A Compiler

Is a program that reads a program written in one language -the Source Language-
and translates it into an equivalent program in another language - the Target Language -.
A compiler translates the code written in one language to some other language without
changing the meaning of the program. It is also expected that a compiler should make

the target code efficient and optimized in terms of time and space.

. —»
Source Program Compiler Target Program

high level language low level language

ormachine language program

L 4

Error Messages

Compiler Design

Computers are a balanced mix of software and hardware. Hardware is just a piece of
mechanical device and its functions are being controlled by compatible software.
Hardware understands instructions in the form of electronic charge, which is the
counterpart of binary language in software programming. Binary language has only two
alphabets, 0 and 1. To instruct, the hardware codes must be written in binary format,
which is simply a series of 1s and 0s. It would be a difficult task for computer

programmers to write such codes, which is why we have compilers to write such codes.

Language Processing System

Any computer system is made of hardware and software. The hardware
understands a language, which humans cannot understand. So we write programs in
high-level language, which is easier for us to understand and remember. These

programs are then fed into a series of tools and OS components to get the desired code

1

that can be used by the machine. This is known as Language Processing System.

. .
Pre Processor
Pre-processed _ e :
e W
Compiler
Target
Assembly Code ""—.... +
Assembler
Relocatable .-~
Machine Code ™ ..
“a. X s LibDrary files/
Linker Relocatable
o S modules
Executable
Machine Code ~w.__ |
Loader
L
Memory

Headers

(stdio.h)
L
Source Preprocessor Preprocessed Compiler Assembly Assembler
(prog.c) > {cpp) * Source ® (cct) ’ (prog.s) ™ (as)
v
Object Code
(prog.o)
v
- namic Static
g | e o Bease g
(Id.s0) preg (Id)
I '
e Libraries
Dynamic Libraries -
(ibc:so) (ibc.2)

The high-level language is converted into binary language in various phases. A
compiler is a program that converts high-level language to

assembly language. Similarly, an assembler is a program that converts the assembly
language to machine-level language. Let us first understand how a program, using C
compiler, is executed on a host machine.

1. User writes a program in C language (High-Level Language).

2. The C compiler compiles the program and translates it to assembly program (Low-
Level Language).

3. An Assembler then translates the assembly program into machine code (object).

4. A Linker tool is used to link all the parts of the program together for execution
(Executable Machine Code).

5. A Loader loads all of them into memory and then the program is executed.

Preprocessor A preprocessor, generally considered as a part of compiler, is a tool that

produces input for compilers.

Interpreter An interpreter, like a compiler, translates high-level language into low-
level machine language. The difference lies in the way they read the source code or
input. A compiler reads the whole source code at once, creates tokens, checks
semantics, generates intermediate code, executes the whole program and may involve
many passes. In contrast, an interpreter reads a statement from the input converts it to
an intermediate code, executes it, then takes the next statement in sequence. If an error
occurs, an interpreter stops execution and reports it. Whereas a compiler reads the

whole program even if it encounters several errors.

Assembler An assembler translates assembly language programs into machine code.
The output of an assembler is called an object file, which contains a combination of

machine instructions as well as the data required to place these instructions in memory.

Linker Linker is a computer program that links and merges various object files together
in order to make an executable file. The major task of a linker is to determine the

memory location where these files will be loaded.

Loader Loader is a part of operating system and is responsible for loading executable
files into memory and executes them. It calculates the size of a program (instructions

and data) and creates memory space for it.

Compiler Architecture:-
A compiler can broadly be divided into two phases based on the way they compile.

1. Analysis Phase

Known as the Front-End of the compiler, the analysis phase of the compiler reads the
source program, divides it into core parts and then checks for lexical, grammar and
syntax errors. The analysis phase generates an intermediate representation of the source
program and symbol table, which should be fed to the Synthesis phase as input.

2. Synthesis Phase
Known as the Back-End of the compiler, the synthesis phase generates the target

program with the help of intermediate source code representation and symbol table.

Front-end . Back-end

Analysis VR 4 aynthesis
N

Intermediate
Source Code Machine
Code Representation Code

The Phases of a Compiler :-
The compilation process is a sequence of various phases. Each phase takes input from its

previous stage, has its own representation of source program, and feeds its output to the
next phase of the compiler. Let us understand the phases of a compiler.

1. Lexical Analyzer. 4da o Judaall Laall
2. Syntax Analyzer. as e sl gae) gl
3. Semantic Analyzer. s e Jalaill (5 sinall
4. Intermediate Code Generator. 4s e a4l g3 <) Hall) ddas o))
5. Code Optimizer. s ja Cppst &l 380
6. Code Generator. 2 s« &l ikl
In each phase we need variables that can be obtained from a table called Symbol Table

manager, and in each phase some errors may be generated so we must have a program

used to handle these errors , this program called Error Handler.

Source Program

Lexical analyzer

Intermediate Code
Generator

Symbols
Table
Manager

Code Optimizer

4

I Code Generator

Target Program

O Lexical Analyzer :- Is the initial part of reading and analyzing the program text (source
program); The text is read (character by character) and divided into tokens, each of which
corresponds to a symbol in the programming language, e.g., a variable name, keyword or

number.

1 Syntax analyzer :- The next phase is called the syntax analysis or parsing. It takes the
token produced by lexical analysis as input and generates a parse tree (or syntax tree) that
reflects the structure of the program. This phase is often called parsing.

1 Semantic Analysis:- Semantic analysis checks whether the parse tree constructed
follows the rules of language. Also is known as Type checking which main function is to
analyze the syntax tree to determine if the program violates certain consistency

requirements, such as, if a variable is used but not declared, assignment of values is
between compatible data types, and adding string to an integer.

[J Intermediate Code Generator :- After syntax and semantic analysis, It is in between the
high-level language and the machine language. This intermediate code should be
generated in such a way that it makes it easier to be translated into the target machine
code. This phase bridges the analysis and synthesis phases of translation.

1 Code Optimization phase :- The code optimization phase attempts to improve the
intermediate code which results that the output runs faster and takes less space.
Optimization can be assumed as something that removes unnecessary code lines, and
arranges the sequence of statements in order to speed up the program execution without
wasting resources (CPU, memory).

1 Code Generator :- The final phase of complier is the generation of target code, which
represents the output of the code generator in the machine language.

[J Symbol Table :- It is a data-structure maintained throughout all the phases of a
compiler. All the identifiers’ names along with their types are stored here. The symbol
table makes it easier for the compiler to quickly search the identifier record and retrieve it.
1 Error Handler :- Each phase can produce errors. However, after detecting an error, a
phase must deal with that error, so that the compilation can proceed. So dealing with that
error is done by a program known as Error Handler which is software used to handle any
error that may be produced from any phase and it is needed in all phases of the compliers.

Note :- Each phase of the complier has two inputs and two outputs; for example:- for the
first phase (Lexical Analyzer) the first input to it is the source program while the second
input is some variables that may be needed in that phase; while the first output is the errors
that may be generated in it and will be manipulated by the Error Handler program, and the
second output from it will represent the input for the next compiler phase (Syntax).

Lexical Analysis:- A Review

Lexical analysis is the first phase of a compiler. It takes the modified source code from
language preprocessors that are written in the form of sentences. The lexical analyzer
breaks these syntaxes into a series of tokens, by removing any whitespace or comments in
the source code.

strings, numbers, operators and punctuations symbols can be considered as tokens.
For example, in C language, the variable declaration line

7

int value = 100;
Contains the tokens:-

int keyword
value identifier
= operator

100 constant

symbol

The lexical analyzer also follows rule priority where a reserved word, e.g., a keyword, of a
language is given priority over user input. That is, if the lexical analyzer finds a lexeme
that matches with any existing reserved word, it should generate an error.

If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer
works closely with the syntax analyzer. It reads character streams from the source code,
checks for legal tokens, and passes the data to the syntax analyzer when it demands.

fokens

e | lexemes Lexical Syntax

[Ty

——— | g Analyzer Analyzer

= —v :

request for tokens

source-code

Specifications of Tokens
Let us understand how the language theory undertakes the following terms:

Alphabets

Any finite set of symbols {0,1} is a set of binary alphabets,
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, {a-z, A-Z} is a set of
English language alphabets.

Strings

Any f?nite sequence of alphabets is called a string. Length of the string is the total number
of occurrence of alphabets, e.g., the length of the string tutorials point is 14 and is denoted
by [tutorialspoint| = 14. A string having no alphabets, i.e. a string of zero length is known
as an empty string and is denoted by ¢ (epsilon).

Language

A language is considered as a finite set of strings over some finite set of alphabets.
Computer languages are considered as finite sets, and mathematically set operations can
be performed on them. Finite languages can be described by means of regular expressions.
The various operations on languages are:

1 Union of two languages L and M is written as

LUM={s|sisinLorsisin M}

[J Concatenation of two languages L and M is written as

LM={st|sisinLandtisin M}

1 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Grammars
A grammar is a set of formal rules for constructing correct sentences in any language; such
sentences are called Grammatical Sentences.

Concatenation
We define the Concatenation of two symbols U and V by:-
Uv={X|X=uv,uisinUandvisinV }
Note that:- UV #VU
U (VW) = (UV) W

Example [7:-

Let = = {0,1} and U= {000,111} and V= {101,010}
UV= {000101, 000010, 111101, 111010}
VU= {101000, 101111, 010000, 010111}

UV # VU

Example [J:-

Let X = {a,b,c,d} ; U= {abd, bcd} ; V= {bcd, cab} and W= {da, bd}
To prove the following:- U (VW) = (UV) W

First, take the left side;

U (VW) ={abd , bcd} {bcdda, bcdbd, cabda, cabbd}
= { abdbcdda, abdbcdbd, abdcabda, abdcabbd, bcdbcdda, bedbedbd, bedcabda,

bcdcabbd }
Second, take the right side;
(UV) W = { abdbcd, abdcab, bcdbcd, bedcab} {da, bd}
= { abdbcdda, abdcabda, bcdbcdda, bedcabda, abdbedbd, abdcabbd, bedbedbd,

bcdcabbd }
0 U (VW) =(UV) W

Closure or Star Operation :-
This operation defines on a set S, a derived set S*, having as members the empty word
and all words formed by concatenating a finite number of words in S, as shown below:-

Example :-
Let 5 = {01, 11}, then

S ={,01,11, 0101,0111,1101,1111 , 010101, 010111, ...}
A A LY A N A J
i 3 Y Y
s® s! 52 s>

Formalization:-
A phrase structure grammar is of the form G= (N, T, S, P); where:-

N = A finite set of non-terminal symbols denoted by A, B, C,...
T = A finite set of terminal symbols denoted by a, b, c,...

WithNUT=VandN { T= ¢ (null set).

P = A finite set of ordered pairs ({a’ £)) called the Production Rules, ¢

10

and p being the string over V* and * involving at least one symbol from N.
S =is a special symbol called the Starting Symbol.

Example :-
LetG=(N, T, S, P); N={S, B, C}, T={a, b}
P= {(S — aba), (SB —b), (b—bB), (b—A)!

This grammar is not a structure grammar because of the production rule b—bB hocause
the left side of this rule containing only a terminal symbol (b) and in any production rule
the left side must involve at least one non-terminal symbol.

