Operating system Memory management Sudad NAjim 1

1-Introduction

1.1 Computer memory is the storage space in a computer where data is to be

processed and instructions required for processing are stored.

1.2 Memory types:

A- Primary memory Consist of two types:

1- RAM (Random Access memory)

It's also called read/write memory or main memory.The CPU can load
instructions only from memory, so any programs to run must be stored
there.In other word : Program must be brought (from disk) into memory
and placed within a process for it to be run.

When the computer is switched on, the operating system is loaded into
RAM.

When you start working on any application it's loaded into RAM and we
are actually working on this copy.

RAM is also called volatile memory meaning it will retain data as long as

the electricity is available.

2- ROM (read-only memory)

Because ROM cannot be changed, only static programs, such as the
bootstrap program described earlier, are stored there. Without ROM, we
cannot load the operating system and therefore we cannot work on the
computer.

EEPROM (electrically erasable programmable read-only memory).lt can be
changed but cannot be changed frequently and so contains mostly static
programs. For example, smartphones have EEPROM to store their

factory-installed programs.

Operating system Memory management Sudad NAjim 2

3-Cache Memory is a special, very high-speed memory. It is used to speed up
and synchronise with high-speed CPUs. Cache memory is costlier than main
memory or disk memory. Cache memory is a fast memory type that acts as a
buffer between RAM and the CPU. It holds frequently requested data and
instructions so that they are immediately available to the CPU when needed.
Cache memory is used to reduce the average time to access data from the Main
memory.

4- Registers: Registers are small amounts of high-speed memory contained
within the CPU. They are used by the processor to store small amounts of data
that are needed during processing, such as: the address of the next instruction

to be executed.

B- Secondary memory is also called auxiliary memory, external memory,

Backup memory.

Types of secondary memory:

1- Hard Disk: This is one of the primary types of non-volatile memory used to
store a large amount of data on the computer, it can reside inside the computer
or additionally outside.

2- Compact Disk (CD):Is another type of non-volatile memory once widely
used.lts portable and cheaper.

3- Digital Versatile Disk(DVD) It's the same as the compact disk but it is
capable of storing six times of data stored in the CD. In addition, it can be single
side or double sides increasing the capacity further.

4- USB Drive: It's also called a flash drive or pen drive, this can be connected to
the usb(universal serial bus port) of the computer, this is similar to the hard disk
but it is portable and very smaller in size and less expensive.

5- Memory card : Is very small in size and used to store data in various
electronic devices such as digital cameras, smart phones, MP3 players and many
more.

The reasons of using secondary memory are:

1- The primary memory has limited capacity.

2- RAM volatile memory and ROM is unchangeable memory.

Operating system Memory management Sudad NAjim 3

1.3 Memory addresses

All forms of memory provide an array of bytes. Each byte has its own address.
Interaction is achieved through a sequence of load or store instructions to
specific memory addresses.

The load instruction moves a byte or word from the main memory to an internal
register within the CPU, whereas the store instruction moves the content of a
register to the main memory. Aside from loads and stores, the CPU
automatically loads instructions from main memory for execution.

A typical instruction—-execution cycle, as executed on a system, first fetches an
instruction from memory and stores that instruction in the instruction register.
The instruction is then decoded and then the instruction to be executed, the

result may be stored back in memory.

Important Background

e Program must be brought (from disk) into memory and placed within a
process for it to be run.

e Main memory and registers are only storage CPU can access directly.

e Memory unit only sees a stream of addresses + read requests, or address
+ data and write requests.

e Register access in one CPU clock (or less).

e Main memory can take many cycles, causing a stall of CPU.

e Cache sits between main memory and CPU registers.

e Protection of memory required to ensure correct operation.

1.4 Protection of memory
Base and Limit Registers:
- We first need to make sure that each process has a separate memory
space.
- Separate per-process memory space protects the processes from each
other and is fundamental to having multiple processes loaded in memory

for concurrent execution.

Operating system Memory management Sudad NAjim 4

- To separate memory spaces, we need the ability to determine the range of
legal addresses that the process may access and to ensure that the
process can access only these legal addresses.

- We can provide this protection by using two registers, usually a base and
a limit, as illustrated in Figurel below.

- The base reqgister holds the smallest legal physical memory address; the

limit reqgister specifies the size of the range or the number of bytes in the

allocation.
0
operating
system
256000
process
300040 300040
process base
420940 i 120900
process limit
880000
1024000

Figure 1 -A base and a limit register define a logical address space.

Notel: Protection of memory space is accomplished by having the CPU

hardware compare every address generated in user mode with the registers.

Note2: Any attempt by a program executing in user mode to access
operating-system memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error (Figure2).

Note3: This scheme prevents a user program from (accidentally or deliberately)
modifying the code or data structures of either the operating system or other
users.

Noted: The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can be
executed only in kernel mode, and since only the operating system executes in

kernel mode, only the operating system can load the base and limit registers.

Operating system Memory management Sudad NAjim 5

base + limit

address yes
CPU |—

no

trap to operating system
monitor—addressing error memory

Figure2 :Hardware address protection with base and limit registers.

Example : If the base register address of a process is 200 and the limit register is
50, that means the legal addresses are from 200 to 249.

