
Java ArrayList

 The ArrayList class is a resizable array, which can be found in

the java.util package.

 The difference between a built-in array and an ArrayList in Java, is that the size of

an array cannot be modified (if you want to add or remove elements to/from an
array, you have to create a new one). While elements can be added and removed
from an ArrayList whenever you want.

 The syntax is also slightly different:

Example

Create an ArrayList object called Students that will store strings:

import java.util.ArrayList; // import the ArrayList class

ArrayList<String> students = new ArrayList<String>(); // Create an ArrayList
object

Add Items

The ArrayList class has many useful methods. For example, to add elements to

the ArrayList, use the add() method:

Example

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {

 ArrayList<String> students = new ArrayList<String>();

 students.add("Ali");
 students.add("Zaineb");
 students.add("Mariam");
 students.add("Ahmed");
 System.out.println(students);
 }

}

https://www.w3schools.com/java/java_arrays.asp

Access an Item

To access an element in the ArrayList, use the get() method and refer to the index

number:

Example

students.get(0);

Change an Item

To modify an element, use the set() method and refer to the index number:

Example

students.set(0, "Amena");

Remove an Item

 To remove an element, use the remove() method and refer to the index number:

Example

students.remove(0);

 To remove all the elements in the ArrayList, use the clear() method:

Example

students.clear();

ArrayList Size

To find out how many elements an ArrayList have, use the size method:

Example
students.size();

Loop Through an ArrayList

Loop through the elements of an ArrayList with a for loop, and use the size() method

to specify how many times the loop should run:

Example

public class Main {

 public static void main(String[] args) {

 ArrayList<String> students = new ArrayList<String>();

 students.add("Ali");

 students.add("Ahmed");

 students.add("Noor");

 students.add("Zena");

 for (int i = 0; i < students.size(); i++) {

 System.out.println(students.get(i));

 }

 }

}

Other Types

Elements in an ArrayList are actually objects. In the examples above, we created
elements (objects) of type "String". To use other types, such as int, you must specify an
equivalent wrapper class: Integer. For other primitive types, use: Boolean for

boolean, Character for char, Double for double, etc:

Example

Create an ArrayList to store numbers (add elements of type Integer):

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {

 ArrayList<Integer> myNumbers = new ArrayList<Integer>();

https://www.w3schools.com/java/java_wrapper_classes.asp

 myNumbers.add(10);

 myNumbers.add(15);

 myNumbers.add(20);

 myNumbers.add(25);

 for (int i=0;i< myNumbers.size();i++) {

 System.out.println(myNumbers.get(i));

 }

 }

}

Sort an ArrayList

Another useful class in the java.util package is the Collections class, which include

the sort() method for sorting lists alphabetically or numerically:

Example
Sort an ArrayList of Strings:

import java.util.ArrayList;

import java.util.Collections; // Import the Collections class

public class Main {

 public static void main(String[] args) {

 ArrayList<String> students = new ArrayList<String>();

 students.add("Ali");

 students.add("Noor");

 students.add("Mohammed");

 students.add("Maha");

 Collections.sort(students); // Sort students

 for (int i=0;i<students.size();i++) {

 System.out.println(students.get(i));

 }

 }

}

Example

Sort an ArrayList of Integers:

import java.util.ArrayList;

import java.util.Collections; // Import the Collections class

public class Main {

 public static void main(String[] args) {

 ArrayList<Integer> myNumbers = new ArrayList<Integer>();

 myNumbers.add(33);

 myNumbers.add(15);

 myNumbers.add(20);

 myNumbers.add(34);

 myNumbers.add(8);

 myNumbers.add(12);

 Collections.sort(myNumbers); // Sort myNumbers

 for (int i=0;i< myNumbers.size();i++) {

 System.out.println(myNumbers.get(i));

 }

 }

}

Java is a programming language.

Java is used to develop mobile apps, web apps, desktop apps, games and much

more.

What is Java?

Java is a popular programming language, created in 1995.

It is owned by Oracle, and more than 3 billion devices run Java.

It is used for:

 Mobile applications (specially Android apps)
 Desktop applications

 Web applications
 Web servers and application servers

 Games
 Database connection

 And much, much more!

Why Use Java?

 Java works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc.)
 It is one of the most popular programming language in the world

 It is easy to learn and simple to use
 It is open-source and free

 It is secure, fast and powerful
 It has a huge community support (tens of millions of developers)
 Java is an object oriented language which gives a clear structure to

programs and allows code to be reused, lowering development costs
 As Java is close to C++ and C#, it makes it easy for programmers to switch

to Java or vice versa

https://www.w3schools.com/cpp/default.asp
https://www.w3schools.com/cs/default.asp

Java Install

Some PCs might have Java already installed.

To check if you have Java installed on a Windows PC, search in the start bar for
Java or type the following in Command Prompt (cmd.exe):

C:\Users\Your Name>java -version

If Java is installed, you will see something like this (depending on version):

java version "11.0.1" 2018-10-16 LTS

Java(TM) SE Runtime Environment 18.9 (build 11.0.1+13-LTS)

Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.1+13-LTS, mixed

mode)

If you do not have Java installed on your computer, you can download it for free
at oracle.com.

Note: In this tutorial, we will write Java code in a text editor. However, it is
possible to write Java in an Integrated Development Environment, such as IntelliJ

IDEA, Netbeans or Eclipse, which are particularly useful when managing larger
collections of Java files.

Setup for Windows

To install Java on Windows:

1. Go to "System Properties" (Can be found on Control Panel > System and
Security > System > Advanced System Settings)

2. Click on the "Environment variables" button under the "Advanced" tab
3. Then, select the "Path" variable in System variables and click on the "Edit"

button
4. Click on the "New" button and add the path where Java is installed, followed

by \bin. By default, Java is installed in C:\Program Files\Java\jdk-11.0.1 (If
nothing else was specified when you installed it). In that case, You will have

to add a new path with: C:\Program Files\Java\jdk-11.0.1\bin
Then, click "OK", and save the settings

5. At last, open Command Prompt (cmd.exe) and type java -version to see if

Java is running on your machine

https://www.oracle.com/technetwork/java/javase/overview/index.html

Step 1

Step 2

Step 3

Step 4

Step 5

Write the following in the command line (cmd.exe):

C:\Users\Your Name>java -version

If Java was successfully installed, you will see something like this (depending on
version):

java version "11.0.1" 2018-10-16 LTS

Java(TM) SE Runtime Environment 18.9 (build 11.0.1+13-LTS)

Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.1+13-LTS, mixed mode)

Java Quickstart

In Java, every application begins with a class name, and that class must match
the filename.

