
  

     

Numerical Analysis   

Approximations and Errors  

 The difference between exact solution and numerical solution is that numerical 

solution gives the answer with some "error", because numerical solution involved an 

approximation.  

 For many engineering problems, we cannot obtain analytical solution; therefore, we 

cannot compute the errors associated with numerical solution.  In professional 

practice, errors can be costly and sometimes catastrophic.   If a structure or device 

fails, lives can be lost.  

  

 1.  Types of Errors:    There are two major types of errors:  

  

1. Round off error: which is due to computers, (e.g.  π = 3.14160 

instead of   π = 3.14159253589…..    

2. Truncation error is the difference between a truncated value and the 
actual value. A truncated quantity is represented by a numeral with a 

fixed number of allowed digits, with any excess digits.  

As an example of truncation error, consider the speed of light in a 

vacuum. The official value is 299,792,458 meters per second. In 

scientific (power-of-10) notation, that quantity is expressed as  

2.99792458 x 108. Truncating it to two decimal places yields 2.99 x 
108. The truncation error is the difference between the actual value and 

the truncated value, or 0.00792458 x 108. Expressed properly in 

scientific notation, it is 7.92458 x 105.  
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1. Significant digits:   They are the number of digits that can be 

used with confidence. They correspond to the certain digits plus 

one estimated digit.  The figure shows a car speedometer that 

reads 48.5 km/h, where (48) are significant digits and (5) is 

estimated.  

  

  

  

2. Absolute error in algebraic operations:  

1. Absolute error in summation and subtraction:   If the absolute error 

(Ea), then if two numbers are added or subtracted, then the magnitude 

of total absolute error is equal to the sum of individual errors. i.e.   

   Ea  =  Ea1  ±  Ea2  ±  Ea3  ±  . . .  

2. Absolute error in product:    If we have two numbers "A" and "B".   

Let the absolute error in "A" is "Ea", and absolute error in "B" is "Eb", 

then  

Approximate value of        "A"  =  A  +  Ea,   and 

approximate value of  "B"  =  B   +  Eb  

Then abs. error in product (Eap)  = (A + Ea) * (B + Eb) -  AB  

       = AB + A*Eb + B*Ea + Ea*Eb – AB  

         ≈ A*Eb + B*Ea  

3. Absolute error in division:   For the same above example, the absolute 

error will be:  

                      Absolute error in division (Ead) =    

  

1. Error propagation: When error is introduced in a variable, it 

propagates in other variables because of computations. This 

amount of error depends upon the mathematical or numerical  

operation performed.  Consider the function,  

              f(x)  =   

     Let's calculate f(x) for x=0.9.  Then exact value will be (5.2631579).   

     Let's assume that approximate value of (x) is (0.900005,i.e. an error of 5*10-6).  

With this value of (x), the approximate value of f(x) will be (5.2634072), so the error 



will be (0.000025,i.e. an error of 25*10-6). This is called error magnification (or error 

propagation since the error propagate from the 6th digit to the 5th digit.  

    Under such condition, the numerical method or computation procedure is said to 

be (numerically unstable).  To avoid this instability, the numerical process is 

rearranged or some other method is used.  

2. Solved examples:   
  

Example1.1- Calculate the absolute and relative error in the following cases:  

a)True value  = 1 x 10-6,   Approximate value = 0.5 x 10-6  

b)True value  = 1 x 106,   Approximate value = 0.99 x 106  

  

Solution:  

  

1. Absolute error =    

= 1 x 10- – 0.5 x 10 =0.5x10  

 Relative error(Єr)  =  

Percentage relative error (Єr%) = Єr x 100% = 0.5x100              

                                                             =50%  

2. Absolute error =    

= 1 x 10 – 0.99 x 10 =0.01x10 =10000 Relative 

error   

                      (Єr%) = Єr x 100% = 0.01x100 = 1%  

  

Example1.2- f (x=0.4000) is correct to 4 significant digits, find the relative 

error.  

  

Solution:  

 (x) is correct to 4 significant digits, this means there will be error in the (fifth) 

digit.  The maximum value of this error will be:   Et = 0.00005 (5 is the max. 

value of the 5th digit)  

 Relative error (Єr)  =   



  

Example1.3-   

Find the approximate maximum error in (5.43 x 27.2).  

Solution:  

  Here we have to calculate error in product.  

Let A= 5.43  and B= 27.2  

The error in A is Ea = 0.005,  and error in B is Eb = 0.05  

  Product absolute error (Eap) = A * Eb + B * Ea  

    = 5.43 * 0.05  +  27.2 * 0.005      =  0.4075  

Example1.4- Determine the value of (e0.5) correct to three significant digits 

using the expansion ex = 1 + x +  + ……, if true value = 1.648720.  

Solution:  

No. of 

terms  

Total value  Absolute error   Relative error (Єr)  

1  ex = e0.5 = 1  1.64872 – 1 =  

0.64872    

2  ex= 1+x =1+0.5 =1.5  1.64872-1.5 =  

0.14872    

3   ex=1+x+x2/2!  

=1+0.5+(0.5)2/2!  
 = 1.625  

1.64872-1.625=  

0.02372    

4  ex=1+x+x2/2 +x3/3!  

=1+0.5+(0.5)2/2 +  

(0.5)3/3   

= 1.64583  

1.64872-1.645833=  

0.002887    

5  ex = 1.6484375  1.64872-1.6484375=  

0.0002825    

∴ 𝑓𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑠 𝑎𝑟𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝐞𝟎.𝟓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟   

𝑡𝑟𝑒𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  𝑑𝑖𝑔𝑖𝑡𝑠   

Example1.5:  The quotient gives the result 2.05335489. Find the maximum 

error.  

  

Solution: Let  a=25.4, then max. absolute error =0.05.  

    Let  b=12.37, then max. absolute error =0.005.  

𝟎 . 𝟔𝟒𝟖𝟕𝟐 
𝟏 . 𝟔𝟒𝟖𝟕𝟐 

= 0.393 

𝟎 . 𝟏𝟒𝟖𝟕𝟐 
𝟏 . 𝟔𝟒𝟖𝟕𝟐 

= 0.09 0 

𝟎 . 𝟎𝟐𝟑𝟕𝟐 
𝟏 . 𝟔𝟒𝟖𝟕𝟐 

= 0.01438 

𝟎 . 𝟎𝟎𝟐𝟖𝟖𝟕 
𝟏 . 𝟔𝟒𝟖𝟕𝟐 

  = =0.00175 1 

𝟎 . 𝟎𝟎𝟎𝟐𝟖𝟐𝟓 
𝟏 . 𝟔𝟒𝟖𝟕𝟐 

=   0.0001486 



The absolute error in division is given as,  

  
Putting the values in above equation,  

  
   = 0.003212  

Hence the true quotient will have the value of:   (2.053±0.003212)  
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Definition 2.4 (Normalization).

A floating-point number is said to be normalized if either d1 6= 0 or d1 = d2 = · · · = dn = 0.

Example 2.5. The following are examples of real numbers in the decimal floating point representation.

I. The real number x = 6.238 can be represented as 6.238 = (−1)0 × 0.6238 × 101, in which case, we
have s = 0, β = 10, e = 1, d1 = 6, d2 = 2, d3 = 3 and d4 = 8. Note that this representation is the
normalized floating-point representation.

II. The real number x = −0.0014 can be represented in the decimal float-point representation as
−0.0014 = (−1)1 × 0.0014 × 101, which is not in the normalized form. But this representation is
not in the normalized form. The normalized representation is x = (−1)1 × 0.14× 10−2. ⊓⊔

Definition 2.6 (Overflow and Underflow).

The exponent e is limited to a range

m < e < M. (2.3)

During the calculation, if some computed number has an exponent e > M then we say, the memory
overflow or if e < m, we say the memory underflow.

Remark 2.7. In the case of overflow, computer will usually produce meaningless results or simply prints
the symbol NaN, which means, the quantity obtained due to such a calculation is ’not a number’. The
symbol ∞ is also denoted as NaN on some computers. The underflow is less serious because in this case,
a computer will simply consider the number as zero. ⊓⊔

Remark 2.8. The floating-point representation (2.1) of a number has two restrictions, one is the number
of digits n in the mantissa and the second is the range of e. The number n is called the precision or
length of the floating point representation. ⊓⊔

Example 2.9. The IEEE (Institute of Electrical and Electronics Engineers) standard for floating-point
arithmetic (IEEE 754) is the most widely-used standard for floating-point computation, and is followed
by many hardware (CPU and FPU), including intel processors, and software implementations. Many
computer languages allow or require that some or all arithmetic be carried out using IEEE 754 formats
and operations. The IEEE 754 floating-point representation for a binary number x is given by 1

fl(x) = (−1)s × (1.a1a2 · · · an)2 × 2e, (2.4)

where a1, · · · , an are either 1 or 0. The IEEE 754 standard always uses binary operations.

The IEEE single precision floating-point format uses 4 bytes (32 bits) to store a number. Out of
these 32 bits, 24 are allocated for storing mantissa (one binary digit needs 1 bit storage space), 1 bit for
s (sign) and remaining 8 bits for the exponent. The storage scheme is given by

|(sign) b1 | (exponent) b2b3 · · · b9 | (mantissa) b10b11 · · · b32|

Note here that there are only 23 bits used for mantissa. This is because, the digit 1 before the binary
point in (2.4) is not stored in the memory and will be inserted at the time of calculation.

Instead of the exponent e, we store the non-negative integer E = (b2b3 · · · b9)2 and define e = E−127.
If all bi’s (i = 2, · · · , 9) are zero, then E = (0)10 and if all bi’s are 1, then E = (255)10. In addition to
this, one space corresponding to e = 128 (orE=255) is reserved for ∞ or NaN depending on whether
b10 = · · · = b32 = 0 or otherwise. Thus, in IEEE 754, we have −126 ≤ e ≤ 127 (note that the range of e is
not from -127, because this number is reserved for those numbers not represented otherwise, see Atkinson
and Han, 2004, for more details) and one memory space for NaN. The decimal number zero needs a
special representation, which is stored as E = 0 (ie., b2 = · · · = b9 = 0), b1 = 0 and b10 = · · · = b32 = 0.

1 Note the difference between the representation given in (2.1) and here. Since, it is a binary representation, the
digit before the binary point is always 1 and therefore, this information need not be stored in the computer
memory at all. This is the reason why this form of representation rather than (2.1) was prefered.
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In the representation (2.4), the value of s is stored in b1, the positive integer E = e + 127 is stored
in bits b2 through b9. The string of digits a1a2 · · ·a23 are stored in bits b10 through b32. The leading
binary digit 1 in the mantissa is not stored in the memory. However, this information is inserted into
the mantissa when a floating-point number x is brought out of the memory and sent into an arithmetic
operation. In the IEEE single precision storage system the overflow occurs for real numbers |x| > xmax,
where

xmax = 1.11 · · · 1× 2127 ≈ 2128 ≈ 3.40× 1038.

The IEEE double precision floating-point representation of a number has a precision of 53 binary
digits and the exponent e is limited by −1023 ≤ e ≤ 1023. ⊓⊔

2.2 Chopping and Rounding a Number

Any real number x can be represented exactly as

x = (−1)s × (.d1d2 · · · dndn+1 · · · )β × βe, (2.5)

with d1 6= 0 or d2 = d3 = · · · = 0, s = 0 or 1, and e satisfies (2.3), for which the floating-point form (2.1)
is an approximate representation. Let us denote this approximation of x by fl(x). There are two ways to
produce fl(x) from x as defined below.

Definition 2.10 (Chopped and Rounded Numbers).

The chopped machine approximation of x is given by

fl(x) = (−1)s × (.d1d2 · · · dn)β × βe. (2.6)

The rounded machine approximation of x is given by

fl(x) =

{

(−1)s × (.d1d2 · · · dn)β × βe , 0 ≤ dn+1 < β
2

(−1)s × (.d1d2 · · · (dn + 1))β × βe , β
2 ≤ dn+1 < β

(2.7)

2.3 Different Type of Errors

The approximate representation of a real number obviously differs from the actual number, whose differ-
ence is called an error.

Definition 2.11 (Errors).

The error in a computed quantity is defined as

Error = True Value - Approximate Value.

The absolute error is the absolute value of the error defined above. The relative error is a measure of
the error in relation to the size of the true value as given by

Relative Error =
Error

True Value

The percentage error is defined as 100 times the relative error.

The term truncation error is used to denote error, which result from approximating a smooth function
by truncating its Taylor series representation to a finite number of terms.

Example 2.12. A second degree polynomial approximation to

f(x) =
√
x+ 1, x ∈ [0, 1]

using the Taylor series expansion about x = 0 is given by

f(x) ≈ 1 +
x

2
− x2

8
+

x3

16(
√
1 + ξ)5

.

Therefore, the truncation error is given by x3/(16(
√
1 + ξ)5). ⊓⊔
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Remark 2.13. Let xA be the approximation of the real number x. Then

E(xA) := Error(xA) = x− xA. (2.8)

Ea(xA) := Absolute Error(xA) = |E(xA)| (2.9)

Er(xA) := Relative Error(xA) =
E(xA)

x
(2.10)

⊓⊔

Example 2.14. If we denote the relative error in fl(x) as ǫ > 0, then we have

fl(x) = (1− ǫ)x, (2.11)

where x is a real number. ⊓⊔

2.4 Loss of Significant Digits

In place of relative error, we often use the concept of significant digits.

Definition 2.15 (Significant Digits).

If xA is an approximation to x, then we say that xA approximates x to r significant β-digits if

|x− xA| ≤
1

2
βs−r+1 (2.12)

with s the largest integer such that βs ≤ |x|.

Example 2.16. (a) For x = 1/3, the approximate number xA = 0.333 has three significant digits, since
|x − xA| ≈ .00033 < 0.0005 = 0.5 × 10−3. But 10−1 < 0.333 · · · = x. Therefore, in this case s = −1 and
hence r = 3.
(b) For x = 0.02138, the approximate number xA = .02144 has the aboslute error |x − xA| ≈ .00006 <
0.0005 = 0.5× 10−3. But 10−2 < 0.02138 = x. Therefore, in this case s = −2 and therefore, the number
xA has only two significant digits, but not three, with respect to x. ⊓⊔

Remark 2.17. In a very simple way, the number of leading non-zero digits of xA that are correct relative
to the corresponding digits in the true value x is called the number of significant digits in xA. ⊓⊔

The role of significant digits in the numerical calculation is very important in the sense that the loss
of significant digits may result in drastic amplification of the relative error.

Example 2.18. Let us consider two real numbers

x = 7.6545428 = 0.76545428× 101, y = 7.6544201 = 0.76544201× 101.

The numbers

xA = 7.6545421 = 0.76545421× 101, yA = 7.6544200 = 0.76544200× 101

are approximation to x and y, correct to six and seven significant digits, respectively. In eight-digit
floating-point arithmetic,

zA = xA − yA = 0.12210000× 10−3

is the exact difference between xA and yA and

z = x− y = 0.12270000× 10−3

is the exact difference between x and y. Therefore,

z − zA = 0.6× 10−6 < 0.5× 10−5
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and hence zA has only three significant digits with respect to z as 10−3 < z = 0.0001227. Thus, we
started with two approximate numbers xA and yA which are correct to six and seven significant digits
with respect to x and y respectively, but their difference zA has only three significant digits with respect
to z and hence, there is a loss of significant digits in the process of subtraction. A simple calculation
shows that

Er(zA) ≈ 53736× Er(xA),

and similarly for y. Loss of significant digits is therefore dangerous if we wish to minimize the relative
error. The loss of significant digits in the process of calculation is refered to as Loss of Significance. ⊓⊔

Example 2.19. Consider the function f(x) = x(
√
x+ 1 − √

x). On a six-digit decimal calculator, we
have f(100000) = 100 whereas the true value is 158.113. This makes a drastic error in the calculation.
This is the result of the loss of significant digits, which can be seen from the fact that as x increases, the
terms

√
x+ 1 and

√
x comes closer to each other and therefore loss of significant error in their computed

value increases.

Such loss can often be avoided by rewritting the given expression (whenever possible) in such a way
that subtraction is avoided. For instance, the defintion of f(x) given in this example can be rewritten as

f(x) =
x√

x+ 1 +
√
x
.

With this new definition, we see that on a six-digit calculator, we have f(100000) = 158.114000. ⊓⊔

Example 2.20. When the function f(x) = 1 − cosx is evaluated in six-decimal-digit arithmetic (say).
Since cosx ≈ 1 for x near zero, there will be loss of significant digits for x near zero. So, we have to use
an alternative formula for f(x) such as

f(x) = 1− cosx =
1− cos2 x

1 + cosx
=

sin2 x

1 + cosx

which can be evaluated quite accurately for small x. We can also use Taylor’s expansion to get an
alternative expression for f(x) as

f(x) =
x2

2
− x4

24
+ · · · =

2
∑

n=1

(−1)n
x2n

2n!
+R(x),

where

R(x) =
x2(n+1)

2(n+ 1)!
f (2(n+1))(ξ) = −x6

6!
cos ξ

with ξ very close to zero. ⊓⊔

2.5 Propagation of Error

Once an error is committed, it affects subsequent results as this error propagates through subsequent
calculations. We first study how the results are affected by using approximate numbers instead of actual
numbers and then will take up function evaluation.

Let xA and yA denote the numbers used in the calculation, and let xT and yT be the corresponding
true values. We will now see how error propagates with the four basic arithmetic operations.

Propagated error in addition and subtraction

Let xT = xA + ǫ and yT = yA + η are positive numbers. The relative error Er(xA ± yA) is given by

Er(xA ± yA) =
(xT ± yT )− (xA ± yA)

xT ± yT
=

(xT ± yT )− (xT − ǫ± (yT − η))

xT ± yT
=

ǫ ± η

xT ± yT
.

This shows that relative error propagate slowly with addition, whereas amplifies drastically with subtrac-
tion when xT ≈ yT as we have witnessed in examples 2.18 and 2.19.
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Propagated error in multiplication

The relative error Er(xA × yA) is given by

Er(xA × yA) =
(xT × yT )− (xA × yA)

xT × yT
=

(xT × yT )− ((xT − ǫ)× (yT − η))

xT × yT

=
ηxT + ǫyT − ǫη

xT × yT
=

ǫ

xT
+

η

yT
−
(

ǫ

xT

)(

η

yT

)

= Er(xA) + Er(YA)− Er(xA)Er(YA).

This shows that relative error propagate slowly with multiplication.

Propagated error in division

The relative error Er(xA/yA) is given by

Er(xA/yA) =
(xT /yT )− (xA/yA)

xT /yT
=

(xT /yT )− ((xT − ǫ)/(yT − η))

xT /yT

=
xT (yT − η)− yT (xT − ǫ)

xT (yT − η)
=

yT ǫ− xT η

xT (yT − η)
=

yT
yT − η

(Er(xA)− Er(yA))

=
1

1− Er(YA)
(Er(xA)− Er(yA)).

This shows that relative error propagate slowly with division, unless Er(YA) ≈ 1. But this is very unlikely
because we always expect the error to be very small, ie., very close to zero in which case the right hand
side is approximately equal to Er(xA)− Er(YA).

Total calculation error

When using floating-point arithmetic on a computer, the calculation of xAωyA (here ω denotes one
of the basic arithmetic operation ’+’, ’−’, ’×’ and ’/’) involves an additional rounding or chopping error.
The computed value of xAωyA will involve the propagated error plus a rounding or chopping error. To
be more precise, let ω̂ denotes the complete operation as carried out on the computer, including any
rounding or chopping. Then the total error is given by

(xTωyT )− (xAω̂yA) = [(xTωyT )− (xAωyA)] + [(xAωyA)− (xAω̂yA)].

The first term on the right is the propagated error and the second term is the error due to rounding or
chopping the number obtained from the calculation xAωyA.a

Propagated error in function evaluation

Consider evaluating f(x) at the approximate value xA rather than at x. Then consider how well does
f(xA) approximate f(x)? Using the mean-value theorem, we get

f(x)− f(xA) = f ′(ξ)(x − xA),

where ξ is an unknown point between x and xA. The relative error of f(x) with respect to f(xA) is given
by

Er(f(x)) =
f ′(ξ)

f(x)
(x − xA) =

f ′(ξ)

f(x)
xEr(x). (2.13)

Since xA and x are assumed to be very close to each other and ξ lies between x and xA, we make the
approximation

f(x)− f(xA) ≈ f ′(x)(x − xA) ≈ f ′(xA)(x − xA).

Definition 2.21 (Condition number of a function).

The condition number of a funtion f at a point x = c is given by

∣

∣

∣

∣

f ′(c)

f(c)
c

∣

∣

∣

∣

(2.14)
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Example 2.22. Consider the function f(x) =
√
x, for all x ∈ [0,∞). Then

f ′(x) =
1

2
√
x
, for all x ∈ [0,∞).

The condition number of f is
∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=
1

2
, for all x ∈ [0,∞).

From (2.13) we see that taking square roots is a well-conditioned process since it actually reduces the
relative error. ⊓⊔

Example 2.23. Consider the function

f(x) =
10

1− x2
, for all x ∈ R.

Then f ′(x) = 20x/(1− x2)2, so that

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=

∣

∣

∣

∣

(20x/(1− x2)2)x

10/(1− x2)

∣

∣

∣

∣

=
2x2

|1− x2|

and this number can be quite large for |x| near 1. Thus, for x near 1 or -1, this function is ill-conditioned,
as it magnifies the relative error. ⊓⊔

Definition 2.24 (Stability and Instability in Evaluating a Function).

Suppose there are n steps to evaluate a function f(x). Then the total process of evaluating this function
is said to have instability if atleast one step is ill-conditioned. If all the steps are well-conditioned, then
the process is said to be stable.

Example 2.25. Consider the function

f(x) =
√
x+ 1−

√
x, for all x ∈ [0,∞).

For a sufficiently large x, the condition number of this function is

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1/
√
x+ 1− 1/

√
xx√

x+ 1−√
x

∣

∣

∣

∣

=
1

2

x√
x+ 1

√
x
≈ 1

2
,

which is quite good. But, if we calculate f(12345) in six digit rounding arithmetic, we find

f(12345) =
√
12346−

√
12345 = 111.113− 111.108 = 0.005,

while, actually, f(12345) = 0.00450003262627751 · · · . The calculated answer has 10% error.

