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Lecture One 

Digital Logic Design 

A digital computer stores data in terms of digits (numbers) and proceeds in discrete 

steps from one state to the next. The states of a digital computer typically involve 

binary digits which may take the form of the presence or absence of magnetic 

markers in a storage medium, on-off switches or relays. In digital computers, even 

letters, words and whole texts are represented digitally. 

Digital Logic is the basis of electronic systems, such as computers and cell phones. 

Digital Logic is rooted in binary code, a series of zeroes and ones each having an 

opposite value. This system facilitates the design of electronic circuits that convey 

information, including logic gates. Digital Logic gate functions include and, or and 

not. The value system translates input signals into specific output. Digital Logic 

facilitates computing, robotics and other electronic applications. 

Numeric Systems and Conversion 

The numeric system we use daily is the decimal system, but this system is not 

convenient for machines since the information is handled codified in the shape of 

on or off bits; this way of codifying takes us to the necessity of knowing the 

positional calculation which will allow us to express a number in any base where 

we need it. A base of a number system or radix defines the range of values that a 

digit may have.  

In the binary system or base 2, there can be only two values for each digit of a 

number, either a "0" or a "1".  

In the octal system or base 8, there can be eight choices for each digit of a number: 

"0", "1", "2", "3", "4", "5", "6", "7".  
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In the decimal system or base 10, there are ten different values for each digit of a 

number: "0", "1", "2", "3", "4", "5", "6", "7", "8", "9".  

In the hexadecimal system, we allow 16 values for each digit of a number: "0", "1", 

"2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", and "F".  

Where “A” stands for 10, “B” for 11 and so on. 

Conversion among Numeric Systems 

1. Convert from Decimal to Any Base 

Let’s think about what you do to obtain each digit. As an example, let's start with a 

decimal number 1234 and convert it to decimal notation. To extract the last digit, 

you move the decimal point left by one digit, which means that you divide the 

given number by its base 10. 1234/10 = 123 + 4/10 The remainder of 4 is the last 

digit. To extract the next last digit, you again move the decimal point left by one 

digit and see what drops out. 123/10 = 12 + 3/10 The remainder of 3 is the next last 

digit. You repeat this process until there is nothing left. Then you stop. In 

summary, you do the following: 

 

 

Now, let's try a nontrivial example. Let's express a decimal number 1341 in binary 

notation. Note that the desired base is 2, so we repeatedly divide the given decimal 

number by 2. 



Logic Design                               Lecture One 
 

3 
 

 

 

 

 

 

 

 

Let's express the same decimal number 1341 in octal notation. 

 

 

 

 

Let's express the same decimal number 1341 in hexadecimal notation. 

 

 

 

 

 

 

 

 

 

 



Logic Design                               Lecture One 
 

4 
 

2. Convert From Any Base to Decimal 

Let's think more carefully what a decimal number means. For example, 1234 

means that there are four boxes (digits); and there are 4 one's in the right-most box 

(least significant digit), 3 ten's in the next box, 2 hundred's in the next box, and 

finally 1 thousand's in the left-most box (most significant digit). The total is 1234: 

 

 

 

 

 

Thus, each digit has a value: 10^0=1 for the least significant digit, increasing to 

10^1=10, 10^2=100, 10^3=1000, and so forth. Likewise, the least significant digit 

in a hexadecimal number has a value of 16^0=1 for the least significant digit, 

increasing to 16^1=16 for the next digit, 16^2=256 for the next, 16^3=4096 for the 

next, and so forth. Thus, 1234 means that there are four boxes (digits); and there 

are 4 one's in the right-most box (least significant digit), 3 sixteen's in the next box, 

2 256's in the next, and 1 4096's in the left-most box (most significant digit). The 

total is:  

1*4096 + 2*256 + 3*16 + 4*1 = 4660 

In summary, the conversion from any base to base 10 can be obtained from the 

formulae 

𝑥10 = ∑ 𝑑𝑖  𝑏𝑖

𝑛−1

𝑖=−𝑚
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Where 𝑏 is the base, 𝑑𝑖 the digit at position 𝑖, 𝑚 the number of digit after the 

decimal point, 𝑛 the number of digits of the integer part and 𝑥10 is the obtained 

number in decimal. This form the basic of the polynomial method of converting 

numbers from any base to decimal 

Example. Convert 234.14 expressed in an octal notation to decimal.  

2*8
2
 + 3*8

1
 + 4*8

0
+1*8

-1
 + 4*8

-2
 = 2*64 +3*8 +4*1 +1/8 +4/64 =156.1875 

Example. Convert the hexadecimal number 4B3 to decimal notation. What about 

the decimal equivalent of the hexadecimal number 4B3.3? 