Example :-
Let G= (N, T, S, P) where N= [S, A}, T= {a, b}

P= {(S5—aAa), (A—+bAb), (A—a)
S — alAa — abAba — abbAbba — abbabba

Note :-

1. The production rules can be written in another form, for the above example, the
production rule is written as follows:-

P={(S, aAa), (A, bADb), (A, a)}

2. Some times it may be that two different grammars G and G generated the same

L (G)=L(G) . : i
language (G=LE) the grammars are said to be equivalent.

Example :-

G=(N,T,S,P)

N= {number, integer, fraction, digit}
7={,0,1,2,3, ..., 9}

S=number

P={[number—integer fraction), (integer—digit), (integer— integer digit),

(fraction—.digit), (fraction—fraction digit),(digit—>0), (digit—>1),

11

(digit—2), (digit—>3), (digit>4), (digit>5), (digit>6), (digit>7), (digit>8),

(digit—9)
Now we want to prove if the following number is accepted or not 75311127
number
integer fraction
integer digit fraction digit
integer digit 1 . digh 2
| |
digit 5 !

Kinds of Grammar Description :-
1. Transition Diagram.

2. BNF (Backus_ Naur form).

3. EBNF.

4. Cobol_Meta Language.

5. Syntax Equations.

6. Regular Expression (R.E.).

By using BNF the grammar can be represented as follows:-
(For the previous example)

G=(N,T,S,P)

N= {<number>, <integer>, <fraction>, <digit>}
T={,0,1,2,3,..,9}

12

S= <number>

Production rules P will be represented as follows:
<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>
<fraction> ::= .<digit>|<fraction> <digit>
<digit> ::= 0|1|2|3|4/|5|6|7|8|9

Regular Expression (R.E.)
The lexical analyzer needs to scan and identify only a finite set of valid

string/token/lexeme that belong to the language in hand. It searches for the pattern defined
by the language rules.

Regular expressions have the capability to express finite languages by defining a pattern
for finite strings of symbols. The grammar defined by regular expressions is known as
regular grammar. The language defined by regular grammar is known as regular language.
The various operations on languages are:

[1 Union of two languages L and M is written as
LUM={s|sisinLorsisin M}

1 Concatenation of two languages L and M is written as
LM={st|sisinLandtisin M}

1 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

For example, R* is R.E. denoting

{s3UL_ UL U..UL"

The main components of RE are

1. g or A is R.E. denoting by L°={e}=L

2. Any terminal symbol like a is R.E. denoting L={a}

3. [a-z] is all lower-case alphabets of English language.
4. [A-Z] is all upper-case alphabets of English language.
5. [0-9] is all natural digits used in mathematics.

13

Transformation of R.E. to Transition Diagram
(Formal Method)

1. For each non terminal NT draw a circle.
2. Connect with arrows between any two circles with respect to the
following rules:-

If NT5>NT connect the two circles with arrow labeled A or £.
If NT5T NT connect the two circles with arrow labeled T.

If NT>T creares a new circle with a new NT (final) then
connect the lermr-hand side NT of the rule and the new NT
with arrow labeled T.

If NT->T's NT create circles (as the length of T's-1).

Example :-
Let G={{S, R, U}{a, b}, S, P}

S—a
R - abaU
U-b
S - bU
R-U
U-—aS
S - bR

Transformation of BNF to Transition Diagram (Informal Method)

1. Draw a separate transition diagram for each production rule.

2. Substitute each non-terminal symbol by its corresponding transition diagrams.
Example :-

G=(N,T,S,P)

14

N= {<number>, <integer>, <fraction>, <digit>}
T={,0,1,23,..,9}

S= <number>

P=

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>
<fraction> ::= .<digit>|<fraction> <digit>
<digit> ::= 0|1|2|3|4/|5|6|7|8|9

Now we take each production rule and draw to it a separate transition diagram:-
<number> ::= <integer> <fraction>

O‘-‘. integer> ('\‘: fraction .‘.‘:@

<integer> ::= <digit>|<integer> <digit>

=
<digit>
O—©)

<fraction> ::= .<digit>|<fraction> <digit>

O—0=67

<digit> ::= 0[1|2|3/4]5/6]7|8]9

O0—0O

Now we must substitute each non-terminal symbol by its corresponding transition
diagram.

15

<fraction>

4

16

0-9

Lexical Analyzer Design
Lexical analysis is the first phase of a compiler. It takes modified source code from language

preprocessors that are written in the form of sentences. The lexical analyzer breaks these
syntaxes into a series of tokens, by removing any whitespace or comments in the source code.
If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer works
closely with the syntax analyzer. It reads character streams from the source code, checks for
legal tokens, and passes the data to the syntax analyzer when it demands.

The main sub-phases of the Lexical analyzer phase are shown below in the following figure:-

Grammar

Transition Diagram I

Non-Deterministic Finite ‘

State Automata (NDFSA)

k.

Deterministic Finite State ‘

Automata (DFSA)

k

Minimize of DFSA

L A

Recognizer

e The grammar will converted to a Transition Diagram using special algorithm.
e The converted Transition Diagram must be checked whether if it is in NDFSA form or not;
if so, the grammar must converted to DFSA using algorithm which will be described in this

chapter.

e The resulted grammar will be in DFSA form which must be minimized to reduce the
number of nodes depending on algorithm designed for this purpose (fast searching and
minimum memory storage).

o The final sub-phase in lexical analyzer phase is to recognize if the input string or statement

Is accepted or not depending on a specific grammar.

Finite State Automata (FSA):-

Is a mathematical model consists of:-

1. A set of terminal symbols

2. Transition functions

3. One-Initial state (Start state)

4. One or Set of Final states

5. Finite set of elements called states

States : States of FSA are represented by circles. State names or numbers are written inside
circles.

Start state : The state from where the FSA starts, is known as the start state. Start state has an
arrow pointed towards it.

Final State :- If the input string is successfully parsed, the automata is expected to be in this
state. Final state is represented by double circles,it is also called the Accepting State.

A transition :- Is denoted by an arrow connecting two states, the arrow is labeled by the
symbol (possibly e). The transition from one state to another state happens when a desired
symbol in the input is found. Upon transition, automata can either move to the next state or
stay in the same state. Movement from one state to another is shown as a directed arrow,

where the arrows points to the destination state.

Two types of FSA :-
e Non-Deterministic Finite State Automata (NDFSA)

e Deterministic Finite State Automata (DFSA)
FSA is of NDFSA if one of these two conditions is satisfied:-
1. There are more than one transition have the same label from that state to another states.
2. There is a ¢ - transition.

A transition, represent FSA of type | A transition, represent FSA of type
NDFSA. DFSA.

e

Formal method for converting R.E. to NDFSA :-
1- If we have an R.E.= € then the NDFSA will be as follows:-

®—£~© where 1 = mnitial state ., f =final state

where i = initial state , f =final state

2- If we find a terminal symbol like a, then the NDFSA will be as follows:-
(V)—+(@

3- If we have P|Q

Plalaolw
c<

DO T

4- If we have P.Q

5- If we have Q*

=

Z ..-_-’"
Example :-
R.E.= abc|d*

Examples :-
1. RE= letter (letter | digit)*

2. RE=(a|b)*

Data structure representation of FSA :-

1- Transition Matrix
We must have a matrix with the number of its rows equal to the number of the FSA states in
the diagram while the number of its columns in this matrix equal to the number of its inputs

(labels).
This type of representation has a disadvantage that it contains many blank spaces, while the

advantage of this type is that the indexing is fast.
For example:-

_ . WO -

1 Graph Representation

In this representation we have a fixed number of columns which is equal to 2 and the labels of
these two columns are Input Symbol & Next State while the number of rows differs from one
transition diagram to another and these rows are labeled by the number of states. The
disadvantage of this representation is that it takes a long time for searching (search slow)

while the advantage of this representation is that it is compact.

For the previous example:-

b

Input Next

Transformation of NDFSA to DESA:-

Before we use an algorithm to convert the grammar which is NDFSA form to DFSA form, we
must deal with a special function known as g-Closure Function, which can be explained using
the following procedure:-

Function €-Closure (M) :-
Begin
Push all states in M into stack;
Initialize €-Closure (M) to M;
While stack is not empty do
Begin
Pop S;
For each state X with an edge labeled € from S to X do
If X is not in E-Closure (M) then

Begin
Push X;
Add X to &-Closure (M);
End;
End;
End;

Example :-
R.E.=abc|d*

To compute randomly the e-Closure for the following states:-
&-Closure ({0}) ={0, 1, 5, 6, 8, 9}
€-Closure ({1}) = {1}
&-Closure ({7, 8}) ={7, 8, 9, 6}

&-Closure ({2, 3, 4})={2, 3, 4, 9}

Algorithm for transforming NDFSA to DFSA:-

Initially let x= E-Closure ({So}) marked as the start state of DFSA, So is the
start state of NDFSA;
While there is unmarked states X = {S4, S2, ...,Sn} of DFSA do

Begin

For each terminal symbol (a € X) do
Begin
Let M be the set of states to which there is transition on a from

some states Siin X ;

Y = E-Closure ({ M });

If Y has not yet been added to the set of states of DFSA then make
Y an unmarked state of DFSA;

Create an edge by adding a transition from X to Y labeled a if not
present;

End;
End;

End {algorithm}

Examples:-
@ R.E. = Letter (letter | digit)*

letter

N\

Final State

Start State

E-Closure ({0 }) = {0} «-:---- Create a new node called for example A
A— letter ; M={1}; E-Closure ({1})={1,2,3,5,8} «------ Create a new

node called for example B (must be a final node because of node 8).

— digit ; M=O;

B — letter ; M={4}; E-Closure ({4})={4,7,8,2,3,5} <-:-:-- Create a new

node called for example C (must be a final node because of node 8).

— digit ; M={6}; £-Closure ({6})={6,7,8,2,3,5} <«-:---- Create a new

node called for example D (must be a final node because of node 8).

C— letter ; M={4}; No need to create a new node because &-Closure

({4}) has been computed and by which we have node C.

digit ; M={6}; No need to create a new node because &-Closure

({6}) has been computed and by which we have node D.

D — letter ; M={4}; No need to create a new node because &-Closure

({4}) has been computed and by which we have node C.

— digit ; M={6}; No need to create a new node because E-Closure

({6}) has been computed and by which we have node D.

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

letter

@ R.E.= (€] a)b™)" g

&-Closure ({0}) = {0,1,2,4,5,6,7,9,10} «+++--: Create a new node called for

example A(must be a final node because of node 10).
A— a ; M={3}; E-Closure ({3})={3,6,7,9,10,1,2,4,5} <«:---- Create a new

node called for example B (must be a final node because of node 10).

— b ; M={8}; ¢-Closure ({8})={8,7,9,10,1,2,4,5,6} <------ Create a new

node called for example C (must be a final node because of node 10).

Br— a ; M={3}; No need to create a new node because &-Closure ({3})

has been computed and by which we have node B.

— b ; M={8}; No need to create a new node because c-Closure ({8})

has been computed and by which we have node C.

Cr— a ; M={3}; No need to create a new node because £-Closure ({3})

has been computed and by which we have node B.

— b ; M={8}; No need to create a new node because ¢-Closure ({8})

has been computed and by which we have node C.