Let us analyze the computational process. It consists of the following four computational steps:

x0 := 12345, x1 := x0 + 1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2 − x3.

Now consider the last two step where we already computed x2 and now going to compute x3 and finally
evaluate the function

f3(t) = x2 − t.

At this step, the condition number for f3 is given by

∣

∣

∣

∣

f ′(t)

f(t)
t

∣

∣

∣

∣

=

∣

∣

∣

∣

t

x2 − t

∣

∣

∣

∣

.

Thus, f is ill-conditioned when t approaches x2. For instance, for t ≈ 111.11, while x2 − t ≈ 0.005,
the condition number for f3 is approximately 22, 222 or more than 40,000 times as big as the condition
number of f itself. Therefore, the above process of evaluating the function f(x) is unstable.

Let us rewrite the same function f(x) as
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f(x) =
1√

x+ 1 +
√
x
.

In six digit rounding arithmetic, this gives

f(12345) =
1√

12346 +
√
12345

=
1

222.221
= 0.0045002,

which is in error by only 0.0003%. The computational process is

x0 := 12345, x1 := x0 + 1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2 + x3, x5 := 1/x4.

It is easy to verify that the condition number of each of the above steps is well-conditioned. For instance,
the last step defines f3(t) = 1/(x2 + t), and the condition number of this function is approximately,

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=

∣

∣

∣

∣

t

x2 + t

∣

∣

∣

∣

≈ 1

2

for t sufficiently close to x2. Therefore, this process of evaluating f(x) is stable. ⊓⊔
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Exercise 2

I. Floating-Point Representation

1. Write the storage scheme for the IEEE double precision floating-point representation of a real
number with the precision of 53 binary digits. Find the overflow limit (in binary numbers) in this
case.

2. In a binary representation, if 2 bytes (ie., 2 × 8 = 16 bits) are used to represent a floating-point
number with 8 bits used for the exponent. Then, as of IEEE 754 storage format, find the largest
binary number that can be represented.

II. Errors

3. The machine epsilon (also called unit round) of a computer is the smallest positive floating-

point number δ such that fl(1 + δ) > 1. Thus, for any floating-point number δ̂ < δ, we have

fl(1 + δ̂) = 1, and 1 + δ̂ and 1 are identical within the computer’s arithmetic.

For rounded arithmetic on a binary machine, show that δ = 2−n is the machine epsilon, where n
is the number of digits in the mantissa.

4. If fl(x) is the machine approximated number of a real number x and ǫ is the corresponding relative
error, then show that fl(x) = (1− ǫ)x.

5. Let x, y and z are the given machine approximated numbers. Show that the relative error in
computing x(y + z) is ǫ1 + ǫ2 − ǫ1ǫ2, where ǫ1 = Er(fl(y + z)) and ǫ2 = Er(fl(xfl(y + z))).

6. If the relative error of fl(x) is ǫ, then show that

|ǫ| ≤ β−n+1 (for chopped fl(x)), |ǫ| ≤ 1

2
β−n+1 (for rounded fl(x)),

where β is the radix and n is the number of digits in the machine approximated number.

7. Consider evaluating the integral In =

∫ 1

0

xn

x+ 5
dx for n = 0, 1, · · · , 20. This can be carried out

in two iterative process, namely, (i) In = 1
n − 5In−1, I0 = ln(6/5) (called forward iteration) and

(ii) In−1 = 1
5n − 1

5In, I20 = 7.997522840 × 10−3 (called backward iteration). Compute In for
n = 0, 1, 2, · · · , 20 using both iterative and show that backward iteration gives correct results,
whereas forward iteration tends to increase error and gives entirely wrong results. Give reason for
why this happens.

8. Find the truncation error around x = 0 for the following functions
(a) f(x) = sinx, (b) f(x) = cosx.

9. Let xA = 3.14 and yA = 2.651 be correctly rounded from xT and yT , to the number of decimal
digits shown. Find the smallest interval that contains
(i) xT , (ii) yT , (iii) xT + yT , (iv) xT − yT , (v) xT × yT and (vi) xT /yT .

10. A missile leaves the ground with an initial velocity v forming an angle φ with the vertical. The
maximum desired altitude is αR where R is the radius of the earth. The laws of mechanics can
be used to deduce the relation between the maximum altitude α and the initial angle φ, which is
given by

sinφ = (1 + α)

√

1− α

1 + α

( |ve|
|v|

)2

,

where ve = the escape velocity of the missile. It is desired to fire the missile with an angle φ and
|ve|/|v| = 2 so that the maximum altitude reached by the missile is 0.25R (ie., α = 0.25). If the
maximum altitude reached is within an accuracy of ±2%, then determine the range of values of
φ. [Hint: Treat sinφ as a function of α and use mean-value theorem]

III. Loss of Significant Digits and Propagation of Error

11. For the following numbers x and their corresponding approximations xA, find the number of
significant digits in xA with respect to x. (a) x = 451.01, xA = 451.023,
(b) x = −0.04518, xA = −0.045113, (c) x = 23.4604, xA = 23.4213.
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12. Show that the function f(x) =
1− cosx

x2
leads to unstable computation when x ≈ 0. Rewrite

this function to avoid loss-of-significance when x ≈ 0. Further check the stablity of f(x) in the
equivalent definition of this function in avoiding loss-of-significance error.

13. Let xA and yA, the approximation to x and y, respectively, be such that the relative errors Er(x)
and Er(y) are very much smaller than 1. Then show that (i) Er(xy) ≈ Er(x) + Er(y) and (ii)
Er(x/y) ≈ Er(x) − Er(y). (This shows that relative errors propagate slowly with multiplication
and division).

14. The ideal gas law is given by PV = nRT , where R is a gas constant given (in MKS system) by
R = 8.3143 + ǫ, with |ǫ| ≤ 0.12× 10−2. By taking P = V = n = 1, find a bound for the relative
error in computing the temperature T .

15. Find the condition number for the following functions (a) f(x) = x2, (b) f(x) = πx, (c) f(x) = bx.

16. Given a value of xA = 2.5 with an error of 0.01. Estimate the resulting error in the function
f(x) = x3.

17. Compute and interpret (find whether the funtions are well or ill-conditioned) the condition number
for (i) f(x) = tanx, at x = π

2 + 0.1
(

π
2

)

. (ii) f(x) = tanx, at x = π
2 + 0.01

(

π
2

)

.

18. Let f(x) = (x−1)(x−2) · · · (x−8). Estimate f(1+10−4) using mean-value theorem with xT = 1
and xA = 1 + 10−4.

IV. Miscellaneous

19. Big-oh: If f(h) and g(h) are two functions of h, then we say that

f(h) = O(g(h)), as h → 0

if there is some constant C such that
∣

∣

∣

∣

f(h)

g(h)

∣

∣

∣

∣

< C

for all h sufficiently small, or equivalently, if we can bound

|f(h)| < C|g(h)|

for all h sufficiently small. Intuitively, this means that f(h) decays to zero at least as fast as the
function g(h).

Little-oh: We say that

f(h) = o(g(h)), as h → 0 if

∣

∣

∣

∣

f(h)

g(h)

∣

∣

∣

∣

→ 0, as h → 0.

Note that this definition is stronger than the ”big-oh” statement and means that f(h) decays to
zero faster than g(h).
(a) If f(h) = o(g(h)), then show that f(h) = O(g(h)).
(b) Give an example to show that the converse is not true.
(c) What is meant by f(h) = o(1) and f(h) = O(1)?
(d) Give an example of f(h) and g(h) such that f(h) is much bigger than g(h), but still

f(h) = O(g(h)) as h → 0.

20. Assume that f(h) = p(h) +O(hn) and g(h) = q(h) +O(hm), for some positive integers n and m.
Find the order of approximation of their sum, ie., find the largest integer r such that

f(h) + g(h) = p(h) + q(h) +O(hr).
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Linear Systems

The most general form of a linear system is

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2

· · ·
· · · (3.1)

· · ·
an1x1 + an2x2+ · · · +annxn = bn

In the matrix notation, we can write this as

Ax = b

where A is an n× n matrix with entries aij , b = (b1, · · · , bn)T and x = (x1, · · · , xn)
T are n-dimensional

vectors.

Theorem 3.1. Let n be a positive integer, and let A be given as in (3.1). Then the following statements
are equivalent

I. det(A) 6= 0

II. For each right hand side b, the system (3.1) has unique solution x.

III. For b = 0, the only solution for the system (3.1) is the zero solution.

3.1 Gaussian Elimination

Let us introduce the Gaussian Elimination method for n = 3. The method for a general n× n system
is similar.

Consider the 3× 3 system

a11x1 + a12x2 + a13x3 = b1 (E1)

a21x1 + a22x2 + a23x3 = b2 (E2) (3.2)

a31x1 + a32x2 + a33x3 = b3 (E3)

Step 1: Assume that a11 6= 0 (otherwise interchange the row for which the coefficient of x1 is non-zero).
Let us eliminate x1 from (E2) and (E3). For this define

m21 =
a21
a11

, m31 =
a31
a11

.

Multiply (E1) with m21 and subtract with (E2), and multiply (E1) with m31 and subtract with (E3) to
give
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a11x1 + a12x2 + a13x3 = b1 (E1)

a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2 (E2)

a
(2)
32 x2 + a

(2)
33 x3 = b

(2)
3 (E3)

The coefficients a
(2)
ij are defined by

a
(2)
ij = aij −mi1a1j , i, j = 2, 3

b
(2)
i = bi −mi1b1, i = 2, 3

Step 2: Assume that a
(2)
22 6= 0 and eliminate x2 from (E3). Define

m32 =
a
(2)
32

a
(2)
22

.

Subtract m32 times (E2) from (E3) to get

a11x1 + a12x2 + a13x3 = b1 (E1)

a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2 (E2)

a
(3)
33 x3 = b

(3)
3 (E3)

The new coefficients are defined by

a
(3)
33 = a

(2)
33 −m32a

(2)
23 , b

(3)
3 = b

(2)
3 −m32b

(2)
2 .

Step 3: Using back substitution to solve successively for x3, x2 and x1, we get

x3 =
b
(3)
3

a
(3)
33

x2 =
b
(2)
2 − a

(2)
23 x3

a
(2)
22

(3.3)

x1 =
b1 − a12x2 − a13x3

a11

The algorithm for n = 3 is easily extended to a general n× n non-singular linear system.

Gaussian elimination method is a direct method which solves the linear system exactly. However,
sometime, this method fail to give the correct solution as illustrated in the following example.

Example 3.2. When we solve the linear system

6x1 + 2x2 + 2xn = −2

2x1 +
2

3
x2 +

1

3
xn = 1

x1 + 2x2 − xn = 0

Let us solve this system using Gaussian elimination method on a computer using a floating-point repre-
sentation with four digits in the mantissa and all operations will be rounded.

The given system is

6.000x1 + 2.000x2 + 2.000xn = −2.000

2.000x1 + 0.6667x2 + 0.3333xn = 1.000

1.000x1 + 2.000x2 − 1.000xn = 0.0000

After eliminating x1 from the second and third equations, we get (with m21 = 0.3333, m31 = 0.1667)

6.000x1 + 2.000x2 + 2.000xn = −2.000

0.000x1 + 0.0001x2 − 0.3333xn = 1.667 (3.4)

0.000x1 + 1.667x2 − 1.333xn = 0.3334
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After eliminating x2 from the third equation, we get (with m32 = 16670)

6.000x1 + 2.000x2 + 2.000xn = −2.000

0.000x1 + 0.0001x2 − 0.3333xn = 1.667

0.000x1 + 0.0000x2 + 5555xn = −27790

Using back substitution, we get x1 = 1.335, x2 = 0 and x3 = −5.003, whereas the actual solution is
x1 = 2.6, x2 = −3.8 and x3 = −5. The difficulty with this elimination process is that in (4.4), the element
in row 2, column 2 should have been zero, but rounding error prevented it and makes the relative error
very large. To avoid this, interchange row 2 and 3 in (4.4) and then continue the elimination. The final
system is (with m32 = 0.00005999)

6.000x1 + 2.000x2 + 2.000xn = −2.000

0.000x1 + 1.667x2 − 1.333xn = 0.3334

0.000x1 + 0.0000x2 − 0.3332xn = 1.667

with back substitution, we obtain the approximate solution as x1 = 2.602, x2 = −3.801 and Dx3 = −5.003.
⊓⊔

Partial Pivoting To avoid the problem presented by the above example, we use the following strategy.
At step k, calculate

c = max
k≤i≤n

|a(k)ik | (3.5)

This is the maximum size of the elements in column k of the coefficient matrix of step k, beginning at

row k and going downward. If the element |a(k)kk | < c, then interchange (Ek) with one of the following

equations, to obtain a new equation (Ek) in which |a(k)kk | = c. This strategy makes a
(k)
kk as far away from

zero as possible. The element a
(k)
kk is called the pivot element for step k of the elimination, and the

process described in this paragraph is called partial pivoting or more simply, pivoting.

Operations Count It is important to know the length of a computation and for that reason, we count
the number of arithmetic operations involved in Gaussian elimination. Let us divide the count into three
parts.

I. The elimination step. We now count the additions/subtractions, multiplications and divisions in
going from the given system to the triangular system.

Step Additions/Subtractions Multiplications Divisions
1 (n− 1)2 (n− 1)2 n− 1
2 (n− 2)2 (n− 2)2 n− 2
. . . .
. . . .
. . . .

n− 1 1 1 1

Total n(n−1)(2n−1)
6

n(n−1)(2n−1)
6

n(n−1)
2

Here we use the formula

p
∑

j=1

j =
p(p+ 1)

2
,

p
∑

j=1

j2 =
p(p+ 1)(2p+ 1)

6
, p ≥ 1.

II. Modification of the right side Proceeding as before, we get

Addition/Subtraction = (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2

Multiplication/Division = (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2

III. The back substitution Addition/Subtraction = (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2

Multiplication/Division = n+ (n− 1) + · · ·+ 1 = n(n+1)
2
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Total number of operations in obtaining x is

Addition/Subtraction = n(n−1)(2n−1)
6 + n(n−1)

2 + n(n−1)
2 = n(n−1)(2n+5)

6

Multiplication/Division = n(n2+3n−1)
3

Even if we take only multiplication and division into consideration, we see that for large value of n, the
operation count required for Gaussian elimination is about 1

3n
3. This means that as n doubled, the cost

of solving the linear system goes up by a factor of 8. In addition, most of the cost of Gaussian elimination
is in the elimination step. For elimination, we have

Multiplication/Division = n(n−1)(2n−1)
6 +n(n−1)

2 = 1
3 (n

3 − n) = 1
3n

3(1− 1/n2) ≈ 1
3n

3,
whereas the remaining steps counts only

Multiplication/Division = n(n−1)
2 +n(n+1)

2 = n2

Hence, once the elimination part is completed, it is much less expensive to solve the linear system.

3.2 LU Factorization Method

Let Ax = b denote the system to be solved with A the n×n coefficient matrix. In the Gaussian elimination,
the linear system was reduced to the upper triangular system Ux = g with

U =

















u11 u12 · · · u1n

0 u22 · · · u2n

. · · · .

. · · · .

. · · · .
0 · · · 0 unn

















and uij = a
(i)
ij . Introduce an auxiliary lower triangular matrix L based on the multipliers mij as

L =

















1 0 · · · 0
m21 1 · · · 0
. · · · .
. · · · .
. · · · .

mn1 · · · mnn−1 1

















The relationship of the matrices L and U to the original matrix A is given by the following theorem.

Theorem 3.3. Let A be a non-singular matrix, and let L and U be defined as above. Then if U is produced
without pivoting as in the Gaussian elimimation, then

LU = A

and this is called the LU factorization of A.

LU factorization leads to another perspective on Gaussian elimination. Since LU = A, the linear
system Ax = b can be re-written as

LUx = b.

And this is equivalent to solving the two systems

Lg = b, Ux = g (3.6)

The first system is the lower tirangular system

g1 = b1

m21g1 + g2 = b2

.

.

.

mn1g1 +mn2g2 + · · ·+mnn−1gn−1 + gn = bn
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Once g is obtained by forward substitution from this system the upper triangular system Ux = g can
be solved using back substitution. Thus once the factorization A = LU is done, the solution of the linear
system Ax = b is reduced to solving two triangular systems where the computational cost is reduced
drastically in the situation when the system is to be solved for a fixed A but for various b.

Rather than constructing L and U by using the elimination steps, it is possible to solve directly for
these matrices. Let us illustrate the direct computation of L and U in the case of n = 3. Write A = LU
as





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =





1 0 0
m21 1 0
m31 m32 1









u11 u12 u13

0 u22 u23

0 0 u33



 (3.7)

The right hand matrix multiplication implies

a11 = u11, a12 = u12, a13 = u13,

a21 = m21u11, a31 = m31u11. (3.8)

These gives first column of L and the first row of U . Next multiply row 2 of L times columns 2 and 3 of
U , to obtain

a22 = m21u12 + u22, a23 = m21u13 + u23 (3.9)

These can be solved for u22 and u23. Next multiply row 3 of L to obtain

m31u12 +m32u22 = a32, m31u13 +m32u23 + u33 = a33 (3.10)

These equations yield values for m32 and u33, completing the construction of L and U . In this process,
we must have u11 6= 0, u22 6= 0 in order to solve for L.

Note that in general the diagonal elements of L need not be 1. The above procedure of LU decompo-
sition is called Doolittle’s method.

Example 3.4. Let

A =





1 1 −1
1 2 −2

−2 1 1





Using (3.8), we get

u11 = 1, u12 = 1, u13 = −1, m21 =
a21
u11

= 1,m31 =
a31
u11

= −2

Using (3.9) and (3.10),

u22 = a22 −m21u12 = 2− 1× 1 = 1

u23 = a23 −m21u13 = −2− 1× (−1) = −1

m32 = (a32 −m31u12)/u22 = (1− (−2)× 1)/1 = 3

u33 = a33 −m31u13 −m32u23 = 1− (−2)× (−1)− 3× (−1) = 2

Thus,

A =





1 0 0
1 1 0

−2 3 1









1 1 −1
0 1 −1
0 0 2





Taking b = (1, 1, 1), we now solve the system Ax = b using LU factorization, with the matrix A given
above. As discussed above, first we have to solve the lower triangular system





1 0 0
1 1 0

−2 3 1









g1
g2
g3



 =





1
1
1



 .
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Forward substitution yields g1 = 1, g2 = 0, g3 = 3. Keeping the vector g = (1, 0, 3) as the right hand side,
we now solve the upper triangular system





1 1 −1
0 1 −1
0 0 2









x1

x2

x3



 =





1
0
3



 .

Backward substitution yields x1 = 1, x2 = 3/2, x3 = 3/2.. ⊓⊔

3.3 Error in Solving Linear Systems

In computing solution for a linear system using Gaussian elimination, we have seen the propagation of
rounding error, which can lead to entirely wrong solution. In this section, we introduce some method to
obtain errors prediction and ways to correct them inorder to minimize the error in the computed solution.

Let xA denote the computed solution using some method. Define

r = b−AxA (3.11)

This vector is called the residual vector in the approximation of b by AxA. Since b = Ax, we have

r = b−AxA = Ax−AxA = A(x− xA).

If we denote the error e = x− xA, then the above identity can be written as

Ae = r (3.12)

This shows that the error e satisfies a linear system with the same coefficient matrix A as in the orginal
system Ax = b.

There is an obvious difficulty in implementing this procedure on a computer. Since b and AxA are
very close to each other, the computation of r involves loss of significant digits which leads to a very high
relative error. To avoid an incorrect residual r, the calculation of (3.11) should be carried out in a higher-
precision (say if b and AxA are calculated in single-precision, then r can be computed in double-precision
and then rounded back to single precision).

Example 3.5. Consider the system

0.729x1 + 0.81x2 + 0.9x3 = 0.6867

x1 + x2 + x3 = 0.8338

1.331x1 + 1.210x2 + 1.100x3 = 1.000

As before, we use a four digit decimal-machine with rounding. The true solution of this system is

x1 = 0.2245, x2 = 0.2814, x3 = 0.3279

correct rounded to four digits. We consider the solution of the system by Gaussian elimination without
pivoting. This leads to the answers

x1 ≈ 0.2251, x2 ≈ 0.2790, x3 ≈ 0.3295.

Using 8 digit floating point decimal arithmetic, with rounding, we get the residual as

r = (0.00006210, 0.0002000, 0.0003519)T .

Solving the linear system Ae = r, we obtain the approximation to the error

eA = [−0.0004471, 0.002150,−0.001504]T .

Compare this to the true error

e = x− xA = [−0.0007, 0.0024,−0.0016]T

Thus eA gives a firly good idea of the size of the error e in the computed solution xA. ⊓⊔
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The Residual Correction Method:

Step 1: Let x0 = xA be the initially computed value for the solution of the system Ax = b, generally
obtained by using Gaussian elimination. Define

r0 = b−Ax0.

The error defined by e0 = x− x0 is obtained (approximately) by solving the system

Ae0 = r0

using Gaussian elimination.

Step 2: Define
x1 = x0 + e0

and repeat step 1 to calculate
r1 = b−Ax1, x2 = x1 + e1

where e1 = x− x1 is the approximate solution of the system Ae1 = r1.

Continue this process untill there is no further decrease in the size of ek, k ≥ 0. ⊓⊔

Example 3.6. Use a computer with four digit floating-point decimal arithmetic with rounding, and use
Gaussian elimination with pivoting, the system to be solved is

x1 + 0.5x2 + 0.3333x3 = 1

0.5x1 + 0.3333x2 + 0.25x3 = 0

0.3333x1 + 0.25x2 + 0.2x3 = 0

The true solution rounded to four digits is x2 = (9.062, − 36.32, 30.30)T . Using the Residual correction
method, we have

x0 = (8.968, − 35.77, 29.77)T

r0 = (−0.005341, − 0.004359, − 0.0005344)T

e0 = (0.09216, − 0.5442, 0.5239)T

x1 = (9.060, − 36.31, 30.29)T

r1 = (−0.0006570, − 0.0003770, − 0.0001980)T

e2 = (0.001707, − 0.01300, 0.01241)T

x2 = (9.062, − 36.32, 30.30)T

3.4 Matrix Norm

A useful notion of measuring a vector (in general a matrix) is the well-known norms

Definition 3.7 (Vector Norm).

