
Operating system                                                                                                                                   

              

1 

 

 Introduction to Operating System 

 An operating system (OS) is the software component of a computer system that is 

responsible for the management and coordination of activities and the sharing of 

the resources of the computer. The operating system is the most important program 

that runs on a computer.  

• Operating system is an interface between computer and user.  

• It is responsible for the management and coordination of activities and the 

sharing of the resources of the computer.  

 

 

 

 

 

 

 

 

 

 

 

 Types of Operating System  

• Real-time operating system is real-time operating system (RTOS) is an 

operating system that guarantees a certain capability within a specified time 

constraint. For example, an operating system might be designed to ensure that a 

certain object was available for a robot on an assembly line.  
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 Real Time Operating Systems are categorized in two types i.e. Hard Real Time 

Operating Systems and soft Real Time Operating Systems.  

• Multi-user vs. Single-user A multi-user operating system allows multiple users 

to access a computer system concurrently.  

 Time-sharing system can be classified as multi-user systems as they 

enable a multiple user access to a computer through the sharing of 

time. 

  Single-user operating systems, as opposed to a multi-user operating 

system, are usable by a single user at a time.  

• Multi-tasking vs. Single-tasking:-  

 When a single program is allowed to run at a time, the system is grouped 

under a single-tasking system  

  While in case the operating system allows the execution of multiple tasks at 

one time, it is classified as a multi-tasking operating system. 

 • Distributed  

A distributed operating system manages a group of independent computers and 

makes them appear to be a single computer.  

The development of networked computers that could be linked and communicate 

with each other, gave rise to distributed computing 

 • Embedded 

 Embedded operating system (OS) is a specialized operating system designed to 

perform a specific task for a device that is not a computer. An embedded operating 

system's main job is to run the code that allows the device to do its job. he most 

common examples of embedded operating system around us include Windows 

Mobile/CE (handheld Personal Data Assistants)  
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Major Functions of Operating System 

 • Resource management:- The resource management function of an OS allocates 

computer resources such as CPU time, main memory, secondary storage, and input 

and output devices for use.  

• Data management The data management functions of an OS govern the input 

and output of data and their location, storage, and retrieval.  It also is responsible 

for storing and retrieving information on disk drives and for the organization of 

that information on the drive.  

• Job management The job management function of an OS prepares, schedules, 

controls, and monitors jobs submitted for execution to ensure the most efficient 

processing. A job is a collection of one or more related programs and their data. 

Examples of Operating System  

• MS-DOS  

• Windows  

• Mac OS  

• Linux 

• Solaris  

• Android 
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PROCESSES 

A process can be thought of as a program in execution. A process will need 

certain resources-such as CPU time, memory, files, and I/O devices-to accomplish 

its task. These resources are allocated to the process either when it is created or 

while it is executing. 

 A process is the unit of work in most systems. Such a system consists of a 

collection of processes: Operating-system processes execute system code, and user 

processes execute user code. All these processes may execute concurrently. 

Although traditionally a process contained only a single thread of control as it ran, 

most modern operating systems now support processes that have multiple threads. 

 

4.1. Process Concept 

A batch system executes jobs, whereas a timeshared system has user 

programs, or tasks. Even on a single-user system, such as Microsoft Windows and 

Macintosh OS, a user may be able to run several programs at one time: a word 

processor, web browser, and e-mail package. Even if the user can execute only one 

program at a time, the operating system may need to support its own internal 

programmed activities, such as memory management. In many respects, all these 

activities are similar, so we call all of them processes. 

 

4.1.1 The Process 

A process is a program in execution. A process is more than the program 

code, which is sometimes known as the text section. It also includes the current 

activity, as represented by the value of the program counter and the contents of the 

processor's registers. In addition, a process generally includes the process stack, 
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which contains temporary data (such as method parameters, return addresses, and 

local variables), and a data section, which contains global variables. 

Although two processes may be associated with the same program, they are 

nevertheless considered two separate execution sequences. For instance, several 

users may be running different copies of the mail program, or the same user may 

invoke many copies of the editor program. Each of these is a separate process, and, 

although the text sections are equivalent, the data sections vary. 

 

4.1.2 Process State 

As a process executes, it changes state. The state of a process is defined in part by 

the current activity of that process. Each process may be in one of the following 

states: 

 New: The process is being created. 

 Running: Instructions are being executed. 

 Waiting: The process is waiting for some event to occur (such as an I/O 

completion or reception of a signal). 

 Ready: The process is waiting to be assigned to a processor. 

 Terminated: The process has finished execution. 

These state names are arbitrary, and they vary across operating systems. The states 

that they represent are found on all systems. Only one process can be running on 

any processor at any instant, although many processes may be ready and waiting. 

The state diagram corresponding to these states is presented in Figure 4.1. 
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4.1.3 Process Control Block 

Each process is represented in the operating system by a process control block 

(PCB)-also called a task control block. A PCB is shown in Figure 4.2. It contains 

many pieces of information associated with a specific process, including these: 

 Process state: The state may be new, ready, running, waiting, halted, and 

          so on. 

 Program counter: The counter indicates the address of the next instruction 

         to be executed for this process. 

