
Lecture (1) Theory of Computation Second level

Introduction

1. Purpose and motivation
This course of the Theory of Computation, which tries to answer the following

questions:

• What are the mathematical properties of computer hardware and software?

• What is a computation and what is an algorithm? Can we give rigorous mathematical

definitions of these notions?

• What are the limitations of computers? Can “everything” be computed?

Purpose of the Theory of Computation: Develop formal mathematical models of

computation that reflect real-world computers.

2. General concepts

1. Set :- is an unordered collection of objects, and as such a set is determined by the

objects it contains.

-Operations on Sets

 Let A, B, and C be subsets of the universal set U

 Distributive properties

o A (B U C) = (A B) U (A C)

o A U (B C) = (A U B) (A U C)

 Idempotent properties

o A A= A

o A U A =A

 Double Complement property

o (A’)’ = A

 De Morgan’s laws

o (A U B)’= A’ B’

o (A B)’= A’ U B’

 Commutative properties

o A B= B A

o A U B = B U A

 Associative laws

o A (B C) = (A B) C

o A U (B U C) = (A U B) U C

 Identity properties

o AA

o AUA

 Complement properties

o A U A’= U

o A A’=

2. Alphabets:- is a finite, nonempty set of symbols. Conventionally, will used the

symbols ∑ for an alphabet. Common alphabets include:

 ∑={1,0}, is the binary alphabet.

 ∑={a,b,…, z}, is the set of lower _case letters.

 ∑={ 0,1,2,…,9}.

3. Strings:- A string over an alphabet ∑ is a finite sequence of symbols, where each

symbol is an element of ∑. The length of a string w, denoted by |w|, is the number of

symbols contained in w. The empty string, denoted by ɛ is the string having length

zero. For example, if the alphabet ∑ is equal to {0, 1}, then 10, 1000, 0, 101, and ɛ are

strings over ∑, having lengths 2, 4, 1, 3, and 0, respectively.

o Power of an alphabet

If ∑ is an alphabet, can be expressed the set of all strings of a certain length from that

alphabet by using an exponential notation. We define
k to be the set of all strings

with length k, each of whose symbols in ∑.

Example: for binary alphabet:

}101,100,110,010,001,011,111,000{

}10,01,11,00{

}1,0{

}{

3

2

1

0

4. A language:- is a set of strings that can be consist it from that alphabet depends on

the special grammar L.

Language = alphabet + string (word) + grammar (rules, syntax) + operations on

languages (concatenation, union, intersection, Kleene star)

Kinds of languages:

A-Talking language: (e.g.: English, Arabic): It has alphabet: ∑ ={a,b,c,….z}From these

 alphabetic we make sentences that belong to the language.

 -Now we want to know is this sentence is true or false so we need a grammar.

 -Ali is a clever student. (It is a sentence in English language.)

B- Programming language: (e.g.: c++, Pascal):It has alphabetic: ∑ ={a,b,c,.z , A,B,C,..Z

 , ?, /, - ,\.}. From these alphabetic we make sentences that belong to programming

 language. Now we want to know if this sentence is true or false so we need a

 compiler to make sure that syntax is true.

C- Formal language: (any language we want.) It has strings from these strings we make

 sentences that belong to this formal language.

 Now we want to know is this sentence is true or false so we need rules (Grammars).

Note:

-
* :-denotes the set of all sequences of strings that are composed of zero or more

symbols of .

-
 :- denotes the set of all sequences of strings composed of one or more symbols of

 . That denotes (= * -{ɛ})

-{a,b}:this mean may be appear only a in the string or only b or may be appear the two

symbols in the string .

-{ab}: this mean must be appear both symbols in the string respectively.

- if there is any symbols must be appear in the start or end the string this symbols must

be put out side the Brackets

Example 1:

Alphabetic: ∑= {0, 1}.

Sentences: 0000001, 1010101.

Rules: Accept any sentence start with zero and refuse sentences that start with one.

So we accept: 0000001 as a sentence satisfies the rules.

And refuse: 1010101 as a sentence doesn't satisfy the rules.

Language is 0{0,1}*1

Example 2:

Alphabetic: ∑= {a, b}.

Sentences: ababaabb, bababbabb

Rules: Accept any sentence start with a and refuse sentences that start with b.

So we accept: aaaaabba as a sentence satisfies the rules.

And refuse: baabbaab as a sentence doesn't satisfy the rules.

Language is: a{a,b}*b

Example 3: Let A an alphabet of the language L1 be {0 1 2 3 4 5 6 7 8 9}

Let L1 = {all words that does not start with zero}

And c=210

Then reverse(c) =012, which is not in L1.

Example 4: The language that ={ all strings x such that reverse(x)=x}

 The string as aba, aabaa, bab, bbb,…

Example 5: Find the language for the following string (ababababab)

Answer: {ab}*.

Example 6: find the language for the following string (a, ab, abb,….)

Answer: a{b}*.

Example 7: Consider the language {a,b}*.How many words does this language have of

length 2? of length 3? Of length n?

Answer: 4 words with length 2

 9 words with length 3

 Ln : for general length L with n alphabet .

H.W:

1. What are the string that accept in the language 0n1n

2. Write the language that accept the string(a,b,ab,aab,bb,abb,abbba,……).

3. Write the language that accept the string(0,001,00101,0010101…….).

4. Let language S accept {ab, bb} and let language T accept {ab, bb, bbbb}. Show

that S* = T*. What principle does this illustrate?