 

 

 

 

Example. Convert 234.14 expressed in an octal notation to decimal. 

 

 

 

 

 

Relationship between Binary - Octal and Binary-hexadecimal  

As demonstrated by the table below, there is a direct correspondence between the 

binary system and the octal system, with three binary digits corresponding to one 

octal digit. Likewise, four binary digits translate directly into one hexadecimal 

digit. 
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With such relationship, In order to convert a binary number to octal, we partition 

the base 2 number into groups of three starting from the radix point, and pad the 

outermost groups with 0’s as needed to form triples. Then, we convert each triple 

to the octal equivalent.  

For conversion from base 2 to base 16, we use groups of four.  

Consider converting 101102 to base 8: 

101102 = 0102 1102 = 28 68 = 268 

Notice that the leftmost two bits are padded with a 0 on the left in order to create a 

full triplet. 
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Now consider converting 101101102 to base 16:  

101101102 = 10112 01102 = B16 616 = B616  

(Note that ‘B’ is a base 16 digit corresponding to 1110. B is not a variable.) 

The conversion methods can be used to convert a number from any base to any 

other base, but it may not be very intuitive to convert something like 513.03 to 

base 7. As an aid in performing an unnatural conversion, we can convert to the 

more familiar base 10 forms as an intermediate step, and then continue the 

conversion from base 10 to the target base. As a general rule, we use the 

polynomial method when converting into base 10, and we use the remainder and 

multiplication methods when converting out of base 10. 
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Lecture Two 

Binary Arithmetic Operations 

Arithmetic operations in digital systems are usually done in binary because design 

of logic circuits to perform binary arithmetic is much easier than for decimal. 

Binary arithmetic is carried out in much the same manner as decimal, except the 

addition and multiplication tables are much simpler. 

The addition table for binary numbers is 

 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 0   and carry 1 to the next column 

Carrying 1 to a column is equivalent to adding 1 to that column. 

 

Example: Add 1310 and 1110 in binary. 

1111        carries 

1310 = 1101 

1110 = 1011 

11000  = 2410 

 

The subtraction table for binary numbers is 

0- 0 = 0 

0 -1 = 1 and borrow 1 from the next column 

1- 0 = 1 

1- 1 = 0 

Borrowing 1 from a column is equivalent to subtracting 1 from that column. 

Example: 
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The multiplication table for binary numbers is: 

 

 

 

 

 

 

 

 

Example: 

 

 

 

 

 

 

The following example illustrates division of 14510 by 1110 in binary: 
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Boolean Algebra 

The basic mathematics needed for the study of the logic design of digital systems 

is Boolean algebra. Boolean algebra has many other applications including set 

theory and mathematical logic. Because all of the switching devices which we will 

use are essentially two-state devices (such as a transistor with high or low output 

voltage), we will study the special case of Boolean algebra in which all of the 

variables assume only one of two values. This two-valued Boolean algebra is often 

referred to as switching algebra. George Boole developed Boolean algebra in 1847 

and used it to solve problems in mathematical logic. Claude Shannon first applied 

Boolean algebra to the design of switching circuits in 1939. 

We will use a Boolean variable, such as X or Y, to represent the input or output of 

a switching circuit. We will assume that each of these variables can take on only 

two different values. The symbols “0” and “1” are used to represent these two 

different values. Thus, if X is a Boolean (switching) variable, then either X = 0 or 

X = 1. 

The symbols “0” and “1” used in Boolean algebra do not have a numeric value; 

instead they represent two different states in a logic circuit and are the two values 

of a switching variable. In a logic gate circuit, 0 (usually) represents a range of low 

voltages, and 1 represents a range of high voltages. In a switch circuit, 0 (usually) 

represents an open switch, and 1 represents a closed circuit. In general, 0 and 1 can 

be used to represent the two states in any binary-valued system. 

 

Basic Operations 

The basic operations of Boolean algebra are AND, OR, and complement (or 

inverse). The complement of 0 is 1, and the complement of 1 is 0. Symbolically, 

we write: 
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0′ = 1 and  1′ = 0 

where the prime (′) denotes complementation. If X is a switching variable, 

X′ = 1 if X = 0  and  X′ = 0 if X = 1 

 

An alternate name for complementation is inversion, and the electronic circuit 

which forms the inverse of X is referred to as an inverter. Symbolically, we 

represent an inverter by: 

 

 

 

where the circle at the output indicates inversion. If a logic 0 corresponds to a low 

voltage and a logic 1 corresponds to a high voltage, a low voltage at the inverter 

input produces a high voltage at the output and vice versa. Complementation is 

sometimes referred to as the NOT operation because X = 1 if X is not equal to 0. 