 CPU registers: The registers vary in number and type, depending on the 

          computer architecture. They include accumulators, index registers, stack         

          pointers, and general-purpose registers, plus any condition-code information. 
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Along with the program counter, this state information must be saved when an 

interrupt occurs, to allow the process to be continued correctly afterward (Figure 

4.3). 

 

 CPU-scheduling information: This information includes a process priority, 

         pointers to scheduling queues, and any other scheduling parameters. 

 Memory-management information: This information may include such 

           information as the value of the base and limit registers, the page tables, or                 

           the segment tables, depending on the memory system used by the operating    

          system.  

 Accounting information: This information includes the amount of CPU 

and real time used, time limits, account numbers, job or process numbers, 

and so on. 
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 status information: The information includes the list of I/O devices 

allocated to this process, a list of open files, and so on. 

The PCB simply serves as the repository for any information that may vary 

from process to process. 

 

 

 

4.1.4 Threads 

The process model discussed so far has implied that a process is a program that 

performs a single thread of execution. For example, if a process is running a word-

processor program, a single thread of instructions is being executed. This single 

thread of control allows the process to perform only one task at one time. 

Figure 4.3 Diagram Showing CPU switch From Process to process. 
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For example, the user could not simultaneously type in characters and run the spell 

checker within the same process. Many modern operating systems have extended 

the process concept to allow a process to have multiple threads of execution. They 

thus allow the process to perform more than one task at a time. 
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4.5 Interprocess Communication 
we showed how cooperating processes can communicate in a shared-memory 

environment. The scheme requires that these processes share a common buffer 

pool, and that the code for implementing the buffer be written explicitly by the 

application programmer. Another way to achieve the same effect is for the 

operating system to provide the means for cooperating processes to communicate 

with each other via an interprocess communication (PC) facility. 

IPC provides a mechanism to allow processes to communicate and to synchronize 

their actions without sharing the same address space. IPC is particularly useful in a 

distributed environment where the communicating processes may reside on 

different computers connected with a network. An example is a chat program used 

on the World Wide Web. 

IPC is best provided by a message-passing system, and message systems can be 

defined in many ways.  

 

4.5.1 Message-Passing System 

The function of a message system is to allow processes to communicate with 

one another without the need to resort to shared data. In this scheme, services are 

provided as ordinary user processes. That is, the services operate outside of the 

kernel. Communication among the user processes is accomplished through the 

passing of messages. An IPC facility provides at least the two operations: 

send(message) and receive(message). 

Messages sent by a process can be of either fixed or variable size. If only fixed-

sized messages can be sent, the system-level implementation is straightforward. 

This restriction, however, makes the task of programming more difficult. On the 



Operating system                                                                                                                                   

              

11 

 

other hand, variable-sized messages require a more complex system-level 

implementation, but the programming task becomes simpler. 

If processes P and Q want to communicate, they must send messages to and 

receive messages from each other; a communication link must exist between 

them. This link can be implemented in a variety of ways. We are concerned here 

not with the link's physical implementation (such as shared memory, hardware 

bus, or network), but rather with its logical implementation. Here are several 

methods for logically implementing a link and the send/receive operations: 

 Direct or indirect communication 

 Symmetric or asymmetric communication 

 Automatic or explicit buffering 

 Send by copy or send by reference 

 Fixed-sized or variable-sized messages 

We look at each of these types of message systems next. 

 

4.5.2 Naming 

Processes that want to communicate must have a way to refer to each other. They 

can use either direct or indirect communication. 

4.5.2.1 Direct Communication 

With direct communication, each process that wants to communicate must 

explicitly name the recipient or sender of the communication. In this scheme, the 

send and receive primitives are defined as: 

 Send(P,message)-Send a message to process P. 

 Receive (Q , message) -Receive a message from process Q. 

A communication link in this scheme has the following properties: 
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 A link is established automatically between every pair of processes that want 

to communicate. The processes need to know only each other's identity to 

communicate. 

 A link is associated with exactly two processes. 

 Exactly one link exists between each pair of processes. 

This scheme exhibits symmetry in addressing; that is, both the sender and the 

receiver processes must name the other to communicate. A variant of this scheme 

employs asymmetry in addressing. Only the sender names the recipient; the 

recipient is not required to name the sender. In this scheme, the send and receive 

primitives are defined as follows: 

 Send(P,message)- Send a message to process P. 

 Receive (id, message) -Receive a message from any process; the variable 

id is set to the name of the process with which communication has taken place. 

 

The disadvantage in both symmetric and asymmetric schemes is the limited 

modularity of the resulting process definitions. Changing the name of a process 

may necessitate examining all other process definitions. All references to the old 

name must be found, so that they can be modified to the new name. This situation 

is not desirable from the viewpoint of separate compilation. 

 

4.5.2.2 Indirect Communication 

With indirect communication, the messages are sent to and received from 

mailboxes, or ports. A mailbox can be viewed abstractly as an object into which 

messages can be placed by processes and from which messages can be removed. 
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Each mailbox has a unique identification. In this scheme, a process can 

communicate with some other process via a number of different mailboxes. 

Two processes can communicate only if they share a mailbox. The send and 

receive primitives are defined as follows: 

 send (A, message) -Send a message to mailbox A. 

 receive (A, message) -Receive a message from mailbox A. 

In this scheme, a communication link has the following properties: 

 A link is established between a pair of processes only if both members of the 

pair have a shared mailbox. 