A vector norm on R
n is a function from R

n to [0,∞) denoted by ‖ · ‖ that satisfies the following
properties:
For any x,y ∈ R

n, α ∈ R,

I. ‖x‖ ≥ 0

II. ‖x‖ = 0 if and only if x = 0

III. ‖αx‖ = |α|‖x‖
IV. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Example 3.8. Some examples of vector norm are given here.
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I. The Euclidean norm is defined as

‖x‖2 =

√

√

√

√

n
∑

j=1

x2
i . (3.13)

II. The maximum norm (similar to the infinite norm defined in section 2.4) is defined as

‖x‖∞ := max
1≤i≤n

|xi|,x = (x1, · · · , xn). (3.14)

Definition 3.9 (Matrix Norm).

A matrix norm on the set of all n × n matrices is a real-valued function, || · ||, defined on this set,
satisfying for all n× n matrices A and B and all real numbers α:

I. ||A|| ≥ 0;

II. ||A|| = 0, if and only if A is a zero matrix;

III. ||αA|| = |α| ||A||;
IV. ||A+B|| ≤ ||A||+ ||B||;

Definition 3.10 (Natural or Induced Matrix Norm).

If || · || is a vector norm on R
n, then

||A|| = max
||x||=1

||Ax||

is a matrix norm and is called the natural or induced matrix norm associated with the vector norm.

Remark 3.11. In this course, all matrix norms will be assumed to be natural matrix norms.

For any z 6= 0, we have x = z/||z|| as a unit vector. Hence

max
||x||=1

||Ax|| = max
||z||6=0

∥

∥

∥

∥

A

(

z

||z||

)∥

∥

∥

∥

= max
||z||6=0

||Az||
||z|| ,

and we can alternatively write

‖A‖ = max
z 6=0

‖Az‖
‖z‖ (3.15)

Lemma 3.12. For any n× n matrices A and B, and x ∈ R
n, we have

I. ‖Ax‖ ≤ ‖A‖‖x‖
II. ‖AB‖ ≤ ‖A‖‖B‖

For any n× n matrix A the maximum row norm is defined as

‖A‖ := max
1≤i≤n

n
∑

j=1

|aij |. (3.16)

It can be shown (proof is omitted here) that the maximum row norm is induced by the maximum norm
defined in (3.14). The Eulidean norm (3.13) induces the matrix norm (proof is omitted here)

‖A‖2 =
√

rσ(ATA), (3.17)

where
rσ(A) = max

λ∈σ(A)
|λ|

with σ(A) being the set of all eigenvalues of A, called the spectrum of A.
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Example 3.13. If we take

A =





1 1 −1
1 2 −2

−2 1 1



 ,

then

3
∑

j=1

|a1j | = |1|+ |1|+ | − 1| = 3,

3
∑

j=1

|a2j | = |1|+ |2|+ | − 2| = 5,

3
∑

j=1

|a3j | = | − 2|+ |1|+ |1| = 4.

Therefore, the maximum row norm of the given matrix A is 5.

On the other hand, the eigenvalues of ATA are λ1 ≈ 0.0616, λ2 ≈ 5.0256 and λ3 ≈ 12.9128. Thus,
‖A‖2 ≈

√
12.9128 ≈ 3.5934. ⊓⊔

Theorem 3.14. Let A be nonsingular. Then, the solution x1 and x2 of the systems Ax = b1 and Ax =
b2, respectively, satisfy

‖x1 − x2‖
‖x1‖

≤ ‖A‖‖A−1‖‖b1 − b2‖
‖b1‖

(3.18)

Proof. Subtracting Ax2 = b2 from Ax1 = b1, we get

A(x1 − x2) = b1 − b2 or x1 − x2 = A−1(b1 − b2).

Using the above lemma, we get

‖x1 − x2‖ = ‖A−1(b1 − b2)‖ ≤ ‖A−1‖‖b1 − b2‖.

Dividing by ‖x1‖, we obtain

‖x1 − x2‖
‖x1‖

≤ ‖A−1‖‖b1 − b2‖
‖x1‖

= ‖A‖‖A−1‖‖b1 − b2‖
‖A‖‖x1‖

.

But ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. Using this inequality, we get the desired result. ⊓⊔

The multiplying coefficient ‖A‖‖A−1‖ is interesting. It depends entirely on the matrix in the problem
and not on the right-side vector, yet it shows up as an amplifier to the relative change in the RHS vector.

Definition 3.15 (Condition Number).

For a given non-singular matrix A ∈ R
n×n and a given matrix norm ‖ ·‖, the condition number of A with

respect to the given norm is defined by

κ(A) := ‖A‖‖A−1‖ (3.19)

When the condition number of a matrix is very large, even a small variation in the RHS vector can lead
to a drastic variation in the solution. Such matrices are called ill-conditioned matrices. The matrices
with small condition number are called well-conditioned matrices.

Example 3.16. A well-known example of an ill-conditioned matrix is the Hilbert matrix

Hn =

















1 1
2

1
3 · · · 1

n
1
2

1
3

1
4 · · · 1

n+1

· · · ·
· · · ·
· · · ·
1
n

1
n+1

1
n+1 · · · 1

2n−1

















(3.20)
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For n = 4, we have

κ(H4) = ‖H4‖‖H−1
4 ‖ =

25

12
13620 ≈ 28000

which may be taken as an ill-conditioned matrix. ⊓⊔

Ill-conditioned matrices are very rare in applications. However, discretization of many partial differential
equations leads to moderately ill-conditioned linear systems. For this reason, it is best to use linear
equation solvers that have some way to detect ill-conditioning, if possible. Otherwise, the error can be
computed explicitely as described in section 3.3 to ensure the accuracy in the computed solution.

The following example show how a small variation in the RHS vector lead to a big difference in the
solution.

Example 3.17. The linear system

5x1 + 7x2 = 0.7

7x1 + 10x2 = 1

has the solution x1 = 0, x2 = 0.1. Let us denote this by xT = (0, 0.1). The perturbed system

5x1 + 7x2 = 0.69

7x1 + 10x2 = 1.01

has the solution x1 = −0.17, x2 = 0.22, which we denote by xA = (−0.17, 0.22). The relative error
between the solutions of the above systems in the maximum vector norm is given by

‖xT − xA‖∞
‖xT ‖∞

= 1.7,

which is too high. On the other hand, the condition number of the coefficient matrix of the above system
is 289, and the relative error between the right hand side vectors in the maximum norm is 0.01. Thus,
the right hand side of the inequality (3.18) is 2.89, which obviously satisfies this inequality. ⊓⊔

Theorem 3.18. Let A ∈ R
n×n be non-singular. Then, for any singular n× n matrix B, we have

1

κ(A)
≤ ‖A−B‖

‖A‖ . (3.21)

Proof. We have

1

κ(A)
=

1

‖A‖‖A−1‖

=
1

‖A‖









1

max
x 6=0

‖A−1x‖
‖x‖









≤ 1

‖A‖





1
‖A−1y‖

‖y‖





where y is arbitrary. Now take y = Az. Then we get

1

κ(A)
≤ 1

‖A‖

(‖Az‖
‖z‖

)

,

where z is arbitrary. Let z be such that Bz = 0 (this is possible since B is singular), we get

1

κ(A)
≤ ‖(A−B)z‖

‖A‖‖z‖ ≤ ‖(A−B)‖‖z|
‖A‖‖z‖ =

‖(A−B)‖
‖A‖ ,

and we are done. ⊓⊔

The importance of this result is that it tells us that if A is close to a singular matrix, then the reciprocal
of the condition number will be near to zero, ie., κ(A) itself will be large.
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3.5 Iterative Methods

The n × n linear system can also be solved using iterative procedures. The most fundamental iterative
method is the Jacobi iterative method, which we will explain in the case of 3×3 system of linear equations.

Consider the 3× 3 system

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

When the diagonal elements of this system are non-zero, we can rewrite the above equation as

x1 =
1

a11
(b1 − a12x2 − a13x3)

x2 =
1

a22
(b2 − a21x1 − a23x3)

x3 =
1

a33
(b3 − a31x1 − a32x2)

Let x(0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 ) be an initial guess to the true solution x, then define an iteration sequence:

x
(m+1)
1 =

1

a11
(b1 − a12x

(m)
2 − a13x

(m)
3 )

x
(m+1)
2 =

1

a22
(b2 − a21x

(m)
1 − a23x

(m)
3 )

x
(m+1)
3 =

1

a33
(b3 − a31x

(m)
1 − a32x

(m)
2 )

for m = 0, 1, 2, · · · . This is called the Jacobi Iteration method.

A modified version of Jacobi method is the Gauss-Seidel method and is given by

x
(m+1)
1 =

1

a11
(b1 − a12x

(m)
2 − a13x

(m)
3 )

x
(m+1)
2 =

1

a22
(b2 − a21x

(m+1)
1 − a23x

(m)
3 )

x
(m+1)
3 =

1

a33
(b3 − a31x

(m+1)
1 − a32x

(m+1)
2 )

Note that the Jacobi method is of the form

Nx(m+1) = b+ Ux(m)

where

N =

















a11 0 · · · 0
0 a22 · · · 0
. . · · · .
. . · · · .
. . · · · .
0 0 · · · ann

















and U = N −A. For Gauss-Seidel method, we have

N =

















a11 0 · · · 0
a21 a22 · · · 0
. . · · · .
. . · · · .
. . · · · .

an1 an2 · · · ann
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with U = N −A.

A general linear iterative method for the solution of the system of linear system of equations Ax = b

may be defined in the form

x(m+1) = Bx(m) + c, m = 1, 2, · · · . (3.22)

In this case of Jacobi and Gauss-Seidel methods, we have B = N−1U and c = N−1b.

Note that the true solution satisfies the equation

x = Bx+ c

and therefore, the error e(m) = x− x(m) satisfies the system

e(m+1) = Be(m).

On taking norm, we get

‖e(m+1)‖ = ‖Be(m)‖ ≤ ‖B‖‖e(m)‖ ≤ · · · ≤ ‖B‖m+1‖e(0)‖.

Thus, when ‖B‖ < 1, the iteration method always converges for any initial guess.

Definition 3.19 (Diagonally Dominant Matrices). A matrix A is said to be diagonally dominant
if it satisfies the inequality

n
∑

j=1,j 6=i

|aij | < |aii|, i = 1, 2, · · · , n.

In the case of Jacobi method, we have

x
(m+1)
i =

1

aii



bi −
n
∑

j=1,j 6=i

aijx
(m)
j



 , i = 1, · · · , n m ≥ 0 (3.23)

Therefore, each component of the error satisfies

e
(m+1)
i = −

n
∑

j=1,j 6=i

aij
aii

e
(m)
j , i = 1, · · · , n m ≥ 0.

which gives

|e(m+1)
i | ≤

n
∑

j=1,j 6=i

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

‖e(m)‖∞.

Define

µ = max
1≤i≤n

n
∑

j=1,j 6=i

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

. (3.24)

Then
|e(m+1)

i | ≤ µ‖e(m)‖∞,

which is true for all i = 1, 2, · · · , n. Therefore, we have

‖e(m+1)‖∞ ≤ µ‖e(m)‖∞.

For µ < 1, ie., when the matrix A is diagonally dominant, then Jacobi method converges. Note that the
converse is not true. That is, the Jacobi method may converge for A not diagonally dominant.

We will now prove that the Gauss-Seidal method converges if the given matrix A is diagonally domi-
nant. The Gauss-Seidal method reads

x
(m+1)
i =

1

aii







bi −
i−1
∑

j=1

aijx
(m+1)
j −

n
∑

j=i+1

aijx
(m)
j







, i = 1, 2, · · · , n. (3.25)
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Therefore, the error in each component is given by

e
(m+1)
i = −

i−1
∑

j=1

aij
aii

e
(m+1)
j −

n
∑

j=i+1

aij
aii

e
(m)
j , i = 1, 2, · · · , n. (3.26)

Define

αi =

i−1
∑

j=1

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

, βi =

n
∑

j=i+1

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

, i = 1, 2, · · · , n,

with α1 = β1 = 0. Note that µ given in (3.24) can be written as

µ = max
1≤i≤n

(αi + βi)

and since A is assumed to be diagonally dominant, we have µ < 1. Now

|e(m+1)
i | ≤ αi‖e(m+1)‖∞ + βi‖e(m)‖∞, i = 1, 2, · · · , n. (3.27)

Let k be such that
‖e(m+1)‖∞ = |e(m+1)

k |.
Then with i = k in (3.27),

‖e(m+1)‖∞ ≤ αk‖e(m+1)‖∞ + βk‖e(m)‖∞.

Since µ < 1, we have αk < 1 and therefore the above inequality give

‖e(m+1)‖∞ ≤ βk

1− αk
‖e(m)‖∞.

Define

η = max
1≤i≤n

βk

1− αk
. (3.28)

Then the above inequality takes the form

‖e(m+1)‖∞ ≤ η‖e(m)‖∞. (3.29)

Since for each i,

(αi + βi)−
βi

1− αi
=

αi[1− (αi + βi)]

1− αi
≥ αi

1− αi
[1− µ] ≥ 0,

we have

η ≤ µ < 1. (3.30)

Thus, Gauss-Seidal method converges more faster than the Jacobi method and also when the given matrix
is diagonally dominant, then the Gauss-Seidal method converges.

3.6 Eigenvalue Problem: The Power Method

Power method is normally used to determine the largest eigenvalue (in magnitude) and the corresponding
eigenvector of the system

Ax = λx.

Let λ1, λ2, · · · , λn be the eigenvalues of A such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| (3.31)

and further assume that the corresponding eigenvectors v1, v2, · · · , vn forms a basis for Rn. Therefore,
any vector v ∈ R

n can be written as

v = c1v1 + c2v2 + · · ·+ cnvn.
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Premultiplying by A and substituting Avi = λivi, i = 1, · · · , n, we get

Av = c1λ1v1 + · · ·+ cnλnvn

= λ1

(

c1v1 + c2

(

λ2

λ1

)

v2 + · · ·+ cn

(

λn

λ1

)

vn

)

Premultiplying by A again and simplying, we get

A2v = λ2
1

(

c1v1 + c2

(

λ2

λ1

)2

v2 + · · ·+ cn

(

λn

λ1

)2

vn

)

· · ·
· · ·
· · ·

Akv = λk
1

(

c1v1 + c2

(

λ2

λ1

)k

v2 + · · ·+ cn

(

λn

λ1

)k

vn

)

Using the assumption (3.31), we can see that

∣

∣

∣

∣

λk

λ1

∣

∣

∣

∣

< 1, k = 2, · · · , n.

Therefore, we have

lim
k→∞

Akv

λk
1

= c1v1. (3.32)

For c1 6= 0, the RHS is a scalar multiple of the eigenvector. Also, from the above expression for Akv, we
get

lim
k→∞

(Ak+1v)i
(Akv)i

= λ1, (3.33)

where i denotes a component of the corresponding vectors.

The power method is based on the results (3.32) and (3.33).

Algorithm 3.20. Choose an arbitrary initial guess x(0). For k = 1, 2, · · ·
Step 1 Compute y(k) = Ax(k−1)

Step 2 Take µk = y
(k)
i , where ‖y(k)‖∞ = |y(k)i |,

Step 3 Set x(k) =
y(k)

µk
.

Step 4 If ‖x(k−1) − x(k)‖∞ > ǫ, go to step 1.
For some pre-assigned positive quantity ǫ.

Let us now study the convergence of this method.

Theorem 3.21 (Power method).

Let A be an non-singular n× n matrix with the following conditions:

I. A has n linearly independent eigenvectors, vi, i = 1, · · · , n.
II. The eigenvalues λi satisfy

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

III. The vector x(0) ∈ R
n is such that

x(0) =

n
∑

j=1

cjvj , c1 6= 0.
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Then the power method converges in the sense that there exists constants C1 and C2 such that

‖x(k) −Kv1‖ ≤ C1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

, for some K 6= 0

and

|λ1 − µk| ≤ C1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

.

Proof. From the definition of x(k), we have

x(k) =
Ax(k−1)

µk
=

Ay(k−1)

µkµk−1
=

AAx(k−2)

µkµk−1
=

A2x(k−2)

µkµk−1
= · · · = Akx(0)

µkµk−1 · · ·µ1
.

Therefore, we have
x(k) = mkA

kx(0),

where mk = 1/(µ1µ2 · · ·µk). But, x
(0) =

n
∑

j=1

cjvj , c1 6= 0. Therefore

x(k) = mkλ
k
1



c1v1 +
n
∑

j=2

cj

(

λj

λ1

)k

vj



 .

Taking maximum norm on both sides and noting that ‖x(k)‖∞ = 1, we get

1 = |mkλ
k
1 |

∥

∥

∥

∥

∥

∥

c1v1 +
n
∑

j=2

cj

(

λj

λ1

)k

vj

∥

∥

∥

∥

∥

∥

∞

.

This implies on taking limit,

| lim
k→∞

mkλ
k
1 | =

1

|c1|‖v1‖∞
< ∞.

This is equivalent to

lim
k→∞

mkλ
k
1 = ± 1

c1‖v1‖∞
< ∞.

Finally,
lim
k→∞

x(k) = lim
k→∞

mkλ
k
1 .c1v1 = Kv1

Moreover,

‖x(k) −Kkv1‖∞ =

∥

∥

∥

∥

∥

∥

mkλ
k
1

n
∑

j=2

cj

(

λj

λ1

)k

vj

∥

∥

∥

∥

∥

∥

∞

≤ C

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

.

For eigenvalue,
µkx

(k) = y(k).

Therefore,

µk =
y
(k)
i

x
(k)
i

=
(Ax(k−1))i
(x(k))i

Taking limit, we have

lim
k→∞

µk =
A(Kv1)i
K(v1)i

=
λ(v1)i
(v1)i

= λ1.

which gives the desired result. ⊓⊔
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Example 3.22. Consider the matrix

A =





3 0 0
−4 6 2
16 −15 −5





The eigenvalues of this matrix are λ1 = 3, λ2 = 1 and λ3 = 0. The corresponding eigen vectors are
X1 = (1, 0, 2)T , X2 = (0, 2,−5)T and X3 = (0, 1,−3)T .

Initial Guess 1: Let us take x0 = (1, 0.5, 0.25)T . The power method gives the following:
Iteration No: 1

y1 = Ax0 = (3.000000,−0.500000, 7.250000, )T

µ1 = 7.250000

x1 =
y1

µ1
= (0.413793,−0.068966, 1.000000, )T

Iteration No: 2

y2 = Ax1 = (1.241379,−0.068966, 2.655172, )T

µ2 = 2.655172

x2 =
y2

µ2
= (0.467532,−0.025974, 1.000000, )T

Iteration No: 3

y3 = Ax2 = (1.402597,−0.025974, 2.870130, )T

µ3 = 2.870130

x3 =
y3

µ3
= (0.488688,−0.009050, 1.000000, )T

Iteration No: 4

y4 = Ax3 = (1.466063,−0.009050, 2.954751, )T

µ4 = 2.954751

x4 =
y4

µ4
= (0.496172,−0.003063, 1.000000, )T

Iteration No: 5

y5 = Ax4 = (1.488515,−0.003063, 2.984686, )T

µ5 = 2.984686

x5 =
y5

µ5
= (0.498717,−0.001026, 1.000000, )T

Iteration No: 6

y6 = Ax5 = (1.496152,−0.001026, 2.994869, )T

µ6 = 2.994869

x6 =
y6

µ6
= (0.499572,−0.000343, 1.000000, )T

Iteration No: 7

y7 = Ax6 = (1.498715,−0.000343, 2.998287, )T

µ7 = 2.998287

x7 =
y7

µ7
= (0.499857,−0.000114, 1.000000, )T

Iteration No: 8
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y8 = Ax7 = (1.499571,−0.000114, 2.999429, )T

µ8 = 2.999429

x8 =
y8

µ8
= (0.499952,−0.000038, 1.000000, )T

Iteration No: 9

y9 = Ax8 = (1.499857,−0.000038, 2.999809, )T

µ9 = 2.999809

x9 =
y9

µ9
= (0.499984,−0.000013, 1.000000, )T

Iteration No: 10

y10 = Ax9 = (1.499952,−0.000013, 2.999936, )T

µ10 = 2.999936

x10 =
y10

µ10
= (0.499995,−0.000004, 1.000000, )T

Initial Guess 2: Let us take x0 = (0, 0.5, 0.25)T . The power method gives the following:
Iteration No: 1

y1 = Ax0 = (0.000000, 3.500000,−8.750000, )T

µ1 = 8.750000

x1 =
y1

µ1
= (0.000000, 0.400000,−1.000000, )T

Iteration No: 2

y2 = Ax1 = (0.000000, 0.400000,−1.000000, )T

µ2 = 1.000000

x2 =
y2

µ2
= (0.000000, 0.400000,−1.000000, )T

Iteration No: 3

y3 = Ax2 = (0.000000, 0.400000,−1.000000, )T

µ3 = 1.000000

x3 =
y3

µ3
= (0.000000, 0.400000,−1.000000, )T

Iteration No: 4

y4 = Ax3 = (0.000000, 0.400000,−1.000000, )T

µ4 = 1.000000

x4 =
y4

µ4
= (0.000000, 0.400000,−1.000000, )T

Note that in the second initial guess, the first coordinate is zero and therefore, c1 in the power method is
zero. This makes the iteration to converge to λ2, which is the next dominant eigenvalue. ⊓⊔

3.7 Gerschgorin’s Theorem

An important tool in eigenvalue approximation is the ability to localize the eigenvalues, and the most
important tool in eigenvalue localization is Gerschgorin’s theorem.

Theorem 3.23 (Gerschgorin).