4

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

® R.E.=(a|b)*abb

Minimizing of DFSA:-
The purposes of minimization are:-

1. Efficiency.
2. Optimal DFSA.

Algorithm:-

1. Construct an initial partition JI of the set of states with two groups:
the accepting states F and the non-accepting states S-F; where S is
the set of all states of DFSA.

2. for each group G of JI do
Begin

partition G into subgroups such that two states S and T of G are in
the same subgroup if and only if for all input symbols a, and states’ S
and T have transitions on a to states in the same group of JI, replace G

in JIew by the set of all subgroups formed .

End

3. If JIpew = JI, let Jlfinal = JI and continue with step (4), otherwise
repeat step (2) with JI :=JI .,
4. Choose one state in each group of the partition Jl;,, as the

representative for that group.

Example :-
The DFSA for the R.E. = Letter (letter | digit)* is as follows:-

letter

Groupi= {A} which represents the set of not final nodes while Group: =

{B,C,D} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes of
one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

letter

Another example :-

Groupi= {A,B,C,D} which represents the set of not final nodes while
Group: = {E} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes of
one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer ,by using
a specific algorithm shown below we can specify the input string or
statement is accepted or not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in minimized
orm.

First, a transition matrix must be created for a given FSA, then doing a
table having two columns, the first represents the number of states while

the other represents the symbols for a given input string.

Algorithm :-
Begin
State = Start State of the FSA;
Symbol = First Input Symbol;
If Matrix [State, Symbol] = Error Indication then
Begin
State = Matrix [State, Symbol];
Symbol = Next Input Symbol;
End
Else Inputis not accepted
If State is a Final State of FSA then Inputis accepted
Else Inputis not accepted

End;

Example :- Having the following FSA representation shown below:-

Depending on the above representation, for 1.3$ and 37$,you asked to

recognize which one is accepted and which one is not accepted?

Solution:-

The Transition Matrix for the above FSA:-

0-9
2

=W N e
HL H] w) #®

2
4
4

For the String=1.3 $

Input symbol

1

Itis accepted
because state
number 4 is a final
State

For the String =37 $

Input symbol

It is not accepted because
state number 2 is not a final
state and the expression is
finished

This algorithm was slow and overlapping token, so a new algorithm can
be used to recognize the overlapping token.

For example:-

Suppose that we have this language:

{"bit" , "byte", "item", "tem"}

Now if we take the word items, we will find two words overlapping with

each other, these words are: item and tem

tem

—

items

/_l

item

The new algorithm is known as AHO Algorithm and depends on the

following steps:-
(For the above example)
Step 1:- Constructing Tree-Structured DFSA.

(Always the input for the first node is all letters except the letters that are

outputted from it).

Every
character
except

b,i,t y
OmmOn©

t

OmO

Step 2:- Determine fall back function f (Q) =R which is calculated as

follows:-
¢ Find largest route o which lead to Q from a state thatis not
the start state.
¢ Find the route o but this time from the start state and

finished in R.
e F(Q)=R.

Q 0|1|2|3|4 5|6|7|8 9|10|1112|13

F(Q) 0|0|7|8|0 11|12|0|11 12|13|0 0|0

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

b} i | t mlj|y | e

0 117111 01]0 0
T #1 2 # # | 4] #
T #| # 3 # | #H] #
3 # #]| # # | #H] #
T # | # 5 # # #
5 # #]| # # | #] 6
T #| # # # # #
7 #]| #] 8 # | #H] #
8 # #]| # # L #] 9
T #l #] # 110 #] #
? #| # # # # #
T #| # # # #] 12
12 #| # # 13 | # #
1_3 #| # # # # #

Step 4:- Apply the steps of AHO Algorithm which is shown below:-

Algorithm :-
Begin
State = Start State;
Ch = First Character of Input;
While input symbols are not already exhausted do
If Matrix [State, Ch] # error indication then
— Begin
State = Matrix [State, Ch];
Ch = next Character;

— End

— Else begin
If State is a Final State then Signal;
If State = 0 then Ch= Next Character & State = Same State
Else State= f (State) & Ch=Same Character
. End;
End;

Example :-

Input String = bitemkS$ for the same language {"bit", "byte", "item",
"tem"}

After constructing Tree-Structured DFSA, and create a Transition Matrix

for it with computing the value of the fall back function

State| Ch
0 | b }——— pit
1 1 <
> oy » item
3 e)
3 o —> tem
9 m +—
10 k
13 k
0 k
0 $

10

Example :-

If you have the following language:-

{"WHAT", "WHERE","” WHEN"," WHERES","HOW"," WHY"} and you
asked to apply AHO algorithm on it to specify the words that are
overlapped with each other in this string:- (WHYOWNSES)

Step 1:- Constructing Tree-Structured DFSA.

character
except
W,H

11

Step 2:- Compute fall back function f (Q) as follows:-

Q |o]1]2

3

4

5

6

7

8

9

1011111213

F(Q)Jojo

11§ O

0

0

0

0

0

0

0jo0j10711

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

W|H A|E|YIN|O is
oftT1aT oJoJ ofoJoJoJo
=0z #lal #0z ez
2 %1 #1 3150100« #1#1¢#
3 w1 #1 #1el #0#1 #1411 #
2 20 #1 #1=] 20zl #1#1|¢#
(s (l#1 #1 # 1 #1 #0901 #|#] 6
o Il#1 #1 #0171 #0#1 #1#1| #
MW=l el #1#1 # 0 =#1 #1381 #
g l#l#1 #1#1 e Qe #1#1| #
o ll#0#1 #1#1 #0#| # | #]| #
C1oll#0 #1 # 1 #1 e Qe #1#1|¢#
11|l #1 # 1 #1 e Qelizl#1+#
2Bl #1 #1=#1 # 0 #1 # | #] #
13| a0 #1 #1#1 e Qe #1#1| #

12

Step 4:- Apply the steps of AHO Algorithm on the string :-
(WHYOWNSES).

State| Ch
o WHY
1 H
2 Y
10 0 — Matrix [State,Ch |=#
0 o
0 w
1 N — Matrix [State,Ch |=#
0 N
0 S
0 E
0 $

13

Syntax
Analyzer

When an input string (source code or a program in
some language) is given to a compiler, the compiler
processes it in several phases, starting from lexical
analysis (scans the input and divides it into tokens) to
target code generation.

Syntax Analysis or Parsing is the second phase, i.e.
after lexical analysis. It checks the syntactical structure of
the given input, i.e. whether the given input is in the
correct syntax (of the language in which the input has
been written) or not. It does so by building a data
structure, called a Parse Tree or Syntax Tree.

The parse tree is constructed by using the pre-
defined Grammar of the language and the input string. If
the given input string can be produced with the help of the
syntax tree (in the derivation process), the input string is
found to be in the correct syntax. If not, error is reported

by syntax analyzer.

Example (1):-

Suppose Production rules for the Grammar of a
language are: S — cAd

A — bcja

And the input string is “cad”.

Now the parser attempts to construct syntax tree from this
grammar for the given input string. It uses the given

production rules and applies those as needed to generate

the string. To generate string “cad” it uses the rules as

shown in the given diagram:-

S S S S

SINLAIN L
VAN |

(1)) ©) (4) v)

In the step (3) above, the production rule A—bc was
not a suitable one to apply (because the string produced is
“cbcd” not “cad”), here the parser needs to backtrack, and
apply the next production rule available with A which is
shown in the step (4),and the string “cad” is produced.

Thus, the given input can be produced by the given
grammar; therefore the input is correct in syntax. But
backtrack was needed to get the correct syntax tree, which

is really a complex process to implement.

Example (2):-
G= ({<exp>, <operand>, <id>},{a,b,c,+,-,(,)
},<eXp>,P)T={a,b,c,+,-, (;)}

P=
<exp> ::= <operand> | <exp> + <operand> | <exp> -
<operand>

<operand> ::= <id> | (<exp>)

<id>:=a| b|c

Syntax analyzer utilizes syntax trees to determine whether a

statement is accepted or not. Check if a-(b+c) accepted?

<exp>
(\
<exp> <operand>
f A \
v
<operand> (l)
<exp>
v *
<id> 4 \
<exp> l <operand>
\ 4 +
a v v
<operand> <id>
\{ v
<id> C
A 4

We can use another method to determine whether a statement is
accepted or not, this method is called (Derivation Method).
There are two types of derivation:-

1. Leftmost derivation

2. Rightmost derivation

Example (3):-

Let G be a grammar with this components ({S,E,F,P,R,

L}{a,b,(,),+,-,%x,",/}S,P)

P=
a—= E 5= +E a—+ -E E- T
T+ F F- P P+ b B— a(L)
E-+ E+T E—+TxF F-F"P L— 5
5= E-T E-+~T/F P+ a P—+ (5)

Is ax(b+a) accepted or not?
Leftmost derivation :-

3+ E+ TXF + P+ PE axF+ axP =+ ax (§) + ax(E)+ ax(E+T) »
AN(T4T) + ax(F4T) + ax(PT) » ax(heT) + axbeh) + ax(beP

+a¥(bta) " ax(bta) is aceepted

Rightmost derivation :-

G £+ DX TP XG) TX(E)» TXEST) » TYEST) + TH 8D
THEH) » THTH) » TXEH) » TP+ TXbta) 2Bt »

Pu(bta)+ anfbta) . ax (bta) s accepted

Context-Free Grammars:

The syntax of a programming language is described
by context-free grammar (CFG). CFG consists of a set of
terminals, a set of non-terminals, a start symbol, and a

set of productions.

Ambiguity
A grammar that produces more than one parse tree for
somesentence is said to be ambiguous.

Example:-
consider a grammar
S—aS|Sa]| a

Now for string aaa, we will have 4 parse trees, hence ambiguous

Parser Techniques

Types of Parsers in Compiler Design:-

The parser is that phase of the compiler which takes a
token string as input and with the help of existing
grammar, converts it into the corresponding Intermediate
Representation. The parser is also known as Syntax

Analyzer.

Types of Parser:

The parser is mainly classified into two categories, i.e.
Top- down Parser, and Bottom-up Parser. These are

explained below:-

Parser (Syntax Analyzer)

A
' N

Top-down parser Bottom-Up parser
(Predictive Parser) (Operator-Precedent
A Parser)
With Without
Backtracking Backtracking

1-Top-Down Parser:
The top-down parser is the parser that generates parse for
the given input string with the help of grammar productions by
expanding the non-terminals i.e. it starts from the start symbol

and ends on the terminals. It uses left most derivation.

Further Top-down parser is classified into two types: Recursive

parser, and Non-recursive parser.
1. Recursive parser is also known as the backtracking

parser. It basically generates the parse tree by using
backtracking.

2. Non-recursive parser is also known as LL(1) parser or
predictive parser or without backtracking parser. It uses a
parsing table to generate the parse tree instead of

backtracking.

2- Bottom-up Parser:

Bottom-up Parser is the parser that generates the parse
tree for the given input string with the help of grammar
productions by compressing the non-terminals i.e. it starts
from non- terminals and ends on the start svimbol. It uses the
reverse of the rightmost derivation. Further Bottom-up parser is
classified into two types: LR parser, and Operator precedence
parser.

LR parser is the bottom-up parser that generates the
parse tree for the given string by using unambiguous
grammar. It follows the reverse of the rightmost derivation.