 A link may be associated with more than two processes. 

 A number of different links may exist between each pair of communicating 

processes, with each link corresponding to one mailbox. 

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1 sends 

a message to A, while P2 and P3 each execute a receive from A. Which process 

will receive the message sent by P1 ? The answer depends on the scheme that we 

choose: 

 Allow a link to be associated with at most two processes. 

 Allow at most one process at a time to execute a receive operation. 

 Allow the system to select arbitrarily which process will receive the message 

(that is, either P2 or P3, but not both, will receive the message). The system 

may identify the receiver to the sender. 

 

A mailbox may be owned either by a process or by the operating system. If the 

mailbox is owned by a process (that is, the mailbox is part of the address space of 

the process), then we distinguish between the owner (who can only receive 
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messages through this mailbox) and the user (who can only send messages to the 

mailbox). Since each mailbox has a unique owner, there can be no confusion about 

who should receive a message sent to this mailbox. When a process that owns a 

mailbox terminates, the mailbox disappears. Any process that subsequently sends a 

message to this mailbox must be notified that the mailbox no longer exists. 

On the other hand, a mailbox owned by the operating system is independent and is 

not attached to any particular process. The operating system then must provide a 

mechanism that allows a process to do the following: 

 Create a new mailbox. 

 Send and receive messages through the mailbox. 

 Delete a mailbox. 

The process that creates a new mailbox is that mailbox's owner by default. Initially, 

the owner is the only process that can receive messages through this mailbox. 

However, the ownership and receive privilege may be passed to other processes 

through appropriate system calls. Of course, this provision could result in multiple 

receivers for each mailbox. 

 

4.5.3 Synchronization 

Communication between processes takes place by calls to send and receive 

primitives. There are different design options for implementing each primitive. 

Message passing may be either blocking or nonblocking-also known as 

synchronous and asynchronous. 

 Blocking send: The sending process is blocked until the message is received 

by the receiving process or by the mailbox. 
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 Nonblocking send: The sending process sends the message and resumes 

operation. 

 Blocking receive: The receiver blocks until a message is available. 

 Nonblocking receive: The receiver retrieves either a valid message or a null. 

Different combinations of send and receive are possible.  

4.5.4 Buffering 

Whether the communication is direct or indirect, messages exchanged by 

communicating processes reside in a temporary queue. Basically, such a queue can 

be implemented in three ways: 

 Zero capacity: The queue has maximum length 0; thus, the link cannot have 

any messages waiting in it. In this case, the sender must block until the 

recipient receives the message. 

 Bounded capacity: The queue has finite length n; thus, at most n messages 

can reside in it. If the queue is not full when a new message is sent, the latter 

is placed in the queue (either the message is copied or a pointer to the 

message is kept), and the sender can continue execution without waiting. 

The link has a finite capacity, however. If the link is full, the sender must 

block until space is available in the queue. 

 Unbounded capacity: The queue has potentially infinite length; thus, any 

number of messages can wait in it. The sender never blocks. 

The zero-capacity case is sometimes referred to as a message system with no 

buffering; the other cases are referred to as automatic buffering. 
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CPU SCHEDULING 

CPU scheduling is the basis of multiprogrammed operating systems. By 

switching the CPU among processes, the operating system can make the computer 

more productive.  

 

6.1 Basic Concepts 

The objective of multiprogramming is to have some process running at all 

times, in order to maximize CPU utilization. In a uniprocessor system, only one 

process may run at a time; any other processes must wait until the CPU is free and 

can be rescheduled. 

The idea of multiprogramming is relatively simple. A process is executed until it 

must wait, typically for the completion of some I/O request. In a simple computer 

system, the CPU would then sit idle; all this waiting time is wasted. With 

multiprogramming, we try to use this time productively. Several processes are kept 

in memory at one time. When one process has to wait, the operating system takes 

the CPU away from that process and gives the CPU to another process. This 

pattern continues. 

Scheduling is a fundamental operating-system function. Almost all computer 

resources are scheduled before use. The CPU is, of course, one of the primary 

computer resources. Thus, its scheduling is central to operating-system design. 

 

6.1.1 CPU-I/O Burst Cycle 

The success of CPU scheduling depends on the following observed property 

of processes: Process execution consists of a cycle of CPU execution and I/O wait. 

Processes alternate between these two states. Process execution begins with a CPU 
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burst. That is followed by an I/O burst, then another CPU burst, then another I/O 

burst, and so on. Eventually, the last CPU burst will end with a system request to 

terminate execution, rather than with another I/O burst (Figure 6.1). The durations 

of these CPU bursts have been extensively measured. Although they vary greatly 

by process and by computer. This distribution can help us select an appropriate 

CPU-scheduling algorithm. 

 

6.1.2 CPU Scheduler 

Whenever the CPU becomes idle, the operating system must select one of the 

processes in the ready queue to be executed. The selection process is carried out by 
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the short-term scheduler (or CPU scheduler). The scheduler selects from among 

the processes in memory that are ready to execute, and allocates the CPU to one of 

them. 

The ready queue is not necessarily a first-in, first-out (FIFO) queue. A ready queue 

may be implemented as a FIFO queue, a priority queue, a tree, or simply an 

unordered linked list. Conceptually, however, all the processes in the ready queue 

are lined up waiting for a chance to run on the CPU. The records in the queues are 

generally process control blocks (PCBs) of the processes. 