Let A ∈ R
n×n be given, and define the quantities
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ri =

n
∑

j=1,j 6=i

|aij |,

Di = {z ∈ C/|z − aii| ≤ ri}.
Then every eigenvalue of A lies in the union of the disks Di, that is,

λk ∈ ∪n
i=1Di

for all k = 1, 2, · · · , n. Moreover, if any collection of p disks is disjoint from the other n− p disks, then
we know that exactly p eigenvalues are contained in the union of the set of p disks, and exactly n − p
eigenvalues are contained in the set of n− p disks.

Example 3.24. Consider the matrix

A =





2 1 0
1 2 1
0 1 2





Center of the disks: a11 = 2, a22 = 2, a33 = 2. The disks are concentric.
Radius of the disks: r1 = 1, r2 = 2, r3 = 1.
The eigenvalues are λ1 = 3.1414, λ2 = 2, λ3 = 0.5859. ⊓⊔

Example 3.25. Consider the matrix

A =





0 2 0
2 7 1
0 1 4





Center of the disks: a11 = 0, a22 = 7, a33 = 4.
Radius of the disks: r1 = 2, r2 = 3, r3 = 1.
The eigenvalues are λ1 = 0.158197, λ2 = 3.39573, λ3 = 7.446072. ⊓⊔
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Exercise 3

I. Direct Methods

1. Given the linear system 2x1 − 6αx2 = 3, 3αx1 − x2 = 3
2 .

(a) Find value(s) of α for which the system has no solution. (b) Find value(s) of α for which the
system has infinitely many solutions. (c) Assuming a unique solution exists for a given α, find the
solution.

2. Use Gaussian elimination method (both with and without pivoting) to find the solution of the
following systems:
(i) 6x1 + 2x2 + 2x3 = −2, 2x1 + 0.6667x2 + 0.3333x3 = 1, x1 + 2x2 − x3 = 0
Answer: x1 = 2.599928, x2 = -3.799904, x3 = -4.999880, Number of Pivoting = 1.
(ii) 0.729x1 + 0.81x2 + 0.9x3 = 0.6867, x1 + x2 + x3 = 0.8338, 1.331x1 + 1.21x2 + 1.1x3 = 1
Answer: x1 = 0.224545, x2 = 0.281364, x3 = 0.327891, Number of Pivoting = 2.
(iii) x1 − x2 + 3x3 = 2, 3x1 − 3x2 + x3 = −1, x1 + x2 = 3.
Answer: x1 = 1.187500, x2 = 1.812500, x3 = 0.875000, Number of Pivoting = 2.

3. Solve the system 0.004x1 + x2 = 1, x1 + x2 = 2 (i) exactly, (ii) by Gaussian elimination using a
two digit rounding calculator, and (iii) interchanging the equations and then solving by Gaussian
elimination using a two digit rounding calculator.

4. Solve the following system by Gaussian elimination, first without row interchanges and then with
row interchanges, using four-digit rounding arithmetic:

x+ 592y = 437, 592x+ 4308y = 2251.

5. Solve the system 0.5x1 − x2 = −9.5, 1.02x1 − 2x2 = −18.8 using Gaussian elimination method.
Solve the same system with a11 modified slightly to 0.52 (instead of 0.5). In both the cases, use
rounding upto 5 digits after decimal point. Obtain the residual error in each case.

6. For an ǫ with absolute value very much smaller than 1, solve the linear system

x1 + x2 + x3 = 6, 3x1 + (3 + ǫ)x2 + 4x3 = 20, 2x1 + x2 + 3x3 = 13

using Gaussian elimination method both with and without partial pivoting. Obtain the residual
error in each case on a computer for which the ǫ is an unit round.

7. In the n× n system of linear equations

a11x1 + · · ·+ a1nxn = b1, · · · , an1x1 + · · ·+ annxn = bn

let aij = 0 whenever i−j ≥ 2. Write out the general form of this system. Use Gaussian elimination
to solve it, taking advantage of the elements that are known to be zero. Do an operations count
in this case.

8. Obtain the LU factorization of the matrix




4 1 1
1 4 −2
3 2 −4





Use this factorization to solve the system with b = (4, 4, 6)T .

9. Show that the following matrix cannot be written in the LU factorization form:





1 2 6
4 8 −1
−2 3 5





10. Show that the matrix




2 2 1
1 1 1
3 2 1





is invertible but has no LU factorization. Do a suitable interchange of rows and/or columns to
get an invertible matrix, which has LU factorization.
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II. Errors and Matrix Norm

11. Use the Gaussian elimination method with rounding upto 5 digits after decimal point to solve the
system 0.52x1 − x2 = −9.5, 1.02x1 − 2x2 = −18.8. Use residual corrector algorithm to improve
the solution till the error vector becomes zero.

12. Solve the system x1 + 1.001x2 = 2.001, x1 + x2 = 2 (i) Compute the residual r = Ay − b for
y = (2, 0)T . (ii) Compute the relative error of y with respect to the exact solution x of the above
system (use Euclidean norm in R

2 defined by ||x|| =
√

x2
1 + x2

2).

13. For any n× n matrices A and B, and x ∈ R
n, show that

i. ‖Ax‖ ≤ ‖A‖‖x‖
ii. ‖AB‖ ≤ ‖A‖‖B‖
where the matrix norm is the induced norm obtained from the corresponding vector norm.

14. Solve the system

5x1 + 7x2 = b1

7x1 + 10x2 = b2

using Gaussian elimination method to obtain the solution x1 when bT = (b1, b2) = (0.7, 1). Also
solve the above system with bA = (b1, b2) = (0.69, 1.01) using the same method to obtain the
solution x2. Show that

‖x1 − x2‖2
‖x1‖2

≤ ‖A‖2‖A−1‖2
‖bT − bA‖2

‖bT ‖2
where A is the 2× 2 coefficient matrix of the above system and the norm in the above inequality
is the Eucledian norm for vector and the corresponding induced norm for the matrix.

15. Show by an example that || · ||M defined by ||A||M = max
1≤i,j≤n

|aij |, does not define an induced

matrix norm.

16. Show that κ(A) ≥ 1 for any n× n non-singular matrix A.

17. For any two n× n non-singular matrices A and B, show that κ(AB) ≤ κ(A)κ(B).

18. Let A(α) =

[

0.1α 0.1α
1.0 2.5

]

. Determine α such that the condition number of A(α) is minimized.

Use the maximum row norm.

19. Estimate the effect of a disturbance on the right hand side vector b by adding (ǫ1, ǫ2)
T to b, where

|ǫ1|, |ǫ2| ≤ 10−4, when the system of equations is given by x1 + 2x2 = 5, 2x1 − x2 = 0 (use
maximum norm for vectors and maximum row norm for matrices).

20. Find a function C(ǫ) > 0 such that C(ǫ) ≤ κ(A) using the maximum row norm, when

A =





1 −1 1
−1 ǫ ǫ
1 ǫ ǫ





III. Iteration Method

21. Find the n× n matrix B and the n-dimensional vector c such that the Gauss-Seidal method can
be written in the form

x(k+1) = Bx(k) + c, k = 1, 2, · · ·

22. Show that the Gauss-Seidal method converges if the coefficient matrix is diagonally dominant.

23. Study the convergence of the Jacobi and the Gauss-Seidel method for the following systems by
starting with x0 = (0, 0, 0)T and performing three iterations:
(i)5x1 + 2x2 + x3 = 0.12, 1.75x1 + 7x2 + 0.5x3 = 0.1, x1 + 0.2x2 + 4.5x3 = 0.5.
(ii)x1 − 2x2 + 2x3 = 1, − x1 + x2 − x3 = 1, − 2x1 − 2x2 + x3 = 1.
(iii)x1 + x2 + 10x3 = −1, 2x1 + 3x2 + 5x3 = −6, 3x1 + 2x2 − 3x3 = 4.
Check the convergence by obtaining the maximum norm of the residual vector.

24. Use Jacobi method to perform 3 iterations with x(0) = (0, 0, 0) to get x(1), x(2) and x(3) for the
system
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−x1 + 5x2 − 2x3 = 3, x1 + x2 − 4x3 = −9, 4x1 − x2 + 2x3 = 8

Compute the maximum norm of the residual error r1, r2 and r3 in x(1), x(2) and x(3), respectively,
obtained above. (Observe that the maximum norm of the residual errors increase. Infact, the
Jacobi iterative sequence diverges in this case). Interchange the rows suitably in the above system
so that the Jacobi iterative sequence converges. Justify your answer without calculating the Jacobi
iterations.

25. Study the convergence of the Jacobi and the Gauss-Seidel method for the following system by
starting with x0 = (0, 0, 0)T and performing 20 iterations (using computer):
x1 + 0.5x2 + 0.5x3 = 1, 0.5x1 + 1x2 + 0.5x3 = 8, 0.5x1 + 0.5x2 + x3 = 1.
Check the convergence by obtaining the maximum norm of the residual vector.

26. For an iterative method x(k) = Bx(k−1)+c with an appropriate choice of x0, show that the error
e(k) has the estimate

‖e(k)‖ ≤ ‖B‖k+1

1− ‖B‖‖c‖.

Use this estimate to find the number of iterations needed to compute the solution of the system

10x1 − x2 + 2x3 − 3x4 = 0, x1 + 10x2 − x3 + 2x4 = 5,

2x2 + 3x2 + 20x3 − x4 = −10, 3x1 + 2x2 + x3 + 20x4 = 15

using Jacobi method with absolute error within 10−4 and x(0) = c (use maximum norm for vectors
and maximum row norm for matrices). Hint: In class, we have proved ‖e(k)‖ ≤ ‖B‖k‖e(0)‖. But
‖e(0)‖ = ‖x− x(0)‖ ≤ ‖x(1) − x(0)‖+ ‖B‖‖x− x(0)‖. In this inequality, solve for ‖x− x(0)‖ and

substitute on the RHS of the first inequality to get ‖e(k)‖ ≤ ‖B‖k
1− ‖B‖‖x

(1) − x(0)‖. Finally, take

x(0) = c to get the desired result.

27. Let x be the solution of the system Ax = b. Show that the following statements are equivalent:

i. the iterative method
x(k+1) = Bx(k) + c, k = 1, 2, · · ·

is convergent (ie., for any x(0), we have x(k) → x as k → ∞.

ii. the spectral radius rσ(B) < 1.

iii. there exists a induced matrix norm ‖ · ‖ such that ‖B‖ < 1.

Hint: Show that (i)⇒(ii)⇒(iii)⇒(i). To prove (i)⇒(ii), first show that B(k)y → 0 as k → ∞,
for an arbitrary vector y. Then replace this arbitrary vector by an eigen vector of B. In proving
(ii)⇒(iii), use the following result (which you don’t need to prove): Let A be a given n×n matrix
and let ǫ > 0. Then there exists an induced matrix norm ‖ · ‖ such that ‖A‖ ≤ rσ(A) + ǫ.

IV. Eigenvalue Problem

28. Let A be an non-singular n× n matrix with the condition that the eigenvalues λi of A satisfy

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

and has n linearly independent eigenvectors, vi, i = 1, · · · , n. Let the vector x(0) ∈ R
n is such

that

x(0) =

n
∑

j=1

cjvj , c1 6= 0.

Then find a constant C > 0 such that

|λ1 − µk| ≤ C

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

,

where µk is as defined in the power method and k = 1, 2, · · · .
29. The matrix

A =





0.7825 0.8154 − 0.1897
−0.3676 2.2462 − 0.0573
−0.1838 0.1231 1.9714
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has eigenvalues λ1 = 2, λ = 2 and λ3 = 1. Does the power method converge for the above matrix?
Justify your answer. Perform 5 iterations starting from the initial guess x(0) = (1, 3, 6) to verify
your answer.

30. The matrix

A =





2 0 0
2 1 0
3 0 1





has eigenvalues λ1 = 2, λ = 1 and λ3 = 1 and the corresponding eigen vectors may be taken as
v1 = (1, 2, 3)T , v2 = (0, 1, 2)T and v3 = (0, 2, 1)T . Perform 3 iterations to find the eigenvalue and
the corresponding eigen vector to which the power method converge when we start the iteration
with the initial guess x(0) = (0, 0.5, 0.75)T . Without performing the iteration, find the eigenvalue
and the corresponding eigen vector to which the power method converge when we start the
iteration with the initial guess x(0) = (0.001, 0.5, 0.75)T . Justify your answer.

31. The matrix

A =





5.4 0 0
−113.0233 −0.5388 −0.6461
−46.0567 −6.4358 −0.9612





has eigenvalues λ1 = 5.4, λ = 1.3 and λ3 = −2.8 with corresponding eigen vectors v1 =
(0.2,−4.1, 2.7)T , v2 = (0, 1.3,−3.7)T and v3 = (0, 2.6, 9.1)T . To which eigenvalue and the
corresponding eigen vector does the power method converge if we start with the initial guess
x(0) = (0, 1, 1)? Justify your answer.

32. Use Gerschgorin’s theorem to the following matrix and determine the intervals in which the
eigenvalues lie.

A =





0.5 0 0.2
0 3.15 −1

0.57 0 −7.43





Can power method be used for this matrix? Justify your answer. Use Power method to compute
the eigenvalue which is largest in the absolute value and the corresponding eigenvector each of
the above matrix.

V. Computer Program

33. Write a computer program (in any programming language that you know) to compute an eigen-
value and the corresponding eigen vector of a given n× n matrix A.

Use your program for the following matrices. In each case plot a graph with x axis as the number
of iterations and y axis as the eigenvalue obtained in that iteration.

i. A =









1.2357 − 0.5714 0.0024
0.5029 − 0.0557 − 0.0638

0.78 − 1.56 0.88









,x(0) = (1, 1, 1)T . Perform 110 iteration.(Eigen values

are 0.1, 0.95, 1.01 and the corresponding eigenvectors may be taken as (1, 2, 3)T , (2, 1, 0)T

and (5, 2, 6)T .)

ii. A =









0.5029 0.0051 − 0.0130
0.8663 2.0160 − 3.8984
0.5775 1.0107 − 2.0989









,x(0) = (1, 1, 1)T . Perform 50 iteration.(Eigen values are

-0.58, 0.5, 0.5 and the corresponding eigenvectors may be taken as (1, 0.2, 0.3)T , (0.1, 0.2, 0.1)T

and (0.001, 0.3, 0.2)T .)

iii. A =





−0.5088 − 0.0025 0.0038
−2.0425 0.3050 0.4125
−1.3588 0.5375 − 0.2263



 ,x(0) = (1, 1, 1)T . Perform 70 iteration.(Eigen values

are -0.5, -0.51, 0.58 and the corresponding eigenvectors may be taken as (1, 1, 3)T , (1, 2, 1)T

and (0, 3, 2)T .)



3.7 Gerschgorin’s Theorem 49

iv. A =





−0.5080 − 0.0040 0.0060
−1.8358 0.0986 0.6186
−1.2212 0.4004 − 0.0896



 ,x(0) = (1, 1, 1)T . Perform as many as iterations as

you wish.(Eigen values are -0.5, -0.51, 0.511 and the corresponding eigenvectors may be taken
as (1, 1, 2)T , (1, 2, 1)T and (0, 3, 2)T .)





4

Nonlinear Equations

One of the most frequently occuring problems in scientific work is to find the roots of equations of the
form

f(x) = 0. (4.1)

In this chapter, we introduce various iterative methods to obtain an approximate solution for the equation
(4.1).

By approximate solution to (4.1) we mean a point x∗ for which the function f(x) is very near to zero,
ie., f(x∗) ≈ 0.

In what follows, we always assume that f(x) is continuously differentiable real-valued function of a
real variable x. We further assume that the equation (4.1) has only isolated roots, that is, for each root
of (4.1) there is a neighbourhood which does not contain any other roots of the equation.

The key idea in approximating the isolated real roots of (4.1) consisting of two steps:

I. Initial guess: Establishing the smallest possible intervals [a, b] constaining one and only one root of
the equation (4.1). Take one point x0 ∈ [a, b] as an approximation to the root of (4.1).

II. Improving the value of the root If this initial guess x0 is not in desired accuracy, then devise a
method to improve the accuracy.

This process of improving the value of the root is called the iterative process and such methods are called
iterative methods. A general form of an iterative method may be written as

xn+1 = T (xn), n = 0, 1, · · · (4.2)

where T is a real-valued function called an iteration function. In the process of iterating a solution, we
obtain a sequence of numbers {xn} which are expected to converge to the root of (4.1).

Definition 4.1 (Convergence).

A sequence of iterates {xn} is said to converge with order p ≥ 1 to a point x∗ if

|xn+1 − x∗| ≤ c|xn − x∗|p, n ≥ 0 (4.3)

for some constant c > 0.

Remark 4.2. If p = 1, the sequence is said to converge linearly to x∗, if p = 2, the sequence is said to
converge quadratically and so on. ⊓⊔

4.1 Fixed-Point Iteration Method

The idea of this method is to rewrite the equation (4.1) in the form

x = g(x) (4.4)

so that any solution of (4.4) ie., any fixed point of g(x) is a solution of (4.1).
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Example 4.3. The equation x2 − x− 2 = 0 can be written as
1. x = x2 − 2
2. x =

√
x+ 2

3. x = 1 + 2
x

and so on. ⊓⊔

The fixed-point iteration method is to set an iterative process of the form (4.2) with iteration function
g(x). Note that for a given nonlinear equation, this iteration function is not unique. Once the iteration
function is chosen, then the method is defined as follows:

Step 1: Choose an initial guess x0.

Step 2: Define the iteration methods as

xn+1 = g(xn), n = 0, 1, · · · (4.5)

The crucial point in this method is to choose a good iteration function g(x). A good iteration function
should satisfy the following properties:

I. For the given starting point x0, the successive approximation xn given by (4.5) can be calculated.

II. The sequence x1, x2, · · · converges to some point ξ.

III. The limit ξ is a fixed point of g(x), ie., ξ = g(ξ).

The first property is the most needed one as illustrated in the following example.

Example 4.4. Consider the equation x2 − x = 0. We can take x = ±√
x and suppose we define g(x) =

−√
x. Since g(x) is defined only for x > 0, we have to choose x0 > 0. For this value of x0, we have

g(x0) < 0 and therefore, x1 cannot be calculated. ⊓⊔

Therefore, the choice of g(x) has to be made carefully so that the sequece of iterates can be calculated.
How to choose such a iteration function g(x)? Since, we expect x = g(x), we have to define g(x) in such
a way that this value should again belong to the domain of g. That is,

Assumption 1: a ≤ g(x) ≤ b for all a ≤ x ≤ b.

It follows that if a ≤ x0 ≤ b, then for all n, xn ∈ [a, b] and therefore xn+1 = g(xn) is defined and belongs
to [a, b].

Let us now discuss about the point 3. This is a natural expectation since the expression x = g(x),
which is the solution of the required equation is precisely the definition of a fixed point. To achieve this,
we need g(x) to be a continuous function. For if xn → x∗ then

x∗ = lim
n→∞

xn = lim
n→∞

g(xn−1) = g( lim
n→∞

xn−1) = g(x∗)

Therefore, we need

Assumption 2: The function g(x) is continuous.

Let us now discuss point 2. This point is well understood geometrically. The figure (a) and (c) il-
lustrated the convergence of the fixed-point iterations whereas the figures (b) and (d) illustrated the
diverging iterations. In this geometrical observation, we see that when g′(x) < 1, we have convergence
and otherwise, we have divergence. Therefore, we make the asspumption

Assumption 3: The iteration function g(x) is differentiable on I = [a, b]. Further, there exists a constant
0 < K < 1 such that

|g′(x)| ≤ K, x ∈ I. (4.6)

Theorem 4.5. Assume that g(x) is continuously differentiable on [a, b], and a ≤ g(x) ≤ b with

λ = max
a≤x≤b

|g′(x)| < 1. (4.7)

Then



4.1 Fixed-Point Iteration Method 53

Fig. 4.1. Fixed-point Iteration Procedure.

I. x = g(x) has a unique solution x∗ in I.

II. For any choice of x0 ∈ I, with xn+1 = g(xn), n = 0, 1, · · · ,

lim
n→∞

xn = x∗.

III. We further have

|xn − x∗| ≤ λn|x0 − x∗| ≤ λn

1− λ
|x1 − x0| (4.8)

and

lim
n→∞

x∗ − xn+1

x∗ − xn
= g′(x∗). (4.9)

Proof. Proof for 1 is omitted. To examine the convergence of the iterates xn, we note that

|x∗ − xn+1| = |g(x∗)− g(xn)| ≤ λ|x∗ − xn| (by Mean-value theorem and (4.6))

By induction, we have
|x∗ − xn+1| ≤ λn|x0 − x∗|, n = 0, 1, · · · .

Since, as n → ∞, λn → 0, we have xn → x∗. Further, we have

|x0 − x∗| = |x0 − x1 + x1 − x∗| ≤ |x0 − x1|+ |x1 − x∗| ≤ λ|x0 − x∗|+ |x0 − x1|.

Then solving for |x0 − x∗|, we get (4.8).

Now we will prove the rate of convergence (4.9). From Mean-value theorem

x∗ − xn+1 = g(x∗)− g(xn) = g′(ξn)(x
∗ − xn), n = 0, 1, · · · .

with ξn an unknown point between x∗ and xn. Since xn → x∗, we must have ξn → x∗ and therefore,

lim
n→∞

x∗ − xn+1

x∗ − xn
= lim

n→∞
g′(ξn) = g′(x∗).

This completes the proof. ⊓⊔

Example 4.6. Consider the equation sinx+x2−1 = 0. Take the initial interval as [0, 1]. There are three
possible choices for the iteration function, namely,

I. g1(x) = sin−1(1− x2),

II. g2(x) = −
√
1− sinx,

III. g3(x) =
√
1− sinx,
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Here we have g′1(x) = −2√
2−x2

. We can see that |g′1(x)| > 1. Taking x0 = 0.8 and denoting the absolute

error as ǫ, we have

n g1(x) ǫ
0 0.368268 0.268465
1 1.043914 0.407181
2 -0.089877 0.726610
3 1.443606 0.806873

The sequence of iterations is diverging as expected.

If we take g2(x), clearly the assumption 1 is violated and therefore is not suitable for the iteration
process. Let us take g3(x). Here, we have g′3(x) =

− cosx√
1−sin x

. Therefore,

|g′3(x)| =
√

1− sin2 x

2
√
1− sinx

=

√
1 + sinx

2
≤ 1√

2
< 1.

