as: Flip-flops, Latches and Counters and which

Logic Design Lecture Six

4

themselves can be made by simply connecting together universal NAND Gates

and/or NOR Gates in a particular combinational way to produce the required

sequential circuit.

Flip- Flops

A flip flop is an electronic circuit with two stable states that can be used to store

binary data, it can store one bit of information. The stored data can be changed by

applying varying inputs. Flip-flops and latches are fundamental building blocks of

digital electronics systems used in computers, communications, and many other

types of systems. Flip-flops and latches are used as data storage elements. It is the

basic storage element in sequential logic.

SR Flip-Flop

The SR flip-flop, also known as a SR Latch (figure 1.5), can be considered as one

of the most basic sequential logic circuit possible. This simple flip-flop is basically

a one-bit memory bistable device that has two inputs, one which will “SET” the

device (meaning the output = “1”), and is labeled S and one which will “RESET”

the device (meaning the output = “0”), labeled R.

Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop

back to its original state with an output Q that will be either at a logic level “1” or

logic “0” depending upon this set/reset condition.

Logic Design Lecture Six

5

Figure 1.5 (a) Circuit, (b) Symbol

The Set State

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) and

input S is at logic level “1” (S = 1), the NAND gate Y has at least one of its inputs

at logic “0” therefore, its output Q must be at a logic level “1” (NAND Gate

principles). Output Q is also fed back to input “A” and so both inputs to NAND

gate X are at logic level “1”, and therefore its output Q must be at logic level “0”.

Again NAND gate principals. If the reset input R changes state, and goes HIGH to

logic “1” with S remaining HIGH also at logic level “1”, NAND gate Y inputs are

now R = “1” and B = “0”. Since one of its inputs is still at logic level “0” the

output at Q still remains HIGH at logic level “1” and there is no change of state.

Therefore, the flip-flop circuit is said to be “Latched” or “Set” with Q = “1” and

Q = “0”.

Logic Design Lecture Six

6

Reset State

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse output at

Q is at logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As gate X

has one of its inputs at logic “0” its output Q must equal logic level “1” (again

NAND gate principles). Output Q is fed back to input “B”, so both inputs to

NAND gate Y are at logic “1”, therefore, Q = “0”.

If the set input, S now changes state to logic “1” with input R remaining at logic

“1”, output Q still remains LOW at logic level “0” and there is no change of state.

Therefore, the flip-flop circuits “Reset” state has also been latched and we can

define this “set/reset” action in the following truth table.

It can be seen that when both inputs S = “1” and R = “1” the outputs Q and Q can

be at either logic level “1” or “0”, depending upon the state of the inputs S or R

before this input condition existed. Therefore the condition of S = R = “1” does

not change the state of the outputs Q and Q.

However, the input state of S = “0” and R = “0” is an undesirable or invalid

condition and must be avoided. The condition of S = R = “0” causes both outputs

Q and Q to be HIGH together at logic level “1” when we would normally want Q

to be the inverse of Q. The result is that the flip-flop loses control of Q and Q, and

if the two inputs are now switched “HIGH” again after this condition to logic “1”,

the flip-flop becomes unstable and switches to an unknown data state based upon

the unbalance as shown in the following switching diagram.

Logic Design Lecture Six

7

S-R Flip-flop Switching Diagram

Logic Design Lecture Seven

1

Lecture Seven

JK Flip-flop

Due to the undefined state in the SR flip flop, another is required in electronics.

The JK flip flop is an improvement on the SR flip flop where S=R=1 is not a

problem.

The input condition of J=K=1, gives an output inverting the output state. However,

the outputs are same when one tests the circuit practically.

Logic Design Lecture Seven

2

D Flip Flop

D flip flop is a better alternative that is very popular with digital electronics. They

are commonly used for counters and shift-registers and input synchronization.

In a D flip flop, the output can be only changed at the clock edge, and if the input

changes at other times, the output will be unaffected.

The change of state of the output is dependent on the rising edge of the clock. The

output (Q) is same as the input and can only change at the rising edge of the clock.

Logic Design Lecture Seven

3

T Flip Flop

A T flip flop is like JK flip-flop. These are basically single input version of JK flip

flop. This modified form of JK flip-flop is obtained by connecting both inputs J

and K together. This flip-flop has only one input along with the clock input.