Let's create our first Java file, called Main.java, which can be done in any text
editor (like Notepad).

The file should contain a "Hello World" message, which is written with the
following code:

Main.java

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Java Syntax

Every line of code that runs in Java must be inside a class. In our example, we

named the class Main. A class should always start with an uppercase first letter.

Note1: Java is case-sensitive: "MyClass" and "myclass" has different meaning.

Note2:The name of the java file must match the class name. When saving the

file, save it using the class name and add ".java" to the end of the filename.

The main Method:The main() method is required and you will see it in

every Java program:

public static void main(String[] args)

Any code inside the main() method will be executed. You don't have to understand

the keywords before and after main. You will get to know them bit by bit while

learning java in this course.

For now, just remember that every Java program has a class name which must

match the filename, and that every program must contain the main() method.

Print command:

System.out.println(),inside the main() method, we can use the println() method to

print a line of text to the screen:

public static void main(String[] args) {

 System.out.println("Hello World");

}

Note1: The curly braces {} marks the beginning and the end of a block of code.

Note2: Each code statement must end with a semicolon.

Java Comments

 Comments can be used to explain Java code, and to make it more readable. It
can also be used to prevent execution when testing alternative code.

 Single-line comments start with two forward slashes (//).

 Any text between // and the end of the line is ignored by Java (will not be

executed).

The following example uses a single-line comment before a line of code:

Example

// This is a comment

System.out.println("Hello World");

Java Multi-line Comments

 Multi-line comments start with /* and ends with */.

 Any text between /* and */ will be ignored by Java.

 The following example uses a multi-line comment (a comment block) to
explain the code:

Example

/* The code below will print the words Hello World

to the screen, and it is amazing */

System.out.println("Hello World");

Java Variables

Variables are containers for storing data values.

In Java, there are different types of variables, for example:

 String - stores text, such as "Hello". String values are surrounded by

double quotes

 int - stores integers (whole numbers), without decimals, such as 123 or -123

 float - stores floating point numbers, with decimals, such as 19.99 or -19.99

 char - stores single characters, such as 'a' or 'B'. Char values are

surrounded by single quotes
 boolean - stores values with two states: true or false

Declaring (Creating) Variables

To create a variable, you must specify the type and assign it a value:

Syntax

type variable = value;

Where type is one of Java's types (such as int or String), and variable is the

name of the variable (such as x or name). The equal sign is used to assign
values to the variable.

To create a variable that should store text, look at the following example:

Example

Create a variable called name of type String and assign it the value "John":

String name = "John";

System.out.println(name);

To create a variable that should store a number, look at the following example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;

System.out.println(myNum);

You can also declare a variable without assigning the value, and assign the value

later:

Example

int myNum;

myNum = 15;

System.out.println(myNum);

Note that if you assign a new value to an existing variable, it will overwrite the
previous value:

Example

Change the value of myNum from 15 to 20:

int myNum = 15;

myNum = 20; // myNum is now 20

System.out.println(myNum);

Final Variables

However, you can add the final keyword if you don't want others (or yourself) to

overwrite existing values (this will declare the variable as "final" or "constant",

which means unchangeable and read-only):

Example

final int myNum = 15;

myNum = 20; // will generate an error: cannot assign a value to a final
variable

Java Data Types

As explained in the previous paragraphs, a variable in Java must be a specified
data type:

Example

int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99f; // Floating point number

char myLetter = 'D'; // Character

boolean myBool = true; // Boolean

String myText = "Hello"; // String

Data types are divided into two groups:

 Primitive data types -
includes byte, short, int, long, float, double, boolean and char.

 Non-primitive data types - such as String, Arrays and Classes (you will learn
more about these later)

Primitive Data Types

A primitive data type specifies the size and type of variable values, and it has no
additional methods.

https://www.w3schools.com/java/java_strings.asp
https://www.w3schools.com/java/java_arrays.asp
https://www.w3schools.com/java/java_classes.asp

 There are eight primitive data types in Java:

Numbers

Primitive number types are divided into two groups:

Integer types stores whole numbers, positive or negative (such as 123 or -456),
without decimals. Valid types are byte, short, int and long. Which type you

should use, depends on the numeric value.

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values

Floating point types represents numbers with a fractional part, containing one
or more decimals. There are two types: float and double.

Example

int myNum = 100000;

System.out.println(myNum);

Floating Point Types

You should use a floating point type whenever you need a number with a decimal,
such as 9.99 or 3.14515.

Float

The float data type can store fractional numbers from 3.4e−038 to 3.4e+038.

Note that you should end the value with an "f":

Example

float myNum = 5.75f;

System.out.println(myNum);

Double

The double data type can store fractional numbers from 1.7e−308 to 1.7e+308.

Note that you should end the value with a "d":

Example

double myNum = 19.99d;

System.out.println(myNum);

Booleans

A Boolean data type is declared with the boolean keyword and can only take the

values true or false:

Example

boolean isJavaFun = true;

boolean isFishTasty = false;

System.out.println(isJavaFun); // Outputs true

System.out.println(isFishTasty); // Outputs false

Note: Boolean values are mostly used for conditional testing, which you will learn
more about in a later chapter.

Characters

The char data type is used to store a single character. The character must be

surrounded by single quotes, like 'A' or 'c':

Example

char myGrade = 'B';

System.out.println(myGrade);

Strings

The String data type is used to store a sequence of characters (text). String values

must be surrounded by double quotes:

Example

String greeting = "Hello World";

System.out.println(greeting);

Java Type Casting

Type casting is when you assign a value of one primitive data type to another
type.