LR parser is of four types:-
(@) LR(0)

(b) SLR(1)

() LALR(1)

(d) CLR(1)

Operator precedence parser generates the parse tree form given

grammar and string but the only condition is two consecutive

non-terminals and epsilon never appear on the right-hand side

Parser

ofany production.

pi) M s

Ooerato

Precedence:

[l |

l LR(o)I SLR(l)I LALR(l)I CLR(1)

Steps of parsing in LL(1) parser or predictive parser with or

without backtracking:-
1- Remove left recursion, because ambiguous not
allowed inLL(1).
2- Compute FIRST and FOLLOW sets.

3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

Backtracking manipulating (Removing Left

Recursion)
Left-Recursion Elimination) il b bl B puaiad)) S5 il
E — E+A

Left Recursion Elimination :-
Left Recursion Elimination is of two types:-
1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

Immediate Left-Recursion Elimination

A grammar is left recursive if it has a nonterminal
(variable) S such that there is a derivation
S—Sa|B

Where a and B (sequence of terminals and non-terminals
that do not start with S)

Due to the presence of left recursion some top-down
parsers enter into an infinite loop so we have to eliminate left
recursion.

If we have a production of the form:-
A — Aoy| Ax,| Acg|...|Ax,| B, | B,|---| B,

Where no Bi begins with an A. The main rule for removing the

immediate backtracking is by generating two rules as follows:-

A — B,A|B,A|...| B,A (the first one depends on the part

of the previous rule exactly on the
rt that n in ith A

r

A — O(lA |O(2A |O(3A |...] O(mA | € (the second one depends on

the part of the initial rule exactly
on the part that begins with A)
Example (2):-

E — abc|def|Erx
Sol.

E—abc|defE

Example (1):-
S—Sab|Scd|Sef|g|h
Sol.

S—gS'|hsS'
, , , , E—rxE|€
SS—abS |cdS |efS |&

Example (3):- Example (4):-

S— (L) []a (Noleftrecursion) | exp — exp orterm|term
L—LcS|S (leftrecursion) term — term and factor| factor
Sol. factor— not factor|(exp) | true | false
L—SL' Sol.

L' —-cSL'| € exp —term exp’

exp —or term exp | &

term —factor term

term’ — and factor term'| &

factor — not factor | (exp) | true| false

Not Immediate Left-Recursion Elimination

Algorithm:-

Arrange NT in any order;
Forl:=2 to n do
ForJ:=1toi-1do
Begin
Replace each production of the form Aj — Aj & by the production
Ai — 31 & [oz % [o3 & /...[dk &;

Where
Ay __>91/02/0d3/..-/dk are the current Aj productions;

End;

Eliminate the immediate left recursion among the Ai productions;

End;{of algorithm}

Example (1):-

B—Ac/d
A —Br/x
Solution:-
A=B A,=A
A —A c/d Replace:- Aj—>Aj x
12 By:- Ai—d1 & [z o [33 & [...[o
A, — Ar/ x Using:- Ay >d1/d2/ 03/ -1 dk

A2—>A1r S =r

Az =91 [d2 ™
A1—>91/d2

A7 Axc/d ", 91= Ayc and pq=d

| =2 J=1 X=r 01= Axc 02=d

Az~ 31 & [z &
o Az>Axcr [dr/ x

immediate backtracking which can be

Az>Axcr [dr/ x
eliminated by the following rules:-

B> Ac/d A-Ax, [Ax, [/ Aog/.../[Ax /B,] B, /... B,
A—Acr [d r/ x A>B1A 1 BA .../ £nA
The result will be:- 3) 3 ; ,
A—>0 A JoLA JOGA [. [0 A [E
B—Ac/d

A—>drA/xA

A—>crA/e

Example (2):-
S>Ab/b

A—> Ac/ Sd/ e

Another method to convert not immediate left recursion to
immediate left recursion is by using substitution, as shown in the

following example:-
S—Ab/b

A—Ac/Sd/ e

The values of prameters i,j,a,d1,02,03, ...

e Usually, (i) refers to the rule that contains the not immediate
left recursion (rule no. 2), while (j) refers to the first rule

(rule no.1).

e (%) represent the element next to the non terminal that

causes the not immediate left recursion.

e (01,02,03,) these values can get them from rule no.1 (the
first rule), through taking the right hand side of the rule.
Now, depending on the notes above,
Rule no. 1 S—Ab/b (j=1) from this rule we can get
the values of (01,02,03,...),s0 d1 =Aband 92 =b
Rule no.2 A>Ac/Sd/e (i=2), from this rule we can get the
value of a =d
i=2 j=1 01=Ab 02=b a=d
S—7Ab|]b
A—>Ac | Sd | e

S—>Ab|b
A—>Ac|(Ab|b)d]e

S—>Ab|b
A->Ac|Abd|bd]|e

S>Ab|b
A>bdA ' |eA’

A—cA' | bdA ¢

Example (2):-

B>Ac|d rule no.1
A—Br|x rule no. 2

i=2 j=1
B—Ac|d

A=>(Ac|d)r|x

Now in this step, the not immediate left recursion
is converted to immediate left recursion

Now in this step, eliminate the immediate left
recursion
dl=Ac 02=d a=r

B—>Ac|d
A= Acr|dr|x

Now in this step, the not immediate left recursion
is converted to immediate left recursion

B> Ac|d

A—drA'|xA’

Now in this step, eliminate the immediate left
recursion

A'—crA’ | €

Predicative Parsing (Top Down Parser)

e Predictive parsing is a special case of recursive descent
parsing where no backtracking is required.

e The key problem of predictive parsing is to determine the
production to be applied for a non-terminal in case of

alternatives

Non-recursive predictive parser architecture:-

INPUT a + b $
STACK .. .
X Predict
redictive parsing program | o UT

¥

z

$ k 4

Parsing Table M

The table-driven predictive parser has an input buffer, stack, a

parsing table and an output stream.

Input buffer:- 1t consists of strings to be parsed, followed by $
to indicate the end of the input string.

Stack:- 1t contains a sequence of grammar symbols preceded by

$ to indicate the bottom of the stack. Initially, the stack

contains the start symbol on top of $.
Parsing table:- 1t is a two-dimensional array M[A, a], where ‘A’ is

a non-terminal and ‘a’ is a terminal.

Previously, we talk about the steps of top-down parser with or
without backtracking, as shown below:-
1- Remove left recursion, because ambiguous not allowed in
LL(1). (note that, this step is previously explained)
2- Compute FIRST and FOLLOW sets.
3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

Predictive parsing table construction

The construction of a predictive parser is aided by two functions
associated with a grammar:-

1. FIRST

2. FOLLOW

FIRST Set in Syntax Analysis

FIRST(X) for a grammar symbol X is the set of terminals that

begin the strings derivable from X.

Rules to compute FIRST set:-
1. If x is a terminal, then FIRST(x) = { X’ }
2. If x — €, is a production rule, then add € to FIRST(x).
3. If X is non-terminal and X — a g is a production then add (a) to
FIRST(X).
4. 1f X — Y1 Y2Y3..Ynis a production,
a. FIRST(X) = FIRST(Y1)
b. If FIRST(Y1) contains € then FIRST(X) = { FIRST(Y1) - € }
U { FIRST(Y2) }

c. If FIRST (Yi) contains € for all i = 1 to n, then add € to
FIRST (X).

Example (1):-

Consider the following grammar:-

E—-E+T | T
T—->T*F | F
F- (E)| id
Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

E - TE’
E'—> +TE’ | €
T - FT’
T' —» *FT' | €
F - (E) | id
Production Rules of
FIRST sets
Grammar
E — TE' FIRST(E) = FIRST(T) = { (, id }
E' — +T E'|€ FIRST(E') = { +, €}
T—FT FIRST(T) = FIRST(F) = { (, id }

T —*FT | € FIRST(T) = { *, €}

Loy dp iyl

F—(E)|id FIRST(F) = { (, id }

Example (2):-_Consider the following grammar:-

S—->A

A - aB / Ad

B—-Db

C—-g

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

S—> A
A — aBA’
A’ > dA’ /€
B—-b
C-g
FIRST sets
’30 S—>A = First(S) = First(A) = {a}
Q. »
5,’5 A — aBA = |First(A) = {a }
-
m ~ » »
E S A —-dA /e = | First(A) = {d, €}
=
= £ Bob = |First(B) = { b}
7]
c C—s = | First(C) = { g }

11

Jeurue.ar)

Jo sany uondnpo.ad

Example (3):-_Consider the following grammar:-

S —» aBDh
B — cC
C->bC/ €
D — EF
E—->g/€
F->f/¢€
Sol.:-

FIRST sets
S — aBDh = First(S) = { a }
B — cC = | First(B) = { c }
C—>bC/ €| = |First(C) ={b, €}
D — EF = | First(D) = { First(E) - € } U First(F) = {g, f, €}
E=>g/€ | = |rirst(B) = { g, €}
F->f/¢€ — | First(F) = {f, €}

Example (4):-_Consider the following grammar:-

E-E+T/T
T->TxF/F
F - (E) /id
Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

12

E - TE’
E'—-+TE /€

T - FT’
T > xFT' / €
F - (E) / id
FIRST sets
'gU E - TE = First(E) = First(T) = First(F) = { (, id }
o g E' > + TE" /€ | = | First(E) = { +, €}
E §' T - FT’ = | First(T) = First(F) = { (, id }
= g T ->xFT’ / €| = | First(T’) = { x, € }
;., F=(E)/id | = |pirstr) = { (, id }

13

FOLLOW Set in Syntax Analysis

Follow (X) to be the set of te: Is that can appear immediately

to the right of Non- Terminal X in some sentential form. That is
mean; we calculate the follow function of a non-terminal by
looking where it is present on the Right Hand Side (RHS) of a
production rule.
—rdaga cillaadla
(rule) JS ¢ o) £ 2l e wdie’ (Follow) 4s gaas -1
($) s Wil (start) s<ixl! (Follow) 4ed -2
(€) &= (Follow) 4s gana (s 5iald ()} (Saall 4 (1 -3
-4 (Follow) 4a slay) qigllaal) juaiall cra)) glaall puainl) (o Caall oy Laila -4
saindl 138 Ll gSu (Follow) 4ed (@ (terminal) £ (v saisll SIS 13 .
.(terminal T)
Lgin A paisll 13¢] (Follow) dad (oS cigud (an) jglaa puais iy oS ol 13) -
(rule) (r) £330 (B 392 5all painll (Follow) 4aill
(Follow) 4 b (non terminal NT) £ Oe () Jglaall juaind) (1S 1) -
&e oal) glaall paiall (First) de gane (a JS aladl ¢o ke (Siu painl) 13gd
O ¥ g3l B asagall yaiall (Follow) 4s sana I ABLAYL (€) 4 Cids
(rule)

Rules For Calculating Follow Function:-

1-If S is a start symbol, then FOLLOW(S) contains $, means, for
the start symbol S, place $ in Follow(S). {Means put $ (the
end of input marker) in Follow(S) (S is the start symbol)}

2- If there is a production A — aBf3, then everything in FIRST(f)

except € is placed in Follow (B), means Follow(B) = First(f)

3- If there is a production A — aB, or a production A — aBp
where FIRST(PB) contains &, then everything in FOLLOW(A) is
in FOLLOW(B), means Follow(B) = Follow(A)

4- € will never appear in the follow function of a nonterminal.