 

The AND operation can be defined as follows: 

  0 .0= 0   0 .1= 0   1.0 =0   1.1=1 

where “. ” denotes AND. (Although this looks like binary multiplication, it is not, 

because 0 and 1 here are Boolean constants rather than binary numbers.) If we 

write the Boolean expression C = A .B, then given the values of A and B, we can 

determine C from the following table: 

 

 

 

 

 

Note that C =1 iff (if and only if ) A and B are both 1, hence, the name AND 

operation. A logic gate which performs the AND operation is represented by: 
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The dot symbol (.) is frequently omitted in a Boolean expression, and we will 

usually write AB instead of A .B. The AND operation is also referred to as 

logical (or Boolean) multiplication. 

The OR operation can be defined as follows: 

0 + 0=0  0+ 1 =1  1+ 0=1  1+ 1 = 1 

 

where “ + ” denotes OR. If we write C = A + B, then given the values of A and B, 

we can determine C from the following table: 

 

 

 

 

 

 

Note that C = 1 iff A or B (or both) is 1, hence, the name OR operation. This type 

of OR operation is sometimes referred to as inclusive-OR. A logic gate which 

performs the OR operation is represented by 

 

 

 

 

 

Boolean Expressions and Truth Tables 

 

Boolean expressions are formed by application of the basic operations to one or 

more variables or constants. The simplest expressions consist of a single constant 
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or variable, such as 0, X, or Y′. More complicated expressions are formed by 

combining two or more other expressions using AND or OR, or by complementing 

another expression. Examples of expressions are 

 

𝐴𝐵′ + 𝐶                                 (1) 

[𝐴(𝐶 + 𝐷)]′ + 𝐵𝐸               (2) 

 

Parentheses are added as needed to specify the order in which the operations are 

performed. When parentheses are omitted, complementation is performed first 

followed by AND then OR. Thus in Expression (2-1), B′ is formed first, then AB′, 

and finally AB′ + C. 

Each expression corresponds directly to a circuit of logic gates. Figure below gives 

the circuits for Expressions (1) and (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An expression is evaluated by substituting a value of 0 or 1 for each variable. If 

A = B = C = 1 and D= E = 0, the value of Expression (2) is 



Logic Design                                  Lecture Two 
 

7 
 

[A(C + D)]′ + BE = [1(1 + 0)]′ + 1 . 0 = [1(1)]′ + 0 = 0 + 0 = 0 

 

Each appearance of a variable or its complement in an expression will be referred 

to as a literal. Thus, the following expression, which has three variables, has 10 

literals: 

𝑎𝑏′𝑐 +  𝑎′𝑏 +  𝑎′𝑏𝑐′ +  𝑏′𝑐′ 

When an expression is realized using logic gates, each literal in the expression 

corresponds to a gate input. 

A truth table (also called a table of combinations) specifies the values of a Boolean 

expression for every possible combination of values of the variables in the 

expression. The name truth table comes from a similar table which is used in 

symbolic logic to list the truth or falsity of a statement under all possible 

conditions. We can use a truth table to specify the output values for a circuit of 

logic gates in terms of the values of the input variables. The output of the circuit in 

Figure (1)a is F = A′ + B. Figure 1(b) shows a truth table which specifies the 

output of the circuit for all possible combinations of values of the inputs A and B. 

The first two columns list the four combinations of values of A and B, and the next 

column gives the corresponding values of A′. The last column, which gives the 

values of A′ + B, is formed by ORing together corresponding values of A′ and B in 

each row. 
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Lecture Three 

Logic Gates 

Digital systems are said to be constructed by using logic gates. These gates are the 

AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations 

are described below with the aid of truth tables. 

 

 

 

 

 

 

The AND gate is an electronic circuit that gives a high output (1) only if all its 

inputs are high.  A dot (.) is used to show the AND operation i.e. A.B.  Bear in 

mind that this dot is sometimes omitted i.e. AB 
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The OR gate is an electronic circuit that gives a high output (1) if one or more of 

its inputs are high.  A plus (+) is used to show the OR operation. 

 

 

 

 

 

 

 

The NOT gate is an electronic circuit that produces an inverted version of the input 

at its output.  It is also known as an inverter.  If  the input variable is A, the 

inverted output is known as NOT A.  This is also shown as A', or A with a bar over 

the top, as shown at the outputs. The diagrams below show two ways that the 

NAND logic gate can be configured to produce a NOT gate. It can also be done 

using NOR logic gates in the same way. 