Taking x0 = 0.8 and denoting the absolute error as ǫ, we have

n g3(x) ǫ
0 0.531643 0.105090
1 0.702175 0.065442
2 0.595080 0.041653
3 0.662891 0.026158

The sequence is converging. ⊓⊔

When to stop the iteration?

Assume a positive number ǫ which is very small. Then, one of the following conditions may be used:

Condition 1: After each iteration check the inequality

|xn − xn−k| < ǫ

for some fixed positive integer k. If this inequality is satisfied, the iteration can be stopped.

Condition 2: Another condition may be to check

|f(xn)| < ǫ.

This error is sometime called the residual error for the equation f(x) = 0.

4.2 Bisection Method

Assume that f(x) is continuous on a given interval [a, b] and that is also satisfies f(a)f(b) < 0 with
f(a) 6= 0 and f(b) 6= 0. Using the intermediate value theorem, we can see that the function f(x) has
atleast one root in [a, b]. We assume that there is only one root for the equation (4.1) in the interval [a, b].
The Bisection includes the following steps:

Step 1: Given an initial interval [a0, b0], set n = 0.
Step 2: Define cn+1 = (an + bn)/2, the midpoint of the interval [an, bn].
Step 3:
If f(an)f(cn+1) = 0, then x∗ = cn+1 is the root.
If f(an)f(cn+1) < 0, then take an+1 = an, bn+1 = cn+1 and the root x∗ ∈ [an+1, bn+1].
If f(an)f(cn+1) > 0, then take an+1 = cn+1, bn+1 = bn and the root x∗ ∈ [an+1, bn+1].
Step 4: If the root is not obtained in step 3, then find the length of the new reduced interval [an+1, bn+1].
If the length of the interval bn+1 − an+1 is less than a prescribed positive number ǫ, then take the mid
point of this interval (x∗ = (bn+1 + an+1)/2) as the approximate root of the equation (4.1), otherwise go
to step 2.

The following theorem gives the convergence and error for the bisection method.
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Theorem 4.7 (Convergence and Error of Bisection Method).

Let [a0, b0] = [a, b] be the initial interval, with f(a)f(b) < 0. Define the approximate root as xn =
(bn−1 + an−1)/2. Then there exists a root x∗ ∈ [a, b] such that

|xn − x∗| ≤
(

1

2

)n

(b − a). (4.10)

Moveover, to achieve accuracy of |xn − x∗| ≤ ǫ, it suffices to take

n ≥ log(b − a)− log ǫ

log 2
. (4.11)

Proof. It is obvious that

bn − an =
1

2
(bn−1 − an−1),

which implies that

bn − an =

(

1

2

)n

(b0 − a0).

Therefore,

|xn − x∗| ≤ 1

2
(bn−1 − an−1) =

1

2

(

1

2

)n−1

(b0 − a0) =

(

1

2

)n

(b0 − a0),

which proves the estimate. To obtain the bound, we observe that

(

1

2

)n

(b− a) ≤ ǫ.

Taking log on both sides, we get the desired bound. ⊓⊔

Example 4.8. Consider the equation sinx+x2− 1 = 0. Take the initial interval as [0, 1]. That is a0 = 0,
b0 = 1. If the permissible absolute error is 0.125, ie. |xn − x∗| ≤ 0.125, then by (4.11), we must perform
atleast

n ≥ log(1)− log(0.125)

log 2
= 3

number of iterations. Let us perform the iterations.

a0 = 0, b0 = 1; c1 = 0.5, f(c1) = −0.27 < 0 ⇒ a1 = 0.5, b1 = 1.

a1 = 0.5, b1 = 1; c2 = 0.75, f(c2) = 0.24 > 0 ⇒ a2 = 0.5, b2 = 0.75.

a2 = 0.5, b2 = 0.75; c3 = 0.625, f(c3) = −0.024 < 0 ⇒ a3 = 0.625, b3 = 0.75.

Since |a1 − b1| = 0.125 and |x3 − x∗| ≤ |a1 − b1| = 0.125, we can stop the iteration here. We may take
the approximate solution for the equation as x∗ ≈ 0.6875. The true value is x∗ ≈ 0.636733. Therefore,
the absolute error is 0.05. ⊓⊔

4.3 Secant Method

Secant method is one of the most efficient method among all regula-falsi methods. Let us first explain
the regula-falsi method and given the modification in this method which leads to secant method.

The regula-falsi method is closely related to the bisection method introduced in section 5.2. Recall the
bisection method is to subdivide the interval [a, b] in which the root lies into two parts, take the part of
the interval which still holds the root and discard the other part of the interval. Although the bisection
method always converges to the solution, the convergence is sometime very slow in the sense that if the
root is very close to one of the boundary points (ie.,. a and b) of the interval. In such a situation, instead
of taking the midpoint of the interval, we take the weighted average of f(x) given by

w =
f(b)a− f(a)b

f(b)− f(a)



56 4 Nonlinear Equations

Example 4.9. Consider the equation f(x) := x3 − x− 1 = 0. Clearly, f(1) = −1 < 0 and f(2) = 5 > 0.
Thus, we can take the initial interval for the bisection method as [1, 2]. But here we observe that f(1) is
more close to 0 than f(2). So, it is very likely that the root x∗ of the given equation is closer to x = 1
than x = 2. Rather, the weighted of f(x) is

w =
5× 1 + 1× 2

6
= 1.16666 · · · .

Now f(w) = −0.578703 · · ·< 0 < 5 = f(2). Repeating this process once again, we get

w =
5× (1.1666 · · · ) + (0.578703 · · · )× 2

5.578703 · · · = 1.253112 · · ·

from which we have f(w) = −0.285363 · · ·< 0 < 5 = f(2).

Such an algorithm is called the regula-falsi method. The algorithm is as follows

Step 1: Given an initial interval [a0, b0], set n = 0.
Step 2: Define

wn+1 =
f(bn)an − f(an)bn

f(bn)− f(an)
. (4.12)

Step 3:
If f(an)f(wn+1) = 0, then x∗ = cn+1 is the root.
If f(an)f(wn+1) < 0, then take an+1 = an, bn+1 = wn+1 and the root x∗ ∈ [an+1, bn+1].
If f(an)f(wn+1) > 0, then take an+1 = wn+1, bn+1 = bn and the root x∗ ∈ [an+1, bn+1].
Step 4: If the root is not obtained in step 3, then check the condition

|f(wn+1)| < ǫ

for some pre-assigned positive quantity ǫ. If the condition is satisfied, then take the weight of the next
iteration as the approximate root of the equation (4.1). If this condition is not satisfied, then repeate the
step 2.

Note that the weighted average is the point at which the secant joining the points (a, f(a)) and (b, f(b))
intersects the x-axis. Let us derive this weighted average now. The secant line is given by

s(x) =
f(a)(x− b) + f(b)(a− x)

a− b
=

(f(a)− f(b))x+ f(b)a− f(a)b

a− b
.

The slope of this line is

s′(x) =
f(a)− f(b)

a− b
.

On the other hand, if w is the point of intersection of the secant with x-axis, then the line joining (w, 0)
and (b, f(b)) is given by

l(x) =
f(b)(w − x)

w − b
,

whose slope is

l′(x) =
−f(b)

w − b
.

Equating these slopes, we get

f(a)− f(b)

a− b
=

−f(b)

w − b
⇒ w =

f(b)a− f(a)b

f(b)− f(a)

as expected.

The regula-falsi method can be improved in several ways. The popular one is the secant method.
Given initial values x0 and x1 (not necessarily on the either side of the root) the iteration for secant
method is given by

xn+1 =
f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
. (4.13)
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This expression can also be written as

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
(4.12a)

Example 4.10. Consider the equation sinx + x2 − 1 = 0. Let x0 = 0, x1 = 1. Then the iterations from
the secant method are given by

n xn ǫ
2 0.543044 0.093689
3 0.626623 0.010110
4 0.637072 0.000339
5 0.636732 0.000001

Recall that the exact solution is x∗ ≈ 0.636733. Obviously, the secant method is much faster than both
bisection and fixed-point iteration methods. ⊓⊔

The order of convergence of secant method is

lim
n→∞

|xn+1 − x∗|
|xn − x∗|r =

∣

∣

∣

∣

f ′′(x∗)

2f ′(x∗)

∣

∣

∣

∣

r−1

. (4.14)

where r = (
√
5 + 1)/2 ≈ 1.62.

4.4 Newton-Raphson Method

If f(x) is differentiable, then on replacing in (4.12a) the slope of the secant by the slope of the tangent
at xn, one gets the iteration formula

xn+1 = xn − f(xn)

f ′(xn)
(4.15)

of Newton-Raphson Method.

Example 4.11. Consider the equation sinx + x2 − 1 = 0. Let x0 = 1. Then the iterations from the
Newton-Raphson method gives

n xn ǫ
1 0.668752 0.032019
2 0.637068 0.000335
3 0.636733 0.000000

Recall that the exact solution is x∗ ≈ 0.636733. Obviously, the Newton-Raphson method is much faster
than both bisection and fixed-point iteration methods. ⊓⊔

Remark 4.12. We will derive analytically the Newton-Raphson method. The Taylor polynomial of degree
n = 1 with remainder is given by

f(x) = f(x0) + f ′(x0)(x− x0) +
(x− x0)

2

2!
f ′′(ξ),

where ξ lies somewhere between x0 and x. Substituting x = x∗ into the above equation, we get

0 = f(x0) + f ′(x0)(x
∗ − x0) +

(x∗ − x0)
2

2!
f ′′(ξ).

When x0 is very close to x∗, then the last term in the above equation is smaller when compared to the
other two terms on the RHS and therefore, can be neglected. The remaining terms read
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f(x0) + f ′(x0)(x
∗ − x0) ≈ 0.

Solving for x∗, and using the notation x1 for this new approximate solution, we get

x1 = x0 −
f(x0)

f ′(x0)
.

When xn−1 is used in place of x0, we get the general formula (4.15). ⊓⊔

Remark 4.13. Let us define

g(x) = x− f(x)

f ′(x)
. (4.16)

Since f(x∗) = 0, it is easy to see that g(x∗) = x∗ and therefore finding root for the equation f(x) = 0
using Newton-Raphson method is equivalent to finding the fixed point of the function g(x). ⊓⊔

Theorem 4.14. Assume that f ∈ C2[a, b] and there exists a number x∗ ∈ [a, b], where f(x∗) = 0. If
f ′(x∗) 6= 0, then there exists a δ > 0 such that the sequence {xn} defined by the iteration (4.15) for
n = 1, 2, · · · will converge to x∗ for any initial approximation x0 ∈ [x∗ − δ, x∗ + δ].

Further, we have

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2 =

|f ′′(x∗)|
2|f ′(x∗)| . (4.17)

Proof. Consider the fixed-point iteration function g(x) defined by (4.16). Now,

g′(x) = 1− f ′(x)f ′(x) − f(x)f ′′(x)

(f ′(x))2
=

f(x)f ′′(x)

(f ′(x))2
.

By hypothesis, f(x∗) = 0 and therefore g′(x∗) = 0. Since g(x) is continuous, it is possible to find a δ > 0
so that |g′(x)| < 1 for all x ∈ (x∗ − δ, x∗ + δ). Therefore, a sufficient condition for the initial guess x0 to
give a convergent sequence is that x0 ∈ (x∗ − δ, x∗ + δ). and that δ be chosen so that

|f(x)f ′′(x)|
|f ′(x)|2 < 1 (4.18)

for all x ∈ (x∗ − δ, x∗ + δ).

By Taylor’s theorem, we have

f(x∗) = f(xn) + (x∗ − xn)f
′(xn) +

(x∗ − xn)
2

2!
f ′′(ξn).

with ξn between x∗ and xn. Note that f(x∗) = 0 by assumption and then divide f ′(xn) to obtain

0 =
f(xn)

f ′(xn)
+ x∗ − xn + (x∗ − xn)

2 f ′′(ξn)

2f ′(xn)

= xn − xn+1 + x∗ − xn + (x∗ − xn)
2 f ′′(ξn)

2f ′(xn)

By taking limit n → ∞, we get the result. ⊓⊔

To examine the order of convergence of the Newton-Raphson method, we need the following definition.

Example 4.15 (Quadratic convergence at an isolated root). Start with x0 = −2.4 and use Newton-
Raphson iteration to find the root x∗ = −2.0 of the polynomial f(x) = x3− 3x+2. The iteration formula
is

xk+1 = g(xk) =
2x3

k − 2

3x2
k − 3

.

Verify that |x∗ − xn+1|/|x∗ − xn|2 ≈ 2/3. ⊓⊔
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Pitfalls:

I. If f ′(xn) = 0 for some n, the method can no longer be applied.

II. If f(x) has no real root, then there is no indication by the method and the iteration may simply
oscillates. For example compute the Newton-Raphson iteration for f(x) = x2 − 4x+ 5.

III. If the equation f(x) = 0 has more than one root and we are specific about capturing a particular
root (say the smallest positive root). Then we have to be careful in choosing the initial guess. If the
initial guess is far away from the expected root, then there is a danger that the iteration converges
to another root of the equation. This usually happens when the slope f ′(x0) is small and the tangent
line to the curve y = f(x) is nearly horizontal.

For example, if f(x) = cosx and we seek the root p = π/2 and start with po = 3, calculation reveals
that x1 = −4.01525, x2 = −4.85266 and so on and the iteration converges to x = −4.71238898 ≈
−3π/2.

IV. Suppose that f(x) is positive and monotone decreasing on an unbounded interval [a,∞) and x0 > a.
Then the sequence might diverge.

Fig. 4.2. Newton-Raphson Method for f(x) = xe−x.

Fig. 4.3. Newton-Raphson Method for f(x) = x3 − x− 3.

For example, if f(x) = xe−x and x0 = 2, then

x1 = 4.0, x2 = 5.333333..., · · · , p15 = 19.72354..., · · · .

and the sequence diverges to +∞. This particular function has another suprising problem. The value
of f(x) goes to zero rapidly as x gets large, for example f(x15) = 0.0000000536, and it is possible
that p15 could be mistaken for a root (as per the residual error).

V. The method can stuck in a cycle. For example f(x) = x3 − x − 3 and the initial approximation is
x0 = 0. Then the sequence is

x1 = −3.00, x2 = −1.961538, x3 = −1.147176, x4 = −0.006579,
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Fig. 4.4. Newton-Raphson Method for f(x) = tan−1(x).

x5 = −3.000389, x6 = −1.961818, x7 = −1.147430, · · ·
and we are stuck in a cycle where xn+4 ≈ xk for k = 0, 1, · · · . But if we start with a value x0

sufficiently close with the root x∗ ≈ 1.6717, then the convergence is obtained (check!!!).

VI. When |g′(x)| ≥ 1 on an interval containing the root x∗, there is a chance of divergent oscillation.

For example, let f(x) = tan−1(x). The funtion g(x) = x−(1+x2) tan−1(x) and g′(x) = −2x tan−1(x).
If we start with the value x0 = 1.45, then

x1 = −1.55− 26, x2 = 1.845932, x3 = −2.88911 · · · .

But if we start with x0 = 0.5, then the iteration converges to the root x = 0.

4.5 System of Nonlinear Equations

Let us present the theory for two equations and the theory for any finite number of equation can be done
in a similar way. Consider the system of two nonlinear equations

f1(x1, x2) = 0, f2(x1, x2) = 0. (4.19)

In vector notation, we write as

f(x) = 0, x = (x1, x2)
T , f(x) = (f1(x1, x2), f2(x1, x2))

T .

We assume that this system admits an isolated root x∗ = (x∗
1, x

∗
2)

T .

For fixed point iteration method, we define the iterative sequence as

x1,n+1 = g1(x1,n, x2,n), x2,n+1 = g2(x1,n, x2,n), (4.20)

where g1 and g2 are iterative functions. In vector notation, we write this as

xn+1 = g(xn), n = 0, 1, · · · .

with xn = (x1,n, x2,n)
T and g(x) = (g1(x1, x2), g2(x1, x2))

T . Convergence of the fixed point iteration
method depends on the choice of the iterative function g.

To analyze the convergence of (4.20) use the following identities

x∗
1 = g1(x

∗
1, x

∗
2), x∗

2 = g∗2(x
∗
1, x

∗
2), (4.21)

where x∗ = (x∗
1, x

∗
2) is an isolated root of (4.19). The Taylor formula gives

gi(x
∗
1, x

∗
2) = gi(x1,n, x2,n) +

∂gi(ξ
(i)
1,n, ξ

(i)
2,n)

∂x1
(x∗

1 − x1,n) +
∂gi(ξ

(i)
1,n, ξ

(i)
2,n)

∂x2
(x∗

2 − x2,n), i = 1, 2,
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where the vector (ξ
(i)
1,n, ξ

(i)
2,n) lie on the line segment joining x∗ and xn. From (4.21) and (4.20), we have

x∗
i − xi,n+1 =

∂gi(ξ
(i)
1,n, ξ

(i)
2,n)

∂x1
(x∗

1 − x1,n) +
∂gi(ξ

(i)
1,n, ξ

(i)
2,n)

∂x2
(x∗

2 − x2,n), i = 1, 2.

In matrix notation, we have

(

x∗
1 − xi,n+1

x∗
2 − xi,n+1

)

=





∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2





(

x∗
1 − xi,n

x∗
2 − xi,n

)

.

We denote the 2× 2 matrix on the RHS of the above equation as

Gn =





∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2





and recall that this matrix resumbles the Jacobian matrix of the function g = (g1, g2) given by

G(x) =

(

∂g1(x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x1

∂g2(x)
∂x2

)

.

In matrix notation, we can write the above equation as

x∗ − xn+1 = Gn(x
∗ − xn).

We state the following convergence theorem without proof.

Theorem 4.16. Let D be a closed, bounded and convex set in the plane (we say D is convex if for any
two points in D, the line segment joining them is also in D). Assume that the components of g(x) are
continuously differentiable at all points of D, and further assume
(a) g(D) ⊂ D,
(b) λ = max

x∈D
‖G(x)‖∞ < 1.

Then

I. x = g(x) has a unique solution x∗ ∈ D.

II. For any initial point x0 ∈ D, the iteration

xn+1 = g(xn)

converges to x∗ ∈ D.

III. ‖x∗ − xn+1‖ ≤ (‖G(x∗)‖∞ + ǫn) ‖x∗ − xn‖∞ with ǫ → 0 as n → ∞.

Proof: Omitted.

We will now see how to choose g for a given system of nonlinear equations (4.19), so as to have a
faster convergence?

Let A be a constant non-singular matrix of order 2×2. We rewrite (4.19) as

x = x+Af(x) =: g(x).

The Jacobian matrix of g(x) is
G(x) = I +AF (x),

where F (x) is the Jacobian matrix of f(x) given by

F (x) =

(

∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

)

.

Choose A such that
‖G(x)‖∞ < 1, x ∈ D.
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Practically this may not be possible. So, for a given x0 choose A such that

‖G(x0)‖∞ < 1.

For rapid convergence, we can choose A such that

‖G(x0)‖∞ = 0,

for sufficiently close x0 to x∗. This is equivalent to taking A as

A = −(F (x0))
−1.

More rapid convergence is obtained when we choose

A = −(F (xn))
−1.

The respective method is the well-known Newton’s method given by

xn+1 = xn − (F (xn))
−1f(xn), n = 0, 1, · · · (4.22)

Example 4.17. Consider solving the system

f1 = 3x2
1 + 4x2

2 − 1 = 0,

f2 = x3
2 − 8x3

1 − 1 = 0.

with x0 = (−0.5, 0.25). The Jacobian of the given system is

F (x) =

(

∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

)

=

(

6x1 8x2

−24x2
1 3x2

2

)

F−1(x) =
1

192x1 + 18x2

( 3x2

x1
− 8

x1
24x1

x2

6
x2

)

Put x = (x1, x2) = (−0.5, 0.25) =: x0, we get

F−1(x0) =

(

0.0164 −0.1749
0.5246 −0.2623

)

The fixed point iteration is given by

(

x1,n+1

x2,n+1

)

=

(

x1,n

x2,n

)

−
(

0.0164 −0.1749
0.5246 −0.2623

)(

3x2
1,n + 4x2

2,n − 1
x3
2,n − 8x3

1,n − 1

)

For the first iteration, we have

(

x1,1

x2,1

)

=

(

−0.5
0.25

)

−
(

0.0164 −0.1749
0.5246 −0.2623

)(

0
0.0156

)

=

(

−0.4973
0.2541

)

and so on.

4.6 Unconstrained Optimization

Optimization refers to finding the maximum or minimum of a continuous function f(x1, x2, · · · , xn).

A point x∗ is called a strict local minimum of f if f(x) > f(x∗) in a small neighborhood of x∗. We
restrict ourselves in finding local minimum of f(x).

A necessary condition for x∗ to be a strict local minimum is that

∂f(x)

∂xi
= 0, i = 1, 2, · · · , n.
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Thus, the nonlinear system
∂f(x)

∂xi
= 0, i = 1, 2, · · · , n

can be solved and each calculated solution can be checked as to whether it is a local maximum or minimum
or neither.

In the gradiant notation, this system can be written as

∇f(x) = 0. (4.23)

where

∇f(x) =

(

∂f

∂x1
, · · · , ∂f

∂xn

)T

.

To solve the system (4.23), Newton’s method can be used. The Newton’s method leads to

xn+1 = xn −H(xn)
−1∇f(xn), n = 0, 1, 2, · · · ,

where H is the Hessian matrix of f given by

H(x)ij =
∂2f(x)

∂xi∂xj
, 1 ≤ i, j ≤ n. (4.24)

Note that if x∗ is strict local minimum of f , then Taylor formula can be used to show that H(x∗) is
non-singular and therefore H is non-singular in a small neighborhood of x∗.

Example 4.18. Given f(x1, x2) = x3
1 + 4x1x

2
2 + x1 − x2. To find a point at which this function attains

its maximum or minimum, we have to solve the system (4.23). Here

∂f

∂x1
= 3x2

1 + 4x2
2 + 1,

∂f

∂x2
= 8x1x2 − 1.