 

6.1.3 Preemptive Scheduling 

CPU scheduling decisions may take place under the following four circumstances: 

1. When a process switches from the running state to the waiting state (for 

example, I/O request, or invocation of wait for the termination of one of the child 

processes) 

2. When a process switches from the running state to the ready state (for example, 

when an interrupt occurs) 

3. When a process switches from the waiting state to the ready state (for example, 

completion of I/O) 

4. When a process terminates 

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process 

(if one exists in the ready queue) must be selected for execution. There 

is a choice, however, in circumstances 2 and 3. 

When scheduling takes place only under circumstances 1 and 4, we say the 

scheduling scheme is nonpreemptive; otherwise, the scheduling scheme is 
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preemptive. Under nonpreemptive scheduling, once the CPU has been allocated to 

a process, the process keeps the CPU until it releases the CPU either 

by terminating or by switching to the waiting state. This scheduling method is used 

by the Microsoft Windows 3.1 and by the Apple Macintosh operating systems. It is 

the only method that can be used on certain hardware platforms,because it does not 

require the special hardware (for example, a timer) needed for preemptive 

scheduling. 

Preemptive scheduling incurs a cost. Consider the case of two processes sharing 

data. One may be in the midst of updating the data when it is preempted and the 

second process is run. The second process may try to read the data, which are 

currently in an inconsistent state. New mechanisms thus are needed to coordinate 

access to shared data. 

Preemption also has an effect on the design of the operating-system kernel. During 

the processing of a system call, the kernel may be busy with an activity on behalf 

of a process. Such activities may involve changing important kernel data (for 

instance, I/O queues). What happens if the process is preempted in the middle of 

these changes, and the kernel (or the device driver) needs to read or modify the 

same structure? Chaos could ensue. Some operating systems, including most 

versions of UNIX, deal with this problem by waiting either for a 

system call to complete, or for an I/O block to take place, before doing a context 

switch. This scheme ensures that the kernel structure is simple, since the kernel 

will not preempt a process while the kernel data structures are in an inconsistent 

state. Unfortunately, this kernel-execution model is a poor one for supporting real-

time computing and multiprocessing.  

6.1.4 Dispatcher 
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Another component involved in the CPU scheduling function is the dispatcher. The 

dispatcher is the module that gives control of the CPU to the process selected by 

the short-term scheduler. This function involves: 

 Switching context 

 Switching to user mode 

 Jumping to the proper location in the user program to restart that program 

The dispatcher should be as fast as possible, given that it is invoked during every 

process switch. The time it takes for the dispatcher to stop one process and start 

another running is known as the dispatch latency. 

 

 

 

 
6.2 . Scheduling Criteria 

Different CPU-scheduling algorithms have different properties and may favor one 

class of processes over another. In choosing which algorithm to use in a particular 

situation, we must consider the properties of the various algorithms. 

Many criteria have been suggested for comparing CPU-scheduling algorithms. The 

characteristics used for comparison can make a substantial difference in the 

determination of the best algorithm. The criteria include the following: 

CPU utilization: We want to keep the CPU as busy as possible. CPU utilization 

may range from 0 to 100 percent. In a real system, it should range from 40 percent 

(for a lightly loaded system) to 90 percent (for a heavily used system). 

Throughput: If the CPU is busy executing processes, then work is being done. 

One measure of work is the number of processes completed per time unit, called 

throughput. For long processes, this rate may be 1 process per hour; for short 

transactions, throughput might be 10 processes per second. 
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a Turnaround time: From the point of view of a particular process, the important 

criterion is how long it takes to execute that process. The interval from the time of 

submission of a process to the time of completion is the turnaround time. 

Turnaround time is the sum of the periods spent waiting to get into memory, 

waiting in the ready queue, executing on the CPU, and doing I/O. 

Waiting time: The CPU-scheduling algorithm does not affect the amount of time 

during which a process executes or does I/O; it affects only the amount of time that 

a process spends waiting in the ready queue. Waiting time is the sum of the periods 

spent waiting in the ready queue. 

a Response time: In an interactive system, turnaround time may not be the best 

criterion. Often, a process can produce some output fairly early, and can continue 

computing new results while previous results are being output to the user. Thus, 

another measure is the time from the submission of a request until the first 

response is produced. This measure, called response time, is the amount of time it 

takes to start responding, but not the time that it takes to output that response. The 

turnaround time is generally limited by the speed of the output device. 

We want to maximize CPU utilization and throughput, and to minimize turnaround 

time, waiting time, and response time. In most cases, we optimize the average 

measure. However, in some circumstances we want to optimize the minimum or 

maximum values, rather than the average. For example, to guarantee that all users 

get good service, we may want to minimize the maximum response time. 

For interactive systems (such as time-sharing systems), some analysts suggest that 

minimizing the variance in the response time is more important than minimizing 

the average response time. A system with reasonable and predictable response time 

may be considered more desirable than a system that is faster on the average, but is 
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highly variable. However, little work has been done on CPU-scheduling algorithms 

to minimize variance.  
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6.3   Scheduling Algorithms 

CPU scheduling deals with the problem of deciding which of the processes in the 

ready queue is to be allocated the CPU.  