1.5 Address binding:

e Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
e Depending on the memory management in use, the process may be moved

between disk and memory during its execution.

e Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer may start at
00000, the first address of the user process need not be 00000.

e In most cases, a user program goes through several steps before being
executed.

e Further, addresses represented in different ways at different stages of a
program’s life:

e Source code addresses are usually symbolic. i.e count.

e Compiled code addresses bind to relocatable address (virtual address) i.e.

“14 bytes from beginning of this module”.
e Linker or loader will bind relocatable addresses to absolute
addresses(physical address) i.e. 74014.

Operating system Memory management Sudad NAjim 6

1.6 Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at
three different stages:

Compile time: If memory location for a process is known a priori, absolute code
can be generated; must recompile code if starting location changes.

Load time: Must generate relocatable code if memory location of a process is
not known at compile time.

Execution time: Binding delayed until run time if the process can be moved
during its execution from one memory segment to another. This need hardware

support for address maps (e.g., base and limit registers)

Logical Versus Physical Address Space
The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.
- Logical address — generated by the CPU; also referred to as virtual
address.
- Physical address — address seen by the memory unit.
- Logical and physical addresses are the same in compile-time and
load-time address-binding schemes;
- logical (virtual) and physical addresses differ in execution-time
address-binding scheme.
- Logical address space is the set of all logical addresses generated by a
program.
- Physical address space is the set of all physical addresses generated by a
program.
- The run-time mapping from virtual to physical addresses is done by

a hardware device called the memory-management unit (MMU).

Operating system Memory management Sudad NAjim 7

1.7 Memory-management unit (MMU)

The user program generates only logical addresses and thinks that the
process runs in locations 0 to max. However, these logical addresses must
be mapped to physical addresses before they are used. The concept of a
logical address space that is bound to a separate physical address space is
central to proper memory management.

Memory-management unit is a hardware device that at run time maps

virtual address to physical address.

We can choose from many different methods to accomplish such mapping.
We illustrate this mapping with a simple MMU scheme that is a
generalization of the base-register scheme. The base register is now

called a relocation register.

1.8 Dynamic loading

It is necessary that the entire program and all the process data in the
physical memory for the process to execute.

To obtain better memory-space utilization, we can use dynamic loading.
With dynamic loading, a routine is not loaded until it is called.

All routines are kept on disk in a relocatable load format.

The main program is loaded into memory and is executed. When a routine
needs to call another routine, the calling routine first checks to see
whether the other routine has been loaded. If it has not, the relocatable
linking loader is called to load the desired routine into memory and to
update the program’s address tables to reflect this change. Then control is
passed to the newly loaded routine.

The advantage of dynamic loading is that a routine is loaded only when it

is needed. This method is particularly useful when large amounts of code
are needed to handle infrequently occurring cases, such as error routines.
In this case, although the total program size may be large, the portion that
is used (and hence loaded) may be much smaller.

The value in the relocation register is added to every address generated by

a user process at the time the address is sent to memory (see Figure 3).

Operating system Memory management Sudad NAjim 8

For example, if the base is at 14000, then an attempt by the user to
address location O is dynamically relocated to location 14000; an access to
location 346 is mapped to location 14346.

relocation
register
14000
logical physical
address address
CPU > + > memory
346 L 4 14346
MMU

Figure3 Dynamic relocation using a relocation register.

1.9 Dynamic Linking and shared libraries

Dynamically linked libraries are system libraries that are linked to user programs
when the programs are run. See (figure 4).

Static linking — system libraries and program code combined by the loader into
the binary program image.

Dynamic linking —linking postponed until execution time.

This feature is usually used with system libraries, such as language subroutine
libraries. Without this facility, each program on a system must include a copy of
its language library in the executable image. This requirement wastes both disk
space and main memory.

Small piece of code, stub, included in the image of each library routine
reference, is used to locate the appropriate memory-resident library routine.
Stub checks to see whether the needed routine is already in memory. If it is not,
the program loads the routine into memory.

Dynamic linking is particularly useful for libraries.

Under this scheme, all processes that use a language library execute only one
copy of the library code so it’s also known as shared libraries.

Operating system Memory management Sudad NAjim 9

source
program

compiler or } compile

assembler time

1

S object
module
other
object

modules l

linkage
editor

load L load
module time
system

library

loader

dynamicall D
loaded l
system
library B
in-memory .
T dynamic binary } ﬁ)r;e:lz::?nn

linking memory H
image 1)

Figure 4 (Multistep Processing of a User Program)

1.10 Swapping
- Swapping : is a memory management scheme in which any process can be
temporarily swapped from main memory to secondary so that the main
memory can be available for other processes.
- Itis used to improve main memory utilization.

- The disk used to swap out is called a backing store.

- The operation of transferring a process from main memory to backing store is

called swap out or roll out.

- The operation of transferring a process from the backing store to main memory

is called swap in or roll in.

- See figure 5.

- The swapping between processes occurs depending on scheduling mechanism,
for example, if the mechanism scheduling is the priority, then the process with
the highest priority is inserted and the lowest priority is removed from the main

memory (ready queue).

