
Distributed Systems

1

 Distributed System

Distributed System is a collection of independent computers that

appears to its users as a single coherent system.

• This definition has several important aspects. The first one is that a

distributed system consists of components (i.e., computers) that are

autonomous. A second aspect is that users (be they people or programs)

think they are dealing with a single system. This means that one way or

the otherthe autonomous components need to collaborate.

In order to support heterogeneous computers and networks while offering

a single-system view, distributed systems are often organized by means

of a layer of software-that is, logically placed between a higher-level

layer consisting of users and applications, and a layer underneath

consisting of operating systems and basic communication facilities, as

shown in the figure below Accordingly, such a distributed system is

sometimes called middleware.

Distributed Systems

2

Fig. 1-1 shows four networked computers and three applications, of

which application B is distributed across computers 2 and 3. Each

application is offered the same interface. The distributed system provides

the means for components of a single distributed application to

communicate with each other, but also to let different applications

communicate. At the same time, it hides, as best and reasonable as

possible, the differences in hardware and operating systems from each

application.

Distributed Systems

3

Distributed systems goals

 • A distributed system should make resources easily accessible; it should

reasonably hide the fact that resources are distributed across a network; it

should be open; and it should be scalable.

Making Resources Accessible

• The main goal of a distributed system is to make it easy for the users

(and applications) to access remote resources, and to share them in a

controlled and efficient way. Resources can be just about anything, but

typical examples include things like printers, computers, storage

facilities, data, files, Web pages, and networks, to name just a few. There

are many reasons for wanting to share resources. – One obvious reason is

that of economics. For example, it is cheaper to let a printer be shared by

several users in a small office than having to buy and maintain a separate

printer for each user. Likewise, it makes economic sense to share costly

resources such as supercomputers, high-performance storage systems,

image setters, and other expensive peripherals.

Distribution Transparency

• An important goal of a distributed system is to hide the fact that its

processes and resources are physically distributed across multiple

computers. A distributed system that is able to present itself to users and

applications as if it were only a single computer system is said to be

transparent. Let us first take a look at what kinds of transparency exist in

distributed systems. After that we will address the more general question

whether transparency is always required.

Distributed Systems

4

Types of Transparency

The concept of transparency can be applied to several aspects of a

distributed system, the most important ones shown in Fig. 1-2.

Degree of Transparency

• There is also a trade-off between a high degree of transparency and the

performance of a system. For example, many Internet applications

repeatedly try to contact a server before finally giving up. Consequently,

attempting to mask a transient server failure before trying another one

may slow down the system as a whole. In such a case, it may have been

better to give up earlier, or at least let the user cancel the attempts to

make contact.

Distributed Systems

5

Openness

 Another important goal of distributed systems is openness. An

open distributed system is a system that offers services

according to standard rules that describe the syntax and

semantics of those services. For example, in computer networks,

standard rules govern the format, contents, and meaning of

messages sent and received. Such rules are formalized in

protocols. In distributed systems, services are generally

specified through interfaces, which are often described in an

Interface Definition Language (IDL). Interface definitions

written in an IDL nearly always capture only the syntax of

services. In other words, they specify precisely the names of the

functions that are available together with types of the

parameters, return values, possible exceptions that can be raised,

and so on.

What are openness talking about?

Be able to interact with services from other open

systems.irrespective of the underlying environment:

 System should confirm to weel defined interfaces

 System should easily interoperate

 System should support portability of application

 System should be easily extensible

Distributed Systems

6

Separating Policy from Mechanism

To achieve flexibility in open distributed systems, it is crucial

that the system is organized as a collection of relatively small

and easily replaceable or adaptable components. This implies

that we should provide definitions not only for the highest-

level interfaces, that is, those seen by users and applications,

but also definitions for interfaces to internal parts of the

system and describe how those parts interact. This approach

is relatively new. Many older and even contemporary systems

are constructed using a monolithic approach in which

components are.

Implementing openness :policies

 What level of consistency do we require for client cache

data?

 What operations do we allow downloaded code to

perform?

 Which QoS requirements do we adjust in the in the face

of varying bandwidth?

 What level of secrecy do we require for

communication?

Distributed Systems

7

 Implementing openness : mechanisms

 Allow (dynamic) setting of caching policies.

 Support different level of trust for mobile code.

 Provide adjustable QoS parameters per data stream.

 Offer different encryption algorithm.

Scalability

 • Worldwide connectivity through the Internet is rapidly

becoming as common as being able to send a postcard to

anyone anywhere around the world. With this in mind,

scalability is one of the most important design goals for

developers of distributed systems.