Example (1):- Consider the following grammar:-
S — aBDh

B — cC

C ->bC / €

D — EF

E—>g/E€

F->f/€

Sol.:-

S — aBDh [First(S) = {a} Follow(S) = { $ }

Follow(B) = { First(D) — € } U First(h)
={g,f,h}

C—DbC /€ RFirst(C)={b, €} Follow(C) = Follow(B) ={g ,f, h}

B—cC First(B) = { ¢ }

D — EF First(D) = { First(E) - € } U

First(F) = {g, f, €} Follow(D) = First(h) = { h }

Follow(E) = { First(F) — € } U Follow(D)

E—->gl/€E First(E) ={g, €} ={f,h}

F->f/E€ First(F) = {f, €} Follow(F) = Follow(D) = { h }

o

Example (2):- Consider the following grammar:-

E-E+T/T

T—->TxF/F

F— (E)/ id

Sol.:-

The given grammar is left recursive. So, we first remove left
recursion from the given grammar. After eliminating left
recursion, we get the following grammar-

E - TE'

E' - +TE' /€

T — FT'

T — xFT' [€

F— (E)/ id

First Set Follow Set

E — TE' First(E) : :?:rs:((ii;) = First(F) Follow(E) = { § ,) }
E'— +TE'/ € | pirst(E') = { + , €} Follow(E') = Follow(E) = { § ,) }
T — FT' First(T) = First(F) = { (, id } FOLLOW(T)={First(E') - €}U Follow(E')

={+$,)}

T'— xFT'/€ First(T') = { x , € } Follow(T') = Follow(T) = {+, $,) }

Follow(F) = {First(T') - €} U Follow(T)

F — (E) / id | pirst(F) = { (, id } ={x,+, $,)}

o

Example (3):- Consider the following grammar:-

S—>A

A — aB / Ad

B—-b

C—g

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

S—>A
A — aBA'
A' - dA' /€
B—b
C—-g
First Set Follow Set
S 5> A First(S) = First(A) = {a} | Follow(S) = { $ }
A — aBA' First(A) = {a } Follow(A) = Follow(S) = { $ }
A' —-dA'/e First(A')={d, €} Follow(A') = Follow(A) = { $ }
B—b First(B) = { b } Follow(B) = {First(A') —€ } U Follow(A)

={d,$}

C—-g First(C)={g} Follow(C) = empty set

o

Algorithm for construction of predictive parsing
table

Input : Grammar G
Output : Parsing table M
Method :
1- For each production A — a of the grammar, do steps 2 and 3.
2- For each terminal a in FIRST(a), add A — a to M[A, a].
3-If € is in FIRST(a), add A — a to M[A, b] for each terminal b in
FOLLOW(A). If € is in FIRST(a) and $ is in FOLLOW(A) , add A
—a to M[A, $].
4- Make each undefined entry of M be error.

Predictive parsing program

Algorithm:-
Set IP (Input Pointer) point to the first symbol of the input string W$

Repeat
Let X be the top stack symbol and () be the symbol pointed by IP;
If X is a terminal or $ then
If X = a then
Pop X from the stack and advance IP

Else error()

Else
if M[X,a]= X~ Y1 Y2 Yk then

Begin

Pop X from the stack
pushY Y, ...Y ontostack with Y, on top

Output the production XY, Y, ... Y

End

Else error();
Until X=§;

.(Backtracking) wilsJl g3 ,J 0 aclgall gls ¢ (Top-Down) diy by wle) walwdl b2l
£all oo olS 13| Lo watls)l £g5)l .35 w0 S o 3 il £gm)l wle Sginy aclgill culs sl
«S) (Not-Immediate Backtracking) ,alell ,& ol (Immediate Backtracking) bl
g gm0 3 gl 3l 399 amllan a

. Push & Pop Jiai willg Ly dolsll wldesllg Stack 3939 o] duwo5,lex)l 03 8 2lisy
53ac g Lol o 332) (Parse table) Jss> usSi Jal oo (First and follow) dad wlus ai
olic Liod taocdl ,olic gl ad Lol Non-Terminal ,olic Lici Sbwdl ,olc o ¢
Jinso 4l §,bill 55 b s Terminal

-1 @)kl oy LlL,el S b wighs

baoc] duosy Jgx s >
. Top of Stack Jiay Sallg X 50,1 Jios Jo 3l 5g0e)l .1
. leloel walboll daldl ol uzy S8 Jiny SNlg @ 50l Jiny Wilill sg0all .2
. Stack Jioy il 900l .3
JolSIL lgs,el walball dlosll uolic Jiny i1l 5g0ell .4
ol o Lo wlidall wle Sginy Sally Output oy 5us3lg yuolsl sgeell 5

. Non-terminal ,.oliellg terminal

. $ Start Symbol wlc Sgisi (Stack) cllil sgoal) dulxiydl doull <

el e] welball dlasll wa (Input) gl >g0ell dulsiyX| dogsll <

46,1 0S5 s Mg puolsl Sgall Al dagll <

. Top of Stack Jiaig Jll 3502l o 39390 bo wle saiss JodI 3900l duiladl dagll <
oucdl o 393500l i) Jiig &)l 300l (18 39390 Lo wle saies wilill sg0nll dulxi ¥l dogll
Lol se| Calball doall Ly

-oledl @b
X=a IS I3] dasdo o X Terminal 95 o X 55 lodie .1
Ul aiell 33lg Top of Stack Jies S3llg X dod G dulosy asiti bl §asi Is| &
Lauls Input gl)| 5500l dad s ellsSy suew @ sgaall dad o 1) Ll] wslball daxll w6
.(Stack Jioy Sdllg &Ll >g00ll dasd
dgidio ne 95 Lol se] walbaall dloall o oline (X 2 @) o] Sl el bo sl Gy o) b=
.(Not accepted)

(Parse table) JgxaJl w8 a go X @le e couid Not-Terminal g9i o0 X 65 lonie .2
00 wowg puols)l sgall 18 LgBla| A Bow @l elbi ol @ 308l g0 X Lol gblis
oy welially oSl @ell (o audl Wbl Push Jacg daill d 393 90ll il Stack
Input Jis ellsSq Husi ey @ Jis
. Stack # $ dod Lllb dulilly o3l wlghsll 51,8k Homw .3
Example O:-
Having the following grammar:-
E-E+T /T
T=TxF / F
F=>E)/id
Show the moves made by the Top-Down Parser on the input=id+idXid$
1- We must solve the left recursion and left factoring if it founded
in the grammar
Llooy ex il 8 galsdl g9)l dalleo o 3 M8 bl £95 o wils g9, wle xelgill 03 Sgiss
wlel

E-TE
E-+TE /¢
T—FT
T+ xFT /¢
F- (E)/id

2- We must find the first and follow to the grammar:

First Set Follow Set
E — TE' First(E) = { (, id } Follow(E) = { $,) }
E'— +TE'/ € First(E')={+, €} Follow(E') = {$,)}
T — FT' First(T) = { (, id } Follow(T) = { +, $,) }
T'— xFT & First(T') = { x, € } Follow(T') = {+,$,)}
F—(E)/id [|pirst(F)={(,id} Follow(F) = { x, +, $,) }

3- We must find or construct now the predictive parsing table

Id + X () $
E E-TE E -TE"
E° E° =+TE’ E'=eg|E =¢
T | T -FT T =-FT"
T T =& |T =xFT T =e | T =¢
F | F>id F - (E)

4- Parse string or statement using parser.

X|la]| Stack Input Output
E |[id|[$E id+idxid$|| -----mmmm-
T ||id||SE"T id+idxid$|| E » TE’
F |[id] $E° T F ||lid+idxid$|| T =FT’
id |[id|[sE” T~ id |[ia+iaxids|| F — id
|+ $SE” T +idxid$ Pop id
E [+ $E” +idxid$ || T = ¢
+ || +||$SE° T+ +idxid$ |[|[E* »+TE’
" |[ia][sE" T idxid$ || Pop +
F |[id|[sE" 1" F || idxids || T -FT
id |[id|[sE” T id || idxid$ || F - id
T |[% ||$E" T xid$ Pop id
x || x||SE° T Fx xid$ T -xFT’
F |lid||SE°" T F id$ Pop X
id |[id||sE" T id Id$ F - id
1] ? $SE° T’ $ Pop id
E|[s |[sE° $ T ¢
T ? $ $ E =¢
Stop

Example @:- Having the following grammar, parse the following
statement:- not (true or false) $
exp - exp or term | term

term - term and factor | factor
factor = not factor | (exp) |true | false

1- We must solve the left recursion and left factoring if it founded

in the grammar

plosy el L8 wealsll £ 92,5l dallao o 2B Halall £95 o wils €925 wle aclgdll 03 (Sgisi
el

exp - term exp’

exp’' = or term exp’ | €

term - factor term’

term’' = and factor term’| €

factor = not factor | (exp) |true | false

2- We must find the first and follow to the grammar:
3- We must find or construct now the predictive parsing table, the
resultant table will be as follows:-

not or and () true | false $
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’'—
exp’ or term exp’—€ exp’'—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’ term’
, — or — and
term factor factor term’—€ term’—e
term’ term’
factor (| factor— factor factor— | factor
not — (exp) true — false
factor

Example @:-

Having the following grammar:-

exp - exp or term | term

term - term and factor | factor

factor = not factor | (exp) | true | false

Parse the following statement:- not (true or false) $

Sol.

1- We must solve the left recursion and left factoring if it founded
in the grammar

exp = term exp'

exp' = orterm exp | €

term - factor term'

term' = and factor term'| €

factor = not factor | (exp) | true | false

2- We must find the first and follow to the grammar:

First Set Follow Set
exp - term exp' First (exp)={not,(,true,false} Follow (exp) ={$,)}
exp' > or term exp' | ¢ First(exp') = {or,€E } Follow (exp')={$,)}

' Follow (term) = first
term > factor term First(term)={not,(,true,false} | ((exp')-€) U follow
(exp)={or,$,)}
term' » and factor term'|c . "N = Follow(term’) = follow
| First(term’) = {and , €} (term)={or, $,)}
factor = not factor | (exp) | Follow(factor) = first
true | false First(factor)={not,(,true,false} | ((term')-€) U follow
(term)= {and, or , $,)}

-

3- We must find or construct now the predictive parsing table

not or and () true false S
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’—
exp’ or term exp’'—€ exp’—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’
, — and
term factor term’—€ term’—€
term’
factor || factor— factor factor— | factor
not — (exp) true — false
factor