Therefore, the required system of equations is

3x2
1 + 4x2

2 + 1 = 0 (4.25)

8x1x2 − 1 = 0 (4.26)

To form the Newton’s method for the above system of equations, we need the inverse of the Hessian
matrix of f given by

H(x) =

(

∂2f1(x)
∂2x1

∂2f1(x)
∂x1∂x2

∂2f2(x)
∂x2∂x1

∂2f2(x)
∂2x2

)

=

(

6x1 8x2

8x2 8x1

)

.

Inverse of this matrix is given by

H−1(x) =
1

8(3x2
1 − 4x2

2)

(

4x1 −4x2

−4x2 3x1

)

.

Thus the Newton’s method for finding the maximum or minimum for the given function f takes the form

(

x1,n+1

x2,n+1

)

=

(

x1,n

x2,n

)

− 1

8(3x2
1,n − 4x2

2,n)

(

4x1,n −4x2,n

−4x2,n 3x1,n

)(

3x2
1,n + 4x2

2,n + 1
8x1,nx2,n − 1

)

, n = 0, 1, · · ·

When the initial guess x0 = (x1,0, x2,0)
T is given, the above iteration for n = 0, 1, 2, · · · can be computed.

⊓⊔
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Exercise 4

I. Fixed-Point Iteration Method

1. Let f(x) = 0 be a nonlinear equation for which the sequence {xn}, generated by an appropriate
fixed-point iteration method, converges to a limit x∗. Under what condition on the iteration
function does this limit x∗ be a solution to the nonlinear equation f(x) = 0? Prove it.

2. For each of the following equations, find the correct iteration function that converges to the desired
solution:
(a) x− tanx = 0, (b) e−x − cosx = 0.
Study geometrically how the iterations behave with different iteration functions.

3. Show that g(x) = π + 1
2 sin(x/2) has a unique fixed point on [0, 2π]. Use fixed-point iteration

method with g as the iteration function and x0 = 0 to find an approximate solution for the
equaton 1

2 sin(x/2)− x+ π = 0. Stop the iteration when the residual error is less than 10−4.

4. If α and β be the roots of x2 + ax+ b = 0. If the iterations

xn+1 = −axn + b

xn
and xn+1 = − b

xn + a

converges, then show that they converge to α and β, respectively, if |α| > |β|.
5. Let {xn} ⊂ [a, b] be a sequence generated by a fixed point iteration method with continuous

iteration function g(x). If this sequence converges to x∗, then show that

|xn+1 − x∗| ≤ λ

1− λ
|xn+1 − xn|,

where λ := max
x∈[a,b]

|g′(x)|. (This enables us to use |xn+1 − xn| to decide when to stop iterating.)

6. Give reason for why the sequence xn+1 = 1− 0.9x2
n, with initial guess x0 = 0, does not converge

to any solution of the quadratic equation 0.9x2 + x − 1 = 0? [Hint: Observe what happens after
25 iterations]

7. Let x∗ be the smallest positive root of the equation 20x3 − 20x2 − 25x+ 4 = 0. If the fixed-point
iteration method is used in solving this equation with the iteration function g(x) = x3−x2− x

4 +
1
5

for all x ∈ [0, 1] and x0 = 0, then find the number of iterations n required in such a way that
|x∗ − xn| < 10−3.

II. Bisection Method

7. Find the number of iterations to be performed in the bisection method to obtain a root of the
equation

2x6 − 5x4 + 2 = 0

in the interval [0, 1] with absolute error ǫ ≤ 10−3. Find the approximation solution.

8. Find the approximate solution of the equation x sinx− 1 = 0 (sine is calculated in radians) in the
interval [0, 2] using Bisection method. Obtain the number of iterations to be performed to obtain
a solution whose absolute error is less than 10−3.

9. Find the root of the equation 10x + x − 4 = 0 correct to four significant digits by the bisection
method.

III. Secant and Newton-Raphson Method

10. Let x∗ be the point of intersection of the circle

(x+ 1)2 + (y − 2)2 = 16

and the positive x-axis. Choose a value ξ with 0.5 < ξ < 3, such that the iterative sequence
generated by the secant method (with circle function values taken in the fourth quadrant) fails
to converge to x∗ when started with the initial guess x0 = 0.5 and x1 = ξ. Explain geometrically
why secant method failed to converge with your choice of the initial guess (x0, x1).

11. Given the following equations:
(a) x4 − x− 10 = 0, (b) x− e−x = 0.
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Determine the initial approximations for finding the smallest positive root. Use these to find the
roots upto a desired accuracy with secant and Newton-Raphson methods.

12. Find the iterative method based on Newton-Raphson method for finding
√
N and N1/3, where

N is a positive real number. Apply the methods to N = 18 to obtain the results correct to two
significan digits.

13. Find the iterative method based on the Newton-Raphson method for approximating the root of
the equation sinx = 0 in the interval (−π/2, π/2).
Let α ∈ (−π/2, π/2) and α 6= 0 be such that if the above iterative process is started with the ini-
tial guess x0 = α, then the iteration becomes a cycle in the sense that xn+2 = xn, for n = 0, 1, · · · .
Find a non-linear equation g(x) = 0 whose solution is α.
Starting with the initial guess x0 = α, write the first five iterations using Newton-Raphson method
for the equation sinx = 0.
Starting with the initial guess x0 = 1, perform five iterations using Newton-Raphson method for
the equation g(x) = 0 to find an approximate value of α.

14. Let {xn}∞n=1 be the iterative sequence generated by the Newton-Raphson method in finding the
root of the equation e−ax = x, where a in the range 0 < a ≤ 1. If x∗ denoted the exact root of
this equation and x0 > 0, then show that

|x∗ − xn+1| ≤
1

2
(x∗ − xn)

2.

15. Consider the equation x sinx − 1 = 0. Choose an initial guess x0 > 1 such that the Newton-
Raphson method converges to the solution x∗ of this equation such that −10 < x∗ < −9. Compute
four iterations and give an approximate value of this x∗. For the same equation, choose another
initial guess x0 > 1 such that the Newton-Raphson method converges to the smallest positive root
of this equation. Compute four iterations and give an approximate value of this smallest positive
root.

16. Give an initial guess x0 for which the Newton-Raphson method fails to obtain the real root for
the equation 1

3x
3 − x2 + x+ 1 = 0. Give reason for why it failed.

17. Can Newton-Raphson method be used to solve f(x) = 0 if
(i) f(x) = x2 − 14x+ 50?
(ii) f(x) = x1/3?
(iii) f(x) = (x− 3)1/2 with x0 = 4?
Give reasons.

18. Consider the distribution function for the random variable X given by

F (x) = 1− e
− x

(x−1)2 , 0 ≤ x ≤ 1.

Use Newton-Raphson method to find a value of 0 ≤ x ≤ 1 such that P (X > x) = sin y, where
y = x2. Here P denotes the probability. (Note: A distribution function F of a random variable X
is defined for any real number x as F (x) = P (X ≤ x). Therefore, the required value of x is pre-
cisely a solution of the nonlinear equation obtained using the fact that P (X > x) = 1−P (X ≤ x).)

IV. System of Nonlinear Equations

19. Using Newton’s method to obtain a root for the following nonlinear systems:
(i) x2

1 + x2
2 − 2x1 − 2x2 + 1 = 0, x1 + x2 − 2x1x2 = 0.

(ii) 4x2
1 + x2

2 − 4 = 0, x1 + x2 − sin(x1 − x2) = 0.

20. Use Newton’s method to find the minimum value of the function f(x) = x4
1 + x1x2 + (1 + x2)

2.
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Interpolation by Polynomials

Suppose that a function f(x) is not defined explicitely, but its value at some finite number of points
{xi, i = 1, 2, · · · , n} is given. The interest is to find the value of f at some point x lying between xj

and xk, for some j, k = 1, 2, · · · , n. This can be obtained by first approximating f by a known function
and then finding the value of this approximate function at the point x. Such a process is called the
interpolation. The interpolating function is usually chosen from a restricted class of functions, namely,
polynomials. In this chapter, we study the methods of interpolating a function. In section 2.1, we introduce
Lagrange interpolation. Section 2.2 introduces the notion of divided difference and Newton divided differ-
ence formula. The error analysis of the interpolation is studied in section 2.3. The advanced interpolation
is presented in the final section.

5.1 Lagrange Interpolation

The basic interpolation problem can be posed in one of two ways:

I. Given a set of nodes {xi/ i = 0, 1, · · · , n} and corresponding data values {yi/ i = 0, 1, · · · , n}, find
the polynomial pn(x) of degree less than or equal to n, such that

pn(xi) = yi, i = 0, 1, · · ·n.

II. Given a set of nodes {xi/ i = 0, 1, · · · , n} and a continuous function f(x), find the polynomial pn(x)
of degree less than or equal to n, such that

pn(xi) = f(xi), i = 0, 1, · · ·n.

Note that in the first problem we are trying to fit a polynomial to the data, and in the second case, we
are trying to approximate a given function with the interpolating polynomial. Note that the first problem
can be viewed as a particular case of the second.

Theorem 5.1 (Lagrange Interpolation Formula).

Let x0, x1, · · · , xn ∈ I = [a, b] be n+ 1 distinct nodes and let f(x) be a continuous real-valued function
defined on I. Then, there exists a unique polynomial pn of degree ≤ n (called Lagrange Formula for
Interpolating Polynomial), given by

pn(x) =

n
∑

k=0

f(xk)lk(x), lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
, k = 0, · · · , n (5.1)

such that

pn(xi) = f(xi), i = 0, 1, · · · , n. (5.2)

The function lk(x) is called the Lagrange multiplier.
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Proof: Clearly pn defined by (5.1) is a polynomial of degree ≤ n that satisfies (5.2). All that remains
is to show the uniqueness of the polynomial. To this end, assume that there exists another interpolating
polynomial q(x) of degree ≤ n that satisfies (5.2) and define

r(x) = pn(x) − q(x).

Since both pn and q are polynomials of degree less than or equal to n, so is their difference. However, we
must note that

r(xi) = pn(xi)− q(xi) = f(xi)− f(xi) = 0

for each node point xi, i = 0, 1, · · · , n. Thus, we have a polynomial of degree less than or equal to n that
has n+ 1 roots. The only such polynomial is the zero polynomial, ie., r(x) = 0 or pn(x) = q(x) and thus
pn(x) is unique. ⊓⊔

Example 5.2. Consider the case n = 1 in which case we have two distinct points x0 and x1. Then

l0(x) =
x− x1

x0 − x1
, l1(x) =

x− x0

x1 − x0

and

p1(x) = f(x0)l0(x) + f(x1)l1(x)

= f(x0)
x− x1

x0 − x1
+ f(x1)

x− x0

x1 − x0

=
f(x0)(x− x1)− f(x1)(x − x0)

x0 − x1

= f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0). (5.3)

This is the familiar case of linear interpolation. ⊓⊔

Example 5.3. To obtain an estimate of e0.826 using the function values

e0.82 ≈ 2.270500, e0.83 ≈ 2.293319.

Denote x0 = 0.82, f(x0) = 2.270500, x1 = 0.83 and f(x1) = 2.293319, and apply the the formula (5.3) to
get

p1(x) = 2.270500+
2.293319− 2.270500

0.83− 0.82
(x− 0.82) = 2.2819x+ 0.399342.

In particular, taking x = 0.826, we get

p1(0.826) ≈ 2.2841914.

The true value is
e0.826 ≈ 2.2841638,

to eight significant digits.

Note that if we use quadratic interpolation with an additional node x2 = 0.84 and f(x2) = 2.316367,
then the approximation value is

p2(0.826) ≈ 2.2841639,

which is more accurate than the linear interpolation. ⊓⊔

Remark 5.4. The above example gives us a feeling that if we increase the degree of the interpolating
polynomial, the polynamial approximates the orginal function more accurately. But this is not in general
true as we will see in example 2.12. ⊓⊔

Remark 5.5. Although the Lagrange interpolation formula gives the existence and uniqueness of a poly-
nomial interpolation for a given function, the main disadvantage is that in calculating the polynomial
pk(x), no advantage can be taken of the fact that one already has pk−1(x) available. Thus, it is very expen-
sive to go for Lagrange interpolation when it is not known apriori the minimal degree of the polynomial
to get the best approximation to a given function. ⊓⊔
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5.2 Newton Interpolation and Divide Differences

In the previous section, we have seen that in the Lagrange formula of interpolating polynomial for a
function, if we decide to add a point to the set of nodes to increase the accuracy, we have to completely
recompute all of the li(x) functions. In other words, we cannot express pn+1 in terms of pn, using Lagrange
formula. An alternate form of the polynomial, known as the Newton form, avoids this problem, and allows
us to easily write pn+1 in terms of pn.

The idea behind the Newton formula of the interpolating polynomial is to write pn(x) in the form
(called Newton form)

pn(x) = A0 +A1(x− x0) +A2(x− x0)(x− x1) + · · ·+An(x− x0) · · · (x− xn−1) (5.4)

where the coefficients Ai, i = 0, 1, · · · , n are to be obtained. From the interpolation condition that this
polynomial agrees with the function value at the node points, we get

A0 = pn(x0) = f(x0).

For x = x1, we have

A1 =
pn(x1)−A0

x1 − x0
=

f(x1)− f(x0)

x1 − x0
:= f [x0, x1].

For x = x2, we have

A2 =
pn(x2)− p1(x2)

(x2 − x0)(x2 − x1)
=

f(x2)− p1(x2)

(x2 − x0)(x2 − x1)
:= f [x0, x1, x2].

In this way we can obtain all the coefficients.

The advantage in this form is that if pn is already calculated, then pn+1 can be written as

pn+1(x) = pn(x) +An+1(x− x0) · · · (x− xn).

This also shows that the coefficient An+1 in the Newton form (5.4) for the interpolating polynomial is
the leading coefficient, ie., the coefficient of xn+1, in the polynomial pn+1 of degree ≤ n+ 1 which agree
with f(x) at x0, · · · , xn+1. We summarize this in the following theorem.

Theorem 5.6 (Newton Interpolation Formula).

Let pn be the polynomial that interpolates a continuous function f(x) at (n + 1) distinct nodes xi ∈ I,
for i = 0, 1, · · · , n. Then the polynomial pn+1 that interpolates f at (n + 2) distinct nodes xi ∈ I, for
i = 0, 1, · · · , n+ 1 is given by

pn+1(x) = pn(x) + f [x0, x1, · · · , xn+1]wn(x) (5.5)

where

f [x0, x1, · · · , xn+1] =
f(xn+1)− pn(xn+1)

wn(xn+1)
, f [x0] = f(x0) (5.6)

is called the (n+ 1)th divided difference of f(x) at points x0, x1, · · · , xn+1 with

wn(x) =

n
∏

i=0

(x− xi). (5.7)

The formula (5.5) is called the Newton Formula for Interpolating Polynomial.

Proof. Since we know that the interpolation polynomial is unique, all we have to do is to show that pn+1,
as given in (5.5), satisfies the interpolation conditions by assuming that pn indeed satisfies this condition.

For 0 ≤ k ≤ n, we have wn(xk) = 0 and so we have

pn+1(xk) = pn(xk) + f [x0, x1, · · · , xn+1]wn(xk) = pn(xk) = f(xk).
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Hence, pn+1 interpolates all but the last point. To check for xn+1, we observe

pn+1(xn+1) = pn(xn+1) + f [x0, x1, · · · , xn+1]wn(xn+1)

= pn(xn+1) + f(xn+1)− pn(xn+1)

= f(xn+1).

Thus pn+1 interpolates f(x) at all the nodes. Moreover, it clearly is a polynomial of degree less than or
equal to n+ 1, and so we are done. ⊓⊔

Example 5.7. As a continuation of example 2.2, let us try to contruct the linear interpolating polynomial
of a function f(x) in the Newton form. In this case, the interpolating polynomial is given by

p1(x) = p0(x) + f [x0, x1]w1(x) = f [x0] + f [x0, x1](x− x0),

where

f [x0] = f(x0), f [x0, x1] =
f(x0)− f(x1)

x0 − x1
(5.8)

are the zeroth and first order divided differences, respectively. ⊓⊔

Algorithm 5.8 (Construction of Divided Difference).

input: n,x(i),y(i) (i= 0,1,2, ... ,n)
a(0) = y(0)
for k=1 to n do

p = 0
w = 1
for j = 0 to k-1 do

p = p + a(j) ∗ w
w = w ∗ (x(k) - x(j))

end for
a(k) = (y(k) - p)/w

end for
output: a(k) (k= 0,1,2, ... ,n)

An alternate way of deriving the divided difference coefficients is by means of a divided difference
table.

The divided difference table is constructed by obtaining higher order divided differences recursively
using lower order divided differences. The second order divided difference is given by (using (5.6)
and (5.8))

f [x0, x1, x2] =
f(x2)− p1(x2)

(x2 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
− p(x0)

(x2 − x0)(x2 − x1)
− f [x0, x1]w0(x2)

(x2 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
− f(x0)

(x2 − x0)(x2 − x1)
− f(x1)− f(x0)

(x1 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
+

f(x0)

(x1 − x0)(x2 − x0)
− f(x1)

(x1 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
+

f(x0)

(x1 − x0)(x2 − x0)

−f(x1)

(

1

(x2 − x0)(x2 − x1)
+

1

(x1 − x0)(x2 − x0)

)

=
f(x2)− f(x1)

(x2 − x0)(x2 − x1)
− f(x1)− f(x0)

(x1 − x0)(x2 − x0)
.

Therefore,
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f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
. (5.9)

Similarly, we can derive the third order divided difference

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
. (5.10)

In general, the nth order divided difference formula, sometime called Newton divided difference
is defined as

f [x0, x1, · · · , xn] =
f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]

xn − x0
(5.11)

A simple way to generate divided difference for Newton interpolation formula (5.5) may be through the
divided difference table shown in table 1.

xi f [·] = f(·) f [·, ·] f [·, ·, ·] f [·, ·, ·, ·] f [·, ·, ·, ·, ·]
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3] f [x0, x1, x2, x3, x4]

f [x2, x3] f [x1, x2, x3, x4]
x3 f [x3] f [x2, x3, x4]

f [x3, x4]
x4 f [x4]

Table 1. Divided-Difference Table

Let the nodes x0, x1, · · · , xn be equally spaces, that is, xi = x0 + ih, i = 0, 1, · · · , n. Define the
difference operator

∆f(xi) = f(xi + h)− f(xi) =: fi+1 − fi (5.12)

Repeated application of the difference operators lead to the followoing higher order differences

∆nf(xi) = ∆n−1fi+1 −∆n−1fi, (5.13)

The Newton divided difference can be written in the above notation as

f [x0, x1] =
f(x1)− f(x0)

h
=

1

h
∆f0

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1
h∆f1 − 1

h∆f0

2h
=

1

2!h2
∆2f0

By induction, we can show that

f [x0, x1, · · · , xn] =
1

n!hn
∆nf0 (5.14)

The Newton’s interpolation formula (5.5) for equally spaced nodes with step size h is thus given by

pn(x) =

n
∑

k=0

1

k!hk
(∆kf0) wk(x) (5.15)

5.3 Error in Polynomial Interpolation

Let f(x) be defined on an interval I = [a, b]. How good a polynomial pn(x) of degree ≤ n interpolates the
function f(x) at n + 1 nodes x0, x1, · · · , xn in I? This question leads to the analysis of interpolation
error en(x) of pn(x) given by

en(x) = f(x)− pn(x). (5.16)

The following theorem provides a formula for the interpolation error.
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Theorem 5.9 (Polynomial Interpolation Error Formula).

Let f ∈ Cn+1([a, b]) and let the distinct nodes x0, x1, · · · , xn be in [a, b]. Then, for each x̄ ∈ I with x̄ 6= xi

(i = 0, 1, · · · , n), there is a ξ ∈ (a, b) such that

en(x̄) =
wn(x̄)

(n+ 1)!
f (n+1)(ξ), (5.17)

where wn(x) is given in (5.7).

Proof. Let pn+1(x) be the polynomial of degree ≤ n + 1 which interpolates f(x) at n + 2 nodes
x0, x1, · · · , xn and x̄. Then pn+1(x̄) = f(x̄). From (5.5), we have

pn+1(x) = pn(x) + f [x0, · · · , xn, x̄]wn(x).

It follows that
f(x̄) = pn+1(x̄) = pn(x̄) + f [x0, · · · , xn, x̄]wn(x̄).

Therefore, we have

en(x̄) = f [x0, · · · , xn, x̄]wn(x̄). (5.18)

For any t ∈ I, t 6= xi (i = 0, 1, · · · , n), define the function

G(x) = en(x) −
wn(x)

wn(t)
en(t).

Then, for i = 0, 1, · · · , n,
G(xi) = en(xi)−

wn(xi)

wn(t)
en(t) = 0

and
G(t) = en(t)− en(t) = 0.

Thus, G has n + 2 distinct zeros in I. Using the mean value theore, G′ has atleast n + 1 distinct zeros.
Inductively, G(j)(x) has n+ 2− j zeros in I, for j = 0, 1, · · · , n+ 1. Let ξ be a zero of G(n+1)(x),

G(n+1)(ξ) = 0.

Since e
(n+1)
n (x) = f (n+1)(x) and w

(n+1)
n (x) = (n+ 1)!, we obtain

G(n+1)(x) = f (n+1)(x) − (n+ 1)!

wn(t)
en(t).

Substituting x = ξ and solving for en(t),

en(t) =
wn(t)

(n+ 1)!
· f (n+1)(ξ).

Taking t = x̄, we get the desired result. ⊓⊔

Definition 5.10 (Infinity Norm).

If f is continuous on a closed interval I = [a, b], then the infinity norm of f denoted as ‖f‖∞,I is
defined as

‖f‖∞,I = max
x∈I

|f(x)|. (5.19)

Example 5.11. Let us find a bound for the error in linear interpolation given in example 2.5. The linear
interpolating polynomial for f(x) at x0 and x1 is given by

p1(x) = p0(x) + f [x0, x1]w1(x) = f(x0) + f [x0, x1](x− x0),

where f [x0, x1] is given by (5.8). Therefore, the error e1(x) is given by (by (5.17))
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e1(x) =
(x− x0)(x − x1)

2
· f ′′(ξ),

where ξ depends on x. If x ∈ I = [x0, x1], then ξ ∈ (x0, x1). Therefore,

|e1(x)| ≤ |(x− x0)(x − x1)|
‖f ′′‖∞,I

2
.