 

 

 

 

 

 

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate.  

The outputs of all NAND gates are high if any of the inputs are low. The symbol is  
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an AND gate with a small circle on the output. The small circle represents 

inversion. 

 

 

 

 

 

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate.  The 

outputs of all NOR gates are low if any of the inputs are high. The symbol is an 

OR gate with a small circle on the output. The small circle represents inversion. 

 

 

 

 

 

 

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not 

both, of its two inputs are high.  An encircled plus sign () is used to show the EOR 

operation. 

The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a 

low output if either, but not both, of its two inputs are high. The symbol is an 

EXOR gate with a small circle on the output. The small circle represents inversion. 
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Laws and Theorems of Boolean Algebra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example :  simplify the expression  𝐹 = 𝐴(𝐴′ + 𝐵) using algebra theorem. 

𝐹 = 𝐴(𝐴′ + 𝐵) 

= 𝐴𝐴′ + 𝐴𝐵       (8. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝐿𝑎𝑤) 

𝐹 = 𝐴𝐵     (5𝐷.      𝐴𝐴′ = 0) 
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DeMorgan’s Laws 

The inverse or complement of any Boolean expression can easily be found by 

successively applying the following theorems, which are frequently referred to as 

DeMorgan’s laws: 

(𝑋 + 𝑌)′ = 𝑋′𝑌′ 

(𝑋𝑌)′ = 𝑋′ + 𝑌′ 

We will verify these laws using a truth table: 

 

 

 

 

DeMorgan’s laws are easily generalized to n variables: 

(𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋𝑛)′ = 𝑋1
′  𝑋′2 𝑋′3 … 𝑋𝑛′ 

(𝑋1  𝑋2  𝑋3 … 𝑋𝑛)′ = 𝑋1
′ + 𝑋2

′ + 𝑋3 … + 𝑋𝑛′ 

 

For example, for n=3, 

(𝑋1 + 𝑋2 + 𝑋3)′ = (𝑋1 + 𝑋2)′ 𝑋3
′ = 𝑋1

′  𝑋2
′  𝑋3′ 

 

Referring to the OR operation as the logical sum and the AND operation as logical 

product, DeMorgan’s laws can be stated as: 

The complement of the product is the sum of the complements. 

The complement of the sum is the product of the complements.  
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Lecture Four 

 

Simplification and Boolean Functions 

When a function is realized using AND and OR gates, the cost of realizing the 

function is directly related to the number of gates and gate inputs used. The 

Karnaugh map techniques developed in this unit lead directly to minimum cost 

two-level circuits composed of AND and OR gates. An expression consisting of a 

sum of product terms corresponds directly to a two-level circuit composed of a 

group of AND gates feeding a single OR gate. Similarly, a product-of sums 

expression corresponds to a two-level circuit composed of OR gates feeding a 

single AND gate. Therefore, to find minimum cost two-level AND-OR gate 

circuits, we must find minimum expressions in sum-of-products or product-of-

sums form. A minimum sum-of-products expression for a function is defined as a 

sum of product terms which has a minimum number of terms and of all those 

expressions which have the same minimum number of terms, has a minimum 

number of literals. The minimum sum of products corresponds directly to a 

minimum two-level gate circuit which has a minimum number of gates and a 

minimum number of gate inputs. 

Minimization of Boolean expressions 

The minimization will result in reduction of the number of gates (resulting from 

less number of terms) and the number of inputs per gate (resulting from less 

number of variables per term). The minimization will reduce cost, efficiency and 

power consumption. 
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Karnaugh Maps - Rules of Simplification 

The Karnaugh map also known as Veitch diagram or simply as K map is a two 

dimensional form of the truth table, drawn in such a way that the simplification of 

Boolean expression can be immediately be seen from the location of 1’s in the 

map.  

The Karnaugh map provides a simple and straight-forward method of minimizing e 

Boolean expressions. With the Karnaugh map Boolean expressions having up to 

four and even six variables can be simplified.  

A Karnaugh map provides a pictorial method of grouping together expressions 

with common factors and therefore eliminating unwanted variables. The Karnaugh 

map can also be described as a special arrangement of a truth table. 

The diagram below illustrates the correspondence between the Karnaugh map and 

the truth table for the general case of a two variable problem. 
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The Karnaugh map uses the following rules for the simplification of expressions 

by grouping together adjacent cells containing ones. 

 Groups may not include any cell containing a zero 

 

 

 

 

 

 Groups may be horizontal or vertical, but not diagonal. 

 

 

 

 

 

 

 

 Groups must contain 1, 2, 4, 8, or in general 2
n
 cells.  