Distributed Systems

8

Distributed Computing Systems

• An important class of distributed systems is the one used

for high performance computing tasks. Roughly speaking,

one can make a distinction between two subgroups. In

cluster computing the underlying hardware consists of a

collection of similar workstations or PCs, closely connected

by means of a high-speed local-area network. In addition,

each node runs the same operating system.

• The situation becomes quite different in the case of grid

computing. This Subgroup consists of distributed systems

that are often constructed as a federation of computer

systems, where each system may fall under a different

administrative domain, and may be very different when it

comes to hardware, software, and deployed network

technology.

Cluster Computing Systems

• Cluster computing systems became popular when the

price/performance ratio of personal computers and

workstations improved. At a certain point, it became

financially and technically attractive to build a

supercomputer using off-the-shelf technology by simply

Distributed Systems

9

hooking up a collection of relatively simple computers in a

high-speed network. In virtually all cases, cluster computing

is used for parallel programming in which a single (compute

intensive) program is run in parallel on multiple machines.

Grid Computing Systems

• A characteristic feature of cluster computing is its

homogeneity. In most cases, the computers in a cluster are

largely the same, they all have the same operating system,

and are all connected through the same network. In contrast,

grid computing systems have a high degree of heterogeneity:

no assumptions are made concerning hardware, operating

systems, networks, administrative domains, security

policies, etc. A key issue in a grid computing system is that

resources from different organizations are brought together

to allow the collaboration of a group of people or

Distributed Systems

11

institutions. Such a collaboration is realized in the form of a

virtual organization.

Figure :architecture for grid computing

The layers

 Fabric: provides interfaces to local resources (for

querying state and capabilities, locking, etc.)

 Connectivity: communication / transaction protocols,

e.g. ,for moving data between resources. Also various

authentication protocols.

Distributed Systems

11

 Resource: manages a single resource, such as creating

process or reading data.

 Collective: handle access to multiple resources:

discovery, scheduling, replication.

 Application: contains actual grid applications in a

single organization.

Distributed Systems

12

Distributed Information Systems

• Another important class of distributed systems is found in

organizations that were confronted with a wealth of

networked applications, but for which interoperability turned

out to be a painful experience. Many of the existing

middleware solutions are the result of working with an

infrastructure in which it was easier to integrate applications

into an enterprise-wide information system We can

distinguish several levels at which integration took place.

. In many cases, a networked application simply consisted of

a server running that application (often including a database)

and making it available to remote programs, called clients.

Such clients could send a request to the server for executing

a specific operation, after which a response would be sent

back. Integration at the lowest level would allow clients to

wrap a number of requests, possibly for different servers,

into a single larger request and have it executed as a

distributed transaction. The key idea was that all, or none of

the requests would be executed.

Distributed Systems

13

Distributed Information Systems

• Another important class of distributed systems is found in

organizations that were confronted with a wealth of

networked applications, but for which interoperability turned

out to be a painful experience. Many of the existing

middleware solutions are the result of working with an

infrastructure in which it was easier to integrate applications

into an enterprise-wide information system We can

distinguish several levels at which integration took place.

. In many cases, a networked application simply consisted of

a server running that application (often including a database)

and making it available to remote programs, called clients.

Such clients could send a request to the server for executing

a specific operation, after which a response would be sent

back. Integration at the lowest level would allow clients to

wrap a number of requests, possibly for different servers,

into a single larger request and have it executed as a

distributed transaction. The key idea was that all, or none of

the requests would be executed.

Examples of distributed information systems: Transaction

Processing Systems

Distributed Systems

14

• To clarify our discussion, let us concentrate on database

applications. In practice, operations on a database are

usually carried out in the form of transactions. Programming

using transactions requires special primitives that must

either be supplied by the underlying distributed system or by

the language runtime system. Typical examples of

transaction primitives are shown in the figure below:

Transactions properties

1. Atomic: To the outside world, the transaction happens

indivisibly.

2. Consistent: The transaction does not violate system

invariants.

3. Isolated: Concurrent transactions do not interfere with

each other.

 4. Durable: Once a transaction commits, the changes are

permanent.

Distributed Systems

15

Enterprise Application Integration

• As mentioned, the more applications became decoupled

from the databases they were built upon, the more evident it

became that facilities were needed to integrate applications

independent from their databases. In particular, application

components should be able to communicate directly with

each other and not merely by means of the request/reply

behavior that was supported by transaction processing

systems. This need for inter-application communication led

to many different communication models, which we will

discuss in detail in this book (and for which reason we shall

keep it brief for now). The main idea was that existing

applications could directly exchange information, as shown

in the figure below:

Distributed Systems

16

Distributed Systems

17

Distributed Pervasive Systems

• The distributed systems we have been discussing so far are

largely characterized by their stability: nodes are fixed and

have a more or less permanent and high-quality connection

to a network. To a certain extent, this stability has been

realized through the various techniques that are discussed in

this book and which aim at achieving distribution

transparency. For example, the wealth of techniques. for

masking failures and recovery will give the impression that

only occasionally things may go wrong. Likewise, we have

been able to hide aspects related to the actual network

location of a node, effectively allowing users and

applications to believe that nodes stay put.