 

6.3.1 First-Come, First-Served Scheduling 

By far the simplest CPU-scheduling algorithm is the first-come, first-served 

(FCFS) scheduling algorithm. With this scheme, the process that requests the CPU 

first is allocated the CPU first. The implementation of the FCFS policy is easily 

managed with a FIFO queue. When a process enters the ready queue, its PCB is 

linked onto the tail of the queue. When the CPU is free, it is allocated to the 

process at the head of the queue. The running process is then removed from the 

queue. The average waiting time under the FCFS policy, is often quite long. 

Consider the following set of processes that arrive at time 0, with the length of the 

CPU-burst time given in milliseconds: 

                    Process                                   Burst Time 

      P1      24 

      P2                                                3 

      P3                                                3 

 

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,we get 

the result shown in the following Gantt chart: 
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The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, 

and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 

27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, Pl, however, 

the results will be as shown in the following Gantt chart: 

 

 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is 

substantial. Thus, the average waiting time under a FCFS policy is generally not 

minimal, and may vary substantially if the process CPU-burst times vary greatly. 

In addition, consider the performance of FCFS scheduling in a dynamic situation. 

Assume we have one CPU-bound process and many I/O-bound processes. The 

CPU-bound process will get the CPU and hold it. During this time, all the other 

processes will finish their I/O and move into the ready queue, waiting for the CPU. 

While the processes wait in the ready queue, the I/O devices are idle. Eventually, 

the CPU-bound process finishes its CPU burst and moves to an I/O device. All the 

I/O-bound processes, which have very short CPU bursts, execute quickly and move 

back to the I/O queues. At this point, the CPU sits idle. The CPU-bound process 

will then move back to the ready queue and be allocated the CPU. Again, all the 

I/O processes end up waiting in the ready queue until the CPU-bound process is 

done. the other processes wait for the one big process to get off the CPU. This 

effect results in lower CPU and device utilization than might be possible if the 

shorter processes were allowed to go first. 
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The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been 

allocated to a process, that process keeps the CPU until it releases the CPU, either 

by terminating or by requesting I/O. The FCFS algorithm is particularly 

troublesome for time-sharing systems, where each user needs to get a share of the 

CPU at regular intervals. It would be disastrous to allow one process to keep the 

CPU for an extended period. 

 

6.3.2 Shortest-Job-First Scheduling 

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling 

algorithm. This algorithm associates with each process the length of the latter's 

next CPU burst. When the CPU is available, it is assigned to the process that has 

the smallest next CPU burst. If two processes have the same length next CPU 

burst, FCFS scheduling is used to break the tie. As an example, consider the 

following set of processes, with the length of the CPU-burst time given in 

milliseconds: 

Process    Burst Time 

    P1      6 

    P2      8 

    p3             7 

    p4                3 

Using SJF scheduling, we would schedule these processes according to the 

following Gantt chart: 
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The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2,9 

milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average 

waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using the FCFS 

scheduling scheme, then the average waiting time would be 10.25 milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it gives the minimum 

average waiting time for a given set of processes. By moving a short process 

before a long one, the waiting time of the short process decreases more than it 

increases the waiting time of the long process. Consequently, the average waiting 

time decreases. 

The real difficulty with the SJF algorithm is knowing the length of the next CPU 

request. For long-term (or job) scheduling in a batch system, we can use as the 

length the process time limit that a user specifies when he submits the job. SJF 

scheduling is used frequently in long-term scheduling. 

Although the SJF algorithm is optimal, it cannot be implemented at the level of 

short-term CPU scheduling. There is no way to know the length of the next CPU 

burst. One approach is to try to approximate SJF scheduling. We may not know the 

length of the next CPU burst, but we may be able to predict its value. 

We expect that the next CPU burst will be similar in length to the previous ones. 

Thus, by computing an approximation of the length of the next CPU burst, we 

can pick the process with the shortest predicted CPU burst. 

The SJF algorithm may be either preemptive or nonpreemptive. The choice arises 

when a new process arrives at the ready queue while a previous process is 

executing. The new process may have a shorter next CPU burst than what is left 

of the currently executing process. A preemptive SJF algorithm will preempt the 
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currently executing process, whereas a nonpreemptive SJF algorithm will allow 

the currently running process to finish its CPU burst. Preemptive SJF scheduling 

is sometimes called shortest-remaining-time-first scheduling. 

As an example, consider the following four processes, with the length of the CPU-

burst time given in milliseconds: 

Process   Arrival Time   Burst Time 

   P1     0     8 

   P2     1             4 

   P3     2     9 

   p4     3     5 

 

If the processes arrive at the ready queue at the times shown and need the indicated 

burst times, then the resulting preemptive SJF schedule is as depicted in the 

following Gantt chart: 

 

 

Process P1 is started at time 0, since it is the only process in the queue. Process 

P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is larger 

than the time required by process P2 (4 milliseconds), so process P1 is preempted, 

and process P2 is scheduled. The average waiting time for this example is ((10 - 1) 

+ (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds. A nonpreemptive SJF 

scheduling would result in an average waiting time of 7.75 milliseconds. 
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6.3.3 Priority Scheduling 

The SJF algorithm is a special case of the general priority-scheduling algorithm. 

A priority is associated with each process, and the CPU is allocated to the process 

with the highest priority. Equal-priority processes are scheduled in FCFS order. 