That is if n = 1, a group will contain two 1's since 2
1 
= 2.  

If n = 2, a group will contain four 1's since 2
2
 = 4. 

 

 

 

 

 



Logic Design                                Lecture Four 

4 
 

 

 

 

 

 

 

 

 

 Each group should be as large as possible. 

 

 

 

 

 

 

 

 

 Each cell containing a one must be in at least one group. 

 

 

 

 

 

 

 

 

 Groups may overlap. 
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 Groups may wrap around the table. The leftmost cell in a row may be grouped 

with the rightmost cell and the top cell in a column may be grouped with the 

bottom cell. 

 

 

 

 

 

 

 

 

 There should be as few groups as possible, as long as this does not contradict any 

of the previous rules. 
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Summary 

1. No zeros allowed.  

2. No diagonals.  

3. Only power of 2 numbers of cells in each group.  

4. Groups should be as large as possible.  

5. Everyone  must be in at least one group.  

6. Overlapping allowed.  

7. Wrap around allowed.  

8. Fewest number of groups possible 

 

Example 1: 

 

              𝐴′𝐵′𝐶′ + 𝐴′𝐵′𝐶 = 𝐴′𝐵′(𝐶′ + 𝐶) 

              = 𝐴′𝐵′ 

 

Example 2: 
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Example 3 

 

 

 

 

 

Example 4: 

 

 

 

 

 

Example 5: 

 

 

 

 

Example 6: 
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Example 7: 

 

 

 

 

 

Example 8: 

 

 

 

 

 

Simplifying Boolean Equations with Karnaugh Maps 

Example1:  simplify the logic using a Karnaugh map. 
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Lecture Five 

The following corresponds to the Boolean expression 

Example 1: 

 𝑄 =  𝐴′𝐵𝐶′𝐷 +  𝐴′𝐵𝐶𝐷 +  𝐴𝐵𝐶′𝐷′ +  𝐴𝐵𝐶′𝐷 +  𝐴𝐵𝐶𝐷 +  𝐴𝐵𝐶𝐷′ +

 𝐴𝐵′𝐶𝐷 +  𝐴𝐵′𝐶𝐷′ 

 

 

 

 

 

 

 

 

The expression for the groupings above is 𝑄 =  𝐵𝐷 +  𝐴𝐶 +  𝐴𝐵 this expression 

requires 3 2-input AND gates and 1 3-input OR gate. 

Example 2: 

𝐹 = 𝐴𝐵 + 𝐴′𝐵𝐶′𝐷 + 𝐴′𝐵𝐶𝐷 + 𝐴𝐵′𝐶′𝐷′ 

 

 

 

             = 𝐵𝐷 + 𝐴𝐵 + 𝐴𝐶′𝐷′ 
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Example 3: 

𝐹 = 𝐴𝐶′𝐷′ + 𝐴′𝐵′𝐶 + 𝐴′𝐶′𝐷 + 𝐴𝐵′𝐷 

 

 

 

 

 

 

 

 

 

 

Example 4: 

 𝐹 = 𝐴′𝐵′𝐶′𝐷′ + 𝐴𝐵′𝐶′𝐷′ + 𝐴′𝐵𝐶′𝐷 + 𝐴𝐵𝐶′𝐷 + 𝐴′𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 

 

 

 

 

 

 

 

 



Logic Design                           Lecture Five  

3 
 

Gate Delays and Timing Diagrams 

When the input to a logic gate is changed, the output will not change 

instantaneously. The transistors or other switching elements within the gate take a 

finite time to react to a change in input, so that the change in the gate output is 

delayed with respect to the input change. If the change in output is delayed by 

time,𝜖 , with respect to the input, we say that this gate has a propagation delay of 𝜖. 

In practice, the propagation delay for a 0 to 1 output change may be different than 

the delay for a 1 to 0 change. Propagation delays for integrated circuit gates may 

be as short as a few nanoseconds (1 nanosecond = 10
-9

 second), and in many cases 

these delays can be neglected. However, in the analysis of some types of sequential 

circuits, even short delays may be important. 

Timing diagrams are frequently used in the analysis of sequential circuits. These 

diagrams show various signals in the circuit as a function of time. Several variables 

are usually plotted with the same time scale so that the times at which these 

variables change with respect to each other can easily be observed. 

Figure below shows the timing diagram for a circuit with two gates. We will 

assume that each gate has a propagation delay of 20 ns (nanoseconds).This timing 

diagram indicates what happens when gate inputs 𝐵 and 𝐶 are held at constant 

values 1 and 0, respectively, and input 𝐴 is changed to 1 at 𝑡 = 40 ns and then 

changed back to 0 at 𝑡 =100 ns. The output of gate 𝐺1 changes 20 ns after 𝐴 

changes, and the output of gate 𝐺2 changes 20 ns after 𝐺1 changes. 
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Figure below shows a timing diagram for a circuit with an added delay element. 