5. Consider the language S*, where S = {aa, b}.How many words does this language

have of length 4? of length 5? Of length 6? What can be said in general?

Lecture (2) Computation of theory Second level

Intrudection

5. Grammar:-A formal of grammar can be define as quad- tuple G=(N,∑,P,S) :

 P: a finite set of production rules (left-hand side right-hand side) where each

side consists of a sequence of the following symbols:

 N: a finite set of nonterminal symbols (indicating that some production rule can

yet be applied)

 ∑: a finite set of terminal symbols (indicating that no production rule can be

applied)

 S: a start symbol (a distinguished nonterminal symbol)

A formal grammar defines (or generates) a formal language, which is a (usually

infinite) set of finite-length sequences of symbols (i.e. strings) that may be constructed

by applying production rules to another sequence of symbols which initially contains

just the start symbol. A rule may be applied to a sequence of symbols by replacing an

occurrence of the symbols on the left-hand side of the rule with those that appear on the

right-hand side. A sequence of rule applications is called a derivation. Such a grammar

defines the formal language: all words consisting solely of terminal symbols which can

be reached by a derivation from the start symbol.

Note: Nonterminals are often represented by uppercase letters, terminals by lowercase

letters, and the start symbol by .

Example1: the grammar with terminals , nonterminals , and start

symbol , defines the language of all words of the form (i.e. copies of followed

by copies of). The following is a simpler grammar that defines the same language:

Terminals , Nonterminals , Start symbol , Production rules

ε

Example2: productions: S→aS

 S→ɛ

The derivation for aaaa is: S => aS => aaS => aaaS => aaaaS => aaaa ɛ = aaaa

Example3: productions: S→SS

 S→a

 S→ɛ

http://en.wikipedia.org/wiki/Formal_grammar#Introductory_example
http://en.wikipedia.org/wiki/Nonterminal_symbol
http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/String_%28computer_science%29

Derivation of aa

S => SS => SSS => SSa => SSSa => SaSa => ɛ aSa => ɛ a ɛ a = aa

Note: can be rewrite an above grammar as S→SS|a| ɛ

Example4:Consider the grammar G where Vn = {S,B, C}, Vt = a, b, c,

S is the start symbol, and P consists of :

1. S → aBC

2. S → aSBC

3. aB → ab

4. bB → bb

5. CB → BC

6. bC → bc

7. cC → cc

try to provide one derivation for sentence aaabbbccc.

S ⇒2 aSBC ⇒2 aaSBCBC ⇒1 aaaBCBCBC ⇒3

aaabCBCBC ⇒5 aaabBCCBC ⇒4 aaabbCCBC ⇒5

aaabbCBCC ⇒5 aaabbBCCC ⇒4 aaabbbCCC ⇒6

aaabbbcCC ⇒7 aaabbbccC ⇒7 aaabbbccc

H.W:

1.production S→ aB| ɛ

 B →bS| ɛ

 Derivation the string of language {ab}*.

2. derivation the string (()()) depends the grammar with rules given below:

Rule1: S → SS

Rule2: S → (S)

Rule3: S → ()

3. Derivations Trees
 A string w accept with L(G) may have many derivations, corresponding to how we

choose the rules to apply and how we choose which symbol to expand.
o At a given step we may be able to expand two or more non-terminal symbols. The

order in which we expand the non-terminal symbols will determine the derivation,

i.e. different orders will result in different derivations, even if we choose same rules.

o At a given step for a given non-terminal symbol there may be several rules to

choose. Choosing different rules will result in different derivations.

Each derivation can be depicted using a derivation tree , also called a parse tree.

Each non-terminal symbol is expanded by applying a grammar rule that contains the

symbol in its left- hand side. Its children are the symbols in the right-hand side of the

rule.

Note: The order of applying the rules depends on the symbols to be expanded. At each

tree level we may apply several different rules corresponding to the nodes to be

expanded.

 Parse Trees
A parse tree for a string in L(G) is a tree where

o the root is the start symbol for G

o the interior nodes are the nonterminals of G

o the leaf nodes are the terminal symbols of G.

o the children of a node T (from left to right) correspond to the symbols on the

right hand side of some rule for T in G.

Every terminal string generated by a grammar has a corresponding parse tree; every

valid parse tree represents a string generated by the grammar (called the yield of the

parse tree).

Example: Given the grammar G = (V, Σ, R, E),

Σ = { 1,2,3,4,5,6,7,8,9,0,+,-,*,/,(,)}, and R contains the following rules:

1. E → D

2. E → (E)

3. E →E + E

4. E →E - E

5. E →E * E

6. E →E/ E

7. D → 0 | 1 | 2 | ... 9

find a parse tree for the string 1 + 2 * 3:

Example: S→ (S) | SS |~S | p | q

The only nonterminal is S. The terminals are p q ~ () where " " isthe symbol for

implication. In this grammar consider the diagram:

This is a derivation tree for the 13-letter word (~ ~ p (p ~ ~ q))

H.W:-

1. If you have grammar S →(S + S)| (S * S) | number , derivate the arithmetic

expression, and draw the derivation tree for it.

1. ((1 + 2) * (3 + 4) + 5) * 6. 2. ((1 + 2)* 3) + 4.