An SJF algorithm is simply a priority algorithm where the priority (p) is the 

inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the 

priority, and vice versa. 

Priorities are generally some fixed range of numbers, such as 0 to 7, or 0 to 4,095. 

However, there is no general agreement on whether 0 is the highest or lowest 

priority. Some systems use low numbers to represent low priority; others use low 

numbers for high priority. This difference can lead to confusion. In this text, we 

use low numbers to represent high priority. 

As an example, consider the following set of processes, assumed to have arrived at 

time 0, in the order P1, P2, ..., Pn, with the length of the CPU-burst time given in 

milliseconds: 

Process   Burst Time    Priority 

    P1     10         3 

    p2     1         1 

    p3     2         4 

    P4     1         5 

    P5     5         2 

Using priority scheduling, we would schedule these processes according to the 

following Gantt chart: 
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The average waiting time is 8.2 milliseconds. 

Priority scheduling can be either preemptive or nonpreemptive. When a process 

arrives at the ready queue, its priority is compared with the priority of  the 

currently running process. A preemptive priority-scheduling algorithm will 

preempt the CPU if the priority of the newly arrived process is higher than the 

priority of the currently running process. A nonpreemptive priority-scheduling 

algorithm will simply put the new process at the head of the ready queue. 

A major problem with priority-scheduling algorithms is indefinite blocking (or 

starvation). A process that is ready to run but lacking the CPU can be considered 

blocked-waiting for the CPU. A priority-scheduling algorithm can leave some low-

priority processes waiting indefinitely for the CPU. In a heavily loaded computer 

system, a steady stream of higher-priority processes can prevent a low-priority 

process from ever getting the CPU. Generally, one of two things will happen. 

Either the process will eventually be run, or the computer system will eventually 

crash and lose all unfinished low-priority processes.  

A solution to the problem of indefinite blockage of low-priority processes is aging. 

Aging is a technique of gradually increasing the priority of processes that wait in 

the system for a long time. For example, if priorities range from 127 (low) to 0 

(high), we could decrement the priority of a waiting process by 1 every 15 minutes. 

Eventually, even a process with an initial priority of 127 would have the highest 
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priority in the system and would be executed. In fact, it would take no more than 

32 hours for a priority 127 process to age to a priority 0 process. 

 

6.3.4 Round-Robin Scheduling 

The round-robin (RR) scheduling algorithm is designed especially for timesharing 

systems. It is similar to FCFS scheduling, but preemption is added to switch 

between processes. A small unit of time, called a time quantum (or time slice), is 

defined. A time quantum is generally from 10 to 100 milliseconds. The ready 

queue is treated as a circular queue. The CPU scheduler goes around the ready 

queue, allocating the CPU to each process for a time interval of up to 1 time 

quantum. 

To implement RR scheduling, we keep the ready queue as a FIFO queue of 

processes. New processes are added to the tail of the ready queue. The CPU 

scheduler picks the first process from the ready queue, sets a timer to interrupt after 

1 time quantum, and dispatches the process. 

One of two things will then happen. The process may have a CPU burst of less 

than 1 time quantum. In this case, the process itself will release the CPU 

voluntarily. The scheduler will then proceed to the next process in the ready queue. 

Otherwise, if the CPU burst of the currently running process is longer than 1 time 

quantum, the timer will go off and will cause an interrupt to the operating system. 

A context switch will be executed, and the process will be put at the tail of the 

ready queue. The CPU scheduler will then select the next process in the ready 

queue. 

The average waiting time under the RR policy, however, is often quite long. 

Consider the following set of processes that arrive at time 0, with the length of 
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the CPU-burst time given in milliseconds: 

Process   Burst Time 

     P1      24 

     P2      3 

     P3      3 

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 

milliseconds. Since it requires another 20 milliseconds, it is preempted after the 

first time quantum, and the CPU is given to the next process in the queue, process 

P2. Since process P2 does not need 4 milliseconds, it quits before its time quantum 

expires. The CPU is then given to the next process, process P3. Once each process 

has received 1 time quantum, the CPU is returned to process P1 for an additional 

time quantum. The resulting RR schedule is 

 

 

In the RR scheduling algorithm, no process is allocated the CPU for more than 1 

time quantum in a row. If a process' CPU burst exceeds 1 time quantum, that 

process is preempted and is put back in the ready queue. The RR scheduling 

algorithm is preemptive. 

If there are n processes in the ready queue and the time quantum is q, then each 

process gets l/n of the CPU time in chunks of at most q time units. Each process 

must wait no longer than (n - 1) x q time units until its next time quantum. For 

example, if there are five processes, with a time quantum of 20 milliseconds, then 

each process will get up to 20 milliseconds every 100 milliseconds. 
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The performance of the RR algorithm depends heavily on the size of the time 

quantum. At one extreme, if the time quantum is very large (infinite), the RR 

policy is the same as the FCFS policy. If the time quantum is very small (say 1 

microsecond), the RR approach is called processor sharing, and appears  to the 

users as though each of n processes has its own processor running at l/n the speed 

of the real processor.  