- The context-switch time in such a swapping system is fairly high. To get an
idea of the context-switch time, let’s assume that the user process is 100 MB in

size and the backing store is a standard hard disk with a transfer rate of 50 MB

Operating system Memory management Sudad NAjim 10

per second. The actual transfer of the 100-MB process to or from main memory
takes :
100 MB/50 MB per second = 2 seconds (2000 milliseconds).
Since we must swap both out and in, the total swap time is about 4,000
milliseconds.
- Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped.

operating e
system
@ —— process P,
—_— >
_ process P,
@ swap in
. -
user
space backing store
main memory

Figure 5: Swapping of two processes using a disk as a backing store.

Operating system Memory management Sudad NAjim 11

1.11 Segmentation
1-11-a Method

When writing a program, a programmer thinks of it as a main program with a
set of methods, procedures, or functions. It may also include various data
structures: objects, arrays, stacks, variables, and so on. Each of these modules or
data elements is referred to by name.

The programmer talks about “the stack,” “the math library,” and “the main
program” without caring what addresses in memory these elements occupy.
Segmentation is a memory-management scheme that supports this
programmer view of memory.

A logical address space is a collection of segments.

subroutine

main
program

logical address

Figure 6: Programmer’s view of a program.

Each segment has a name and a length. The addresses specify both the
segment name and the offset within the segment.

For simplicity of implementation, segments are numbered and are referred to by
a segment number, rather than by a segment name. Thus, a logical address
consists of a two tuple: <segment-number, offset>

Operating system Memory management Sudad NAjim 12

1.11.b Segmentation Hardware

— limit |base —
segment
table
CPU || 5 | d
Y 1
s D)
no
trap: addressing error physical memory

Figure 7: segmentation hardware

- The segment table is thus essentially an array of base-limit register pairs. It maps

two-dimensional physical addresses. Each entry in the segment table has:
-base : contains the starting physical address where the segments reside in memory.
- limit : specifies the length of the segment.

- A logical address consists of two parts: a segment number, s, and an offset into that
segment, d.

- The segment number s is used as an index to the segment table.

- The offset d of the logical address must be between 0 and the segment limit. If it is
not, we trap the operating system. When an offset is legal, it is added to the segment

base to produce the address in physical memory of the desired byte.

- Segment-table base register (STBR) points to the segment table’s location in
memory.

- Segment-table length register (STLR) indicates number of segments used by a

program, segment number s is legal if s < STLR

correct offset + segment base = address in Physical memory

Operating system Memory management Sudad NAjim 13

Example of mapping logical addresses using segmentation scheme:

Consider the following segment table:

Segment Base Length
0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?
a. 0,430

b. 1,10

c. 2,500

d. 3,400

e.4,112

11.12 Paging

The paging technique divides the physical memory(main memory) into
fixed-size blocks that are known as Frames and also divides the logical
memory(secondary memory) into blocks of the same size that are known as
Pages.

The Frame has the same size as that of a Page. A frame is basically a place
where a (logical) page can be (physically) placed.

Each process is mainly divided into parts where the size of each part is the same
as the page size.There is a possibility that the size of the last part may be less

than the page size.(internal fragmentation).

One page of a process is mainly stored in one of the frames of the memory. Also,
the pages can be stored at different locations of the memory but always the
main priority is to find contiguous frames(contiguous allocation).

Operating system Memory management Sudad NAjim 14

11.12.1 Translation of Logical Address into Physical Address

Important notes:

e The CPU always generates a logical address.
e In order to access the main memory, a physical address is needed.

- The logical address consists of two parts:

1. Page Number(p) used as an index into a page table which contains the base
address of each page in physical memory.In this scheme the base address is
frame number.

2. Page offset (d) —used to specify the specific word on the page that the CPU
wants to read. It combined with base address to define the physical memory
address that is sent to the memory unit.

11.12.2 Page Table
[J The Page table mainly contains the base address of each page in the Physical
memory.
[J The base address is then combined with the page offset in order to define the
physical memory address which is then sent to the memory unit.
[J The page table mainly provides the corresponding frame number (base address
of the frame) where that page is stored in the main memory.
[J As we have told you above that the frame number is combined with the page
offset and forms the required physical address.
[J So, The physical address consists of two parts:
e Frame Number(f)
e Page offset(d)

Operating system Memory management Sudad NAjim 15

logical physical
address address fOO0O ... 0000

P 5] EEE

v

1111 ... 1111

physical
page table Memery
Figure 8: paging hardware
Examples: What is the physical address ?
1- Memory size= 32 byte, Logical address=0, 0|a 0
1| b
page size=4, no. of pages=8 2|¢c
3|d
4 e 4 i
Sol: 5| f '
6 (g 0 lJ<
7 W 1 I
1- find page no.= logical address / page size 8 | i AE 8 | m
ol S &
Then, get the frame number from page table 1; l page table p
m 12
13| n
2- find offset= logical address % page size 1‘% g
. logical memory 16
Then , the physical address= frame
no.,offset in main memory ——
b
Cc
d
24 | ©
f
g
h
28

physical memory

Operating system Memory management Sudad NAjim 16

[J Page table is kept in main memory

[J Page-table base register (PTBR) points to the page table

[J Page-table length register (PTLR) indicates size of the page table

[J In this scheme every data/instruction access requires two memory accesses, one
for the page table and one for the data / instruction. Thus memory access is
slower by a factor of 2 and in most cases, this scheme slowed by a factor of 2.

J The two memory access problems can be solved by the use of a special
fast-lookup hardware cache called associative memory or translation

look-aside buffers (TLBs).