Lecture (3) Theory of Computation Second level

Chomsky hierarchy

The Chomsky hierarchy consists of the following levels:

The Chomsky hierarchy comprises four types of languages and their associated

grammars and machines.

regular languages context-free languages context-sensitive

languages recursive enumerable languages.

 Type-0 grammars (unrestricted grammars) include all formal grammars. They

generate exactly all languages that can be recognized by a Turing machine. These

languages are also known as the recursively enumerable languages. Note that this

is different from the recursive languages which can be decided by an always-

halting Turing machine.

U→V

http://en.wikipedia.org/wiki/Unrestricted_grammar
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Recursively_enumerable_language
http://en.wikipedia.org/wiki/Recursive_language
http://en.wikipedia.org/wiki/Machine_that_always_halts
http://en.wikipedia.org/wiki/Machine_that_always_halts

S→SS

S→aAb

aA→Aa

BB→a

aA→bAa

Ba →bAb

 Type-1 grammars (context-sensitive grammars) generate the context-sensitive

languages. These grammars have rules of the form with

anonterminal and , and strings of terminals and/or nonterminals. The strings

and may be empty, but must be nonempty. The rule is allowed if

does not appear on the right side of any rule. The languages described by these

grammars are exactly all languages that can be recognized by a linear bounded

automaton (a nondeterministic Turing machine whose tape is bounded by a

constant times the length of the input.)

U →V

S →SS

aA →bAa

BB →aB

A → wrong

Left side <= right side

 Type-2 grammars (context-free grammars) generate the context-free languages.

These are defined by rules of the form with is a nonterminal and is a

string of terminals and/or nonterminals. Context-free languages – or rather the

subset of deterministic context-free language – are the theoretical basis for the

phrase structure of most programming languages, though their syntax also

includes context-sensitive name resolution due to declarations and scope.

S → (N U t)*

S→SS/aA/bA

S→

S→ abB

 Type-3 grammars (regular grammars) generate the regular languages. Such a

grammar restricts its rules to a single nonterminal on the left-hand side and a

right-hand side consisting of a single terminal, possibly followed by a single

nonterminal (right regular). Alternatively, the right-hand side of the grammar can

consist of a single terminal, possibly preceded by a single nonterminal (left

http://en.wikipedia.org/wiki/Context-sensitive_grammar
http://en.wikipedia.org/wiki/Context-sensitive_language
http://en.wikipedia.org/wiki/Context-sensitive_language
http://en.wikipedia.org/wiki/Linear_bounded_automaton
http://en.wikipedia.org/wiki/Linear_bounded_automaton
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_language
http://en.wikipedia.org/wiki/Deterministic_context-free_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Scope_%28computer_science%29
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Regular_language

regular); these generate the same languages. Regular languages are commonly

used to define search patterns and the lexical structure of programming

languages.

N _→ t|tN

A→ a|aB

S→ aS|b

Problem is left recursion A → Aa

Lecture (4) Theory of Computation Second level

Context-Free Grammars(CFG)
Definition : A context-free grammar is a 4-tuple G = (V,∑,R, S), where

1. V is a finite set, whose elements are called variables,

2. ∑ is a finite set, whose elements are called terminals,

3. V ∩∑=Ǿ

4. S is an element of V ; it is called the start variable,

5. R is a finite set, whose elements are called rules. Each rule has the form A → w,

where AV and *)(Vw .

In our example. Consider the following five (substitution) rules:

S → AB

A →a

A →aA

B → b

B →bB

Here, S, A, and B are variables, S is the start variable, and (a, b) are terminals. We use

these rules to derive strings consisting of terminals (i.e., elements of {a, b}*), in the

following manner:

1. Initialize the current string to be the string consisting of the start variable S.

2. Take any variable in the current string and take any rule that has this variable on the

left-hand side. Then, in the current string, replace this variable by the right-hand side of

the rule.

3. Repeat 2. until the current string only contains terminals.

For example, the string aaaabb can be derived in the following way:

S → AB →aAB → aAbB →aaAbB →aaaAbB →aaaabB →aaaabb

This derivation can also be represented using a parse tree, as in the figure below:

Figure(1): derivation for string aaaabb with CFG

Example:Let us illustrate this on the CFG
S → AA

A→ AAA |bA |Ab| a

We begin with S and apply the production S→ AA. To the left-hand A let us apply the

production

 A → bA. To the right-hand A. let us apply A → AAA.

The b that we have on the bottom line is a terminal, so it does not descend further. In

the terminology of trees it is called a terminal node. Let the four A's, left to right,

undergo the productions A → bA, A → a, A → a, A → Ab , respectively. Let us

finish off the generation of a word with the productions A → a and A → a:

Figure(2): derivation tree for the string bbaaaab

H.W:

1.Detect if the following grammar CFG or not: S →S + S |S * S | number.

2.Write the Grammar for the following language {ambn : m >=1, n >=1}, and detect if

its Context free grammar or not.

Context-free languages
Definition : Let G = (V,∑,R, S) be a context-free grammar. The language of G is

defined to be the set of all strings in ∑ that can be derived from the start variable S:

LwSwGL }:{)(
**

This point can be illustrated with the language (ab)n(cd)n. A simple grammar for it has

only two rules:

• S → abScd,

• S → abcd.