The input X consists of two pulses, the first of which is 2 microseconds (2 ×10
6
 

second) wide and the second is 3 microseconds wide. The delay element has an 

output Y which is the same as the input except that it is delayed by 1 microsecond. 

That is Y changes to a 1 value 1 microsecond after the rising edge of the X pulse 

and returns to 0 1 microsecond after the falling edge of the X pulse. The output (Z) 

of the AND gate should be 1 during the time interval in which both X and Y are 1. 

If we assume a small propagation delay in the AND gate (𝜀), then Z will be as 

shown in Figure below. 
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Example 1: 

Complete the timing diagram for the given circuit. Assume that both gates have a 

propagation delay of 5ns. 

  

 

 

 

 

 

 

Example 2:  for the following circuit: 

 

 

 

 

 

Assume that the inverters have a delay of 1 ns and the other gates have a delay of 2    

ns. Initially A = 0 and B = C = D = 1, and C changes to 0 at time = 2 ns. Draw a 

timing diagram. 
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Example 3: Draw the timing diagram for V and Z for the circuit. Assume that the 

AND gate has a delay of 10 ns and the OR gate has a delay of 5 ns. 

 

 

   

 

 

 

 

 

 

 

Example 4: Complete the timing diagram for the given circuit. Assume that both 

gates have a propagation delay of 5 ns. 
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Lecture 6 

Sequential Logic circuits 

Digital circuits can be classified into two types: 

 Combinational Logic Circuits 

 Sequential Logic Circuits 

 

1. Combination Logic Circuits:  

Are made up from basic gates (AND, OR, NOT) or universal gates (NAND, NOR) 

gates that are "combined" or connected together to produce more complicated 

switching circuits. These logic gates are the building blocks of combinational logic 

circuits. An example of a combinational circuit is a decoder, which converts the 

binary code data present at its input into a number of different output lines, one at a 

time producing an equivalent decimal code at its output. 

 

 In these circuits “the outputs at any instant of time depends on the inputs present 

at that instant only.” 

 

  For the design of Combinational digital circuits Basic gates (AND, OR, NOT) or 

universal gates (NAND, NOR) are used. Examples for combinational digital 

circuits are Half adder, Full adder, Half subtractor, Full subtractor, Code 

converter, Decoder, Multiplexer, Demultiplexer, Encoder, ROM, etc. 

 

 

 

Figure 1.1: combinational Logic Circuit 
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Figure 1.2: Classification of Combinational Logic Circuit 

 

2. Sequential Logic Circuits 

 Sequential logic differs from combinational logic in that the output of the logic 

device is dependent not only on the present inputs to the device, but also on past 

inputs; i.e., the output of a sequential logic device depends on its present internal 

state and the present inputs. This implies that a sequential logic device has some 

kind of memory of at least part of it’s ``history’’ (i.e., its previous inputs). 

 

 

 

 

 

Figure 1.3: sequential logic circuit 

  A simple memory device can be constructed from combinational devices with 

which we are already familiar. By a memory device, we mean a device which 

Combinational Logic Circuit 

Arithmetic & Logical 

Functions 
Code Converters Data Transmission 
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Subtractor 

Comparators 
 

Binary 

BCD 

7-segment 
 

Multiplexers 

Demultiplexers 

Encoders 
Decoders 
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can remember if a signal of logic level 0 or 1 has been connected to one of its 

inputs, and can make this fact available at an output. A very simple, but still 

useful, memory device can be constructed from a simple OR gate , as shown in 

Figure below: 

 

 

Figure 1.4  Sequential Logic Circuit 

 

 In this memory device, if A and Q are initially at logic 0, then Q remains at logic 

0. However if the single input A ever becomes a logic 1, then the output Q will 

be logic 1 ever after, regardless of any further changes in the input at A. In this 

simple memory, the output is a function of the state of the memory element 

only; after the memory is ``written'' then it cannot be changed back. However, it 

can be ``read.'' Such a device could be used as a simple read only memory, 

which could be ``programmed'' only once. Often a state table or timing diagram 

is used to describe the behavior of a sequential device.  

 

 Note that the output of the memory is used as one of the inputs; this is called 

feedback and is characteristic of programmable memory devices. (Without 

feedback, a ``permanent'' electronic memory device would not be possible.) The 

use of feedback in a device can introduce problems which are not found in 

strictly combinational circuits. 