Note that the maximum value of |(x − x0)(x − x1)| for all x ∈ [x0, x1] occurs at x = (x0 + x1)/2 and
therefore, we have

|(x − x0)(x − x1)| ≤
(x1 − x0)

2

4
.

Using this inequality, we get the bound for error e1(x) as

|e1(x)| ≤ (x1 − x0)
2 ‖f ′′‖∞,I

8
,

for all x ∈ [x0, x1], which further implies

‖e1‖∞,I ≤ (x1 − x0)
2 ‖f ′′‖∞,I

8
.

⊓⊔

Quite often, the polynomial interpolation that we compute is based on the function data subjected
to rounding error. Let us denote the approximate value of f(xk) by f̃(xk) for each node point xk,
k = 0, 1, · · · , n. Then the corresonding polynomial interpolation using Lagrange formula gives

p̃n(x) =
n
∑

k=0

f̃(xk)lk(x)

and we want to estimate the total error, which is given by

f(x)− p̃n(x) = (f(x)− pn(x)) + (pn(x) − p̃n(x)), (5.20)

where the first term on the right hand side the error due to polynomial interpolation whose formula is
given by (5.17) and the second term is the error due to rounding.

We now turn our attention to analyze the error due to rounding. Let

f(xk)− f̃(xk) = ǫk and ||ǫ||∞ = max{|ǫk|/k = 0, 1, · · · , n},

then we have

|pn(x)− p̃n(x)| =
∣

∣

∣

∣

∣

n
∑

k=0

(f(xk)− f̃(xk))lk(x)

∣

∣

∣

∣

∣

≤ ||ǫ||∞
n
∑

k=0

||lk||∞

Although the error due to rounding looks bounded, the sum on the right hand side can grow quite large
as n increases, especially, when the nodes are equally spaced as we will study now.

Assume that the nodes are equidistant on the interval [a, b], with x0 = a and xn = b, and xk+1−xj = h
for all k = 0, 1, · · · , n− 1. We write

xk = a+ kh, k = 0, 1, · · · , n, and x = a+ ηh, 0 ≤ η ≤ n.

Therefore,

lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
=

n
∏

i=0,i6=k

η − i

i− k
, k = 0, · · · , n

Hence, the Lagrange multipliers are not dependent on the choice of a, b or h. They depend entirely on n,
η (which depends on x) and the distribution of the nodes. The figure 2.1 shows the function
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l(x) =

n
∑

k=0

|lk(x)|

for various values of n and figure 2.2 shows the n in the x-axis and the function

Mn =

n
∑

k=0

||lk||∞

in the y-axis. In fact, this behavior of the Legrange multiplier can also be analyzed theoretically, but this
is outside the scope of the present course.

Fig. 5.1. y =

n∑

k=0

|lk(x)|. Fig. 5.2. y =
n∑

k=0

||lk||∞.

Fig. 5.3. Interpolation polynomial for f(x) = 1/(1 + 25x2) for n = 4, n = 6 and n = 8 respectively.

With this knowledge we now take the equation (5.20) which gives

||f − p̃||∞ ≤ ||f − pn||∞ + ||pn − p̃||∞n ≤ ||f − pn||∞ + ||ǫ||∞Mn. (5.21)

As it is clear from the figure 2.2 that Mn increases exponentially with respect to n, although we have a
very small value for the rounding error ||ǫ||∞, a large enough n can bring in a significantly large error in
the interpolated polynomial as illustrated in the example.

Example 5.12. Consider the function f(x) = 1/(1 + 25x2). The polynomial interpolation with n = 4,
n = 6 and n = 8 are depicted in figure 2.3. ⊓⊔

The above example shows that the polynomial interpolation of higher degree suffers very badly due
to rounding error. However, this is not true for any function as the exponential function gets better
approximation as the degree of polynomial increases. A more deeper analysis is required to understand
the reason behind the behavior of rounding error in polynomial interpolation. But this is outside the
scope of this course and therefore is omitted.



5.4 Piecewise Linear and Cubic Spline Interpolation 75

5.4 Piecewise Linear and Cubic Spline Interpolation

Quite often polynomial interpolation will be unsatisfactory as an approximation tool. This is true if we
insist on letting the order of the polynomial get larger and larger. However, if we keep the order of the
polynomial fixed, and use different polynomial over different intervals, with the length of the intervals
getting smaller and smaller, then interpolation can be very accurate and powerful approximation tool.

Let us start with linear interpolation over an interval I = [a, b] which leads to

p1(x) = f(a) + f [a, b](x− a) = f(a) +
f(b)− f(a)

b− a
(x− a) =

x− b

a− b
f(a) +

x− a

b− a
f(b).

With the nodes x0 = a, x2 = b and x0 < x1 < x2, we can obtain a quadratic interpolation polynomial
as discussed in the previous sections. Instead, we can interpolate the function f(x) as two piece of linear
polynomials, one in [x0, x1] and another one in [x1, x2]. Such polynomials are defined as

p1,1(x) =
x− x1

x0 − x1
f(x0) +

x− x0

x1 − x0
f(x1), p1,2(x) =

x− x2

x1 − x2
f(x1) +

x− x1

x2 − x1
f(x2)

and the interpolating polynomial is given by

P (x) =

{

p1,1(x) , x ∈ [x0, x1]
p1,2(x) , x ∈ [x1, x2].

Note that P (x) is a continuous function in [a, b], which interpolates f(x) and is linear in [a, x1] and [x1, b].
Such a polynomial is called piecewise linear polynomial. Although piecewise linear interpolation is
continuous, it is not differentiable at the nodes and also, it makes a poor approximation to f(x). We wish
to find an interpolation function that is smooth and does a better approximation to f(x). This can be
achieved by spline interpolation.

Definition 5.13 (Spline Function).

A spline function of degree d with nodes xi, i = 0, 1, · · · , n is a function s(x) with the properties

I. On each subinterval [xi−1, xi], i = 1, 2, · · · , n, s(x) is a polynomial of degree ≤ d.

II. The interpolation condition s(xi) = f(xi), i = 0, 1, · · · , n is satisfied.

III. s(x) and its first (d− 1) derivatives are continous on [a, b].

We shall now study how we can obtain the interpolation of a function f(x) as spline functions instead of
polynomials. For the sake of simplicity, we restrict only to cubic splines. The construction of the spline
interpolation s(x) of a function f(x) is as follows:

Step 1: Let us denote by M1, · · · , Mn,

Mi = s′′(xi), i = 0, 1, · · · , n

and first obtain s(x) in terms of Mi’s which are unknowns.

Step 2: Since s(x) is cubic on each [xi−1, xi], the function s′′(x) is linear on the interval such that

s′′(xi−1) = Mi−1, s′′(xi) = Mi.

Therefore, it is given by

s′′(x) =
(xi − x)Mi−1 + (x− xi−1)Mi

xi − xi−1
, xi−1 ≤ x ≤ xi (5.22)

Integrating (5.22) two times with respect to x, we get

s(x) =
(xi − x)3Mi−1

6(xi − xi−1)
+

(x− xi−1)
3Mi

6(xi − xi−1)
+K1x+K2,

where K1 and K2 are integrating constants to be determined by using the conditions s(xi−1) = f(xi−1)
and s(xi) = f(xi). We have
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K1 =
f(xi)− f(xi−1)

xi − xi−1
− (Mi −Mi−1)(xi − xi−1)

6

K2 =
xif(xi−1)− xi−1f(xi)

xi − xi−1
− (Mi−1xi −Mixi−1)(xi − xi−1)

6

Substituting these values in the above equation, we get

s(x) =
(xi − x)3Mi−1 + (x− xi−1)

3Mi

6(xi − xi−1)
+

(xi − x)f(xi−1) + (x− xi−1)f(xi)

xi − xi−1

− 1

6
(xi − xi−1)[(xi − x)Mi−1 + (x − xi−1)Mi], xi−1 ≤ x ≤ xi (5.23)

Formula (5.23) applies to each of the intervals [x1, x2], · · · , [xn−1, xn]. The formulas for adjacent intervals
[xi−1, xi] and [xi, xi+1] will agree at their common point x = xi because of the interpolating condition
s(xi) = f(xi). This implies that s(x) will be continuous over the entire interval [a, b]. Similarly, formula
(5.22) for s′′(x) implies that it is continuous on [a, b].

Step 3: All that remains is to find the values of Mi for all i = 0, 1, · · · , n. This is obtained by ensuring
the continuoity of s′(x) over [a, b], ie., the formula for s′(x) on [xi−1, xi] and [xi, xi+1] are required to give
the same value at their common point x = xi, for i = 1, 2, · · · , n − 1. After simplification (???), we get
the system of linear equations for i = 1, 2, · · ·n− 1

xi − xi−1

6
Mi−1 +

xi+1 − xi−1

3
Mi +

xi+1 − xi

6
Mi+1 =

f(xi+1)− f(xi)

xi+1 − xi
− f(xi)− f(xi−1)

xi − xi−1
. (5.24)

These n− 1 equations together with the assumption that

M0 = Mn = 0 (5.25)

leads to the values of M0, M1, · · · , Mn and hence to the interpolation function s(x).

A spline constructed above is called a natural spline.

Example 5.14. Calculate the natural cubic spline interpolating the data {(1, 1), (2, 12 ), (3, 1
3 ), (4,

1
4 )}. The

number of points is n = 4 and all xi − xi−1 = 1. The system (5.24) together with M0 = M3 = 0 becomes

2

3
M2 +

1

6
M3 =

1

3
,

1

6
M1 +

2

3
M3 =

1

12
,

which gives M2 = 1
2 , M3 = 0. Substituting these values into (5.23), we obtain

s(x) =







1
12x

3 − 1
4x

2 − 1
3x+ 3

2 , 1 ≤ x ≤ 2
− 1

12x
3 + 3

4x
2 − 7

3x+ 17
6 , 2 ≤ x ≤ 3

− 1
12x+ 7

3 , 3 ≤ x ≤ 4

Remark 5.15. There is a relationship between the degree of spline approximation n (say) and the degree
of smoothness, N (say) expected. The degree of the polynomials is related to the number of unknown
coefficients ie., the degrees of freedom Df (say), in the problem, whereas N is related to the number
of constraints Dc (say). We expect that the degrees of freedom and the number of constraints have to
balance in order for the spline to be well-defined.

Let there be m subintervals, each being the domain of definition for a seperate polynomial of degree
n, we have a total of Df = m(n+1) degrees of freedom. On the other hand, there are m+1 interpolation
conditions (ie., s(xi) = f(xi), i = 0, 1, · · · ,m) and m− 1 interior nodes where continuity of s(x) and its
N derivatives are expected to be continuous and thereby, there are N + 1 continuity conditions imposed
on each of m− 1 interior point. Therefore, Dc = m+ 1 + (m− 1)(N + 1) constraints. If we consider the
difference Df −Dc, we get

Df −Dc = m(n+ 1)−m− 1− (m− 1)(N + 1) = mn−m−mN +N = m(n− 1−N) +N.

We can make the first term vanish by setting n − 1 − N = 0. This establishes a relationship between
the polynomial degree of the spline and smoothness degree. For example, if we consider the cubic spline,
we need to have N = 2. However, we will not have the number of constraints equal to the number of
degrees of freedom, since Df − Dc = N . Thus, we need to add N additional constraints, which in the
case of natural cubic spline we have M0 = M3 = 0. Partly for this reason, odd polynomial order splines
are prefered, because if n is odd, then N is even and the additional constraints can be imposed equally
at the two endpoints of the interval. ⊓⊔
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Exercise 5

I. Lagrange Interpolation

1. Obtain Lagrange interpolation formula for equally spaced nodes.

2. Using Lagrange interpolation formula, express the rational function f(x) = 3x2+x+1
(x−1)(x−2)(x−3) as a

sum of partial fractions.

3. Construct the Lagrange interpolation polynomial for the function f(x) = sinπx, choosing the
points x0 = 0, x1 = 1/6, x3 = 1/2. Answer: 7/2x− 3x2

4. Find a cubic polynomial using Lagrange’s formula for the data:
x -2 -1 1 3
f(x) -1 3 -1 19

Answer: p3(x) = x3 − 3x+ 1

5. Use Lagrange interpolation formula to find a quadratic polynomial p2(x) that interpolates the

function f(x) = e−x2

at x0 = −1, x1 = 0 and x2 = 1. Further, find the value of p2(−0.9) with
rounding to six decimal places after decimal point and compare the value with the true value
f(−0.9) of same figure. Find the percentage error in this calculation.
Answer: p2(x) = 1− 0.632121x2, Error ≈ 9.69%

6. Given a table of values of the function f(x)

x 321.0 322.8 324.2 325.0
f(x) 2.50651 2.50893 2.51081 2.51188

Compute the value f(323.5). Answer: 2.50987

7. Let p(x) be a polynomial of degree ≤ n. For n+ 1 distinct nodes xk, k = 0, 1, · · · , n, show that

we can write p(x) =

n
∑

k=0

p(xk)lk(x).

8. The functions lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
, k = 0, · · · , n are the weight polynomials of the corresponding

nodes and are often called Lagrange multipliers. Prove that for any n ≥ 1,

n
∑

k=0

lk(t) = 1.

[Hint: Use problem 7 with an appropriate polynomial p]

9. Let xk ∈ [a.b], k = 0, 1, · · · , n be n + 1 distinct nodes and let f(x) be a continuous function
on [a, b]. Show that for x 6= xk, k = 0, 1, · · · , n, the Lagrange interpolating polynomial can be
represented in the form

pn(x) = w(x)

n
∑

k=0

f(xk)

(x− xk)w′(xk)

where w(x) = (x− x0)(x− x1) · · · (x− xn). Verify the interpolation condition.

II. Newton Interpolation and Divided Difference

10. For the function data given in the table below, fit a polynomial using Newton interpolation formula
and find the value of f(2.5).

x -3 -1 0 3 5
f(x) -30 -22 -12 330 3458

Answer: p4(x) = 5x4 + 9x3 − 27x2 − 21x− 12, p4(2.5) = 102.6875.

11. Calculate the nth divided difference of f(x) = 1/x Answer: (−1)n/(x0x1 · · ·xn)
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12. Let x0, x1, · · · , xn be n+1 distinct nodes in the closed interval [a, b] and let f(x) be n+1 times
continuously differentiable function on [a, b]. Then,

i. show that the divided differences are symmetric functions of their arguments, that is, for an
arbitrary permutation π of the indices 0, 1, · · · , i, we have f [x0, · · · , xi] = f [xπ0, · · · , xπi].

ii. show that f [x0, x1, · · · , xi−1, x] = f [x0, x1, · · · , xi−1, xi]+ f [x0, x1, · · · , xi, x](x−xi), for each
i = 1, · · · , n and for all x ∈ [a, b].

iii. show
d

dx
f [x0, · · · , xi−1, x] = f [x0, · · · , xi−1, x, x].

13. Let f(x) be a real-valued function defined on I = [a, b] and k times differentiable in (a, b). If
x0, x1, · · · , xk are k + 1 distinct points in [a, b], then show that there exists ξ ∈ (a, b) such that

f [x0, · · · , xk] =
f(k)(ξ)

k! .

III. Error in Interpolating Polynomials

14. Let x0, x1, · · · , xn be n+ 1 distinct nodes where instead of the function values f(xi), the corre-
sponding approximate values f̃(xi) rounded to 5 decimal digits after decimal point. If the Lagrange
interpolation polynomial obtained from the approximate values f̃(xi) is p̃n(x), then show that
the error at a fixed point x̃ satisfies the inequality

|pn(x̃)− p̃n(x̃)| ≤
1

2
10−5

n
∑

k=0

|lk(x̃)|,

where pn(x̃) is the Lagrange interpolated polynomial for exact values f(xi) (i = 0, 1, · · · , n).
15. Let p1(x) be the linear Newton interpolation polynomial for data (6000, 0.33333) and (6001,

−0.66667). If the calculation is performed with 5 decimal digit rounding, then show that the
process of evaluating p1(x) in the form p1(x) = f(x0) +∆f0(x − x0) at x = 6000 and x = 6001
involves less error than evaluating the same linear polynomial in the form p1(x) = ∆f0x+(f(x0)−
∆f0x0) =: mx+ a at these points. Find the percentage error in each case.

16. Let x0, x1, · · · , xn be distinct real numbers, and let f be a given real-valued function with n+ 1
continuous derivatives on an interval I = [a, b]. Let t ∈ I be such that t 6= xi for i = 0, · · · , n.
Then show that there exists an ξ ∈ (a, b) such that

en(t) := f(t)−
n
∑

k=0

f(xk)lk(t) =
(t− x0) · · · (t− xn)

(n+ 1)!
f (n+1)(ξ),

where lk(t) =
n
∏

i=0,i6=k

t− xi

xk − xi
, k = 0, · · · , n.

17. Given the square of the integers N and N + 1, what is the largest error that occurs if linear
interpolation is used to approximate f(x) = x2 for N ≤ x ≤ N + 1? Answer: 0.25

18. The following table gives the data for f(x) = sinx/x2.

x 0.1 0.2 0.3 0.4 0.5
f(x) 9.9833 4.9667 3.2836 2.4339 1.9177

Calculate f(0.25) as accurately as the number of figures shown in the table
(a) by using the data in the table and using Newton’s interpolation formula
(b) by first tabulating xf(x) with rounding the same number of figures as in the table and then
using Newton’s interpolation formula.
(c) Find the error in each case and explain the difference between the results in (a) and (b).
Answer: (a) 3.8647 (b) 3.9585 (c) 0.0469 for (a) and 0.000005625 for (b) (you may perform this
calculation with more accurace)

19. Determine the spacing h in a table of equally spaced values of the function f(x) =
√
x between

1 and 2, so that interpolation with a second-degree polynomial in this table will yield a desired
accuracy.

IV. Cubic Spline Interpolation

20. Obtain the cubic spline approximation for the function given in the tabular form
x 0 1 2 3
f(x) 1 2 33 244
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Numerical Differentiation and Integration

There are two reasons for approximating derivatives and integrals of a function f(x). One is when the
function is very difficult to differentiate or integrate, or only the tabular values are available for the
function. Another reason is to obtain solution of a differential or integral equation. In this chapter we
introduce some basic methods to approximate derivative and integral of a function either explicitely or
by tabulated values.

In section 1, we obtain numerical methods to find derivatives of a function. Rest of the chapter
introduce various methods for numerical integration.

6.1 Numerical Differentiation

Numerical differentiation methods are obtained using one of the following three techniques:

I. Methods based on Finite Difference Operators

II. Methods based on Interpolation

III. Methods based on Undetermined Coefficients

We now discuss each of the methods in details.

1. Finite Difference

The most simple way to obtain a numerical method to approximate the derivative of f(x) is using the
definition of derivative given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

which justifies the usage of the approximation formula

f ′(x) ≈ f(x+ h)− f(x)

h
=: D+

h f(x) (6.1)

for a small value of h. D+
h f(x) is called a forward difference formula for the derivative of f(x) with

step size h.

To find a formula for error, we use Taylor’s theorem

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(c)

for some c between x and x+ h. Substituting in the right side of (6.1), we obtain

Dhf(x) =
1

h

{[

f(x) + hf ′(x) +
h2

2
f ′′(c)

]

− f(x)

}

= f ′(x) +
h

2
f ′′(c)

Therefore, the required error is given by

f ′(x)−Dhf(x) = −h

2
f ′′(c). (6.2)
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If we consider the left hand side of (6.2) as a function of h, ie., if g(h) = f ′(x) − Dhf(x), then we
see that |g(h)/h| = − 1

2 |f ′′(c)|. If we assume f ′′ to be bounded by a constant M > 0, then we see that
|g(h)/h| ≤ M/2, This shows that when f ∈ C2(I) for some closed and bounded interval I, then g = O(h),
which we say that the forward difference formula D+

h f(x) is of order 1 (order of accuracy).

The derivative of a function f can also be defined as

f ′(x) = lim
h→0

f(x)− f(x− h)

h
,

and

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h
.

The first definition gives the backward difference formula of order 1 as

f ′(x) ≈ f(x)− f(x− h)

h
=: D−

h f(x). (6.3)

The error for this formula can be obtained similar to that of the forward difference formula. The second
definition gives the central difference formula

f ′(x) ≈ f(x+ h)− f(x− h)

2h
=: D0

hf(x) (6.4)

To obtain the error for the central difference formula, we use the Taylor’s theorem to obtain

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(c1)

where c1 lies between x and x+ h, and

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(c2),

where c2 lies between x− h and x. Therefore, we have

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

3!
(f ′′′(c1) + f ′′′(c2)).

Since f ′′′(x) is continuous, by I.4 of tutorial 1, we see that

f ′′′(c1) + f ′′′(c2) = 2f ′′′(c)

where c ∈ (x − h, x+ h). Therefore, we obtain the error formula as

f ′(x)−D0
h(f(x)) = −h2

6
f ′′′(c) (6.5)

where c lies between x−h and x+h. Clearly, the central difference formula is of second order. Geometrical
interpretation of the three primitive difference formulae is shown in figure 3.1.

. ..
xx−h x+h

Forward
Backward

Central

x

y

y=f(x)

f’

Fig. 6.1. Geometrical interpretation of difference formulae.
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Example 6.1. To find the value of the derivative of the function given by f(x) = sinx at x = 1 with
h = 0.003906, we use the three primitive difference formulas. We have

f(x− h) = f(0.996094) = 0.839354, f(x) = f(1) = 0.841471, f(x+ h) = f(1.003906) = 0.843575.

I. Backward difference: D−
h f(x) =

f(x)−f(x−h)
h = 0.541935.

II. Central Difference: D0
h(f(x)) =

f(x+h)−f(x−h)
2h = 0.540303.

III. Forward Difference: D+
h f(x) =

f(x+h)−f(x)
h = 0.538670.

Note that the exact value is f ′(1) = cos 1 = 0.540302.