The derivation for the string abababcdcdcd can succinctly be represented by the phrase

structure tree given in the following Figure.

Figure(3): derivation tree for the string abababcdcdcd

 In such a tree diagram, each local tree (i.e. each node together with the nodes below it

that are connected to it by a direct line) represents one rule application, with the node on

top being the left-hand side and the nodes on the bottom the right-hand side. The

sequence that is derived can be read off the leaves (the nodes from which no line

extends downward) of the tree.

The same language can also be described by a some what more complex grammar,

using the rules:

• S → aTd,

• T → bSc,

• T → bc.

Figure(4) : Different phrase structure tree for the same string

Example:Let the terminals be a and b, let the nonterminals be S and X, and let the

productions be

S → XaaX

X→ aX

X→bX

X→

We already know from the previous example that the last three productions will allow

us to generate any word we want from the nonterminal X. If the nonterminal X appears

in any working string we can apply productions to turn it into any word we want.

Therefore, the words generated from S have the form (anything aa anything) . Or

Context free language (a + b)*aa(a + b)*, which is the language of all words with a

double a in them somewhere.

For example, to generate baabaab we can proceed as follows:

S→ XaaX : bXaaX → baXaaX→ baaXaaX→ baabXaaX→

baabAaaX→baabaaX→baabaabX → baabaab →baabaab.

There are other sequences that also derive the word baabaab.

Note: The membership problem for context-free languages is solvable in cubic time,

i.e. the maximum time that is needed to decide whether a given string x belongs to L(G)

for some context-free grammar G grows with the third power of the length of x. This

means that there are efficient algorithms to solve this problem.

H.W:

1.find the Context free language for the CFG, S→aSbS|bSaS| , and Prove L(G) is a

set of all string with an equal number of a’s and b’s.

2. find the CFG for the following language {a,b}*a.

3. find the string that accept by the language {a,b}*bbb{a,b}*.

Note: in some references {a,b}=(a+b), {ab}=(ab)or(a*b)

Lecture (5) Theory of Computation Second level

Ambiguity
A CFG is called ambiguous if for at least one word in the language that it generates

there are two possible derivations of the word that correspond to different syntax trees.

Example: Let us reconsider the language PALINDROME, which we can now define

by the CFG below:

S→ aSa | bSb a | b A

At every stage in the generation of a word by this grammar the working string contains

only the one nonterminal S smack dab in the middle. The word grows like a tree from

the center out.

For example: baSab → babSbab→ babbSbbab → babbaSabbab ...

When we finally replace S by a center letter (or A if the word has no center letter) we

have completed the production of a palindrome. The word aabaa has only one possible

generation:

S → aSa

 → aaSaa

 →aabaa

We see then that this CFG is unambiguous.

Example:The language of all nonnull strings of a's can be defined by a CFG as follows:

S→ aS | Sa | a

In this case the word a3 can be generated by four different trees:

This CFG is therefore ambiguous.

However the same language can also be defined by the CFG: S → aS | a

for which the word a3 has only one production:

From this last example we see that we must be careful to say that it is the CFG that is

ambiguous, not that the language itself is ambiguous.

Grammar G: E → E +E|E *E|(E)|I and I → Ia|Ib|I0|I1|a|b is ambiguous since a+b*a has

two parse trees.

o Some ambiguous grammars have an equivalent unambiguous grammar. For

example, an unambiguous grammar for the simple expressions is G0: E → E

+T|T, T → T *F|F, F → (E)|I, and I → Ia|Ib|I0|I1|a|b.

o A context-free language is said to be inherently ambiguous if all its grammars are

ambiguous. For example, {anbncmdm |m,n >=1} {anbmcmdn |m,n >=1}. Its

grammar is S→ S1|S2, S1 → AB, A→ aAb|ab, B→ cBd|cd, S2 → aS2d|aCd, and

C→ bCc|bc. The grammar is ambiguous (considering abcd). There is a not so

easy proof that all grammars for the language are ambiguous, thus it is inherently

ambiguous.

o There is no algorithm to determine whether a given CFG is ambiguous. There is

no algorithm to remove ambiguity from an ambiguous CFG. There is no

algorithm to determine whether a given CFL is inherently ambiguous.

The empty string in Context Free Grammar’s

Theorem:

If L is a context-free language generated by CFG that includes -productions, then

there is a different CFG that has no -production that generates either the whole

language L(if L does not include the word) or else generates the language of all the

words in L that are not .

Definition:

In a given CFG, we call a nonterminal N nullable if:

• There is a production: N→

Or

• There is a derivation that start at N and leads to : *N

Theorem:

 For any CFL (L), there exists an -free CFG,G, such that L(G) = L\{ }

Let G = (N,T,P,S) be any CFG with - productions. Then G’ =(N,T,P’,S), where P’ is

constructed from P as follows:

1. Put all the -free productions of P into P’.

2. Find all the nonterminals AЄN such that A → .

Example:

S→ [E] | E

E →T| E+T | E-T

T →F| T*F | T/F

F →a| b| c|

The -free grammar constructed from G has productions

S → [E] | E |[]

E →T| E+T | E-T | E+ | E- | +T | -T | + | -

T →F| T*F | T/F

Example:
Consider the CFG:

S → a| Xb| aYa

X → Y |

Y → b | X

X and Y are nullable.