In Java, there are two types of casting:

 Widening Casting (automatically) - converting a smaller type to a larger

type size

byte -> short -> char -> int -> long -> float -> double

 Narrowing Casting (manually) - converting a larger type to a smaller size
type

double -> float -> long -> int -> char -> short -> byte

Widening Casting

Widening casting is done automatically when passing a smaller size type to a
larger size type:

Example

public class Main {

 public static void main(String[] args) {

 int myInt = 9;

 double myDouble = myInt; // Automatic casting: int to double

 System.out.println(myInt); // Outputs 9

 System.out.println(myDouble); // Outputs 9.0

 }

}

Narrowing Casting

Narrowing casting must be done manually by placing the type in parentheses in
front of the value:

Example

public class Main {

 public static void main(String[] args) {

 double myDouble = 9.78;

 int myInt = (int) myDouble; // Manual casting: double to int

 System.out.println(myDouble); // Outputs 9.78

 System.out.println(myInt); // Outputs 9

 }

}

Java Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

int x = 100 + 50;

Although the + operator is often used to add together two values, like in the

example above, it can also be used to add together a variable and a value, or a

variable and another variable:

Examples

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

Java divides the operators into the following :

1- Arithmetic Operators are used to perform common mathematical operations.

2-Java Logical Operators are used to determine the logic between variables or

values:

Operator Name Description Example

&& Logical and Returns true if both statements are true x < 5 && x < 10

|| Logical or Returns true if one of the statements is true x < 5 || x < 4

! Logical not Reverse the result, returns false if the result is true !(x < 5 && x < 10)

3-Java Comparison Operators are used to compare two values:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Operator Name Description Example

++ + Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

String methods:

1- String Length method

A String in Java is actually an object, which contain methods that can perform

certain operations on strings. For example, the length of a string can be found
with the length() method:

2- toLowerCase(): It used to convert the given string to lowercase letters.

3- toUpperCase() : It used to convert the given string to uppercase letters.

Example

String txt = "Hello World";

System.out.println("The length of the txt string is: " + txt.length());

System.out.println(txt.toUpperCase()); // Outputs "HELLO WORLD"

System.out.println(txt.toLowerCase()); // Outputs "hello world"

4- indexOf() This method returns the index (the position) of the first occurrence of

a specified text in a string (including whitespace):

Example

String txt = "Please locate where 'locate' occurs!";
System.out.println(txt.indexOf("locate")); // Outputs 7

Note: Java counts positions from zero.0 is the first position in a string, 1 is the

second, 2 is the third ...

5- String Concatenation the + operator can be used between strings to combine

them. This is called concatenation:

Example

String firstName = "John";
String lastName = "Doe";
System.out.println(firstName + " " + lastName);

Note that we have added an empty text (" ") to create a space between firstName

and lastName on print.

Adding Numbers and Strings

WARNING!

Java uses the + operator for both addition and concatenation.

Numbers are added. Strings are concatenated.

If you add two numbers, the result will be a number:

Example

int x = 10;

int y = 20;

int z = x + y; // z will be 30 (an integer/number)

If you add two strings, the result will be a string concatenation:

Example

String x = "10";

String y = "20";

String z = x + y; // z will be 1020 (a String)

Java Math

The Java Math class has many methods that allows you to perform

mathematical tasks on numbers.

 Math.max(x,y)

The Math.max(x,y) method can be used to find the highest value of x and y:

Example

Math.max(5, 10);

 Math.min(x,y)

The Math.min(x,y) method can be used to find the lowest value of x and y:

Example

Math.min(5, 10);

 Math.sqrt(x)

The Math.sqrt(x) method returns the square root of x:

Example

Math.sqrt(64);

 Math.abs(x)

The Math.abs(x) method returns the absolute (positive) value of x:

Example

Math.abs(-4.7);

 Random Numbers

A:

Math.random() returns a random number between 0.0 (inclusive), and 1.0

(exclusive):

Example

Math.random();

B:

 To get more control over the random number, e.g. you only want a random
number between 0 and 100, you can use the following formula:

Example

int randomNum = (int)(Math.random() * 101); // 0 to 100

Salaam Szma
Text Box
C: generate random integers within a specific range in Java R=min + (int)(Math.random() * ((max - min) + 1))Min :is the minimum value in the range.Max :is the maximum value in the range.In order to get the max value in the range we must add 1 to the range(max-min).

Java Booleans

In programming, you will need a data type that can only have one of two
values, like:

 YES / NO

 ON / OFF
 TRUE / FALSE

For this, Java has a boolean data type, which can take the values true or false.

 Boolean Values

A boolean type is declared with the boolean keyword and can only take the

values true or false:

Example

boolean isJavaFun = true;

boolean isFishTasty = false;

System.out.println(isJavaFun); // Outputs true

System.out.println(isFishTasty); // Outputs false

 Boolean Expression

A Boolean expression is a Java expression that returns a Boolean
value: true or false.

You can use a comparison operator, such as the greater than (>) operator to

find out if an expression (or a variable) is true:

Example

int x = 10;

int y = 9;

System.out.println(x > y); // returns true, because 10 is higher than 9

In the examples below, we use the equal to (==) operator to evaluate an

expression:

Example

int x = 10;

System.out.println(x == 10); // returns true, because the value of x is
equal to 10

 If ... Else

 Java Conditions and If Statements

Java supports the usual logical conditions from mathematics:

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

 Equal to a == b

 Not Equal to: a != b

You can use these conditions to perform different actions for different decisions.

Java has the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is

true

 Use else to specify a block of code to be executed, if the same condition

is false
 Use else if to specify a new condition to test, if the first condition is

false
 Use switch to specify many alternative blocks of code to be executed

 if Statement

Use the if statement to specify a block of Java code to be executed if a

condition is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an

error.

In the example below, we test two values to find out if 20 is greater than 18. If

the condition is true, print some text:

Example

if (20 > 18) {

 System.out.println("20 is greater than 18");

}

We can also test variables:

Example

int x = 20;

int y = 18;

if (x > y) {

 System.out.println("x is greater than y");

}

Example explained

In the example above we use two variables, x and y, to test whether x is
greater than y (using the > operator). As x is 20, and y is 18, and we know that

20 is greater than 18, we print to the screen that "x is greater than y".

 else Statement

Use the else statement to specify a block of code to be executed if the

condition is false.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

Example

int time = 20;

if (time < 18) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

// Outputs "Good evening."