 

 The word “Sequential” means that things happen in a “sequence”, one after 

another and in Sequential Logic circuits, the actual clock signal determines when 

things will happen next. Simple sequential logic circuits can be constructed from 

standard Bistable circuits such as: Flip-flops, Latches and Counters and which 
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themselves can be made by simply connecting together universal NAND Gates 

and/or NOR Gates in a particular combinational way to produce the required 

sequential circuit. 

Flip- Flops 

A flip flop is an electronic circuit with two stable states that can be used to store 

binary data, it can store one bit of information. The stored data can be changed by 

applying varying inputs. Flip-flops and latches are fundamental building blocks of 

digital electronics systems used in computers, communications, and many other 

types of systems. Flip-flops and latches are used as data storage elements. It is the 

basic storage element in sequential logic.  

 

SR Flip-Flop 

The SR flip-flop, also known as a SR Latch (figure 1.5), can be considered as one 

of the most basic sequential logic circuit possible. This simple flip-flop is basically 

a one-bit memory bistable device that has two inputs, one which will “SET” the 

device (meaning the output = “1”), and is labeled S and one which will “RESET” 

the device (meaning the output = “0”), labeled R. 

Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop 

back to its original state with an output Q that will be either at a logic level “1” or 

logic “0” depending upon this set/reset condition. 
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Figure 1.5 (a) Circuit, (b) Symbol 

 

 

 

 

 

 

 

 

 

 

The Set State 

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) and 

input S is at logic level “1” (S = 1), the NAND gate Y has at least one of its inputs 

at logic “0” therefore, its output Q must be at a logic level “1” (NAND Gate 

principles). Output Q is also fed back to input “A” and so both inputs to NAND 

gate X are at logic level “1”, and therefore its output Q must be at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, and goes HIGH to 

logic “1” with S remaining HIGH also at logic level “1”, NAND gate Y inputs are 

now R = “1” and B = “0”. Since one of its inputs is still at logic level “0” the 

output at Q still remains HIGH at logic level “1” and there is no change of state. 

Therefore, the flip-flop circuit is said to be “Latched” or “Set” with Q = “1” and   

Q = “0”. 
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Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse output at 

Q is at logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As gate X 

has one of its inputs at logic “0” its output Q must equal logic level “1” (again 

NAND gate principles). Output Q is fed back to input “B”, so both inputs to 

NAND gate Y are at logic “1”, therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with input R remaining at logic 

“1”, output Q still remains LOW at logic level “0” and there is no change of state. 

Therefore, the flip-flop circuits “Reset” state has also been latched and we can 

define this “set/reset” action in the following truth table. 

 

It can be seen that when both inputs S = “1” and R = “1” the outputs Q and Q can 

be at either logic level “1” or “0”, depending upon the state of the inputs S or R 

before this input condition existed. Therefore the condition of  S = R = “1” does 

not change the state of the outputs Q and Q. 

However, the input state of S = “0” and R = “0” is an undesirable or invalid 

condition and must be avoided. The condition of S = R = “0” causes both outputs 

Q and Q to be HIGH together at logic level “1” when we would normally want Q 

to be the inverse of Q. The result is that the flip-flop loses control of Q and Q, and 

if the two inputs are now switched “HIGH” again after this condition to logic “1”, 

the flip-flop becomes unstable and switches to an unknown data state based upon 

the unbalance as shown in the following switching diagram. 
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S-R Flip-flop Switching Diagram 
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Lecture Seven 

JK Flip-flop 

Due to the undefined state in the SR flip flop, another is required in electronics. 

The JK flip flop is an improvement on the SR flip flop where S=R=1 is not a 

problem. 

 

 

 

 

 

 

The input condition of J=K=1, gives an output inverting the output state. However, 

the outputs are same when one tests the circuit practically. 

 

 

 

 

 

 

 

 

 



Logic Design                                Lecture Seven 

2 
 

D Flip Flop 

D flip flop is a better alternative that is very popular with digital electronics. They 

are commonly used for counters and shift-registers and input synchronization. 

 

 

 

 

 

 

In a D flip flop, the output can be only changed at the clock edge, and if the input 

changes at other times, the output will be unaffected. 

 

 

 

 

 

 

The change of state of the output is dependent on the rising edge of the clock. The 

output (Q) is same as the input and can only change at the rising edge of the clock. 
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T Flip Flop 

A T flip flop is like JK flip-flop. These are basically single input version of JK flip 

flop. This modified form of JK flip-flop is obtained by connecting both inputs J 

and K together. This flip-flop has only one input along with the clock input. 