4- Apply parsing algorithm

false) $

to parse the statement not (true or

X a Stack Input Output
exp not || $exp not (true or false) $|] = ----------
term n_ot $ exp’ term not (true or false) $ exp— term exp’
factor || not ||$ exp’ term’ factor not (true or false) $ ||term— factor term’
n_ot n_ot $ exp’ term’ factor not not (true or false) $ || factor— not factor
factor ($ exp’ term’ factor (true or false) $ pop not
(T $ exp’ term’) exp | (true or false) $ factor— (exp)
exp ||true||$ exp’ term’) exp true or false) $ pop (
term E $ exp’ term’) exp’ term true or false) $ exp— term exp’

and so on until we reach to to stop condition when stack=$ only

FOLLOW Set in Syntax Analysis

Follow (X) to be the set of te: Is that can appear immediately

to the right of Non- Terminal X in some sentential form. That is
mean; we calculate the follow function of a non-terminal by
looking where it is present on the Right Hand Side (RHS) of a
production rule.
—rdaga cillaadla
(rule) JS ¢ o) £ 2l e wdie’ (Follow) 4s gaas -1
($) s Wil (start) s<ixl! (Follow) 4ed -2
(€) &= (Follow) 4s gana (s 5iald ()} (Saall 4 (1 -3
-4 (Follow) 4a slay) qigllaal) juaiall cra)) glaall puainl) (o Caall oy Laila -4
saindl 138 Ll gSu (Follow) 4ed (@ (terminal) £ (v saisll SIS 13 .
.(terminal T)
Lgin A paisll 13¢] (Follow) dad (oS cigud (an) jglaa puais iy oS ol 13) -
(rule) (r) £330 (B 392 5all painll (Follow) 4aill
(Follow) 4 b (non terminal NT) £ Oe () Jglaall juaind) (1S 1) -
&e oal) glaall paiall (First) de gane (a JS aladl ¢o ke (Siu painl) 13gd
O ¥ g3l B asagall yaiall (Follow) 4s sana I ABLAYL (€) 4 Cids
(rule)

Rules For Calculating Follow Function:-

1-If S is a start symbol, then FOLLOW(S) contains $, means, for
the start symbol S, place $ in Follow(S). {Means put $ (the
end of input marker) in Follow(S) (S is the start symbol)}

2- If there is a production A — aBf3, then everything in FIRST(f)

except € is placed in Follow (B), means Follow(B) = First(f)

3- If there is a production A — aB, or a production A — aBp
where FIRST(PB) contains &, then everything in FOLLOW(A) is
in FOLLOW(B), means Follow(B) = Follow(A)

4- € will never appear in the follow function of a nonterminal.

Example (1):- Consider the following grammar:-
S — aBDh

B — cC

C ->bC / €

D — EF

E—>g/E€

F->f/€

Sol.:-

S — aBDh [First(S) = {a} Follow(S) = { $ }

Follow(B) = { First(D) — € } U First(h)
={g,f,h}

C—DbC /€ RFirst(C)={b, €} Follow(C) = Follow(B) ={g ,f, h}

B—cC First(B) = { ¢ }

D — EF First(D) = { First(E) - € } U

First(F) = {g, f, €} Follow(D) = First(h) = { h }

Follow(E) = { First(F) — € } U Follow(D)

E—->gl/€E First(E) ={g, €} ={f,h}

F->f/E€ First(F) = {f, €} Follow(F) = Follow(D) = { h }

o

Example (2):- Consider the following grammar:-

E-E+T/T

T—->TxF/F

F— (E)/ id

Sol.:-

The given grammar is left recursive. So, we first remove left
recursion from the given grammar. After eliminating left
recursion, we get the following grammar-

E - TE'

E' - +TE' /€

T — FT'

T — xFT' [€

F— (E)/ id

First Set Follow Set

E — TE' First(E) : :?:rs:((ii;) = First(F) Follow(E) = { § ,) }
E'— +TE'/ € | pirst(E') = { + , €} Follow(E') = Follow(E) = { § ,) }
T — FT' First(T) = First(F) = { (, id } FOLLOW(T)={First(E') - €}U Follow(E')

={+$,)}

T'— xFT'/€ First(T') = { x , € } Follow(T') = Follow(T) = {+, $,) }

Follow(F) = {First(T') - €} U Follow(T)

F — (E) / id | pirst(F) = { (, id } ={x,+, $,)}

o

Example (3):- Consider the following grammar:-

S—>A

A — aB / Ad

B—-b

C—g

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

S—>A
A — aBA'
A' - dA' /€
B—b
C—-g
First Set Follow Set
S 5> A First(S) = First(A) = {a} | Follow(S) = { $ }
A — aBA' First(A) = {a } Follow(A) = Follow(S) = { $ }
A' —-dA'/e First(A')={d, €} Follow(A') = Follow(A) = { $ }
B—b First(B) = { b } Follow(B) = {First(A') —€ } U Follow(A)

={d,$}

C—-g First(C)={g} Follow(C) = empty set

o

Algorithm for construction of predictive parsing
table

Input : Grammar G
Output : Parsing table M
Method :
1- For each production A — a of the grammar, do steps 2 and 3.
2- For each terminal a in FIRST(a), add A — a to M[A, a].
3-If € is in FIRST(a), add A — a to M[A, b] for each terminal b in
FOLLOW(A). If € is in FIRST(a) and $ is in FOLLOW(A) , add A
—a to M[A, $].
4- Make each undefined entry of M be error.

Predictive parsing program

Algorithm:-
Set IP (Input Pointer) point to the first symbol of the input string W$

Repeat
Let X be the top stack symbol and () be the symbol pointed by IP;
If X is a terminal or $ then
If X = a then
Pop X from the stack and advance IP

Else error()

Else
if M[X,a]= X~ Y1 Y2 Yk then

Begin

Pop X from the stack
pushY Y, ...Y ontostack with Y, on top

Output the production XY, Y, ... Y

End

Else error();
Until X=§;

.(Backtracking) wilsJl g3 ,J 0 aclgall gls ¢ (Top-Down) diy by wle) walwdl b2l
£all oo olS 13| Lo watls)l £g5)l .35 w0 S o 3 il £gm)l wle Sginy aclgill culs sl
«S) (Not-Immediate Backtracking) ,alell ,& ol (Immediate Backtracking) bl
g gm0 3 gl 3l 399 amllan a

. Push & Pop Jiai willg Ly dolsll wldesllg Stack 3939 o] duwo5,lex)l 03 8 2lisy
53ac g Lol o 332) (Parse table) Jss> usSi Jal oo (First and follow) dad wlus ai
olic Liod taocdl ,olic gl ad Lol Non-Terminal ,olic Lici Sbwdl ,olc o ¢
Jinso 4l §,bill 55 b s Terminal

-1 @)kl oy LlL,el S b wighs

baoc] duosy Jgx s >
. Top of Stack Jiay Sallg X 50,1 Jios Jo 3l 5g0e)l .1
. leloel walboll daldl ol uzy S8 Jiny SNlg @ 50l Jiny Wilill sg0all .2
. Stack Jioy il 900l .3
JolSIL lgs,el walball dlosll uolic Jiny i1l 5g0ell .4
ol o Lo wlidall wle Sginy Sally Output oy 5us3lg yuolsl sgeell 5

. Non-terminal ,.oliellg terminal

. $ Start Symbol wlc Sgisi (Stack) cllil sgoal) dulxiydl doull <

el e] welball dlasll wa (Input) gl >g0ell dulsiyX| dogsll <

46,1 0S5 s Mg puolsl Sgall Al dagll <

. Top of Stack Jiaig Jll 3502l o 39390 bo wle saiss JodI 3900l duiladl dagll <
oucdl o 393500l i) Jiig &)l 300l (18 39390 Lo wle saies wilill sg0nll dulxi ¥l dogll
Lol se| Calball doall Ly

-oledl @b
X=a IS I3] dasdo o X Terminal 95 o X 55 lodie .1
Ul aiell 33lg Top of Stack Jies S3llg X dod G dulosy asiti bl §asi Is| &
Lauls Input gl)| 5500l dad s ellsSy suew @ sgaall dad o 1) Ll] wslball daxll w6
.(Stack Jioy Sdllg &Ll >g00ll dasd
dgidio ne 95 Lol se] walbaall dloall o oline (X 2 @) o] Sl el bo sl Gy o) b=
.(Not accepted)

(Parse table) JgxaJl w8 a go X @le e couid Not-Terminal g9i o0 X 65 lonie .2
00 wowg puols)l sgall 18 LgBla| A Bow @l elbi ol @ 308l g0 X Lol gblis
oy welially oSl @ell (o audl Wbl Push Jacg daill d 393 90ll il Stack
Input Jis ellsSq Husi ey @ Jis
. Stack # $ dod Lllb dulilly o3l wlghsll 51,8k Homw .3
Example O:-
Having the following grammar:-
E-E+T /T
T=TxF / F
F=>E)/id
Show the moves made by the Top-Down Parser on the input=id+idXid$
1- We must solve the left recursion and left factoring if it founded
in the grammar
Llooy ex il 8 galsdl g9)l dalleo o 3 M8 bl £95 o wils g9, wle xelgill 03 Sgiss
wlel

E-TE
E-+TE /¢
T—FT
T+ xFT /¢
F- (E)/id

2- We must find the first and follow to the grammar:

First Set Follow Set
E — TE' First(E) = { (, id } Follow(E) = { $,) }
E'— +TE'/ € First(E')={+, €} Follow(E') = {$,)}
T — FT' First(T) = { (, id } Follow(T) = { +, $,) }
T'— xFT & First(T') = { x, € } Follow(T') = {+,$,)}
F—(E)/id [|pirst(F)={(,id} Follow(F) = { x, +, $,) }

3- We must find or construct now the predictive parsing table

Id + X () $
E E-TE E -TE"
E° E° =+TE’ E'=eg|E =¢
T | T -FT T =-FT"
T T =& |T =xFT T =e | T =¢
F | F>id F - (E)

4- Parse string or statement using parser.

X|la]| Stack Input Output
E |[id|[$E id+idxid$|| -----mmmm-
T ||id||SE"T id+idxid$|| E » TE’
F |[id] $E° T F ||lid+idxid$|| T =FT’
id |[id|[sE” T~ id |[ia+iaxids|| F — id
|+ $SE” T +idxid$ Pop id
E [+ $E” +idxid$ || T = ¢
+ || +||$SE° T+ +idxid$ |[|[E* »+TE’
" |[ia][sE" T idxid$ || Pop +
F |[id|[sE" 1" F || idxids || T -FT
id |[id|[sE” T id || idxid$ || F - id
T |[% ||$E" T xid$ Pop id
x || x||SE° T Fx xid$ T -xFT’
F |lid||SE°" T F id$ Pop X
id |[id||sE" T id Id$ F - id
1] ? $SE° T’ $ Pop id
E|[s |[sE° $ T ¢
T ? $ $ E =¢
Stop

Example @:- Having the following grammar, parse the following
statement:- not (true or false) $
exp - exp or term | term

term - term and factor | factor
factor = not factor | (exp) |true | false

1- We must solve the left recursion and left factoring if it founded

in the grammar

plosy el L8 wealsll £ 92,5l dallao o 2B Halall £95 o wils €925 wle aclgdll 03 (Sgisi
el

exp - term exp’

exp’' = or term exp’ | €

term - factor term’

term’' = and factor term’| €

factor = not factor | (exp) |true | false

2- We must find the first and follow to the grammar:
3- We must find or construct now the predictive parsing table, the
resultant table will be as follows:-

not or and () true | false $
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’'—
exp’ or term exp’—€ exp’'—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’ term’
, — or — and
term factor factor term’—€ term’—e
term’ term’
factor (| factor— factor factor— | factor
not — (exp) true — false
factor

Example @:-

Having the following grammar:-

exp - exp or term | term

term - term and factor | factor

factor = not factor | (exp) | true | false

Parse the following statement:- not (true or false) $

Sol.