The new CFG is:

S → a| Xb| aYa| b| aa

X → Y

Y → b | X

Example:

Consider the CFG:

S → Xa

X → aX| bX |

X is the only nullable nonterminal.

The new CFG is:

S → Xa| a

X → aX| bX |a| b

Example:

Consider the CFG:

S → XY

X → Zb

Y→ bW

Z → AB

W→ Z

A → aA| bA|

B → Ba| Bb|

A, B, W and Z are nullable.

The new CFG is:

S → XY

X → Zb| b

Y→ bW| b

Z → AB| A| B

W→ Z

A → aA| bA| a| b

B → Ba| Bb| a| b

Lecture (7) Theory of Computation Second level

Simplification of Context Free Grammar

Since there are different people may come up with different but equivalent CFGs. There

for must be Simplify CFG . That can be done with several steps:

 Eliminating rules for L(G)−{ } by finding nullable variables (*A)

 For example:

 S →AB

 A →aAA|

 B→bBB|

 can be changed to:

 S→AB|A|B

 A→aAA|aA|a

 B→bBB|bB|b.

 Eliminating unit rules.

Definition

A production of the form: One Nonterminal → One Nonterminal is called a unit

production.

Theorem

If there is a CFG for the language L that has no -production, then there is also a

CFG for L with no -production and no unit production.

Example:

Consider the CFG:

S → A| bb

A → B| b

B → S| a

S → A gives S → b

S → A → B gives S → a

A → B gives A → a

A → B → S gives A → bb

B → S gives B → bb

B → S → A gives B → b

The new CFG for this language is:

S → bb| b| a

A → b| a| bb

B → a| bb| b

Example:

 E →T|E +T

 T → F|T*F

 F →I|(E)

 I → Ia|Ib|I0|I1|a|b

 can be changed to:

 E→E+T|T*F|(E)|Ia|Ib|I0|I1|a|b

 T →T*F|(E)|Ia|Ib|I0|I1|a|b

 F → (E)|Ia|Ib|I0|I1|a|b

 I →Ia|Ib|I0|I1|a|b.

 Eliminating useless variables (and thus associated rules) by finding non

generating and unreachable variables.

Nongenerating: is loop derivation with out ending.

Unreachable: is a symbol that cannot reach to it from the start symbol.

Example:

S→AB|a

A→b

can be simplified to:

S→a.

Lecture (8) Theory of Computation Second level
Chomsky Normal Form (CNF)

Theorem:

If L is a language generated by some CFG then there is another CFG that generates all

the non- words of L, all of these productions are of one of two basic forms:

1. Nonterminal → string of only Nonterminals (A→BC)

2. Nonterminal → One Terminal (A→a)

where A,B,C are variables, and a is a terminal.

Definition

If a CFG has only productions of the form:

Nonterminal → string of two Nonterminals

Or of the form:

Nonterminal → One Terminal

It is said to be in Chomsky Normal Form (CNF).

Note: that one of the uses of CNF is to turn parse trees into binary trees.

To convert a CFG to a grammar in CNF:

 Add a new start variable S0 in the case when the old start variable S appears in the

body of some rules.

 Simplify the grammar by removing rules, unit rules, and useless variables.

 Convert the rules in the simplified grammar into the proper forms of CNF by

adding additional variables and rules.

Example:

Consider the CFG:

S → X1| X2aX2| aSb| b

X1 → X2X2| b

X2 → aX2| aaX1

Becomes:

S →X1

S →X2AX2

S →ASB

S →B

X1 → X2X2

X1 → B

X2 → AX2

X2 → AAX1

A→ a

B → b

Example:

Consider the CFG:

S → Na

N → a| b

Becomes:

S → NA

N → a| b

A → a

Example:

Convert the following CFG into CNF:

S→ aSa| bSb| a| b| aa| bb

S→ASA

S→ BSB

S→AA

S→BB

S→a

S→b

A→a

B→b

The CNF:

S→AR1

R1→SA

S→ BR2

R2→ SB

S→AA

S→BB

S→a

S→b

A→a

B→b

Example:

Convert the following CFG into CNF:

S→bA| aB

A→ bAA| aS| a

B→aBB| bS| b

The CNF:

S→YA| XB

A→ YR1| XS| a

B→XR2| YS| b

X→ a

Y→ b

R1→ AA

R2→ BB

H.W:Convert the following CFG into CNF:

1.S→ AAAAS

 S→ AAAA

 A→ a

 2. S→ Aba

 A → aab

 B →AC

Lecture (9) Theory of Computation Second level

Greibach normal form(GNF)

A context-free grammar is in Greibach normal form (GNF) if the right-hand

sides of all productions start with a terminal symbol. A context-free grammar

is in Greibach normal form, if all production rules are of the form:

A→aX

where A is a nonterminal symbol,

a is a terminal symbol,

X is a (possibly empty) sequence of nonterminal symbols not including the

start symbol.