Advantages of Paging:
1-Paging mainly allows storage of parts of a single process in a non-contiguous fashion.
2- With the help of Paging, the problem of external fragmentation is solved.

3-Paging is one of the simplest algorithms for memory management.

Disadvantages of Paging

e |n Paging, sometimes the page table consumes more memory.
e |nternal fragmentation is caused by this technique.
e There is anincrease in time taken to fetch the instruction since now two memory

accesses are required.

Operating system Virtual memory Sudad Najim -1

Background:

The requirement that instructions must be in physical memory to be executed

seems necessary ; but that is a disadvantage, since it limits the size of a program

to the size of physical memory. In fact, in many cases, the entire program is not

needed. For instance, consider the following:

Programs often have code to handle unusual error conditions. Since these errors
seldom, if ever, occur in practice, this code is almost never executed.

Arrays, lists, and tables are often allocated more memory than they actually
need. An array may be declared 100 by 100 elements, even though it is seldom
larger than 10 by 10 elements.

Even in those cases where the entire program is needed, it may not all be

needed at the same time. The ability to execute a program that is only partially in

memory would confer many benefits:

A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an

extremely large virtual address space, simplifying the programming task.

Because each user program could take less physical memory, more
programs could be run at the same time, with a corresponding increase in CPU
utilization and throughput but with no increase in response time or turnaround
time.

Less I/0O would be needed to load or swap user programs into memory, so each

user program would run faster.

Virtual memory

Virtual Memory is a storage scheme that provides users with an illusion of having a
very big main memory. This is done by treating a part of secondary memory as the
main memory. It is a section of a hard disk that's set up to emulate the computer's
RAM.

Virtual memory involves the separation of logical memory as perceived by users from
physical memory. This separation allows an extremely large virtual memory to be
provided for programmers when only a smaller physical memory is available.

Virtual memory makes the task of programming much easier, because the programmer

no longer needs to worry about the amount of physical memory available.

Operating system Virtual memory Sudad Najim -2

Virtual memory can be implemented via:

-Demand paging

-Demand segmentation

Demand paging:

Is a strategy to load pages into memory only as they are needed. This technique
is commonly used in virtual memory systems.

With demand-paged virtual memory, pages are loaded only when they are
demanded during program execution. Pages that are never accessed are thus
never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 1) where processes reside in secondary memory (usually a disk).
When we want to execute a page-s of a process, we swap it into memory.
Rather than swapping the entire process into memory, though, we use a
lazy swapper.

A lazy swapper never swaps a page into memory unless that page will
be needed.

In the context of a demand-paging system, we use “pager,” rather than
“swapper”, because a swapper manipulates entire processes, whereas a
pager is manipulated with the individual pages of a process.

The pager brings only those pages into memory. Thus, it avoids reading into
memory pages that will not be used anyway, decreasing the swap time and the
amount of physical memory needed.

Operating system Virtual memory Sudad Najim -3

P N
. N

swap out o 1M] 2[sl |

T I | b o oy 78
/ 8] 9o
) 121814 [15[
pragiam "™ swap in 1611711811]
) 20[J21[J22[128[]
-y

main
memory

Figure-1 Transfer of a paged memory to contiguous disk space.
valid—invalid bit

- With the demand paging scheme, we need some form of hardware support to
distinguish between the pages that are in memory and the pages that are
on the disk. So valid-invalid bit is used for this purpose.

- valid-invalid bit is located in the page table, it associated with each page table
entry:

=> when this bit is set to “valid,’(v) the associated page is both legal
and in memory.
=> If the bit is set to invalid (i), the page may be in one of two states:
€ is not valid (that is, not in the logical address space of the
process). Leads to page abort.
@ oris valid but is currently on the disk. Leads to page faults.

- See (Figure 2) for these cases.

Operating system

Virtual memory Sudad Najim -4

o A 2
1 . valid—bii?valid " /_\
A - frameo\4 . : \—’/
v
B D 1 i 5 D D D
)| E N G []
5l F al i
. sfow 0]
6 i
7l H 71 o F
. page table
ey 0 HEERE
11
w

V]

13

14

15

physical memory

Figure 2 Page Table When Some Pages Are Not in Main Memory

Page fault:

If the process tries to access a page that was not brought into memory (the bit

value is i and it is not in the memory), this case will cause page fault.

The paging hardware, in translating the address through the page table, will
notice that the invalid bit (i) is set, causing a trap to the operating system. This

trap is the result of the operating system’s failure to bring the desired page into

memory.

The procedure for handling this page fault is straightforward (Figure 3):

1.

o~ W N

Checking the page reference in the page table, if it's a valid reference but

not in the memory yet.

Trap the operating system.

Find a free frame (by taking one from the free-frame list, for example).

Getting the desired page from disk into the allocated memory frame.
When the disk read is complete, the page table must be updated to

indicate that the page is now in memory.

Restart the instruction that was interrupted by the trap. The process can

now access the page as though it had always been in memory.