1- We must solve the left recursion and left factoring if it founded
in the grammar

exp = term exp'

exp' = orterm exp | €

term - factor term'

term' = and factor term'| €

factor = not factor | (exp) | true | false

2- We must find the first and follow to the grammar:

First Set Follow Set
exp - term exp' First (exp)={not,(,true,false} Follow (exp) ={$,)}
exp' > or term exp' | ¢ First(exp') = {or,€E } Follow (exp')={$,)}

' Follow (term) = first
term > factor term First(term)={not,(,true,false} | ((exp')-€) U follow
(exp)={or,$,)}
term' » and factor term'|c . "N = Follow(term’) = follow
| First(term’) = {and , €} (term)={or, $,)}
factor = not factor | (exp) | Follow(factor) = first
true | false First(factor)={not,(,true,false} | ((term')-€) U follow
(term)= {and, or , $,)}

-

3- We must find or construct now the predictive parsing table

not or and () true false S
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’—
exp’ or term exp’'—€ exp’—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’
, — and
term factor term’—€ term’—€
term’
factor || factor— factor factor— | factor
not — (exp) true — false
factor

4- Apply parsing algorithm

false) $

to parse the statement not (true or

X a Stack Input Output
exp not || $exp not (true or false) $|] = ----------
term n_ot $ exp’ term not (true or false) $ exp— term exp’
factor || not ||$ exp’ term’ factor not (true or false) $ ||term— factor term’
n_ot n_ot $ exp’ term’ factor not not (true or false) $ || factor— not factor
factor ($ exp’ term’ factor (true or false) $ pop not
(T $ exp’ term’) exp | (true or false) $ factor— (exp)
exp ||true||$ exp’ term’) exp true or false) $ pop (
term E $ exp’ term’) exp’ term true or false) $ exp— term exp’

and so on until we reach to to stop condition when stack=$ only

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Bottom Up Parser (Shift-Reduce Parser)

Bottom Up Parser

Operator
LR parser Precedence
parser

—

Constructing a parse tree for an input string beginning at the

leaves and going towards the root is called bottom-up parsing.
There is a general style of bottom-up syntax analysis, known

as shift reduces parsing.

Is a right most derivation for a sentential form in reverse order.

Conditions for Bottom-Up Parser:-
1. No &-rules (i.e., A = €).
2. It must be operator grammar (i.e., no adjacent non-terminal).

Example O:- E-EAE/(E)/-E/id

Since of this production rule, the
grammar is not operator grammar

(E=NT, A=NT, E=NT).

-18-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example @:- E» E+E/E-E

-\‘ This grammar is an operator grammar (E is
NT, + is T, E is NT).

SHIFT-REDUCE PARSING (Operator Precedence Parser)
Shift-reduce parsing is a type of bottom-up parsing that attempts

to construct a parse tree for an input string beginning at the
leaves (the bottom) and working up towards the root (the top).
Example: Consider the grammar:

S — aABe

A—Abc | b

B—-d

The sentence to be recognized is abbcde.

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION
abbcde (A —b) S — aABe

aAbede (A — Abc) — aAde

aAde (B — d) — aAbcde

aABe (S — aABe) —> abbcde

S

We need to do a table with three fields (Stack, Input, action

{which will be either shift or reduce}).

-79-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Actions in SHIFT-REDUCE PARSING
o Shift - The next input symbol is shifted onto the top of the

stack

e Reduce - the parser replaces the handle within a stack with a
non-terminal.

e Accept - the parser announces successful completion of
parsing.

e Error - the parser discovers that a syntax error has occurred

and calls an error recovery routine.

Initial value for stack=#$.

Initial value for input=the sentence which we want to parse.

Initial value for action = Shift.

We need to know the meaning of the handle.

Definition: a handle is a substring that:-

1- Matches a right hand side of a production rule in the grammar

2- Whose reduction to the non-terminal on the left hand side of

that grammar rule is a step along the reverse of a rightmost

derivation.

ols Empty word (g) oo xclsill gls ga (Bottom-Up) i by wle) guubwdl bzl o

Non- g9 0 by9lsio olic 5939 axc I (Operator grammar) gg5 oo ¢85
.Terminal

L= Jolaill gllaall sclgill 8 ils £92 5 3939 w9l 39290 Ay ko)l 030 w1 A 0
.Push & Pop Jici willg lgz dolzdl wlileellg Stack 3939 o dio 1930l 030 o8 zlisi @

-80-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

-t 4o 5l g3l wghs
-8aac] @&y Jga> (usSs
. Stack Jiey Jo3l >0l .1
.(Input) JolSIb Lz, walball doall olic Jins wilil] 5s0sll .2
Shift & Lod gl guiidec Jiny $3Jls Action Jiey ,53lg el >500ll .3
.Reduce
$ e b Sgisi (Stack) Jo Xl seoell dulxipdl dagll
Ll e Golball dasll o (Input) wlill >geel) dulxi | degsll <
sl 08 393 90l suniell Push duoc Jinig Shift o985 55319 el sg0el) dulxidl dagll
Stack 8 juaiell givg ilill >g00ll Ly
Blbeoll aclgill wle Right Most Derivation gubi (0 33 <
Aniey Wow illg (Handle) o wouw bo 33 Ay Lgade slaicAbg 8 il diLull 5glosl ey <
(Action) cJUll >g0ell A8 lede
(Tree) alxsiul selgill §laiul
oJ| @dls]y Ll el walboll Aol Ly waol 8 392 50l suniell d@8la] dls Jios ds> o Jgl
.(Top of Stack)
98 U di Ll 59l g8 (Top of Stack)sd| adls| a5 S3Jl joniell (LS 3] dasde <
a8 (Handle) oS ol bl diol o] sunisll gl xid (Handle) oS 13] X 4l (Handle)
.(Top of Stack) «J| aidls|
.(Stack=$Start Symbol) Jsdl JisJl dasd 555 o] @l @ludl olghslly i <

Example O:-

S+>SxS/S8+S/id Input = idxid+id$

Sol.

® Derive this grammar using right most derivation
S = SXS = SXS+S - SXS+id +» Sxid+id —» idxid+id

-81-

Compilers

Asst.Prof. Shaimaa Al-Obaidy
2021-2022
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

@ Specify the handles (using the above derivation)

S+ SXS =+ Sx S+8 =+ SxS+ id »» Sx id +id = id xid+id

®Doing Syntax tree (parse tree)

-82-

S
4 /I\ N
S X S
L
g + S
| }
id id
@ Doing Parse table
Stack Input Action
$ idxid+id$ Shift
$id xid+id$ Reduce S »id
$S xid+id$ Shift
$ Sx id+id$ Shift
$ Sxid +id$ Reduce S »+id
$ SxS +id$ Shift
$ SxS+ id$ Shift
$ SxS+id $ Reduce S »*id
$ SxS+S $ Reduce S = S+5
$ SxS§ $ Reduce S =SS
$S5 $ Accept

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example @:-
E->T/E+T/E-T/-T
T—->F/TxXF/ TF

F - (E)/ id

Input = -(idx(id-id) / id)$

Solution :-
E->-T |
~.F '

= -(E)

= -(T)

~-(I/F) v
»>-(T/id)

--(IxF /id)

-+-(Tx (E) /id)

+ -(TX(E-T) /id)

- -(TxX(E-F) /id)

- -(TX(E-id) /id)

- -(T%(T-id) /id)

-+ (Tx(F-id) /id)

-+ (Tx(id -id) /id)
= -(F % (id - id) /id)
- -(id x (id - id) /id)

—
—~—

NH-He— e T He
<

X €t =
g «—'1 «

o — M — =
—-

| —— T -«
-«

B T e— He— g H
o — b — He*

e

-83-

Compilers

Asst.Prof. Shaimaa Al-Obaidy
2021-2022
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three
Stack Input Action
$ -(idx(id-id)/id)$ Shift
$- (idx(id-id)/id)$ Shift
$-(idx(id-id)/id)$ Shift
$-(id x(id-id)/id)$ | Reduce F »id
$-(F x(id-id)/id)$ || Reduce T -F
$ -(T x(id-id)/id)$ Shift
$ -(Tx (id-id)/id)$ Shift
$ -(Tx(id-id)/id)$ Shift
$ -(Tx(id -id)/id)$ Reduce F ~id
$ -(Tx(F -id)/id)$ Reduce T —F
$ -(TX(T -id)/id)$ Reduce E »T
$ -(TX(E -id)/id)$ Shift
$ -(Tx(E- id)/id)$ Shift
$ -(TX(E-id)/id)$ Reduce F ~id
$ -(TX(E-F)/id)$ Reduce T -F
$ -(TX(E-T)/id)$ Reduce E +E-T
$-(TX(E)/id)$ Shift
$-(TX(E) /id)$ Reduce F - (E)
$-(TxF /id)$ Reduce T = TXF
$-(T /id)$ Shift
$-(T/ id)$ Shift

-84-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three
$-(T/id)$ Reduce F —»>id
$-(T/F)$ Reduce T -»T/F
$-(T)$ Reduce E-» T
$-(E)$ Shift
$-(E) $ Reduce F = (E)
$-F $ Reduce T »F
$-T $ Reduce E -+ -T
$E $ Accept

LR Parser
An efficient bottom-up syntax analysis technique that can be used to parse a large class of
CFG 15 called LR(k) parsing. The ‘L’ is for left-to-right scanning of the mput, the ‘R’ for
constructing a rightmost derivation in reverse

Advantages of LR Parser:-

v Itis an efficient non-backtracking shift-reduce parsing method.

v A grammar that can be parsed using LR method is a proper superset of a grammar that
can be parsed with predictive parser.

v' Tt detects a syntactic error as soon as possible.

-85-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Types of LR Parsing method:-
1. SLR- Simple LR

» Easiest to implement, least powerful.
2. CLR- Canonical LR
* Most powerful, most expensive.
3. LALR- Look-Ahead LR
* Intermediate in size and cost between the other two methods.
Let us see the comparison between SLR, CLR, and LALR Parser.

SLR Parser LALR Parser CLR Parser
Itis very easy and cheap to |It is also easy and cheap to It is expensive and difficult
implement. implement. to implement.
SLR Parser is the smallest in |LALR and SLR have the same |CLR Parser is the largest.
size. size. As they have less number |As the number of states is

of states. very large.

Error detection 1s not Ermor detection is not immediate | Error detection can be done
immediate in SLR. in LALR. immediately in CLR Parser.
SLR fails to produce a It is intermediate in power It is very powerful and works
parsing table for a certain between SLR and CLR 1.e_, on a large class of grammar.
class of grammars. SLR = LALR = CLR.
It requires less time and It requires more time and space |It also requires more time
space complexity. complexity. and space complexity.

-86-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

Semantic Analysis

Immediately followed the parsing phase (Syntax Analyzer). A
semantic analyzer checks the source program for semantic errors.
Type-checking is an important part of semantic analyzer.

The Semantic Analysis of the Compiler is implemented in two
passes. The first pass handles the definition of names (check for
duplicate names) and completeness (consistency) checks. The
second pass completes the scope analysis (check for undefined
names) and performs type analysis.