Example explained

In the example above, time (20) is greater than 18, so the condition is false.
Because of this, we move on to the else condition and print to the screen "Good

evening". If the time was less than 18, the program would print "Good day".

 else if Statement

Use the else if statement to specify a new condition if the first condition

is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and
condition2 is true

} else {

 // block of code to be executed if the condition1 is false and
condition2 is false

}

Example

int time = 22;

if (time < 10) {

 System.out.println("Good morning.");

} else if (time < 20) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

// Outputs "Good evening."

Example explained

In the example above, time (22) is greater than 10, so the first
condition is false. The next condition, in the else if statement, is also false,
so we move on to the else condition since condition1 and condition2 is

both false - and print to the screen "Good evening".

However, if the time was 14, our program would print "Good day."

Switch Statements

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

This is how it works:

 The switch expression is evaluated once.

 The value of the expression is compared with the values of each case.
 If there is a match, the associated block of code is executed.
 The break and default keywords are optional, and will be described later

in this chapter

The example below uses the weekday number to calculate the weekday name:

Example

int day = 4;

switch (day) {

 case 1:

 System.out.println("Monday");

 break;

 case 2:

 System.out.println("Tuesday");

 break;

 case 3:

 System.out.println("Wednesday");

 break;

 case 4:

 System.out.println("Thursday");

 break;

 case 5:

 System.out.println("Friday");

 break;

 case 6:

 System.out.println("Saturday");

 break;

 case 7:

 System.out.println("Sunday");

 break;

}

// Outputs "Thursday" (day 4)

 The break Keyword

When Java reaches a break keyword, it breaks out of the switch block.

This will stop the execution of more code and case testing inside the block.

When a match is found, and the job is done, it's time for a break. There is no
need for more testing.

A break can save a lot of execution time because it "ignores" the execution of
all the rest of the code in the switch block.

 The default Keyword

The default keyword specifies some code to run if there is no case match:

Example

int day = 4;

switch (day) {

 case 6:

 System.out.println("Today is Saturday");

 break;

 case 7:

 System.out.println("Today is Sunday");

 break;

 default:

 System.out.println("Looking forward to the Weekend");

}

// Outputs "Looking forward to the Weekend"

Note that if the default statement is used as the last statement in a switch

block, it does not need a break.

Java While Loop

 Loops

Loops can execute a block of code as long as a specified condition is reached.

 Java While Loop

The while loop, loops through a block of code as long as a specified condition

is true:

Syntax

while (condition) {

 // code block to be executed

}

In the example below, the code in the loop will run, over and over again, as
long as a variable (i) is less than 5:

Example

int i = 0;

while (i < 5) {

 System.out.println(i);

 i++;

}

Note: Do not forget to increase the variable used in the condition, otherwise

the loop will never end!

 The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code

block once, before checking if the condition is true, then it will repeat the loop
as long as the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed at

least once, even if the condition is false, because the code block is executed

before the condition is tested:

Example

int i = 0;
do {

 System.out.println(i);

 i++;

}

while (i < 5);

Do not forget to increase the variable used in the condition, otherwise the loop
will never end!

For Loop

When you know exactly how many times you want to loop through a block of

code, use the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 initial value is executed (one time) before the execution of the

code block.

Statement 2 defines the condition for executing the code block.

Statement 3 increment value is executed (every time) after the code block has
been executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++) {

 System.out.println(i);

}

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If
the condition is true, the loop will start over again, if it is false, the loop will

end.
Statement 3 increases a value (i++) each time the code block in the loop has

been executed.

Another Example

This example will only print even values between 0 and 10:

Example

for (int i = 0; i <= 10; i = i + 2) {

 System.out.println(i);

Java Break and Continue

 Java Break

You have already seen the break statement used in an earlier chapter of this tutorial. It was used to

"jump out" of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when i is equal to 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 System.out.println(i);

}

 Java Continue

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and

continues with the next iteration in the loop.

This example skips the value of 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 System.out.println(i);

}

Java Arrays

Arrays are used to store multiple values in a single variable, instead of declaring
separate variables for each value.

To declare an array, define the variable type with square brackets:

String[] cars;

We have now declared a variable that holds an array of strings. To insert values
to it, we can use an array literal - place the values in a comma-separated list,
inside curly braces:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of integers, you could write:

int[] myNum = {10, 20, 30, 40};

To create an array of characters , you could write:

char[] myNum = {‘a’, ‘b’,’c’,’d’};

Access the Elements of an Array

You access an array element by referring to the index number.

This statement accesses the value of the first element in cars:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars[0]);// Outputs Volvo

System.out.println(cars[1]);// Outputs BMW

Change an Array Element

To change the value of a specific element, refer to the index number:

Example

cars[0] = "Opel";

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

cars[0] = "Opel";

System.out.println(cars[0]);

// Now outputs Opel instead of Volvo

Array Length

To find out how many elements an array has, use the length property:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars.length);

// Outputs 4

Loop Through an Array

You can loop through the array elements with the for loop, and use

the length property to specify how many times the loop should run.

The following example outputs all elements in the cars array:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.length; i++) {

 System.out.println(cars[i]);

}

Multidimensional Arrays

A multidimensional array is an array containing one or more arrays.

To create a two-dimensional array, add each array within its own set of curly

braces:

Example

int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

myNumbers is now an array with two arrays as its elements.

To access the elements of the myNumbers array, specify two indexes: one for

the array, and one for the element inside that array. This example accesses the
third element (2) in the second array (1) of myNumbers:

Example

int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

int x = myNumbers[1][2];

System.out.println(x); // Outputs 7

We can also use a for loop inside another for loop to get the elements of a two-

dimensional array (we still have to point to the two indexes):

Example

public class Main {

 public static void main(String[] args) {

 int[][] Array = { {1, 2, 3, 4}, {5, 6, 7} };

 for (int i = 0; i < array.length; ++i) {

 for(int j = 0; j < array[i].length; ++j) {

 System.out.println(array[i][j]);

 }
 }

 }

}

1 2 3 4 a[0][0] a[0][1] a[0][2] a[0][3]

2 3 4 5 a[1][0] a[1][1] a[1][2] a[1][3]

2 2 3 4 a[2][0] a[2][1] a[2][2] a[2][3]

Java Methods
 A method is a block of code which only runs when it is called.You can pass

data, known as parameters, into a method.

 Methods are used to perform certain actions, and they are also known as functions.
 Why use methods? To reuse code: define the code once, and use it many

times.