In software, however, we need also to consider the effect of context switching on 

the performance of RR scheduling. Let us assume that we have only one process of 

10 time units. If the quantum is 12 time units, the process finishes in less than 1 

time quantum, with no overhead. If the quantum is 6 time units, however, the 

process requires 2 quantam, resulting in 1 context switch. If the time quantum is 1 

time unit, then 9 context switches will occur, slowing the execution of the process 

accordingly .Thus, we want the time quantum to be large with respect to the 

context switch time. If the context-switch time is approximately 10 percent of the 

time quantum, then about 10 percent of the CPU time will be spent in context 

switch. 

Turnaround time also depends on the size of the time quantum. The average 

turnaround time of a set of processes does not necessarily improve as the time-

quantum size increases. In general, the average turnaround time can be improved if 

most processes finish their next CPU burst in a single time quantum.  
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Deadlocks 

  

In a multiprogramming environment, several processes may compete for a finite 

number of resources. A process requests resources; if the resources are not 

available at that time, the process enters a wait state. Waiting processes may never 

again change state, because the resources they have requested are held by other 

waiting processes. This situation is called a deadlock.  

 

Necessary Conditions 

A deadlock situation can arise if the following four conditions hold simultaneously 

in a system: 

1. Mutual exclusion: At least one resource must be held in a non-sharable mode; 

that is, only one process at a time can use the resource. If another process requests 

that resource, the requesting process must be delayed until the resource has been 

released. 

2. Hold and wait: A process must be holding at least one resource and waiting to 

acquire additional resources that are currently being held by other processes. 

3. No preemption: Resources cannot be preempted; that is, a resource can be 

released only voluntarily by the process holding it, after that process has completed 

its task. 

4. Circular wait: A set {P0, P1, ..., Pn) of waiting processes must exist such that P0 

is waiting for a resource that is held by P1, P1 is waiting for a resource that is held 

by P2, ..., Pn-1 is waiting for a resource that is held by Pn,, and Pn, is waiting for a 

resource that is held by P0. 
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We emphasize that all four conditions must hold for a deadlock to occur. The 

circular-wait condition implies the hold-and-wait condition, so the four conditions 

are not completely independent. 

Deadlock Prevention 

The deadlock to occur, each of the four necessary conditions must hold. By 

ensuring that at least one of these conditions cannot hold, we can prevent the 

occurrence of a deadlock.  

Mutual Exclusion 

The mutual-exclusion condition must hold for non sharable resources. For 

example, a printer cannot be simultaneously shared by several processes. Sharable 

resources, on the other hand, do not require mutually exclusive access, and thus 

cannot be involved in a deadlock. Read-only files are a good example of a sharable 

resource. If several processes attempt to open a read-only file at the same time, 

they can be granted simultaneous access to the file. A process never needs to wait 

for a sharable resource. In general, however, we cannot prevent deadlocks by 

denying the mutual-exclusion condition: Some resources are   nonsharable.  

hold and Wait 

To ensure that the hold-and-wait condition never occurs in the system, we must 

guarantee that, whenever a process requests a resource, it does not hold any other 

resources. One protocol that can be used requires each process to request and be 

allocated all its resources before it begins execution. We can implement this 

provision by requiring that system calls requesting resources for a process precede 

all other system calls. 

An alternative protocol allows a process to request resources only when the 

process has none. A process may request some resources and use them. Before it 
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can request any additional resources, however, it must release all the resources that 

it is currently allocated. 

To illustrate the difference between these two protocols, we consider a process that 

copies data from a tape drive to a disk file, sorts the disk file, and then prints the 

results to a printer. If all resources must be requested at the beginning of the 

process, then the process must initially request the tape drive, disk file, and printer. 

It will hold the printer for its entire execution, even though it needs the printer only 

at the end. 

The second method allows the process to request initially only the tape drive and 

disk file. It copies from the tape drive to the disk, and then releases both the tape 

drive and the disk file. The process must then again request the disk file and the 

printer. After copying the disk file to the printer, it releases these two resources and 

terminates. 

These protocols have two main disadvantages. First, resource utilization may be 

low, since many of the resources may be allocated but unused for a long period. In 

the example given, for instance, we can release the tape drive and disk file, and 

then again request the disk file and printer, only if we can be sure that our data will 

remain on the disk file. If we cannot be assured that they will, then we must 

request all resources at the beginning for both protocols. Second, starvation is 

possible. A process that needs several popular resources may have to wait 

indefinitely, because at least one of the resources that it needs is always allocated 

to some other process. 
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No Preemption 

The third necessary condition is that there be no preemption of resources that have 

already been allocated. To ensure that this condition does not hold, we can use the 

following protocol. If a process is holding some resources and requests another 

resource that cannot be immediately allocated to it (that is, the process must wait), 

then all resources currently being held are preempted. In other words, these 

resources are implicitly released. The preempted resources are added to the list of 

resources for which the process is waiting. The process will be restarted only when 

it can regain its old resources, as well as the new ones that it is requesting. 

Alternatively, if a process requests some resources, we first check whether they are 

available. If they are, we allocate them. If they are not available, we check whether 

they are allocated to some other process that is waiting for additional resources. If 

so, we preempt the desired resources from the waiting process and allocate them to 

the requesting process. If the resources are not either available or held by a waiting 

process, the requesting process must wait. 

While it is waiting, some of its resources may be preempted, but only if another 

process requests them. A process can be restarted only when it is allocated the new 

resources it is requesting and recovers any resources that were preempted while it 

was waiting. 