Operating system Virtual memory Sudad Najim -5

page is on
backing store //_\
operating
system
reference
trap
load M L [
restart page table
instruction
free frame ==
reset page bring in
table missing page
physical
memory

Figure 3: Steps in handling page fault

Performance of demand paging
- Page fault time is the time it takes to fetch the page from disk to main memory,
it is can be calculated as :
Page fault time = trap OS + swap out + swap in + update page table
- To calculate the performance of demand paging ,we need to find effective
memory access time :
EMT = (1-p)*(ma) + (p)* (pft)
Where :
- P :the probability of page fault occurring (O<=p<=1).
- pft: page fault time.
- ma: memory access.

Example:
Memory Access Time = 200 nanoseconds
Average Page Fault Service Time = 8 milliseconds
EAT = (1-p)*200+p(8 milliseconds)

= (1-p)*200+p*8000000

= 200+p*7999800

Operating system

Virtual memory

Sudad Najim -6

Page replacement :

- A page fault happens when a running program accesses a memory page that is

mapped into the virtual address space but not loaded in physical memory.

- In an operating system that uses paging for memory management, when page fault
occurs and there is no free frame in main memory, Page replacement is needed to

find one (frame) that is not currently being used and free it .

Basic Page Replacement:

The page replacement approach is implemented as follow :

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select a victim frame.

c. Write the victim frame to the disk; change the page and frame tables accordingly.

3. Read the desired page into the newly freed frame; change the page and frame tables.

4. Continue the user process from where the page fault occurred.

N
0 |i
folw

page table

frame valid-invalid bit

change
to invalid

®
reset page
table for
new page

page out
victim

@ page

g
victim

®page in

desired
page

physical
memaory

Figure 4: Page replacement

Operating system Virtual memory Sudad Najim -7

Modify bit (dirty bit):

- If no frames are free, two page transfers (one out and one in) are required.

- This situation effectively doubles the page-fault service time and increases the
effective access time.

- We can reduce this overhead by using a modify bit (or dirty bit).

- When this scheme is used, each page or frame has a modify bit associated with it.

- The modify bit for a page is set whenever any byte in the page is written into,
indicating that the page has been modified.

- When we select a page for replacement, we examine its modify bit. If the bit is set,
we know that the page has been modified since it was read in from the disk. In this
case, we must write the page to the disk.

- If the modify bit is not set, however, the page has not been modified since it was read
into memory. In this case, we need not write the memory page to the disk: it is
already there.

- This scheme can significantly reduce the time required to service a page fault, since it

reduces I/O time by one-half if the page has not been modified.

Page replacement algorithms:

There are many different page-replacement algorithms. Every operating system
probably has its own replacement scheme. How do we select a particular replacement

algorithm? In general, we want the one with the lowest page-fault rate.
The choice of which page to replace is specified by page replacement algorithms:
1- FIFO Page Replacement algorithm

This is the simplest page replacement algorithm. In this algorithm, the operating
system keeps track of all pages in the memory in a queue, the oldest page is in the
front of the queue. When a page needs to be replaced, the page in the front of the

queue is selected for removal.
Example:

FFFFHFFFFFFHHFFHHTFFF
Reference string: 7,0,1,2,0, 3,0,4,2, 3,0, 3,2,1,2,0,1, 7,0,1

Operating system Virtual memory Sudad Najim -8

0 0 0 3 3 3 2 2 2 1 1 1 0 0
1 1 1 0 0 0 3 3 3 2 2 2 1
Page faults= 15 , Fault rate= no.page fault/no. of reference string

Fault rate=15/20=0.75

Belady’s Anomaly

- Generally, on increasing the number of frames to a process’ virtual memory, its
execution becomes faster as fewer page faults occur. Sometimes the reverse
happens, i.e. more page faults occur when more frames are allocated to a
process. This most unexpected result is termed Belady’'s Anomaly. This case
may occur with FIFO page replacement algorithm.

- Example: if we consider reference strings 3, 2, 1,0, 3, 2,4, 3,2,1,0,4,and 3
slots, we get 9 total page faults, but if we increase slots to 4, we get 10-page
faults.

FFFFFFFHHFFH
3,2,1,0,3,2,4,3,2,1,0,4

3 3 3 0 0 0 4 4
2 2 2 3 3 3 1
1 1 1 2 2 2

FFFFHHFFFFFF
3,2,1,0,3,2,4,3,2,1,0,4

3 3 3 3 4 4 4 4 0 0
2 2 2 2 3 3 3 3 4
1 1 1 1 2 2 2 2

Operating system Virtual memory Sudad Najim -9

2- Optimal page replacement algorithm

In this algorithm, pages are replaced which would not be used for the longest duration
of time in the future.

Examplel: Consider the page references string:

FFFFHFHFHHFHHFHHHFHH
7,0,1,2,0,3,04,2,30,321,20170,1

7 7 7 2 2 2 2 2 7
0 0 0 0 4 0 0 0
1 1 3 3 3 1 1

Page faults=9 , fault rate = 9/20 =0.45

Example 2: Consider the page references 7,0, 1, 2,0, 3,0, 4, 2, 3,0, 3, 2, 3 with 4

page frames. Find number of page faults.

FFFFHFHFHHH HHH

Page reference 7,0,1,2,0,3,0,4,2,3,0,3,2,3 No. of page frame=4
7 7 7 7 3 3
0 0 0 0 0
1 1 1 4
2 2 2

Total page fault=6, faultrate =6/14=0.4

Optimal page replacement is perfect, but not possible in practice as the operating
system cannot know future requests. The use of Optimal Page replacement is to set
up a benchmark so that other replacement algorithms can be analyzed against it.