Create a Method

A method must be declared within a class. It is defined with the name of the
method, followed by parentheses (). Java provides some pre-defined methods,

such as System.out.println(), but you can also create your own methods to

perform certain actions:

Example

Create a method inside Main:

public class Main {

 static void myMethod() {

 // code to be executed

 }

}

Example Explained

 myMethod() is the name of the method

 static means that the method belongs to the Main class and not an

object of the Main class. You will learn more about objects, and how to

access methods through objects later.
 void means that this method does not have a return value. You will learn

more about return values later.

Call a Method

To call a method in Java, write the method's name followed by two
parentheses () and a semicolon;

In the following example, myMethod() is used to print a text (the action), when it

is called:

Example

Inside main, call the myMethod() method:

public class MyClass {

 static void myMethod() {

 System.out.println("I just got executed!");

 }

 public static void main(String[] args) {

 myMethod();

 }

}

// Outputs "I just got executed!"

A method can also be called multiple times:

Example
public class MyClass {
 static void myMethod() {
 System.out.println("I just got executed!");
 }
 public static void main(String[] args) {
 myMethod();
 myMethod();
 myMethod();
 }
}
/ I just got executed!
// I just got executed!
// I just got executed!

Java Method Parameters

Parameters and Arguments

Information can be passed to methods as parameter. Parameters act as
variables inside the method.

Parameters are specified after the method name, inside the parentheses. You

can add as many parameters as you want, just separate them with a comma.

The following example has a method that takes a String called name as

parameter. When the method is called, we pass along a first name, which is
used inside the method to print the full name:

Example

public class Myclass {

 static void myMethod(String name) {

 System.out.println(" the name is "+ name);

 }

 public static void main(String[] args) {

 myMethod("Mariam");

 myMethod("Zaenab");

 myMethod("Amina");

 }

}

Note that when you are working with multiple parameters, the method call must
have the same number of arguments as there are parameters, and the

arguments must be passed in the same order.

Return Values

The void keyword, used in the examples above, indicates that the method

should not return a value. If you want the method to return a value, you can

use a primitive data type (such as int, char, etc.) instead of void, and use

the return keyword inside the method:

Example

public class MyClass {

 static int myMethod(int x) {

 int s;

 s=(x*x);

 return s;

 }

 public static void main(String[] args) {

 System.out.println(myMethod(3));

 }

}

// Outputs 9 (3*3)

Example
public class MyClass {
 static int myMethod(int x, int y) {
 return x + y;
 }
 public static void main(String[] args) {
 int z = myMethod(5, 3);
 System.out.println(z);
 }
}
// Outputs 8 (5 + 3)

A Method with If...Else

It is common to use if...else statements inside methods:

Example

public class Main {

 // Create a checkAge() method with an integer variable called age, to
Apply for a job

 static void checkAge(int age) {

 // If age is less than 25, print "You cannot get this job"

 if (age < 25) {

 System.out.println("Access denied - You cannot get this job!");

 // If age is greater than, or equal to 25, print "access granted You
are old enough!"

 } else {

 System.out.println("Access granted - You are old enough!");

 }

 }

 public static void main(String[] args) {

 checkAge(30); // Call the checkAge method and pass along an age of 20

 }

}

// Outputs "Access granted - You are old enough!"

Java Method Overloading

Method Overloading

With method overloading, multiple methods can have the same name with
different parameters:

Example

int myMethod(int x)

float myMethod(float x)

double myMethod(double x, double y)

Consider the following example, which have two methods that add numbers of

different type:

Example

static int plusMethodInt(int x, int y) {

 return x + y;

}

static double plusMethodDouble(double x, double y) {

 return x + y;

}

public static void main(String[] args) {

 System.out.println("int: " + plusMethodInt(8, 5));

 System.out.println("double: " + plusMethodDouble(4.3, 6.26));

}

Instead of defining two methods that should do the same thing, it is better to
overload one.

In the example below, we overload the plusMethod method to work for

both int and double:

Example

static int plusMethod(int x, int y) {

 return x + y;

}

static double plusMethod(double x, double y) {

 return x + y;

}

public static void main(String[] args) {

 System.out.println("int: " + plusMethod(8, 5));

 System.out.println("double: " + plusMethod(4.3, 6.26));

}

Note: Multiple methods can have the same name as long as the number and/or

type of parameters are different.

Block Scope

A block of code refers to all of the code between curly braces {}. Variables

declared inside blocks of code are only accessible by the code between the curly

braces, which follows the line in which the variable was declared:

Example

public class Main {

 public static void main(String[] args) {

 // Code here CANNOT use x

 { // This is a block

 // Code here CANNOT use x

 int x = 100;

 // Code here CAN use x

 System.out.println(x);

 } // The block ends here

 // Code here CANNOT use x

 }

}

A block of code may exist on its own or it can belong to an if, while or for statement.

In the case of for statements, variables declared in the statement itself are also

available inside the block's scope. See example below:

public class Myclass {

 public static void main(String[] args) {

 for (int i=0; i<10;i++) {
 // Code here CAN use i
}
// Code here CANNOT use i
}
}

Recursion in Java

Recursion in java is a process in which a method calls itself continuously. A method in
java that calls itself is called recursive method.

It makes the code compact but complex to understand.

Syntax:

returntype methodname(){

//code to be executed

methodname();//calling same method

}

Java Recursion Example 1: Infinite times

public class RecursionExample1 {

static void p(){

System.out.println("hello");

p();

}

public static void main(String[] args) {

p();

}

}

Output:

hello

hello

...

java.lang.StackOverflowError

Java Recursion Example 2: Finite times

public class RecursionExample2 {

static int count=0;

static void p(){

count++;

if(count<=5){

System.out.println("hello "+count);

p();

}

}

public static void main(String[] args) {

p();

}

}

Output:

hello 1

hello 2

hello 3

hello 4

hello 5

Java Recursion Example 3: Factorial Number
public class RecursionExample3 {

 static int factl(int n){

 if (n == 1)

 return 1;

 else

 return(n * factl(n-1));

 }

 public static void main(String[] args) {

System.out.println("Factorial of 5 is: "+fact(5));

}

}
Output:
Factorial of 5 is: 120

Fact 5 = 5 * fact(4) 5*24=120

 Fact 4 = 4 * fact(3) 4*6=24

 Fact 3 = 3 * fact(2) 3*2=6

 Fact 2 = 2 * fact(1)2*1=2

 Fact 1=1 1*1

Java - What is OOP?
OOP stands for Object-Oriented Programming.
Procedural programming is about writing procedures or methods that perform

operations on the data, while object-oriented programming is about creating
objects that contain both data and methods.