Home Systems

• An increasingly popular type of pervasive system, but

which may perhaps be the least constrained, are systems

built around home networks. These systems generally

consist of one or more personal computers, but more

importantly integrate typical consumer electronics such as

TVs, audio and video equipment. Gaming devices, (smart)

phones, PDAs, and other personal wearables into a single

Distributed Systems

18

system. In addition, we can expect that all kinds of devices

such as kitchen appliances, surveillance cameras, clocks,

controllers for lighting, and so on, will all be hooked up into

a single distributed system.

Electronic Health Care Systems

• Another important and upcoming class of pervasive

systems are those related to (personal) electronic health care.

With the increasing cost of medical treatment, new devices

are being developed to monitor the wellbeing of individuals

and to automatically contact physicians when needed. In

many of these systems, a major goal is to prevent people

from being hospitalized. Personal health care systems are

often equipped with various sensors organized in a

(preferably wireless) body-area network (BAN). An

important issue is that such a network should at worst only

minimally hinder a person. To this end, the network should

be able to operate while a person is moving, with no strings

(i.e., wires) attached to immobile devices. 8 Lecture 3-

Distributed systems types ..

Distributed Systems

19

Sensor Networks

• Sensor network typically consists of tens to hundreds or

thousands of relatively small nodes, each equipped with a

sensing device. Most sensor networks use wireless

communication, and the nodes are often battery powered.

Their limited resources, restricted communication

capabilities, and constrained power consumption demand

that efficiency be high on the list of design criteria. The

relation with distributed systems can be made clear by

considering sensor networks as distributed databases.

Distributed Systems

21

Distributed Systems

21

Architectural Styles

 • The style is formulated in terms of components, the way

that components are connected to each other, the data

exchanged between components. And finally how these

elements are jointly configured into a system. A component

is a modular unit with well-defined required and provided

interfaces that is replaceable within its environment.

• Using components and connectors, we can come to various

configurations, which, in turn have been classified into

architectural styles. Several styles have by now been

identified, of which the most important ones for distributed

systems are:

 – Layered architectures

 – Object-based architectures

– Data-centered architectures

– Event-based architectures

1. Layered Architecture:

In Layered architecture, different components are organised

in layers. Each layer communicates with its adjacent layer

by sending requests and getting responses. The layered

architecture separates components into units. It is an

Distributed Systems

22

efficient way of communication. Any layer can not directly

communicate with another layer. A layer can only

communicate with its neighbouring layer and then the next

layer transfers information to another layer and so on the

process goes on.

In some cases, layered architecture is in cross-layer

coordination. In a cross-layer, any adjacent layer can be

skipped until it fulfils the request and provides better

performance results. Request flow from top to

bottom(downwards) and response flow from bottom to

top(upwards). The advantage of layered architecture is that

each layer can be modified independently without affecting

the whole system. This type of architecture is used in Open

System Interconnection (OSI) model.

To the layers on top, the layers at the bottom offer a service.

While the response is transmitted from bottom to top, the

request is sent from top to bottom. This method has the

advantage that calls always follow a predetermined path and

that each layer is simple to replace or modify without

affecting the architecture as a whole.

Distributed Systems

23

 Object-Oriented Architecture:

In this type of architecture, components are treated as

objects which convey information to each other. Object-

Oriented Architecture contains an arrangement of loosely

coupled objects. Objects can interact with each other

through method calls. Objects are connected to each other

through the Remote Procedure Call (RPC) mechanism or

Remote Method Invocation (RMI) mechanism. Web

Services and REST API are examples of object-oriented

architecture. Invocations of methods are how objects

communicate with one another. Typically, these are referred

to as Remote Procedure Calls (RPC). REST API Calls, Web

Distributed Systems

24

Services, and Java RMI are a few well-known examples.

These characteristics apply to this.

 Data Centered Architecture:

Data Centered Architecture is a type of architecture in which

a common data space is present at the centre. It contains all

the required data in one place a shared data space. All the

components are connected to this data space and they follow

publish/subscribe type of communication. It has a central

data repository at the centre. Required data is then delivered

to the components. Distributed file systems, producer-

consumer systems, and web-based data services are a few

well-known examples.