Example1:convert the following CFG to GNF:

S→ AB

A →BS| b

B →SA| a

1. Convert the CFG to CNF

2. Rename nonterminals (A,S,B)

S becomes A1

A becomes A2

B becomes A3

The grammar becomes:

A1→ A2A3

A2 →A3A1| b

A3→A1A2| a

3. Compare the value of i,j as Ai→Aj (j > i)

A1→A2A3 (2 > 1)

A2→A3A1| b (3 > 2)

A3→A1A2| a (1 < 3)

A3→A2A3A2 | a (2 < 3)

A3→A3A1A3A2 | bA3A2 | a (3 = 3)

B3→A1A3A2 | A1A3A2B3

The GNF :

A3→bA3A2 | bA3A2B3 | a | aB3

A2→bA3A2A1| aA1 | bA3A2B3A1 | aB3A1| b

A1→bA3A2A1A3| aA1A3 | bA3A2B3A1A3 | aB3A1A3| bA3

B3→bA3A2A1A3A3A2| aA1A3 A3A2 | bA3A2B3A1A3 A3A2 | aB3A1A3

A3A2| bA3 A3A2 | bA3A2A1A3A3A2B3| aA1A3 A3A2B3 | bA3A2B3A1A3

A3A2B3 | aB3A1A3 A3A2B3| bA3 A3A2B3

Example: convert CFG to GNF

 S→ ASB | AB

 A→a

 B→b

Convert to CNF

S→AR1 | AB

R1→SB

A→a

B→b

S becomes A1

R1 becomes A2

A becomes A3

B becomes A4

The grammar becomes:

A1→A3A2 | A3A4 3>1

A2→A1A4 1< 2

A3→a

A4→b

A2→A3A2A4 | A3A4A4

The GNF:

A2→aA2A4 | aA4A4

A1→aA2 | aA4

A3→a

A4→b

Lecture (10) Theory of Computation Second level

Regular expression
Regular expressions denote languages. For a simple example, the regular expression

01*+10* denotes the language consisting of all strings that are either a single of 0

followed by any number of 1’s or single 1 followed by any number of 0’s .

Before the describing the regular expression notation we need to learn the three

operations on languages that the operators of regular expressions represent. These

operations are:

1. The union of two languages L and M denoted L M, is the set of string that are

in either L or M or both.

Example : L={001, 01,111}, M={ɛ,001} that make L M={ ɛ,01,001,111}.

2. The concatenation of languages L and M is the set of the string that can be

 formed be taking any string in L and concatenating it with any string in M. We

 denote concatenation language either with dot or no operation at all.

 Example:L={001,01,111},M={ɛ,001},

 Concatenation L and M is LM=L.M={001,01,111,001001,01001,111001}.

 The first three string in LM are the concatenation the string of L with ɛ and the

 last three string in LM are formed by taking each string in L and concatenation

 with second string in M.

Example: If S = {a, aa, aaa}, T = {bb, bbb}

Then ST = {abb, abbb, aabb, aabbb, aaabb, aaabbb}

Note that these words are not in proper order.

Example: If S = {a, bb, bab} T = {a, ab}

Then ST = {aa, aab ,bba, bbab, baba, babab}

3. The closure (or star or Keene closure) of language L denoted L* and represent the

 set of those string that can be formed by taking any number of string from L,

 possible with repetitions (i.e. that same string may be selected more than once)

 and concatenating all of them.

 Example: If L={0,11} then L*={ ɛ, 0,11110,0011,11011,…} but not (1011).

Difinition: The set of regular expressions is defined by the following rules:

Rule 1: Every letter of U can be made into a regular expression by writing it in

 Bold face ;ɛ is a regular expression.

Rule 2: If r1, and r2 are regular expressions, then so are (rl) ,r1r2 ,r 1 + r 2, rl*

Rule 3 Nothing else is a regular expression.

Note:We could have included the plus sign as a superscript r1+ as part of the definition,

but since we know that rl+ = rlrl*, this would add nothing valuable.

As with the recursive definition of arithmetic expressions, we have included the use of

parentheses as an option, not a requirement. Let us emphasize again the implicit

parentheses in rl*.

If r1 = aa + b

then the expression r1* technically refers to the expression

r1* = aa + b*

which is the formal concatenation of the symbols for r, with the symbol *, but what we

generally mean when we write r1* is actually (rl)*

(r1)* = (aa + b)*

which is different. Both are regular expressions and both can be generated from the

rule.

Note:

(a+b*)*=(a+b)*

(a*)*=a*

(aa+ab*)*≠ (aa+ab)*

(a*b*)*=(a+b)*

Examples:

The regular expression (00+11)*(101+110) represents the regular set (regular language)

{101, 110, 00101, 00110, 11101, 11110, 0000101, 0000110, 0011101, 0011110, . . .}.

H.W: What are some other strings in this language? Is 00110011110 in the language?

How about 00111100101110?

Regular Grammar

Definition:

A CFG is called a regular grammar if each of its productions is of one of the two forms

Nonterminal → semiword

Nonterminal → word

The two previous proofs imply that all regular languages can be generated

by regular grammars and all regular grammars generate regular languages.

Definition:

For a given CFG a semiword is a string of terminals (maybe one) concatenated with

exactly one nonterminal (on the right), for example:

(terminal) (terminal) . . . (terminal) (Nonterminal)

Contrast this with word, which is a string of all terminals, and working string, which is

a string of any number of terminals and nonterminals in any order.

Example:Consider the CFG: (aa + bb)*

S→aaS|bbS |

Regular language
Regular languages are those languages that are defined by regular grammars.

In such a grammar, all rules take one of the following two forms:

A → a, A → aB.