Object-oriented programming has several advantages over procedural
programming:

 OOP is faster and easier to execute
 OOP provides a clear structure for the programs

 OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes
the code easier to maintain, modify and debug

 OOP makes it possible to create full reusable applications with less code
and shorter development time

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the repetition
of code. You should extract out the codes that are common for the application,

and place them at a single place and reuse them instead of repeating it.

Java - What are Classes and Objects?
Classes and objects are the two main aspects of object-oriented programming.

Look at the following illustration to see the difference between class and
objects:

Class objects

Fruit Apple

Banana

Mango

Another example:

Class objects

Car Volvo

Audi

Toyota

So, a class is a template for objects, and an object is an instance of a class.
When the individual objects are created, they inherit all the variables and
methods from the class.

Create an Object

In Java, an object is created from a class. We have already created the class
named MyClass, so now we can use this to create objects.

To create an object of MyClass, specify the class name, followed by the object

name, and use the keyword new:

Example

Create an object called "myObj" and print the value of x:

public class MyClass {

 int x = 5;

 public static void main(String[] args) {

 MyClass myObj = new Myclass(); //myObj has one member is X

 System.out.println(myObj.x); //To call member belong to object write:

 object.member

 }

}

Multiple Objects

You can create multiple objects of one class:

 public class Main {

 int x = 5;

 public static void main(String[] args) {

 Main myObj1 = new Main(); // Object 1

 Main myObj2 = new Main(); // Object 2

 System.out.println(myObj1.x);

 System.out.println(myObj2.x);

 }

}

Using Multiple Classes

You can also create an object of a class and access it in another class. This is
often used for better organization of classes (one class has all the attributes and

methods, while the other class holds the main() method (code to be executed)).

Remember that the name of the java file should match the class name. In this
example, we have created two files in the same directory/folder:

 Main.java
 Second.java

Main.java

public class Main {

 int x = 5;

}

Second.java

class Second {

 public static void main(String[] args) {

 Main myObj = new Main();

 System.out.println(myObj.x);

 }

}

the output will be: 5

Java Class Attributes

In the previous example we used the term "variable" for x, in the example (as

shown below). It is actually an attribute of the class. Or you could say that
class attributes are variables within a class:

Example

Create a class called "Main" with two attributes: x and y:

public class Main {

 int x = 5;

 int y = 3;

}

Accessing Attributes

You can access attributes by creating an object of the class, and by using the
dot syntax (.):

The following example will create an object of the Main class, with the

name myObj. We use the x attribute on the object to print its value:

Example

Create an object called "myObj" and print the value of x:

public class Main {

 int x = 5;

 public static void main(String[] args) {

 Main myObj = new Main();

 System.out.println(myObj.x);

 }

}

Modify Attributes

You can also modify attribute values:

Example
Set the value of x to 40:
public class Main {
 int x;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 40;
 System.out.println(myObj.x);
 }
}

Or override existing values:

Example

Change the value of x to 25:

public class Main {

 int x = 10;

 public static void main(String[] args) {

 Main myObj = new Main();

 myObj.x = 25; // x is now 25

 System.out.println(myObj.x);

 }

}

Note: If you don't want the ability to override existing values, declare the

attribute as final:

Example

public class Main {

 final int x = 10;

 public static void main(String[] args) {

 Main myObj = new Main();

 myObj.x = 25; // will generate an error: cannot assign a value to a
final variable

 System.out.println(myObj.x);

 }
}

Multiple Objects

If you create multiple objects of one class, you can change the attribute values
in one object, without affecting the attribute values in the other:

Example

Change the value of x to 25 in myObj2, and leave x in myObj1 unchanged:

public class Main {

 int x = 5;

 public static void main(String[] args) {

 Main myObj1 = new Main(); // Object 1

 Main myObj2 = new Main(); // Object 2

 myObj2.x = 25;

 System.out.println(myObj1.x); // Outputs 5

 System.out.println(myObj2.x); // Outputs 25

 }

}

Multiple Attributes
You can specify as many attributes as you want:

Example
public class Main {
 String fname = "John";
 String lname = "Doe";
 int age = 24;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println("Name: " + myObj.fname + " " + myObj.lname);
 System.out.println("Age: " + myObj.age);
 }
}

Java Class Methods
You learned from the Java Methods lecture that methods are declared within a

class, and that they are used to perform certain actions:

Example
Create a method named myMethod() in Main:

public class Main {

 static void myMethod() {

 System.out.println("Hello World!");

 }

}

myMethod() prints a text (the action), when it is called. To call a method, write

the method's name followed by two parentheses () and a semicolon;

Example
Inside main, call myMethod():

public class Main {

 static void myMethod() {

 System.out.println("Hello World!");

 }

 public static void main(String[] args) {

 myMethod();

 }

}

// Outputs "Hello World!"

https://www.w3schools.com/java/java_methods.asp

Static vs. Non-Static
You will often see Java programs that have either static or public attributes and

methods.

In the example above, we created a static method, which means that it can be

accessed without creating an object of the class, unlike public, which can only

be accessed by objects:

Example
An example to demonstrate the differences

between static and public methods:

public class Main {

 // Static method

 static void myStaticMethod() {

 System.out.println("Static methods can be called without creating

objects");

 }

 // Public method

 public void myPublicMethod() {

 System.out.println("Public methods must be called by creating

objects");

 }

 // Main method

 public static void main(String[] args) {

 myStaticMethod(); // Call the static method

 myPublicMethod(); //This would compile an error

 Main myObj = new Main(); // Create an object of Main

 myObj.myPublicMethod(); // Call the public method on the object

 }

}

Access Methods With an Object

Example
Create a Car object named myCar. Call the fullThrottle() and speed() methods on

the myCar object, and run the program:

// Create a Main class

public class Main {

 // Create a fullThrottle() method

 public void fullThrottle() {

 System.out.println("The car is going as fast as it can!");

 }

 // Create a speed() method and add a parameter

 public void speed(int maxSpeed) {

 System.out.println("Max speed is: " + maxSpeed);

 }

 // Inside main, call the methods on the myCar object

 public static void main(String[] args) {

 Main myCar = new Main(); // Create a myCar object

 myCar.fullThrottle(); // Call the fullThrottle() method

 myCar.speed(200); // Call the speed() method

 }

}

// The car is going as fast as it can!

