
Operating system

1

 Introduction to Operating System

 An operating system (OS) is the software component of a computer system that is

responsible for the management and coordination of activities and the sharing of

the resources of the computer. The operating system is the most important program

that runs on a computer.

• Operating system is an interface between computer and user.

• It is responsible for the management and coordination of activities and the

sharing of the resources of the computer.

 Types of Operating System

• Real-time operating system is real-time operating system (RTOS) is an

operating system that guarantees a certain capability within a specified time

constraint. For example, an operating system might be designed to ensure that a

certain object was available for a robot on an assembly line.

Operating system

2

 Real Time Operating Systems are categorized in two types i.e. Hard Real Time

Operating Systems and soft Real Time Operating Systems.

• Multi-user vs. Single-user A multi-user operating system allows multiple users

to access a computer system concurrently.

 Time-sharing system can be classified as multi-user systems as they

enable a multiple user access to a computer through the sharing of

time.

 Single-user operating systems, as opposed to a multi-user operating

system, are usable by a single user at a time.

• Multi-tasking vs. Single-tasking:-

 When a single program is allowed to run at a time, the system is grouped

under a single-tasking system

 While in case the operating system allows the execution of multiple tasks at

one time, it is classified as a multi-tasking operating system.

 • Distributed

A distributed operating system manages a group of independent computers and

makes them appear to be a single computer.

The development of networked computers that could be linked and communicate

with each other, gave rise to distributed computing

 • Embedded

 Embedded operating system (OS) is a specialized operating system designed to

perform a specific task for a device that is not a computer. An embedded operating

system's main job is to run the code that allows the device to do its job. he most

common examples of embedded operating system around us include Windows

Mobile/CE (handheld Personal Data Assistants)

Operating system

3

Major Functions of Operating System

 • Resource management:- The resource management function of an OS allocates

computer resources such as CPU time, main memory, secondary storage, and input

and output devices for use.

• Data management The data management functions of an OS govern the input

and output of data and their location, storage, and retrieval. It also is responsible

for storing and retrieving information on disk drives and for the organization of

that information on the drive.

• Job management The job management function of an OS prepares, schedules,

controls, and monitors jobs submitted for execution to ensure the most efficient

processing. A job is a collection of one or more related programs and their data.

Examples of Operating System

• MS-DOS

• Windows

• Mac OS

• Linux

• Solaris

• Android

Operating system

4

PROCESSES

A process can be thought of as a program in execution. A process will need

certain resources-such as CPU time, memory, files, and I/O devices-to accomplish

its task. These resources are allocated to the process either when it is created or

while it is executing.

 A process is the unit of work in most systems. Such a system consists of a

collection of processes: Operating-system processes execute system code, and user

processes execute user code. All these processes may execute concurrently.

Although traditionally a process contained only a single thread of control as it ran,

most modern operating systems now support processes that have multiple threads.

4.1. Process Concept

A batch system executes jobs, whereas a timeshared system has user

programs, or tasks. Even on a single-user system, such as Microsoft Windows and

Macintosh OS, a user may be able to run several programs at one time: a word

processor, web browser, and e-mail package. Even if the user can execute only one

program at a time, the operating system may need to support its own internal

programmed activities, such as memory management. In many respects, all these

activities are similar, so we call all of them processes.

4.1.1 The Process

A process is a program in execution. A process is more than the program

code, which is sometimes known as the text section. It also includes the current

activity, as represented by the value of the program counter and the contents of the

processor's registers. In addition, a process generally includes the process stack,

Operating system

5

which contains temporary data (such as method parameters, return addresses, and

local variables), and a data section, which contains global variables.

Although two processes may be associated with the same program, they are

nevertheless considered two separate execution sequences. For instance, several

users may be running different copies of the mail program, or the same user may

invoke many copies of the editor program. Each of these is a separate process, and,

although the text sections are equivalent, the data sections vary.

4.1.2 Process State

As a process executes, it changes state. The state of a process is defined in part by

the current activity of that process. Each process may be in one of the following

states:

 New: The process is being created.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur (such as an I/O

completion or reception of a signal).

 Ready: The process is waiting to be assigned to a processor.

 Terminated: The process has finished execution.

These state names are arbitrary, and they vary across operating systems. The states

that they represent are found on all systems. Only one process can be running on

any processor at any instant, although many processes may be ready and waiting.

The state diagram corresponding to these states is presented in Figure 4.1.

Operating system

6

4.1.3 Process Control Block

Each process is represented in the operating system by a process control block

(PCB)-also called a task control block. A PCB is shown in Figure 4.2. It contains

many pieces of information associated with a specific process, including these:

 Process state: The state may be new, ready, running, waiting, halted, and

 so on.

 Program counter: The counter indicates the address of the next instruction

 to be executed for this process.

 CPU registers: The registers vary in number and type, depending on the

 computer architecture. They include accumulators, index registers, stack

 pointers, and general-purpose registers, plus any condition-code information.

Operating system

7

Along with the program counter, this state information must be saved when an

interrupt occurs, to allow the process to be continued correctly afterward (Figure

4.3).

 CPU-scheduling information: This information includes a process priority,

 pointers to scheduling queues, and any other scheduling parameters.

 Memory-management information: This information may include such

 information as the value of the base and limit registers, the page tables, or

 the segment tables, depending on the memory system used by the operating

 system.

 Accounting information: This information includes the amount of CPU

and real time used, time limits, account numbers, job or process numbers,

and so on.

Operating system

8

 status information: The information includes the list of I/O devices

allocated to this process, a list of open files, and so on.