2. Interpolation

An alternate way to obtain the same difference formulae as obtained above, we can also use the
polynomial interpolation introduced in chapter 2. Thus, to calculate f ′(x) at some point x = t, we use
the formula

f ′(t) ≈ p′n(t),

where pn(x) denotes the interpolation polynomial of f(x) with degree ≤ n. Many different formulas can
be obtained by varying n and by varying the placement of the nodes x0, · · · , xn relative to the point t of
interest. For instance, if we take n = 1, the linear interpolation polynomial is given by

p1(x) = f(x0) + f [x0, x1](x − x0).

Hence, we may take

f ′(x) ≈ p′1(x) = f [x0, x1]. (6.6)

In particular, if we take x0 = x and x1 = x + h for a small value h, we obtain the forward difference
formula. If we take x0 = x− h and x1 = x for small value h, we obtain the backward difference formula.
Finally, if we take x0 = x− h and x1 = x+ h, we get the central difference formula.

Theorem 6.2 (Error formula for derivative using polynomial interpolation).

Assume f(x) has n + 2 continuous derivatives on an interval [a, b]. Let x0, x1, · · · , xn be n + 1 distinct
nodes in [a, b], and let t be an arbitrary given point in [a, b]. Then

f ′(t)− p′n(t) = wn(t)
f (n+2)(ξ1)

(n+ 2)!
+ w′

n(t)
f (n+1)(ξ2)

(n+ 1)!
(6.7)

with

wn(t) =

n
∏

i=0

(t− xi). (6.8)

and ξ1 and ξ2 are points in between the maximum and minimum of x0, x1 · · · , xn and t.

Proof. By Newton Interpolation formula, we have

f(x) = pn(x) + f [x0, · · · , xn, x]wn(x),

where pn(x) is the polynomial of degree ≤ n which interpolates f(x) at x0, · · · , xn. Taking derivative on
both sides, we get

f ′(x) = p′n(x) + wn(x)
d

dx
f [x0, · · · , xn, x] + w′

n(x)f [x0, · · · , xn, x].

But we know that
d

dx
f [x0, · · · , xn, x] = f [x0, · · · , xn, x, x].

Therefore, we have
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f ′(x) = p′n(x) + wn(x)f [x0, · · · , xn, x, x] + w′
n(x)f [x0, · · · , xn, x].

Further, we know

f [x0, · · · , xn, x] =
f (n+1)(ξ)

(n+ 1)!
, ξ ∈ (a, b).

Therefore, we get

f ′(t)− p′n(t) = wn(t)
f (n+2)(ξ1)

(n+ 2)!
+ w′

n(t)
f (n+1)(ξ2)

(n+ 1)!

which is what we wish to show. ⊓⊔

Higher order differentiation formulas and their error can be obtained similarly.

3. Method of Undetermined Coefficients

Another method to derive formulas for numerical differentiation is called the method of undetermined
coefficients. We will illustrate the method by deriving a formula for f ′′(x).

f ′′(x) ≈ D
(2)
h f(x) := Af(x+ h) +Bf(x) + Cf(x − h) (6.9)

with A, B and C unspecified. Replace f(x+ h) and f(x− h) by the Taylor expansions

f(x± h) = f(x)± hf ′(x) +
h2

2
f ′′(x)± h3

6
f (3)(x) +

h4

24
f (4)(ξ±),

with x− h ≤ ξ− ≤ x ≤ ξ+ ≤ x+ h. Substitute into (6.9) and rearrange into a polynomial in powers of h:

Af(x+ h) +Bf(x) + Cf(x− h) = (A+B + C)f(x) + h(A− C)f ′(x) +
h2

2
(A+ C)f ′′(x)

+
h3

6
(A− C)f ′′′(x) +

h4

24
[Af (4)(ξ+) + Cf (4)(ξ−)].

In order for this is to equal f ′′(x), we set

A+B + C = 0, A− C = 0, A+ C =
2

h2
.

The solution of this system is A = C = 1/h2 and B = −2/h2. This yields the formula

D
(2)
h f(x) =

f(x+ h)− 2f(x) + f(x− h)

h2
(6.10)

The error is given by

f ′′(x)−D
(2)
h f(x) = −h2

24
[f (4)(ξ+) + f (4)(ξ−)].

Using the problem I.4 of tutorial 1, we get

f ′′(x)−D
(2)
h f(x) = −h2

12
f (4)(ξ) (6.11)

for some x− h ≤ ξ ≤ x+ h.

Remark 6.3. The preceding formulas are useful when deriving methods for solving differential equations,
but they can lead to serious errors when applied to function values that are obtained empirically. To
illustrate a method for analyzing the effect of such errors, we consider the second derivative approximation
(6.10)

f ′′(x1) ≈ D
(2)
h f(x1) =

f(x2)− 2f(x1) + f(x0)

h2

with xi = x0 + ih. Instead of using the exact values f(xi), we use the appoximate values fi with
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f(xi) = fi + ǫi, i = 0, 1, 2.

The actual numerical derivative computed is

D̄
(2)
h f(x1) =

f2 − 2f1 + f0
h2

.

The error committed is

f ′′(x1)− D̄
(2)
h f(x1) = f ′′(x1)−

f(x2)− 2f(x1) + f(x0)

h2
+

ǫ2 − 2ǫ1 + ǫ0
h2

= −h2

12
f (4)(ξ) +

ǫ2 − 2ǫ1 + ǫ0
h2

.

Assuming −E ≤ ǫi ≤ E, we have

|f ′′(x1)− D̄
(2)
h f(x1)| ≤

h2

12
|f (4)(ξ)| + 4E

h2
(6.12)

The last bound would be attainable in many situations. As example of such errors would be rounding
errors, with E a bound on their magnitude.

The error bound in (6.12) will initially get smaller as h decreases, but for h sufficiently close to zero,
the error will begin to increase again. There is an optimal value of h to minimize the right side of (6.12).
⊓⊔

Example 6.4. In finding f ′′(π/6) for the function f(x) = cosx, if we use the function values fi by
rounding f(xi) to six significant digits, then

|f(xi)− fi| ≤ 0.5× 10s−6+1

where s is the largest integer such that 10s ≤ |f(xi)|. Although cosine function varies from 0 to 1, here we
assume (as we are interested in the function valued in a neighborhood of x = π/6), |f(xi)| ≥ 0.1. With
this assumption, we have s = −1 and hence we have

|f(xi)− fi| ≤ 0.5× 10−6.

We now use the formula D̄
(2)
h f(x) to approximate f ′′(x) as given in the above remark. Assume that other

than these rounding error, the formula D̄
(2)
h f(x) is calculated exactly. Then the total error bound given

by (6.12) takes the form

|f ′′(π/6)− D̄
(2)
h f(π/6)| ≤ h2

12
|f (4)(ξ)| + 4E

h2
,

where E = 0.5× 10−6 and ξ ≈ π/6. Thus, we have

|f ′′(π/6)− D̄
(2)
h f(π/6)| ≤ h2

12
cos
(π

6

)

+
4

h2
(0.5× 10−6) ≈ 0.0722h2 +

2× 10−6

h2
=: E(h).

The bound E(h) indicates that there is a smallest value of h, call it h∗, below which the error bound will
begin to increase. To find it, let E′(h) = 0, with its root being h∗. This leads to h∗ ≈ 0.0726. ⊓⊔

6.2 Numerical Integration

In this section we derive and analyze numerical methods for evaluating definite integrals. The problem is
to evaluate the number

I(f) =

∫ b

a

f(x)dx. (6.13)

Most such integrals cannot be evaluated explicitly, and with many others, it is faster to integrate nu-
merically than explicitly. The approximation of I(f) is usually referred to as numerical integration or
quadrature.
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The idea behind numerical integration is to approximate the integrand f(x) to a much simpler function
that can be integrated easily. One obvious approximation is the interpolation by polynomials. Thus, we
approximate I(f) by I(pn), where pn(x) is the polynomial of degree ≤ n which agrees with f(x) at the
distinct points x0, · · · , xn. The approximation is written as

I(pn) = A0f(x0) +A1f(x1) + · · ·+Anf(xn).

The weights could be calculated as Ai = I(li), with li(x) the ith Lagrange multiplier.

Assume that the integrand f(x) is sufficiently smooth on some interval [c, d] containing a and b so
that we can write

f(x) = pn(x) + f [x0, · · · , xn, x]φn(x),

where

φn(x) =

n
∏

j=0

(x− xj).

Then the error is given by

E(f) = I(f)− I(pn) =

∫ b

a

f [x0, · · · , xn, x]φn(x)dx. (6.14)

In particular, if φn(x) is of one sign on (a, b), then, by the Mean-value theorem for integrals, we have

∫ b

a

f [x0, · · · , xn, x]φn(x)dx = f [x0, · · · , xn, ξ]

∫ b

a

φn(x)dx, for some ξ ∈ (a, b). (6.15)

If, in addition, f(x) is n+ 1 times continuously differentiable on (c, d), we get

E(f) =
1

(n+ 1)!
f (n+1)(η)

∫ b

a

φn(x)dx, for some η ∈ (c, d). (6.16)

We now consider the case when n = 0. Then

f(x) = f(x0) + f [x0, x](x− x0).

Hence
I(p0) = (b− a)f(x0).

If x0 = a, then this approximation becomes

I(f) ≈ IR(f) := (b− a)f(a) (6.17)

and is called rectangle rule. Since φ0(x) = x− a, this function is of one sign in (a, b) and therefore, the
error ER of the rectangle rule takes the form

ER(f) = f ′(η)

∫ b

a

(x− a)dx =
f ′(η)(b − a)2

2
(6.18)
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Fig. 6.2. Rectangle Rule.
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We now consider the case when n = 1. Then

f(x) = f(x0) + f [x0, x1](x − x0) + f [x0, x1, x]φ1(x).

To get φ1(x) = (x− x0)(x− x1) of one sign on (a, b), we choose x0 = a and x1 = b. Then we have

I(f) =

∫ b

a

{f(a) + f [a, b](x− a)}dx+
1

2
f ′′(η)

∫ b

a

(x− a)(x− b)dx

or

I(f) ≈ IT (f) :=
1

2
(b− a){f(a) + f(b)} (6.19)

with the error

ET (f) = −f ′′(η)(b − a)3

12
some η ∈ (a, b). (6.20)

This rule is called the Trapezoidal Rule.

Example 6.5. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

The true value is I = log(2) ≈ 0.693147. Using the trapezoidal rule (6.19), we get

IT =
1

2
[1 +

1

2
] =

3

4
= 0.75.

Therefore, the error is I − IT ≈ −0.0569. ⊓⊔
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Fig. 6.3. Trapezoidal Rule.

To improve on this approximation, when f(x) is not a nearly linear function on [a, b], break the interval
[a, b] into smaller subintervals and apply the Trepezoidal rule (6.19) on each subinterval. We will derive
a general formula for this. Let us subdivide the interval [a, b] into n equal subintervals of length

h =
b− a

n

with endpoints of the subintervals as

xj = a+ jh, j = 0, 1, · · · , n.

Then break the integral into n subintegrals, we get

I(f) =

∫ b

a

f(x)dx

=

∫ xn

x0

f(x)dx

=

n−1
∑

j=0

∫ xj+1

xj

f(x)dx.
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Approximate each subintegral by Trapezoidal rule (6.19), we get

I(f) ≈ InT (f) = h

[

f(x0) + f(x1)

2

]

+ h

[

f(x1) + f(x2)

2

]

+ · · ·+ h

[

f(xn−1) + f(xn)

2

]

.

The terms on the right can be combined to give the simpler formula

InT (f) := h

[

1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]

. (6.21)

This rule is called Composite Trapezoidal rule.

Example 6.6. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

As we have seen in example 3.3, the true value is I = log(2) ≈ 0.693147. Now let us use this piecewise
Trapezoidal rule with n = 2. Then we have

I =

∫ 1

0

dx

1 + x
=

∫ 1/2

0

dx

1 + x
dx+

∫ 1

1/2

dx

1 + x
dx.

and therefore we have
I2T (f) ≈ 0.70833.

Thus the error is -0.0152. ⊓⊔

We now calculate I(p2(x)) to obtain the formula for the case when n = 2. Let us choose x0 = a,
x1 = (a+ b)/2 and x2 = b. The quadratic interpolating polynomial can be written as

p2(x) = f(a) + f [a, b](x− a) + f

[

a, b,
a+ b

2

]

(x − a) (x− b)

Then
∫ b

a

p2(x)dx = f(a)(b− a) + f [a, b]
(b− a)2

2
− f

[

a, b,
a+ b

2

]

(b− a)3

6
.

Using the symmetry property of divided difference, we can write

f

[

a, b,
a+ b

2

]

= f

[

a,
a+ b

2
, b

]

.

Therefore, we have

∫ b

a

p2(x)dx = f(a)(b− a) + f [a, b]
(b− a)2

2
− f

[

a,
a+ b

2
, b

]

(b− a)3

6
.

But we have f [a, b](b− a) = f(b)− f(a) and

f

[

a,
a+ b

2
, b

]

(b− a)2 =

(

f

[

a+ b

2
, b

]

− f

[

a,
a+ b

2

])

(b− a) = 2

(

f(b)− 2f

(

a+ b

2

)

− f(a)

)

.

Using these expression, we get

∫ b

a

p2(x)dx = (b− a)

{

f(a) +
f(b)− f(a)

2
− 1

3

(

f(b)− 2f

(

a+ b

2

)

+ f(a)

)}

=
b− a

6

{

f(a) + 4f

(

a+ b

2

)

+ f(b)

}

We thus arrive at the formula

I(f) ≈ Is(f) :=

∫ b

a

p2(x)dx =
b− a

6

{

f(a) + 4f

(

a+ b

2

)

+ f(b)

}

(6.22)

which is the famous Simpson’s Rule.
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Fig. 6.4. Simpson Rule.

Example 6.7. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

The true value is I = log(2) ≈ 0.693147. Using the Simpson’s rule (6.22), we get

Is =
1

6
[1 +

8

3
+

1

2
] =

25

36
≈ 0.694444.

Therefore, the error is I − Is ≈ 0.001297. ⊓⊔

Let us now obtain the error formula for Simpson’s rule. Note that for any distinct nodes x0, x1 and
x2 in (a, b), the function φ2(x) = (x − x0)(x − x1)(x − x2) is not of one sign on (a, b). Therefore, the
idea followed in deriving error formula for Trapezoidal rule cannot be adopted here. Rather, if we choose
x0 = a, x1 = (a+ b)/2, x2 = b, then one can show by direct integration or by symmetry arguments that

∫ b

a

φ2(x)dx =

∫ b

a

(x− a)

(

x− a+ b

2

)

(x− b)dx = 0.

In this special case, if we can choose x3 in such a way that φ3(x) = (x− x3)φ2(x) is of one sign on (a, b)
and f is four times continuously differentiable, then we have

ES(f) = −f (4)(η)[(b − a)/2]5

90
, (6.23)

which follows from the following lemma.

Lemma 6.8. If φn is not of one-sign but

∫ b

a

φn(x)dx = 0.

Further if can choose xn+1 in such a way that φn+1(x) = (x− xn+1)φn(x) is of one-sign on (a, b) and if
f(x) is n+ 2 times continuously differentiable, then

E(f) =
1

(n+ 2)!
f (n+2)(η)

∫ b

a

φn+1(x)dx, for some η ∈ (c, d). (6.24)
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Proof. Since

f [x0, · · · , xn, x] = f [x0, · · · , xn, xn+1] + f [x0, · · · , xn+1, x](x − xn+1),

we have from (6.14)

E(f) =

∫ b

a

f [x0, · · · , xn, xn+1]φn(x)dx +

∫ b

a

f [x0, · · · , xn+1, x](x − xn+1)φn(x)dx

Further since
∫ b

a φn(x)dx = 0, the first term vanishes and we are left with

E(f) =

∫ b

a

f [x0, · · · , xn+1, x](x− xn+1)φn(x)dx.

Thus, if we choose xn+1 in such a way that φn+1(x) = (x−xn+1)φn(x) is of one-sign on (a, b) and if f(x)
is n+ 2 times continuously differentiable, then using Mean-value theorem for integration, we can arrive
at the formula (6.24). ⊓⊔

Let us now derive the composite Simpson rule. Taking a = xi−1, b = xi, xi−1/2 = (xi + xi−1)/2
and xi − xi−1 = h in Simpson rule, we get

∫ xi

xi−1

f(x)dx ≈ h

6

{

f(xi−1) + 4f(xi−1/2) + f(xi)
}

.

Summing for i = 1, · · · , N , we get

∫ b

a

f(x)dx =

N
∑

i=1

∫ xi

xi−1

f(x)dx ≈ h

6

N
∑

i=1

{

f(xi−1) + 4f(xi−1/2) + f(xi)
}

.

Therefore, the composite Simpson’s rule takes the form

Ins (f) =
h

6

[

f(x0) + f(xN ) + 2

N−1
∑

i=1

f(xi) + 4

N
∑

i=1

f(xi−1/2)

]

(6.25)

All the rules so far derived can be written in the form

I(f) =

∫ b

a

f(x)dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn). (6.26)

Here wi are called weights, which are non-negative constants. The nodes are picked in such a way that
the quadrature rule is exact for polynomials of degree ≤ n. These methods are refered to Newton-Conte
formula of order n. But it is possible to make such a rule exact for polynomials of degree ≤ 2n+ 1 by
choosing the nodes appropriately. This is the basic idea of Gaussian rules.

Let us consider the special case

∫ 1

−1

f(x)dx ≈
n
∑

i=0

wif(xi) (6.27)

The weights wi and the nodes xi (i = 0, · · · , n) are to be chosen in such a way that the error

En(f) =

∫ 1

−1

f(x)dx −
n
∑

i=0

wif(xi) (6.28)

is zero when f(x) is a polynomial of degree ≤ 2n+ 1. To derive equations for the nodes and weights, we
first note that

En(a0 + a1x+ a2x
2 + · · ·+ amxm) = a0En(1) + a1En(x) + · · ·+ anEn(x

m).

Thus, En(f) = 0 for every polynomial of degree ≤ m if and only if En(x
i) = 0 for i = 0, 1, · · · ,m.
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Case 1: n = 0. Since there are two parameters, namely, w0 and x0, we consider the requiring E0(1) =

E0(x) = 0. This gives
∫ 1

−1 1dx− w0 = 0, and
∫ 1

−1 xdx − w0x0 = 0. These gives w0 = 2 and x0 = 0. Thus,
we have the formula

∫ 1

−1

f(x)dx ≈ 2f(0), (6.29)

which is the required Gaussian quadrature for n = 0.

Case 2: n = 1. There are four parameters, w0, w1, x0 and x1 and thus we put four constraints on these
parameters:

E1(x
i) =

∫ 1

−1

xidx− (w0x
i
0 + w1x

i
1) = 0, i = 0, 1, 2, 3.

This gives a system of nonlinear equations

w1 + w2 = 2, w1x1 + w2x2 = 0, w1x
2
1 + w2x

2
2 =

2

3
, w1x

3
1 + w2x

3
2 = 0

The solutions are w1 = w2 = 1 and x1 = −1/
√
3 and x2 = 1/

√
3 which lead to the unique formula

∫ 1

−1

f(x)dx ≈ f

(

− 1√
3

)

+ f

(

1√
3

)

=: IG1(f). (6.30)

Case 3: General. There are 2(n+ 1) free parameters xi and wi for i = 0, 1, · · · , n. The equations to be
solved are En(x

i) = 0, i = 0, 1, · · · , 2n+ 1 or

n
∑

j=0

wjx
i
j =

{

0, i = 1, 3, · · · , 2n+ 1
2

i + 1
, i = 0, 2, · · · , 2n

These are nonlinear equations and their solvability is not at all obvious. But most of the computer
softwares will have programs to produce these nodes and weights or to directly perform the numerical
integration. There is also another approach to the development of the numerical integration formula (6.26)
using the theory of orthogonal polynomials, which is outside the scope of this course.

The formulas constructed above are called the Gaussian numerical integration formula or Gaus-
sian quadrature. Note that this formula is limited to an integral over [−1, 1]. But this limitation can
easily be removed by introducing the linear change of variable

x =
b+ a+ t(b− a)

2
, −1 ≤ t ≤ 1. (6.31)

Thus, an integral

I(f) =

∫ b

a

f(x)dx

can be transferred to

I(f) =
b− a

2

∫ 1

−1

f

(

b + a+ t(b− a)

2

)

dt.

The following theorem provides the error formula for the Gaussian quadrature.

Example 6.9. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

Note that the true value is I = log(2) ≈ 0.693147. To use the Gaussian quadrature, we first need to make
the linear change of variable (6.31) with a = 0 and b = 1 and we get

x =
t

2
, − 1 ≤ t ≤ 1.

Thus the required integration is
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I =

∫ 1

0

dx

1 + x
=

∫ 1

−1

dt

3 + t
.

We need to take f(t) = 1/(3 + t) in the Gaussian quadrature formula (6.30) and we get

∫ 1

0

dx

1 + x
=

∫ 1

−1

dt

3 + t
≈ f

(

− 1√
3

)

+ f

(

1√
3

)

≈ 0.692308 ≈ IG1(f).

Therefore, the error is I − IG1 ≈ 0.000839. ⊓⊔

Definition 6.10 (Degree of Precision).

The degree of precision of a quadrature formula is the positive integer n such that E(pk) = 0 for all
polynomials pk(x) of degree ≤ n, but for which E(pn+1) 6= 0 for some polynomial pn+1(x) of degree n+1.

Example 6.11. Let us determine the degree of precision of Simpson rule. It will suffice to apply the rule
over the interval [0, 2].

∫ 2

0

dx = 2 =
2

6
(1 + 4 + 1),

∫ 2

0

xdx = 2 =
2

6
(0 + 4 + 2),

∫ 2

0

x2dx =
8

3
=

2

6
(0 + 4 + 4)

∫ 2

0

x3dx = 4 =
2

6
(0 + 4 + 8)

∫ 2

0

x4dx =
32

5
6= 2

6
(0 + 4 + 16) =

20

3
.

Therefore, the degree of precision is 3. ⊓⊔