Operating system Virtual memory Sudad Najim -10

3- Least Recently Used(LRU): In this algorithm, the page will be replaced which is
least recently used.
- Page which has not been used for the longest time in main memory is the one
which will be selected for replacement.
- Easy to implement, keep a list, replace pages by looking back into time.
- LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly.

Example: if we have the pages reference string:

FFFFHFHFFFFHHFHFHF HH
7,0,1,20,30,4, 2,3,0,3,2,1,2,0,1,7,0, 1

Faults pages =12 , fault rate=12/20 =0.6

Operating system Memory management Sudad NAjim 11

1.11 Segmentation
1-11-a Method

When writing a program, a programmer thinks of it as a main program with a
set of methods, procedures, or functions. It may also include various data
structures: objects, arrays, stacks, variables, and so on. Each of these modules or
data elements is referred to by name.

The programmer talks about “the stack,” “the math library,” and “the main
program” without caring what addresses in memory these elements occupy.
Segmentation is a memory-management scheme that supports this
programmer view of memory.

A logical address space is a collection of segments.

subroutine

main
program

logical address

Figure 6: Programmer’s view of a program.

Each segment has a name and a length. The addresses specify both the
segment name and the offset within the segment.

For simplicity of implementation, segments are numbered and are referred to by
a segment number, rather than by a segment name. Thus, a logical address
consists of a two tuple: <segment-number, offset>

Operating system Memory management Sudad NAjim 12

1.11.b Segmentation Hardware

— limit |base —
segment
table
CPU || 5 | d
Y 1
s D)
no
trap: addressing error physical memory

Figure 7: segmentation hardware

- The segment table is thus essentially an array of base-limit register pairs. It maps

two-dimensional physical addresses. Each entry in the segment table has:
-base : contains the starting physical address where the segments reside in memory.
- limit : specifies the length of the segment.

- A logical address consists of two parts: a segment number, s, and an offset into that
segment, d.

- The segment number s is used as an index to the segment table.

- The offset d of the logical address must be between 0 and the segment limit. If it is
not, we trap the operating system. When an offset is legal, it is added to the segment

base to produce the address in physical memory of the desired byte.

- Segment-table base register (STBR) points to the segment table’s location in
memory.

- Segment-table length register (STLR) indicates number of segments used by a

program, segment number sis legalifs < STLR

correct offset + segment base = address in Physical memory

Operating system Memory management Sudad NAjim 13

Example of mapping logical addresses using segmentation scheme:

Consider the following segment table:

Segment Base Length
0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?
a. 0,430

b. 1,10

c. 2,500

d. 3,400

e.4,112

11.12 Paging

The paging technique divides the physical memory(main memory) into
fixed-size blocks that are known as Frames and also divides the logical
memory(secondary memory) into blocks of the same size that are known as
Pages.

The Frame has the same size as that of a Page. A frame is basically a place
where a (logical) page can be (physically) placed.

Each process is mainly divided into parts where the size of each part is the same
as the page size.There is a possibility that the size of the last part may be less

than the page size.(internal fragmentation).

One page of a process is mainly stored in one of the frames of the memory. Also,
the pages can be stored at different locations of the memory but always the
main priority is to find contiguous frames(contiguous allocation).

Operating system Memory management Sudad NAjim 14

11.12.1 Translation of Logical Address into Physical Address

Important notes:

e The CPU always generates a logical address.
e In order to access the main memory, a physical address is needed.

- The logical address consists of two parts:

1. Page Number(p) used as an index into a page table which contains the base
address of each page in physical memory.In this scheme the base address is
frame number.

2. Page offset (d) —used to specify the specific word on the page that the CPU
wants to read. It combined with base address to define the physical memory
address that is sent to the memory unit.

11.12.2 Page Table in OS
[J The Page table mainly contains the base address of each page in the Physical
memory.
[J The base address is then combined with the page offset in order to define the
physical memory address which is then sent to the memory unit.
[J The page table mainly provides the corresponding frame number (base address
of the frame) where that page is stored in the main memory.
[J As we have told you above that the frame number is combined with the page
offset and forms the required physical address.
[J So, The physical address consists of two parts:
e Page offset(d)

e Frame Number(f)

Operating system Memory management Sudad NAjim 15

logical physical
address address f0OO00 ... 0000

T BEE

p{

L

111 .. 111

physical
page table TR
Figure 8: paging hardware
Examples: what is the physical address ?
1- Memory size= 32 byte, Logical address=0, 0|a 0
1]b
page size=4, no. of pages=8 2| ¢
3|d
Sol 4 | e 4 i
ol: '
>l 0 .
. . . 7 | h 1]6] l
1- find page no.= logical address / page size 8 [i 2[1] g | m
9 (] 3 n
10| k o}
Then, get the frame number from page table 1; l page table p
m 12
13| n
2- find offset= logical address % page size l‘é g
. logical memory 16
Then , the physical address= frame
no.,offset in main memory
20 | @
b
Cc
d
24 ?
g
h
28

physical memory

Operating system Memory management Sudad NAjim 16

[J Page table is kept in main memory

[J Page-table base register (PTBR) points to the page table

[J Page-table length register (PTLR) indicates size of the page table

[J In this scheme every data/instruction access requires two memory accesses, one
for the page table and one for the data / instruction. Thus memory access is
slower by a factor of 2 and in most cases, this scheme slowed by a factor of 2.