Example :- newval = oldval + 12
The type of the identifier newval must match with type of the

expression (oldval+12).

If the declaration part for a any programming language segment
code for example declares the type of newval as integer type and
through the running of the program the value of oldval has a type
of real then the Semantic Analysis of the Compiler is
implemented through the first pass by giving an error message
refers to the type inconsistency (type mismatch).
Two types of semantic Checks are performed within this

phase these are:-
1. Static Semantic Checks are performed at compile time like:-

e Type checking.

o Every variable is declared before used.

o Identifiers are used in appropriate contexts.

-817-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

2. Dynamic Semantic Checks are performed at run time, and the
compiler produces code that performs these checks:-
e Array subscript values are within bounds.
e Arithmetic errors, e.g. division by zero.

e A variable is used but hasn’t been initialized.

Intermediate Code Generator

After syntax and semantic analysis, some compilers generate an
explicit intermediate representation of the source program. This
representation should be easy to produce and easy to translate
into the target program. These intermediate codes are generally
machine (architecture independent). But the level of intermediate
codes is close to the level of machine codes.

The forms of codes that are generated in the Intermediate Code

Generator phase are:-

1. Polish Notation:- which can be performed through the

following:

e Infix Notation :- In which the operation must be in the
middle of the expression (between two operands) like A+B.

e Prefix Notation :- In which the operation must prior the
operands (in the left hand side of the operands) like +AB.

o Postfix Notation :- In which the operation must be in the

right hand side of the operands like AB+.

Example 1:- Having the following expression

-88-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

M= ((D*E) - ((F + G) / (H +1)))
For Infix Notation the expression will be as same because the
operation is between the two operands.
For Prefix Notation the expression will be as shown step by step
depending on the notation of the prefix rule which make the
operation prior the operand by moving these operations to the

left hand side of the operand as shown:-
1- M= ((D*E) - ((F + G) / (H +1)))
t | t | t |
2- M= (%(DE) - (+(FG) / +(HI
(*(DE) - (+(FG) / +(HI)))

3- M= (*(DE) - /(+(FG) +(HI
(*(DE) - /(+(FG) +(HI)))

4- M= - (%(DE) /(+(FG) +(HI)))

For Postfix Notation the expression will be as shown step by step
depending on the notation of the postfix rule moves the

operations to the right hand side of the operand as shown below:-

1- M= (D*E)-((F+G) / (H + I
2- M= ((DE)* - ((FG HI
((DE) (FG)+ / (HI)+))

3- M= ((DE) - ((FG)+ (HI}+)/),

4- M= ((DE)* ((FG)+ (HI)+)/) -

-89-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

Example 2:- Having the following expressions in infix form

convert them to the two others forms:-

2. (WXL)-(A/(C*D)) 3. (A+B)*(C+D)

2. Quadruples:- In which each expression is performed using

the following format:-

Operator, operand;, operand,, result

Example :- Having the following expression M= (A x B) + (Y + Z)

The Quadruple format will be:-

3. Triples:- In which each expression is performed using the

following format:-

Operator, operand;, operand,

Example 1:- Having the following expression M= (A *x B) + (Y + Z)
The Triples format will be:-

Steps
(1) +, Y, Z
(2) *, A, B

(3) t, 1, @)

-90-

Compilers

Asst.Prof. Shaimaa Al-Obaidy
2021-2022
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Four

Example 2:- Having the following expression

X=(X; + Xp) * (X3 + X3) * (X3 + Xy)

The Quadruple format will be:-
OP. | Operand; | Operand, | Result | Meaning
+ X4 X5 Temp, | ADD X; X, ,Temp,
+ X5 X3 Temp, | ADD X, X3 ,Temp,
+ X3 Xa Temps | ADD X3 X, ,Tempgj
* Temp, Temp, |Tempy, MULT Templ, Temp,,Temp,
* Tempy Temp; |Tempg|MULT Temp,y Tempgz,Tempg
= Tempg | -------oem | —mooeee- MOV Temps X
The Triple format will be:-
Steps | Operation | Operand; | Operand,
(0) + X1 X2
(1) + X2 X3
(2) + X3 X4
(3) * (0) (1)
(4) * (3) (2)
= X (4)

-91-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Four

Three Address Code Is a sequence of statements typically of

the general form A := B op C, where A,B and C are temporary

operands and op is the operation. The cause of naming this

format by Three Address Code is that each statement or
expression usually contains three addresses, two for
operands and one for the result.

The following expression X= (X; + X,) * (X5 + X3) * (X3 + X4) will

performed using Three Address Code as shown below:-

Steps
T, +, X7, X,
Ty + , X5, X3
Tg + , X3, X4
Ty x, T1, To
Ts x, Tgq, T3
X =Ty

-92-

Code optimizer

Code Optimization

Optimization is a program transformation technique, which tries to improve the
code by making it consume less resources (i.e. CPU, Memory) and deliver high
speed.

In optimization, high-level general programming constructs are replaced by very

efficient low-level programming codes

code optimizing process must follow the three rules given below:

-The output code must not, in any way, change the meaning of the program.
- Optimization should increase the speed of the program and if possible.

- The program should demand less number of resources.

Efforts for an optimized code can be made at various levels of compiling the
process.

- At the beginning, users can change/rearrange the code or use better algorithms to
write the code.

- After generating intermediate code, the compiler can modify the intermediate code
by address calculations and improving loops.

- While producing the target machine code, the compiler can make use of memory
hierarchy and CPU registers.

Optimization can be categorized broadly into two types: machine independent
and machine dependent.

1- Machine-independent Optimization

In this optimization, the compiler takes in the intermediate code and transforms a
part of the code that does not involve any CPU registers and/or absolute memory
locations. (Machine Independent improvements address the logic of the program)
For example:

do

{
item = 10;

value = value + item;
twhile(value<100);

This code involves repeated assignment of the identifier item, which if we put
this way:

Item = 10;
do
{

value = value + item;
} while(value<100);

should not only save the CPU cycles, but can be used on any processor.

2- Machine-dependent Optimization
Machine-dependent optimization is done after the target code has been generated

and when the code is transformed according to the target machine architecture. It
involves CPU registers and may have absolute memory references rather than
relative references. Machine-dependent optimizers put efforts to take maximum
advantage of memory hierarchy.

Lotermediate Code Optirmized Code +D|_:|tirni1n:1

Representation |ptimizec ntermediate © | Genecator Targat
Representation Code

Machine—Independent Machine-Dependent
Dptimzations Dptimzations

Peephole optimization: - peephole optimization is a kind of optimization
performed over a very small set of instructions in a segment of generated code. The

set is called a "peephole” or a "window". It works by recognizing sets of
instructions that can be replaced by shorter or faster sets of instructions.

Code Optimization has Two levels which are:-

1- Machine independent code Optimization
* Control Flow analysis

* Data Flow analysis

* Transformation

2- Machine dependent code- Optimization
* Register allocation
« Utilization of special instructions.

Code optimization can either be high level or low level:
— High level code optimizations.

— Low level code optimizations.

— Some optimization can be done in both levels.

Flow graph: - is a common intermediate representation for code optimization.

Basic Blocks

Source codes generally have a number of instructions, which are always executed in
sequence and are considered as the basic blocks of the code. These basic blocks do
not have any jump statements among them, i.e., when the first instruction is
executed, all the instructions in the same basic block will be executed in their
sequence of appearance without losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-ELSE,
SWITCH-CASE conditional statements and loops such as DO-WHILE, FOR, and
REPEAT-UNTIL, etc.

Basic blocks are important concepts from both code generation and optimization
point of view.

Local Optimizations are performed on basic blocks of code
Global Optimizations are performed on the whole code

w=0; w=20;
X=Xty X=x+y;
y =0; y =0;
if(x > 2) if(x > 2)

{ 8

Y = X;

X+ Yy = %;

} X+t
else

{ . ¥ =z

Y =2 Zt+;

Z++;

}
|w=x+z;. W=1xX+2Z;
Source Code Basic Blocks

Control Flow Graph

Basic blocks in a program can be represented by means of control flow graphs. A
control flow graph depicts how the program control is being passed among the
blocks. It is a useful tool that helps in optimization by help locating any unwanted
loops in the program.

B1
ENTER |
w = 0;
X =X + ¥; 1
y = 0;
|if(x > z) B1
B2
Yy = x; 1
x++} BE |

.
/

N

Y = 2; B4

Z++;

B4 l
w=x + z3 EXIT |
Basic Blocks Flow Graph

Global Data Flow Analysis

Compiler collect information about all program that needed for code optimizer
phase, Collect information about the whole program and distribute the information
to each block in the flow graph.

DFA provide information for global optimization about how execution program
manipulate data.

- Data flow information: Information collected by data flow analysis.

- Data flow equations: A set of equations solved by data flow analysis to gather data

flow information.

Criteria for code-improvement Transformations

1. Transformations must preserve the meaning of programs

2. A transformation must, on the average, speed up programs by a measurable
amount

3. A transformation must be worth the effort.

Function Preserving Transformations
1. Common sub expression eliminations

2. Copy propagations

3. Dead and unreachable code elimination

4. Constant Folding

Code Generation

Code Generation
Code generation is the final phase of compiler phases, It takes input from the

intermediate representation with information in symbol table of the source program
and produces as output an equivalent target program (see Figure 1).

- [freemeT | o
souee | Pont | itermediate! Code ' ntormediate|
s e e e |t
pgan | Bad | oode Optmier code {Genentor| pogam
I

Figure 1: position of Code generation

Main Tasks of Code Generator

1- Instruction selection: choosing appropriate target-machine instructions to
implement the IR statements.

The complexity of mapping IR program into code-sequence for target machine
depends on:

— Level of IR (high-level or low-level)

— Nature of instruction set (data type support)

— Desired quality of generated code (speed and size)

2- Registers allocation and assignment: deciding what values to keep in which
registers

3- Instruction ordering: deciding in what order to schedule the execution of

instructions.

Issues in the design of code generator

1- Input to the code generator

* three-address presentations (quadruples, triples, ...)

* Virtual machine presentations (bytecode, stack-machine, ...)
* Linear presentation (postfix ...)

* Graphical presentation (syntax trees, DAGs,...)

2- The target program
Instruction set architecture (RISC, CISC)

The instruction-set architecture of the target machine has a significant impact on
the difficulty of constructing a good code generator that produces high-quality
machine code. The most common target-machine architectures are RISC (reduced
instruction set computer), CISC (complex instruction set computer), and stack
based.

A RISC machine typically has many registers, three-address instructions,

simple addressing modes, and a relatively simple instruction-set architecture.

In contrast, a CISC machine typically has few registers, two-address instructions, a
variety of addressing modes, several register classes, variable-length instructions,
and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a

stack and then performing the operations on the operands at the top of the

stack. To achieve high performance the top of the stack is typically kept in

registers. Stack-based machines almost disappeared because it was felt

that the stack organization was too limiting and required too many swap and copy

operations.

Output may take variety of forms

1. Absolute machine language(executable code)

2. Relocatable machine language(object files for linker)

3. Assembly language(facilitates debugging)

Absolute machine language has advantage that it can be placed in a fixed location
in memory and immediately executed.

Relocatable machine language program allows subprograms to be compiled
separately.

Producing assembly language program as output makes the process of code

generation somewhat easier.