The “T” in “T flip-flop” stands for “toggle.” When you toggle a light switch, you

are changing from one state (on or off) to the other state (off or on). This is

equivalent to what happens when you provide a logic-high input to a T flip-flop: if

the output is currently logic high, it changes to logic low; if it’s currently logic low,

it changes to logic high. A logic-low input causes the T flip-flop to maintain its

current output state.

These flip-flops are called T flip-flops because of their ability to complement its

state (i.e.) Toggle, hence the name Toggle flip-flop.

Logic Design Lecture Seven

4

Logic Design Lecture Eight

1

Lecture Eight

Shift Registers

A Flip flops can be used to store a single bit of binary data (1or 0). However in

order to store multiple bits of data we need multiple flip flops. N flip flops are to

be connected in an order to store n bits of data. A Register is a device which is

used to store such information. It is a group of flip flops connected in series used to

store multiple bits of data.

The information stored within these registers can be transferred with the help of

shift registers. Shift Register is a group of flip flops used to store multiple bits of

data. The bits stored in such registers can be made to move within the registers and

in/out of the registers by applying clock pulses. An n-bit shift register can be

formed by connecting n flip-flops where each flip flop stores a single bit of data.

 The registers which will shift the bits to left are called “Shift left registers”.

The registers which will shift the bits to right are called “Shift right registers”.

Shift registers are basically of 4 types. These are:

1. Serial In serial out shift register

2. Serial In parallel out shift register

3. Parallel In serial out shift register

4. Parallel In parallel out shift register

Serial-In Serial-Out Shift Register (SISO)

The shift register, which allows serial input (one bit after the other through a single

data line) and produces a serial output, is known as Serial-In Serial-Out shift

Logic Design Lecture Eight

2

register. Since there is only one output, the data leaves the shift register one bit at a

time in a serial pattern, thus the name Serial-In Serial-Out Shift Register.

The logic circuit given below shows a serial-in serial-out shift register. The circuit

consists of four D flip-flops which are connected in a serial manner. All these flip-

flops are synchronous with each other since the same clock signal is applied to

each flip flop.

The above circuit is an example of shift right register, taking the serial data input

from the left side of the flip flop. The main use of a SISO is to act as a delay

element.

Serial-In Parallel-Out shift Register (SIPO)

The shift register, which allows serial input (one bit after the other through a single

data line) and produces a parallel output, is known as Serial-In Parallel-Out shift

register.

The logic circuit given below shows a serial-in parallel-out shift register. The

circuit consists of four D flip-flops which are connected. The clear (CLR) signal is

Logic Design Lecture Eight

3

connected in addition to clock signal to all the 4 flip flops in order to RESET them.

The output of the first flip flop is connected to the input of the next flip flop and so

on. All these flip-flops are synchronous with each other since the same clock signal

is applied to each flip flop.

The above circuit is an example of shift right register, taking the serial data input

from the left side of the flip flop and producing a parallel output. They are used in

communication lines where multiplexing of a data line into several parallel line is

required because the main use of SIPO register is to convert serial data into parallel

data.

Logic Design Lecture Nine

1

Lecture Nine

Parallel-In Serial-Out Shift Register (PISO)

The shift register, which allows parallel input (data is given separately to each flip

flop and in a simultaneous manner) and produces a serial output is known as

Parallel-In Serial-Out shift register.

The logic circuit given below shows a parallel-in serial-out shift register. The

circuit consists of four D flip-flops which are connected. The clock input is directly

connected to all the flip flops but the input data is connected individually to each

flip flop through a multiplexer at input of every flip flop. The output of the

previous flip flop and parallel data input are connected to the input of the MUX

and the output of MUX is connected to the next flip flop. All these flip-flops are

synchronous with each other since the same clock signal is applied to each flip

flop.

Logic Design Lecture Nine

2

A Parallel in Serial out (PISO) shift register us used to convert parallel data to

serial data.

Parallel-In Parallel-Out Shift Register (PIPO)

The shift register, which allows parallel input (data is given separately to each flip

flop and in a simultaneous manner) and also produces a parallel output is known as

Parallel-In parallel-Out shift register.

The logic circuit given below shows a parallel-in parallel-out shift register. The

circuit consists of four D flip-flops which are connected. The clear (CLR) signal

and clock signals are connected to all the 4 flip flops. In this type of register there

are no interconnections between the individual flip-flops since no serial shifting of

the data is required. Data is given as input separately for each flip flop and in the

same way, output also collected individually from each flip flop.