Here A and B stand for non-terminal symbols and a for a terminal symbol

Closure Properties of regular language
Recall a closure property is a statement that a certain operation on languages, when

applied to languages in a class(e.g., the regular languages), produces a result that is also

in that class.

1. The union of two regular language is regular.

2. The closure (stare) of regular language is a regular.

3. The concatenation of c regular language is a regular.

4. The intersection of two regular language is regular.

5. The complement of a regular language is a regular.

6. A homomorphism (substitution of strings for symbols) of regular

language is regular.

7. The difference between two regular language is a regular.

8. The reverce of regular language is a regular.

9. The inverse of homomorphism of regulare language is regular.

Pumping lemma for regular languages

From Wikipedia, the free encyclopedia

In the theory of formal languages, the pumping lemma for regular languages describes an essential

property of all regular languages. Informally, it says that all sufficiently long words in a regular

language may be pumped — that is, have a middle section of the word repeated an arbitrary number of

times — to produce a new word that also lies within the same language.

Specifically, the pumping lemma says that for any regular language L there exists a constant p such

that any word w in L with length at least p can be split into three substrings, w = xyz, where the middle

portion y must not be empty, such that the words xz, xyz, xyyz, xyyyz, … constructed by repeating y an

arbitrary number of times (including zero times) are still in L. This process of repetition is known as

"pumping". Moreover, the pumping lemma guarantees that the length of xy will be at most p, imposing

http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Lemma_%28mathematics%29
http://en.wikipedia.org/wiki/Regular_language

a limit on the ways in which w may be split. Finite languages trivially satisfy the pumping lemma by

having p equal to the maximum string length in L plus one.

The pumping lemma is useful for disproving the regularity of a specific language in question.

Formal statement

Let L be a regular language. Then there exists an integer p ≥ 1 depending only on L such that every

string w in L of length at least p (p is called the "pumping length"[4]) can be written as w = xyz (i.e., w

can be divided into three substrings), satisfying the following conditions:

1. |y| ≥ 1;

2. |xy| ≤ p

3. for all i ≥ 0, xyiz ∈ L

y is the substring that can be pumped (removed or repeated any number of times, and the resulting

string is always in L). (1) means the loop y to be pumped must be of length at least one; (2) means the

loop must occur within the first p characters. |x| must be smaller than p (conclusion of (1) and (2)),

apart from that there is no restriction on x and z.

In simple words, for any regular language L, any sufficiently long word w (in L) can be split into 3

parts. i.e. w = xyz , such that all the strings xykz for k≥0 are also in L.

Below is a formal expression of the Pumping Lemma.

Lecture (11) Theory of Computation Second level

Finite Automata
is a device consisting of a tape and a control circuit which satisfy the following

conditions:

1. The tape start from left end and extends to the right without an end.

2. The tape is divide into squares in each a symbol.

3. The tape has a read only head.

http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages#cite_note-BLRS86-4

4. The head moves to the right one square every time it reads a symbol. It never moves

to the left. When it sees no symbol, it stops and the automata terminates its operation.

5. There is a control determines the state of the automaton and also controls the

movement of the head.

A finite automaton (FA): provides the simplest model of a computing device. It has a

central processor of finite capacity and it is based on the concept of state.

finite state machine is a 5 tuple M = (Q, A, T, S ,F), where

o Q --set of states = {q0, q1, q2, ….}

o A -- set of input symbols(alphabet) ={a,b, …, 0, 1, …}

o T --set of transitions or rules

o S -- an initial state

o F -- the final state -- could be more than one final state

Designing (drawing) FA

Lecture (12) Theory of Computation Second level

Type of FA:

A. Deterministic Finite State Automata (DFSA)

B. Non Deterministic Finite State Automata (NFA)

A.Deterministic Finite State Automata (DFSA)
A DFA represents a finite state machine that recognizes a RE(regular expression).

An example of a deterministic finite automaton that accepts only binary numbers that

are multiples of 3. The state S0 is both the start state and an accept state.

The figure on above illustrates a deterministic finite automaton using a state diagram. In

the automaton, there are three states: S0, S1, and S2 (denoted graphically by circles).

The automaton takes a finite sequence of 0s and 1s as input. For each state, there is a

transition arrow leading out to a next state for both 0 and 1. Upon reading a symbol, a

DFA jumps deterministically from a state to another by following the transition arrow.

For example, if the automaton is currently in state S0 and current input symbol is 1 then

it deterministically jumps to state S1. A DFA has a start state (denoted graphically by

an arrow coming in from nowhere) where computations begin, and a set of accept states

(denoted graphically by a double circle) which help define when a computation is

successful.

Note:- in the DFSA for each input string there is single target state.

Definition: A deterministic finite automaton M is a 5-tuple, (Q, Σ, δ, q0, F), consisting

of

 set of states (Q)

Q × Σ → Q)

∈ Q)

⊆ Q)

In words, the first condition says that the machine starts in the start state q0. The second

condition says that given each character of string w, the machine will transition from

state to state according to the transition function δ. The last condition says that the

machine accepts w if the last input of w causes the machine to halt in one of the

accepting states. Otherwise, it is said that the automaton rejects the string. The set of

strings M accepts is the language recognized by M and this language is denoted by

L(M).

A deterministic finite automaton without accept states and without a starting state is

known as a transition system or semiautomaton.

Accept and Generate modes

A DFA representing a regular language can be used either in an accepting mode to

validate that an input string is part of the language, or in a generating mode to generate

a list of all the strings in the language.