[J The two memory access problem can be solved by the use of a special
fast-lookup hardware cache called associative memory or translation

look-aside buffers (TLBs).

Advantages of Paging:
1-Paging mainly allows storage of parts of a single process in a non-contiguous fashion.
2- With the help of Paging, the problem of external fragmentation is solved.

3-Paging is one of the simplest algorithms for memory management.

Disadvantages of Paging

e |n Paging, sometimes the page table consumes more memory.
e |Internal fragmentation is caused by this technique.
e There is an increase in time taken to fetch the instruction since now two memory

accesses are required.

Operating system File System Interface Sudad Najim -1

1- File concept:

Computers can store information on various storage media, such as magnetic
disks, magnetic tapes, and optical disks. So that the computer system will
be convenient to use, the operating system provides a uniform logical view of
stored information.

The logical storage unit is the file. Files are mapped by the operating system
onto physical devices. These storage devices are usually nonvolatile, so the
contents are persistent between system reboots.

A file is a named collection of related information that is recorded on
secondary storage. From a user’s perspective, a file is the smallest allotment of
logical secondary storage; that is, data cannot be written to secondary
storage unless they are within a file.

Commonly, files represent programs and data.

Many different types of information may be stored in a file—source or
executable programs, numeric or text data, photos, music, video, and so on.

A file has a certain defined structure, which depends on its type. A text file is a
sequence of characters organized into lines (and possibly pages). A source file is
a sequence of functions, each of which is further organized as declarations
followed by executable statements.

An executable file is a series of code sections that the loader can bring into

memory and execute.

Operating system File System Interface Sudad Najim -2

2- File Attributes

e A file is named , and is referred to by its name. A name is usually a string of

characters, such as example.c.

When a file is named, it becomes independent of the process, the user, and even
the system that created it. For instance, one user might create the file example.c,
and another user might edit that file by specifying its name. The file's owner might
write the file to a USB disk, send it as an email attachment, or copy it across a

network, and it could still be called example.c on the destination system.

A file’s attributes vary from one operating system to another but typically consist of

these:

Name. The symbolic file name is the only information kept in human-

readable form.

Identifier. This unique tag, usually a number, identifies the file within the file
system; it is the non-human-readable name for the file.

Type. This information is needed for systems that support different types of files.

Location. This information is a pointer to a device and to the location of the file on
that device.

Size. The current size of the file (in bytes, words, or blocks) and possibly the

maximum allowed size are included in this attribute.

Protection. Access-control information determines who can do reading, writing,

executing, and so on.

Time, date, and user identification. This information may be kept for
creation, last modification, and last use. These data can be useful for

protection, security, and usage monitoring.

The information about all files is kept in the directory structure, which also

resides on secondary storage. Typically, a directory entry consists of the file’s name

and its unique identifier. The identifier in turn locates the other file attributes. It may

take more than a kilobyte to record this information for each file. In a system with

many files, the size of the directory itself may be megabytes. Because directories, like

files, must be nonvolatile, they must be stored on the device and brought into memory,

as needed.

Operating system File System Interface Sudad Najim -3

3- File Operations
e Creating a file. Two steps are necessary to create a file. First, space in the file
system must be found for the file. Second, an entry for the new file must be made in

the directory(check if the file is not found in the directory).

e Writing a file. To write a file, we make a system call specifying both the name of the

file and the information to be written to the file. Given the name of the file, the
system searches the directory to find the file’'s location.The system must keep a
write pointer to the location in the file where the next write is to take place. The
write pointer must be updated whenever a write occurs.

e Reading a file. To read from a file, we use a system call that specifies the name of

the file and where (in memory) the next block of the file should be put. Again, the
directory is searched for the associated entry, and the system needs to keep a read
pointer to the location in the file where the next read is to take place. Once the read
has taken place, the read pointer is updated. Both the read and write operations

use the same pointer, saving space and reducing system complexity.

e Deleting a file. To delete a file, we search the directory for the named file. Having

found the associated directory entry, we release all file space, so that it can be
reused by other files, and erase the directory entry.

e Truncating a file. The user may want to erase the contents of a file but keep its

attributes. Rather than forcing the user to delete the file and then recreate it, this
function allows all attributes to remain unchanged—except for file length—but lets

the file be reset to length zero and its file space released.

Most of the file operations mentioned involve searching the directory for the entry
associated with the named file. To avoid this constant searching, many systems
require that an open() system call be made before a file is first used. The operating
system keeps a table, called the open-file table, containing information about all open
files. When a file operation is requested, the file is specified via an index into this
table, so no searching is required. When the file is no longer being actively used, it is
closed by the process, and the operating system removes its entry from the open-file
table. create() and delete() are system calls that work with closed rather than open
files.

Operating system File System Interface Sudad Najim -4

In summary, several pieces of information are associated with an open file.

- File pointer. File pointer - records the current position in the file, for the next
read or write access.
- File-open count - How many times has the current file been opened |
simultaneously by different processes) and not yet closed?
- Multiple processes may have opened a file, and the system must wait for
the last file to close before removing the open-file table entry.
- As files are closed, the operating system must free its open-file table
entries to save space in the table.
- When this counter reaches zero the file entry can be removed from the
table.