Distributed Systems

25

For example Producer-Consumer system. The producer

produces data in common data space and consumers request

data.

Event-Based Architecture:

Event-Based Architecture is almost similar to Data centered

architecture just the difference is that in this architecture

events are present instead of data. Events are present at the

centre in the Event bus and delivered to the required

component whenever needed. In this architecture, the entire

communication is done through events. When an event

occurs, the system, as well as the receiver, get notified. Data,

Distributed Systems

26

URLs etc are transmitted through events. The components of

this system are loosely coupled that’s why it is easy to add,

remove and modify them. Heterogeneous components can

communicate through the bus. One significant benefit is that

these heterogeneous components can communicate with the

bus using any protocol. However, a specific bus or an ESB

has the ability to handle any kind of incoming request and

respond appropriately.

Distributed Systems

27

Decentralized system:

• Despite the lack of consensus on many distributed systems

issues, there is one issue that many researchers and

practitioners agree upon: thinking in terms of clients that

request services from servers helps us understand and

manage the complexity of distributed systems and that is a

good thing. In the basic client-server model, processes in a

distributed system are divided into two (possibly

overlapping) groups.

 • A server is a process implementing a specific service, for

example, a file system service or a database service. A client

is a process that requests a service from a server by sending

it a request and subsequently waiting for the server's reply.

This client-server interaction, also known as request�reply

behavior is shown in Fig. 2-3.

Distributed Systems

28

Decentralized Architecture

• Multitier client-server architectures are a direct

consequence of dividing applications into a user-interface,

processing components, and a data level. The different tiers

correspond directly with the logical organization of

applications. In many business environments, distributed

processing is equivalent to organizing a client-server

application as a multitiered architecture. We refer to this

type of distribution as vertical distribution. The

characteristic feature of vertical distribution is that it is

achieved by placing logically different components on

different machines.

• In a structured peer-to-peer architecture, the overlay

network is constructed using a deterministic procedure. By

far the most-used procedure is to organize the processes

through a distributed hash table (DHT). In a DHT -based

system, data items are assigned a random key from a large

identifier space, such as a 128-bit or 160-bit identifier.

Distributed Systems

29

Likewise, nodes in the system are also assigned a random

number from the same identifier space.

• The crux of every DHT-based system is then to implement

an efficient and deterministic scheme that uniquely maps the

key of a data item to the identifier of a node based on some

distance metric. Most importantly, when looking up a data

item, the network address of the node responsible for that

data item is returned. Effectively, this is accomplished by

routing a request for a data item to the responsible node.

• For example, in the Chord system the nodes are logically

organized in a ring such that a data item with key k is

mapped to the node with the smallest identifier id ~ k. This

node is referred to as the successor of key k and denoted as

succ(k), as shown in Fig. 2-7. To actually look up the data

item, an application running on an arbitrary node would then

call the function LOOKUP(k).

• which would subsequently return the network address of

succ(k). At that point, the application can contact the node to

obtain a copy of the data item.

Distributed Systems

31

If we concentrate on how nodes organize themselves into an

overlay network, or, in other words, membership

management. In the following, it is important to realize that

looking up a key does not follow the logical organization of

nodes in the ring from Fig. 2-7. Rather, each node will

maintain shortcuts to other nodes in such a way that lookups

can generally be done in O(log (N) number of steps, where

N is the number of nodes participating in the overlay.

Distributed Systems

31

 Peer-to- Peer Architectures

• Unstructured peer-to-peer systems largely rely on

randomized algorithms for constructing an overlay network.

The main idea is that each node maintains a list of

neighbors, but that this list is constructed in a more or less

random way. Likewise, data items are assumed to be

randomly placed on nodes. As a consequence, when a node

needs to locate a specific data item, the only thing it can

effectively do is flood the network with a search query. •

One of the goals of many unstructured peer-to-peer systems

is to construct an overlay network that resembles a random

graph. The basic model is that each node maintains a list of c

neighbors, where, ideally, each of these neighbors represents

a randomly chosen live node from the current set of nodes.

The list of neighbors is also referred to as a partial view.

There are many ways to construct such a partial view.

perpeers

• Notably in unstructured peer-to-peer systems, locating

relevant data items can become problematic as the network

grows. The reason for this scalability problem is simple: as

there is no deterministic way of routing a lookup request to a

Distributed Systems

32

specific data item, essentially the only technique a node can

resort to is flooding the request. There are various ways in

which flooding can be dammed, but as an alternative many

peer-to-peer systems have proposed to make use of special

nodes that maintain an index of data items. There are other

situations in which abandoning the symmetric nature of

peer-to-peer systems is sensible. Consider a collaboration of

nodes that offer resources.