In the accept mode an input string is provided which the automaton can read in left to

right, one symbol at a time. The computation begins at the start state and proceeds by

reading the first symbol from the input string and following the state transition

corresponding to that symbol. The system continues reading symbols and following

transitions until there are no more symbols in the input, which marks the end of the

computation. If after all input symbols have been processed the system is in an accept

state then we know that the input string was indeed part of the language, and it is said to

be accepted, otherwise it is not part of the language and it is not accepted.

Example: Consider the following state diagram:

We say that q1 is the start state and q2 is an accept(final) state. Consider the input string

1101. This string is processed in the following way:

• Initially, the machine is in the start state q1.

• After having read the first 1, the machine switches from state q1 to state q2.

• After having read the second 1, the machine switches from state q2 to state q2. (So

actually, it does not switch.)

• After having read the first 0, the machine switches from state q2 to state q3.

• After having read the third 1, the machine switches from state q3 to state q2. After the

entire string 1101 has been processed, the machine is in state q2, which is an accept

state. We say that the string 1101 is accepted by the machine.

Consider now the input string 0101010. After having read this string from left to right

(starting in the start state q1), the machine is in state q3. Since q3 is not an accept state,

we say that the machine rejects the string 0101010.

We hope you are able to see that this machine accepts every binary string that ends with

a 1. In fact, the machine accepts more strings:

• Every binary string having the property that there are any number of 0s following the

rightmost 1, is accepted by this machine.

• Every other binary string is rejected by the machine.

Example:
Define the language A as A = {w : w is a binary string containing 101 as a substring}.

Again, we claim that A is a regular language. In other words, we claim that there exists

a finite automaton M that accepts A, i.e., A = L(M).

The finite automaton M will do the following, when reading an input string from left to

right:

• It skips over all 0s, and stays in the start state.

• At the first 1, it switches to the state “maybe the next two symbols are 01”.

– If the next symbol is 1, then it stays in the state “maybe the next two symbols are 01”.

– On the other hand, if the next symbol is 0, then it switches to the state “maybe the

next symbol is 1”.

_ If the next symbol is indeed 1, then it switches to the accept state (but keeps on

reading until the end of the string).

_ On the other hand, if the next symbol is 0, then it switches to the start state, and skips

0s until it reads 1 again.

By defining the following four states, this process will become clear:

• q1: M is in this state if the last symbol read was 1, but the substring 101 has not been

read.

• q10: M is in this state if the last two symbols read were 10, but the substring 101 has

not been read.

• q101: M is in this state if the substring 101 has been read in the input string.

• q: In all other cases, M is in this state.

Here is the formal description of the finite automaton that accepts the language A:

• Q = {q, q1, q10, q101},

• Σ = {0, 1},

• the start state is q,

• the set F of accept states is equal to F = {q101}, and

• the transition function is given by the following table:

This finite automaton accepts the language A consisting of all binary strings that

contain the substring 101.

Example:The following example is of a DFA M, with a binary alphabet, which requires

that the input contains an even number of 0s.

The state diagram for M = (Q, Σ, δ, q0, F) where:

The language recognized by M is the regular language given by the regular expression

1*(0 (1*) 0 (1*))*

Lecture (13) Theory of Computation Second level
Converting an NFA to a DFA
Given:
A non-deterministic finite state machine (NFA)
Goal:
Convert to an equivalent deterministic finite state machine (DFA)
Why?
Faster recognizer!
Approach:
Consider simulating a NFA.
Work with sets of states.

IDEA: Each state in the DFA will correspond to a set of NFA states.
Worst-case:

There can be an exponential number O(2N) of sets of states.

The DFA can have exponentially many more states than the NFA
... but this is rare.

Let X = (Qx, ∑, δx, q0, Fx) be an NDFA which accepts the language L(X). We have to design
an equivalent DFA Y = (Qy, ∑, δy, q0, Fy) such that L(Y) = L(X). The following procedure
converts the NDFA to its equivalent DFA −

Algorithm
Input − An NDFA

Output − An equivalent DFA

Step 1 − Create state table from the given NDFA.

Step 2 − Create a blank state table under possible input alphabets for the equivalent DFA.

Step 3 − Mark the start state of the DFA by q0 (Same as the NDFA).

Step 4 − Find out the combination of States {Q0, Q1,... , Qn} for each possible input alphabet.

Step 5 − Each time we generate a new DFA state under the input alphabet columns, we
have to apply step 4 again, otherwise go to step 6.

Step 6 − The states which contain any of the final states of the NDFA are the final states of
the equivalent DFA.

Example
Let us consider the NDFA shown in the figure below.

q δ(q,0) δ(q,1)

a {a,b,c,d,e} {d,e}

b {c} {e}

c ∅ {b}

d {e} ∅

e ∅ ∅

Using the above algorithm, we find its equivalent DFA. The state table of the DFA is shown in
below.

q δ(q,0) δ(q,1)

[a] [a,b,c,d,e] [d,e]

[a,b,c,d,e] [a,b,c,d,e] [b,d,e]

[d,e] [e] ∅

[b,d,e] [c,e] [e]

[e] ∅ ∅

[c, e] ∅ [b]

[b] [c] [e]

[c] ∅ [b]

The state diagram of the DFA is as follows −