// Max speed is: 200

Example explained
1) We created a custom Main class with the class keyword.

2) We created the fullThrottle() and speed() methods in the Main class.

3) The fullThrottle() method and the speed() method will print out some text,

when they are called.

4) The speed() method accepts an int parameter called maxSpeed - we will use this

in 8).

5) In order to use the Main class and its methods, we need to create

an object of the Main Class.

6) Then, go to the main() method, which you know by now is a built-in Java

method that runs your program (any code inside main is executed).

7) By using the new keyword we created an object with the name myCar.

8) Then, we call the fullThrottle() and speed() methods on the myCar object, and

run the program using the name of the object (myCar), followed by a dot (.),

followed by the name of the method (fullThrottle(); and speed(200);). Notice

that we add an int parameter of 200 inside the speed() method.

Remember that..
The dot (.) is used to access the object's attributes and methods.

To call a method in Java, write the method name followed by a set of

parentheses (), followed by a semicolon (;).

A class must have a matching filename (Main and Main.java).

Methods with Multiple Classes
Like we specified in the Classes lecture, it is a good practice to create an object

of a class and access it in another class. In this example, we have created two

files in the same directory:

 Main.java

 Second.java

Main.java
public class Main {

 public void fullThrottle() {

 System.out.println("The car is going as fast as it can!");

 }

 public void speed(int maxSpeed) {

 System.out.println("Max speed is: " + maxSpeed);

 }

}

Second.java
class Second {

 public static void main(String[] args) {

 Main myCar = new Main(); // Create a myCar object

 myCar.fullThrottle(); // Call the fullThrottle() method

 myCar.speed(200); // Call the speed() method

 }

}

the output will be:

The car is going as fast as it can!

Max speed is: 200

https://www.w3schools.com/java/java_classes.asp

Java Constructors
A constructor in Java is a special method that is used to initialize objects. The

constructor is called when an object of a class is created. It can be used to set

initial values for object attributes:

Example Create a constructor:

// Create a Main class

public class Main {

 int x; // Create a class attribute

 // Create a class constructor for the Main class

 public Main() {

 x = 5; // Set the initial value for the class attribute x

 }

 public static void main(String[] args) {

 Main myObj = new Main(); // Create an object of class Main (This will

call the constructor)

 System.out.println(myObj.x); // Print the value of x

 }

}

// Outputs 5

Note1 that the constructor name must match the class name, and it cannot

have a return type (like void,int,….).

Note2: that the constructor is called when the object is created.

Note3:All classes have constructors by default: if you do not create a class

constructor yourself, Java creates one for you.

Constructor Parameters
Constructors can also take parameters, which is used to initialize attributes.

The following example adds an int y parameter to the constructor. Inside the

constructor we set x to y (x=y). When we call the constructor, we pass a

parameter to the constructor (5), which will set the value of x to 5:

Example
public class Main {

 int x;

 public Main(int y) {

 x = y;

 }

 public static void main(String[] args) {

 Main myObj = new Main(5);

 System.out.println(myObj.x);

 }

}

// Outputs 5

Note:You can have as many parameters as you want:

Example
public class Main {

 int modelYear;

 String modelName;

 public Main(int year, String name) {

 modelYear = year;

 modelName = name;

 }

 public static void main(String[] args) {

 Main myCar = new Main(1969, "opel");

 System.out.println(myCar.modelYear + " " + myCar.modelName);

 }

}

// Outputs 1969 opel

Java Modifiers

-Modifiers

By now, you are quite familiar with the public keyword that appears in almost

all of our examples:

public class Main

The public keyword is an access modifier, meaning that it is used to set the

access level for classes, attributes, methods and constructors.

We divide modifiers into two groups:

 Access Modifiers - controls the access level

 Non-Access Modifiers - do not control access level, but provides other

functionality

-Access Modifiers

For classes, you can use either public or default:

Modifier Description

public The class is accessible by any other class

default The class is only accessible by classes in the same package. This is used when

you don't specify a modifier. You will learn more about packages in

the Packages chapter

https://www.w3schools.com/java/java_packages.asp

For attributes, methods and constructors, you can use the one of the

following:

Modifier Description

public The code is accessible for all classes

private The code is only accessible within the declared class

default The code is only accessible in the same package. This is used when you don't

specify a modifier. You will learn more about packages in the Packages chapter

protected The code is accessible in the same package and subclasses. You will learn more

about subclasses and superclasses in the Inheritance chapter

Non-Access Modifiers

For classes, you can use either final or abstract:

Modifier Description

final The class cannot be inherited by other classes (You will learn more about

inheritance in the Inheritance chapter)

abstract The class cannot be used to create objects (To access an abstract class, it must be

inherited from another class. You will learn more about inheritance and

abstraction in the Inheritance and Abstraction chapters)

https://www.w3schools.com/java/java_packages.asp
https://www.w3schools.com/java/java_inheritance.asp
https://www.w3schools.com/java/java_inheritance.asp
https://www.w3schools.com/java/java_inheritance.asp
https://www.w3schools.com/java/java_abstract.asp

For attributes and methods, you can use the one of the following:

Modifier

Description

final Attributes and methods cannot be overridden/modified

static Attributes and methods belongs to the class, rather than an object

abstract Can only be used in an abstract class, and can only be used on methods. The

method does not have a body, for example abstract void run();. The body is

provided by the subclass (inherited from). You will learn more about

inheritance and abstraction in the Inheritance and Abstraction chapters

transient Attributes and methods are skipped when serializing the object containing

them

synchronized Methods can only be accessed by one thread at a time

volatile The value of an attribute is not cached thread-locally, and is always read from

the "main memory"

Final

If you don't want the ability to override existing attribute values, declare
attributes as final:

Example

public class Main {

 final int x = 10;

 final double PI = 3.14;

 public static void main(String[] args) {

 Main myObj = new Main();

https://www.w3schools.com/java/java_inheritance.asp
https://www.w3schools.com/java/java_abstract.asp

 myObj.x = 50; // will generate an error: cannot assign a value to a
final variable

 myObj.PI = 25; // will generate an error: cannot assign a value to a
final variable