 

 

 

 

 

 

 

 

The “T” in “T flip-flop” stands for “toggle.” When you toggle a light switch, you 

are changing from one state (on or off) to the other state (off or on). This is 

equivalent to what happens when you provide a logic-high input to a T flip-flop: if 

the output is currently logic high, it changes to logic low; if it’s currently logic low, 

it changes to logic high. A logic-low input causes the T flip-flop to maintain its 

current output state. 

These flip-flops are called T flip-flops because of their ability to complement its 

state (i.e.) Toggle, hence the name Toggle flip-flop. 
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Lecture Eight 

Shift Registers 

A Flip flops can be used to store a single bit of binary data (1or 0). However in 

order to store multiple bits of data we need multiple flip flops. N flip flops are to 

be connected in an order to store n bits of data. A Register is a device which is 

used to store such information. It is a group of flip flops connected in series used to 

store multiple bits of data. 

The information stored within these registers can be transferred with the help of 

shift registers. Shift Register is a group of flip flops used to store multiple bits of 

data. The bits stored in such registers can be made to move within the registers and 

in/out of the registers by applying clock pulses. An n-bit shift register can be 

formed by connecting n flip-flops where each flip flop stores a single bit of data. 

 The registers which will shift the bits to left are called “Shift left registers”. 

The registers which will shift the bits to right are called “Shift right registers”. 

Shift registers are basically of 4 types. These are:  

1. Serial In serial out shift register 

2. Serial In parallel out shift register 

3. Parallel In serial out shift register 

4. Parallel In parallel out shift register 

Serial-In Serial-Out Shift Register (SISO) 

The shift register, which allows serial input (one bit after the other through a single 

data line) and produces a serial output, is known as Serial-In Serial-Out shift 
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register. Since there is only one output, the data leaves the shift register one bit at a 

time in a serial pattern, thus the name Serial-In Serial-Out Shift Register. 

The logic circuit given below shows a serial-in serial-out shift register. The circuit 

consists of four D flip-flops which are connected in a serial manner. All these flip-

flops are synchronous with each other since the same clock signal is applied to 

each flip flop. 

 

 

 

 

 

 

 

The above circuit is an example of shift right register, taking the serial data input 

from the left side of the flip flop. The main use of a SISO is to act as a delay 

element. 

Serial-In Parallel-Out shift Register (SIPO)  

The shift register, which allows serial input (one bit after the other through a single 

data line) and produces a parallel output, is known as Serial-In Parallel-Out shift 

register. 

The logic circuit given below shows a serial-in parallel-out shift register. The 

circuit consists of four D flip-flops which are connected. The clear (CLR) signal is 
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connected in addition to clock signal to all the 4 flip flops in order to RESET them. 

The output of the first flip flop is connected to the input of the next flip flop and so 

on. All these flip-flops are synchronous with each other since the same clock signal 

is applied to each flip flop. 

 

 

 

 

 

 

 

 

 

The above circuit is an example of shift right register, taking the serial data input 

from the left side of the flip flop and producing a parallel output. They are used in 

communication lines where multiplexing of a data line into several parallel line is 

required because the main use of SIPO register is to convert serial data into parallel 

data.  
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Lecture Nine 

 

Parallel-In Serial-Out Shift Register (PISO)  

The shift register, which allows parallel input (data is given separately to each flip 

flop and in a simultaneous manner) and produces a serial output is known as 

Parallel-In Serial-Out shift register. 

The logic circuit given below shows a parallel-in serial-out shift register. The 

circuit consists of four D flip-flops which are connected. The clock input is directly 

connected to all the flip flops but the input data is connected individually to each 

flip flop through a multiplexer at input of every flip flop. The output of the 

previous flip flop and parallel data input are connected to the input of the MUX 

and the output of MUX is connected to the next flip flop. All these flip-flops are 

synchronous with each other since the same clock signal is applied to each flip 

flop. 
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A Parallel in Serial out (PISO) shift register us used to convert parallel data to 

serial data. 

Parallel-In Parallel-Out Shift Register (PIPO)  

The shift register, which allows parallel input (data is given separately to each flip 

flop and in a simultaneous manner) and also produces a parallel output is known as 

Parallel-In parallel-Out shift register. 

The logic circuit given below shows a parallel-in parallel-out shift register. The 

circuit consists of four D flip-flops which are connected. The clear (CLR) signal 

and clock signals are connected to all the 4 flip flops. In this type of register there 

are no interconnections between the individual flip-flops since no serial shifting of 

the data is required. Data is given as input separately for each flip flop and in the 

same way, output also collected individually from each flip flop. 

 

 