This protocol is often applied to resources whose state can be easily saved and 

restored later, such as CPU registers and memory space. It cannot generally be 

applied to such resources as printers and tape drives. 
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Circular Wait 

The fourth and final condition for deadlocks is the circular-wait condition. One 

way to ensure that this condition never holds is to impose a total ordering of all 

resource types, and to require that each process requests resources in an increasing 

order of enumeration. 

Let R = {R1, R2, ..., Rm) be the set of resource types. We assign to each resource 

type a unique integer number, which allows us to compare two resources and to 

determine whether one precedes another in our ordering. Formally, we define a 

one-to-one function F: R + N, where N is the set of natural numbers. For example, 

if the set of resource types R includes tape drives, disk drives, and printers, then 

the function F might be defined as follows: 

F(tape drive) = 1, 

F(disk drive) = 5, 

F(printer) = 12. 

We can now consider the following protocol to prevent deadlocks: Each process 

can request resources only in an increasing order of enumeration. That is, a process 

can initially request any number of instances of a resource type, 

say Ri. After that, the process can request instances of resource type Ri if and only 

if F(Rj) > F(Ri). If several instances of the same resource type are needed, a single 

request for all of them must be issued. For example, using the function defined 

previously, a process that wants to use the tape drive and printer at the same time 

must first request the tape drive and then request the printer. 

Alternatively, we can require that, whenever a process requests an instance of 

resource type Rj, it has released any resources Ri such that F(Ri) >= F(Rj). 

If these two protocols are used, then the circular-wait condition cannot hold.  



Operating system                                                                                                                                   

              

38 

 

Resource-Allocation Graph 

Deadlocks can be described more precisely in terms of a directed graph called a graph. 

This graph consists of a set of vertices V and a set of edges E. The set of vertices V is 

partitioned into two different types of nodes: P == { P1, P2, ... , Pn}, the set consisting of 

all the active processes in the system, and R == {R1, R2, ... , Rm}, the set consisting of all 

resource types in the system. 

 A directed edge from process Pi to resource type Rj is denoted by Pi      Rj; it signifies 

that process Pi has requested an instance of resource type Rj and is currently waiting for 

that resource. A directed edge from resource type Rj to process Pi is denoted by Rj      Pi   

; it signifies that an instance of resource type R1 has been allocated to process Pi. A 

directed edge Pi      Rj is called a request edge; a directed edge Rj      Pi   is called an 

assignment edge. 

 Pictorially we represent each process P; as a circle and each resource type Rj as a 

rectangle. Since resource type Ri may have more than one instance, we represent each 

such instance as a dot within the rectangle. Note that a request edge points to only the 

rectangle R1, whereas an assignment edge must also designate one of the dots in the 

rectangle.  

When process P; requests an instance of resource type Ri, a request edge is inserted in 

the resource-allocation graph. When this request can be fulfilled, the request edge is 

instantaneously transformed to an assignment edge. When the process no longer needs 

access to the resource, it releases the resource; as a result, the assignment edge is 

deleted. The resource-allocation graph shown in Figure below depicts the following 

situation. 

The sets P, K and E:  

 P == {P1, P2, P3}  

R== {R1, R2, R3, R4}  
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Resource instances:  

 One instance of resource type R1  

 Two instances of resource type R2 

 One instance of resource type R3  

 Three instances of resource type R4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (8.1): Resource Allocation Graph 

 

 

Process states:  

 Process P1 is holding an instance of resource type R2 and is waiting for an 

instance of resource type R1.  
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 Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an 

instance of R3.  

 Process P3 is holding an instance of R3.  

Given the definition of a resource-allocation graph, it can be shown that, if the graph 

contains no cycles, then no process in the system is deadlocked. If the graph does 

contain a cycle, then a deadlock may exist. If each resource type has exactly one 

instance, then a cycle implies that a deadlock has occurred. If the cycle involves only a 

set of resource types, each of which has only a single instance, then a deadlock has 

occurred. Each process involved in the cycle is deadlocked. In this case, a cycle in the 

graph is both a necessary and a sufficient condition for the existence of deadlock. If each 

resource type has several instances, then a cycle does not necessarily imply that a 

deadlock has occurred. In this case, a cycle in. the graph is a necessary but not a 

sufficient condition for the existence of deadlock. To illustrate this concept, we return to 

the resource-allocation graph depicted in Figure 8.1 . Suppose that process P3 requests 

an instance of resource type R2. Since no resource instance is currently available, a 

request edge P3      R2 is added to the graph (Figure 8.2). At this point, two minimal 

cycles exist in the system: 
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Figure 8.2 Resource allocation Graph with a deadlock 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, 

which is held by process P3. Process P3 is waiting for either process P1 or process  

P2 to release resource R2. In addition, process P1 is waiting for process .P2 to 

release resource R1. Now consider the resource-allocation graph in Figure 8.3. In 

this example, we also have a cycle:  
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However, there is no deadlock. Observe that process P4 may release its instance of 

resource type R2. That resource can then be allocated to P3, breaking the cycle. In 

summary, if a resource-allocation graph does not have a cycle, then the system is not in 

a deadlocked state. If there is a cycle, then the system may or may not be in a 

deadlocked state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3 Resource-allocation graph with a cycle but no deadlock 

 

 