 System.out.println(myObj.x);

 }

}

Static

A static method means that it can be accessed without creating an object of

the class, unlike public:

Repeated Example

An example to demonstrate the differences

between static and public methods:

public class Main {

 // Static method

 static void myStaticMethod() {

 System.out.println("Static methods can be called without creating

objects");

 }

 // Public method

 public void myPublicMethod() {

 System.out.println("Public methods must be called by creating

objects");

 }

 // Main method

 public static void main(String[] args) {

 myStaticMethod(); // Call the static method

 // myPublicMethod(); This would output an error

 Main myObj = new Main(); // Create an object of Main

 myObj.myPublicMethod(); // Call the public method

 }

}

Encapsulation
The meaning of Encapsulation, is to make sure that "sensitive" data is hidden

from users. To achieve this, you must:

 declare class variables/attributes as private

 provide public get and set methods to access and update the value of

a private variable

Get and Set
 You learned from the previous chapter that private variables can only be

accessed within the same class (an outside class has no access to it).

However, it is possible to access them if we provide

public get and set methods.

 The get method returns the variable value, and the set method sets the

value.

 Syntax for both is that they start with either get or set, followed by the

name of the variable, with the first letter in upper case:

Example
public class Person {

 private String name; // private = restricted access

 // Getter

 public String getName() {

 return name;

 }

 // Setter

 public void setName(String newName) {

 this.name = newName;

 }

}

Example explained

The get method returns the value of the variable name.

The set method takes a parameter (newName) and assigns it to the name variable.

The this keyword is used to refer to the current object.

However, as the name variable is declared as private, we cannot access it from

outside this class:

Example
public class Main {

 public static void main(String[] args) {

 Person myObj = new Person();

 myObj.name = "John"; // error

 System.out.println(myObj.name); // error

 }

}

 If the variable was declared as public, we would expect the following output:

 John

 However, as we try to access a private variable, we get an error:

 Instead, we use the getName() and setName() methods to acccess and update the

variable:

Example
public class Main {

 public static void main(String[] args) {

 Person myObj = new Person();

 myObj.setName("John"); // Set the value of the name variable to "John"

 System.out.println(myObj.getName());

 }

}

// Outputs "John"

Why Encapsulation?
 Better control of class attributes and methods.

 Class attributes can be made read-only (if you only use the get method),

or write-only (if you only use the set method)

 Flexible: the programmer can change one part of the code without

affecting other parts

 Increased security of data.

Java Packages & API

A package in Java is used to group related classes. Think of it as a folder in a
file directory. We use packages to avoid name conflicts, and to write a better

maintainable code. Packages are divided into two categories:

 Built-in Packages (packages from the Java API)

 User-defined Packages (create your own packages)

Built-in Packages

The Java API is a library of prewritten classes, that are free to use, included in
the Java Development Environment.

The library is divided into packages and classes. Meaning you can either
import a single class (along with its methods and attributes), or a whole

package that contain all the classes that belong to the specified package.

To use a class or a package from the library, you need to use

the import keyword:

Syntax

import package.name.Class; // Import a single class

import package.name.*; // Import the whole package

Import a Class

If you find a class you want to use, for example, the Scanner class, which is

used to get user input, write the following code:

Example

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of

the java.util package.

To use the Scanner class, create an object of the class and use any of the

available methods found in the Scanner class documentation. In our example, we

will use the nextLine() method, which is used to read a complete line:

Example

Using the Scanner class to get user input:

import java.util.Scanner;

class MyClass {

 public static void main(String[] args) {

 Scanner myObj = new Scanner(System.in);

 System.out.println("Enter username");

 String userName = myObj.nextLine();

 System.out.println("Username is: " + userName);

 }

}

Import a Package

There are many packages to choose from. In the previous example, we used
the Scanner class from the java.util package. This package also contains date

and time facilities, random-number generator and other utility classes.

To import a whole package, end the sentence with an asterisk sign (*). The

following example will import ALL the classes in the java.util package:

Example

import java.util.*;

User-defined Packages

To create your own package, you need to understand that Java uses a file
system directory to store them. Just like folders on your computer:

Example

└── root

 └── mypack

 └── MyPackageClass.java

To create a package, use the package keyword:

MyPackageClass.java

package mypack;
class MyPackageClass {
 public static void main(String[] args) {
 System.out.println("This is my package!");
 }
}

Note1:Save the file as MyPackageClass.java, and compile it:

Note2: The package name should be written in lower case to avoid conflict with

class names.

Java Inheritance (Subclass and Superclass)

In Java, it is possible to inherit attributes and methods from one class to
another. We group the "inheritance concept" into two categories:

 subclass (child) - the class that inherits from another class
 superclass (parent) - the class being inherited from

To inherit from a class, use the extends keyword.

In the example below, the Car class (subclass) inherits the attributes and

methods from the Vehicle class (superclass):

Example

class Vehicle {

 protected String brand = "Ford"; // Vehicle attribute

 public void honk() { // Vehicle method

 System.out.println("Tuut, tuut!");

 }

}

class Car extends Vehicle {

 private String modelName = "Mustang"; // Car attribute

 public static void main(String[] args) {

 // Create a myCar object

 Car myCar = new Car();

 // Call the honk() method (from the Vehicle class) on the myCar object

 myCar.honk();

 // Display the value of the brand attribute (from the Vehicle class)
and the value of the modelName from the Car class

 System.out.println(myCar.brand + " " + myCar.modelName);

 }}

Did you notice the protected modifier in Vehicle?

 We set the brand attribute in Vehicle to a protected access modifier. If it

was set to private, the Car class would not be able to access it.

 Protected access modifier refers to ability to accessing to the attributes

from the Parent class and sub class only.

Why And When To Use "Inheritance"?

- It is useful for code reusability: reuse attributes and methods of an existing
class when you create a new class.

The final Keyword

If you don't want other classes to inherit from a class, use the final keyword:

If you try to access a final class, Java will generate an error:

final class Vehicle {

 ...

}

class Car extends Vehicle {

 ...

}

https://www.w3schools.com/java/java_modifiers.asp