- Disk location of the file. Most file operations require the system to modify data
within the file. The information needed to locate the file on disk is kept in

memory so that the system does not have to read it from disk for each operation.

- Access rights. Each process opens a file in an access mode. This information is
stored on the per-process table so the operating system can allow or deny

subsequent |/O requests.

4- File types
e When we design a file system—indeed, an entire operating system—we

always consider whether the operating system should recognize and support

Operating system

File System Interface Sudad Najim -5

file types. If an operating system recognizes the type of a file, it can then operate
on the file in reasonable ways.

A common technique for implementing file types is to include the type as part
of the file name. The name is split into two parts—a name and an
extension, usually separated by a period (Figure 1). In this way, the user and the
operating system can tell from the name alone what the type of a file is. Most
operating systems allow users to specify a file name as a sequence of

characters followed by a period and terminated by an extension made up

5- Access methods

Figure 1: Common file types

of additional characters. Examples include resume.docx, server.c, and
ReaderThread.cpp.
file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, 0 compiled, machine
language, not linked
source code c, cc, java, perl, source code in various
asm languages
batch bat, sh commands to the command
interpreter
markup xml, html, tex textual data, documents
word processor | xml, rtf, various word-processor
docx formats
library lib, a, 5o, dll libraries of routines for
programmers
print or view gif, pdf, jpg ASCll or binary file in a
format for printing or
viewing
archive rar, Zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage
multimedia mpeg, mov, mp3, | binary file containing
mp4, avi audio or A/V information

Operating system File System Interface Sudad Najim -6

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in several
ways.

A-Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other.

A read operation—read next()—reads the next portion of the file and automatically
advances a file pointer, which tracks the 1/O location. Similarly, the write
operation—write next()—appends to the end of the file and advances to the end of
the newly written material (the new end of file).

Sequential access, which is depicted in Figure , is based on a tape model of a file and

works as well on sequential-access devices.

current position

beginning end

{=—rewind

——read or write —=>

Figure2 : Sequential-access file

B-Direct Access

Another method is direct access (or relative access). Here, a file is made up of fixed-length
logical records that allow programs to read and write records rapidly in no particular order.
For direct access, the file is viewed as a numbered sequence of blocks or records. Thus, we
may read block 14, then read block 53, and then write block 7. There are no restrictions on
the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts of information.
Databases are often of this type. When a query concerning a particular subject arrives, we
compute which block contains the answer and then read that block directly to provide the
desired information.

For the direct-access method, the file operations must be modified to include the block
number as a parameter. Thus, we have read(n), where n is the block number, rather

than read next(), and write(n) rather than write next().

6- Directory and Disk Structure

Operating system File System Interface Sudad Najim -7

« Directory is a collection of nodes containing information about files.such as name,
location, size and type for all files in that directory.

« Computer systems may have zero or more file systems, and the file systems may be of
varying types.

72
**

The organization of directories must allow us to insert entries, to delete entries, to

search for a named entry, and to list all the entries in the directory.

0,
%

Using directories are satisfy:
> Efficiency — locating a file quickly
> Naming — convenient to users
m Two users can have same name for different files
m The same file can have several different names
> Grouping — logical grouping of files by properties, (e.g., all Java programs, all
games, ...)
% In this section, we examine several schemes for defining the logical structure of the
directory system:
1. Single-Level Directory
e |s the simplest directory structure. All files are contained in the same
directory.
e A single directory for all users cause:
o Naming problem

o Grouping problem

directory test | data | mail | cont records

LELTEL

Figure 3 Single-Level Directory

2. Two-Level Directory
The standard solution is to create a separate directory for each user.

e |In this structure, each user has his own user file directory (UFD).

e The UFDs have similar structures, but each lists only the files of a single
user.

e When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique.

e This structure have the following properties:

Operating system File System Interface Sudad Najim -8

o Path name
o Can have the same file name for different user
o Efficient searching

o No grouping capability

master file

directory user 1| user 2| user 3| user 4

S

test a data a test X data a

ST TELE LTS

Figure 4 Two-level directory structure

user file
irectory

3. Tree-Structured Directories
The natural generalization is to extend the directory structure to a tree.

e The tree has a root directory, and every file in the system has a unique path
name.

e Path names can be of two types: absolute and relative. An absolute path name
begins at the root and follows a path down to the specified file, giving the
directory names on the path. A relative path name defines a path from the
current directory. For example, in the tree-structured file system of Figure
4 if the current directory is root/spell/mail, then the relative path name
prt/first refers to the same file as does the absolute path name
root/spell/mail/prt/first.

e This structure have the following properties:
o Efficient searching
o Grouping Capability
o Current directory (working directory)

cd /spell/mail/prog

Operating system File System Interface Sudad Najim -9
root spell bin |programs
stat mail dist reorder mail
reorder| list find count

prog | copy | prt | exp

L 5

58 |

list spell last

5868886

Figure 5 : Tree-structured directory structure.

4. Acyclic-Graph Directories
e This structure allows the shared files or subdirectory with users.

root | dict | spell

PN

list all

count

T

count words| fist

» list | rade

By y

o

Figure 6: Acyclic-graph directory structure

8- File-System Mounting
9- File sharing