The PCB simply serves as the repository for any information that may vary

from process to process.

4.1.4 Threads

The process model discussed so far has implied that a process is a program that

performs a single thread of execution. For example, if a process is running a word-

processor program, a single thread of instructions is being executed. This single

thread of control allows the process to perform only one task at one time.

Figure 4.3 Diagram Showing CPU switch From Process to process.

Operating system

9

For example, the user could not simultaneously type in characters and run the spell

checker within the same process. Many modern operating systems have extended

the process concept to allow a process to have multiple threads of execution. They

thus allow the process to perform more than one task at a time.

Operating system

10

4.5 Interprocess Communication
we showed how cooperating processes can communicate in a shared-memory

environment. The scheme requires that these processes share a common buffer

pool, and that the code for implementing the buffer be written explicitly by the

application programmer. Another way to achieve the same effect is for the

operating system to provide the means for cooperating processes to communicate

with each other via an interprocess communication (PC) facility.

IPC provides a mechanism to allow processes to communicate and to synchronize

their actions without sharing the same address space. IPC is particularly useful in a

distributed environment where the communicating processes may reside on

different computers connected with a network. An example is a chat program used

on the World Wide Web.

IPC is best provided by a message-passing system, and message systems can be

defined in many ways.

4.5.1 Message-Passing System

The function of a message system is to allow processes to communicate with

one another without the need to resort to shared data. In this scheme, services are

provided as ordinary user processes. That is, the services operate outside of the

kernel. Communication among the user processes is accomplished through the

passing of messages. An IPC facility provides at least the two operations:

send(message) and receive(message).

Messages sent by a process can be of either fixed or variable size. If only fixed-

sized messages can be sent, the system-level implementation is straightforward.

This restriction, however, makes the task of programming more difficult. On the

Operating system

11

other hand, variable-sized messages require a more complex system-level

implementation, but the programming task becomes simpler.

If processes P and Q want to communicate, they must send messages to and

receive messages from each other; a communication link must exist between

them. This link can be implemented in a variety of ways. We are concerned here

not with the link's physical implementation (such as shared memory, hardware

bus, or network), but rather with its logical implementation. Here are several

methods for logically implementing a link and the send/receive operations:

 Direct or indirect communication

 Symmetric or asymmetric communication

 Automatic or explicit buffering

 Send by copy or send by reference

 Fixed-sized or variable-sized messages

We look at each of these types of message systems next.

4.5.2 Naming

Processes that want to communicate must have a way to refer to each other. They

can use either direct or indirect communication.

4.5.2.1 Direct Communication

With direct communication, each process that wants to communicate must

explicitly name the recipient or sender of the communication. In this scheme, the

send and receive primitives are defined as:

 Send(P,message)-Send a message to process P.

 Receive (Q , message) -Receive a message from process Q.

A communication link in this scheme has the following properties:

Operating system

12

 A link is established automatically between every pair of processes that want

to communicate. The processes need to know only each other's identity to

communicate.

 A link is associated with exactly two processes.

 Exactly one link exists between each pair of processes.

This scheme exhibits symmetry in addressing; that is, both the sender and the

receiver processes must name the other to communicate. A variant of this scheme

employs asymmetry in addressing. Only the sender names the recipient; the

recipient is not required to name the sender. In this scheme, the send and receive

primitives are defined as follows:

 Send(P,message)- Send a message to process P.

 Receive (id, message) -Receive a message from any process; the variable

id is set to the name of the process with which communication has taken place.

The disadvantage in both symmetric and asymmetric schemes is the limited

modularity of the resulting process definitions. Changing the name of a process

may necessitate examining all other process definitions. All references to the old

name must be found, so that they can be modified to the new name. This situation

is not desirable from the viewpoint of separate compilation.

4.5.2.2 Indirect Communication

With indirect communication, the messages are sent to and received from

mailboxes, or ports. A mailbox can be viewed abstractly as an object into which

messages can be placed by processes and from which messages can be removed.

Operating system

13

Each mailbox has a unique identification. In this scheme, a process can

communicate with some other process via a number of different mailboxes.

Two processes can communicate only if they share a mailbox. The send and

receive primitives are defined as follows:

 send (A, message) -Send a message to mailbox A.

 receive (A, message) -Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

 A link is established between a pair of processes only if both members of the

pair have a shared mailbox.

 A link may be associated with more than two processes.

 A number of different links may exist between each pair of communicating

processes, with each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1 sends

a message to A, while P2 and P3 each execute a receive from A. Which process

will receive the message sent by P1 ? The answer depends on the scheme that we

choose:

 Allow a link to be associated with at most two processes.

 Allow at most one process at a time to execute a receive operation.

 Allow the system to select arbitrarily which process will receive the message

(that is, either P2 or P3, but not both, will receive the message). The system

may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system. If the

mailbox is owned by a process (that is, the mailbox is part of the address space of

the process), then we distinguish between the owner (who can only receive

Operating system

14

messages through this mailbox) and the user (who can only send messages to the

mailbox). Since each mailbox has a unique owner, there can be no confusion about

who should receive a message sent to this mailbox. When a process that owns a

mailbox terminates, the mailbox disappears. Any process that subsequently sends a

message to this mailbox must be notified that the mailbox no longer exists.

On the other hand, a mailbox owned by the operating system is independent and is

not attached to any particular process. The operating system then must provide a

mechanism that allows a process to do the following:

 Create a new mailbox.

 Send and receive messages through the mailbox.

 Delete a mailbox.

The process that creates a new mailbox is that mailbox's owner by default. Initially,

the owner is the only process that can receive messages through this mailbox.

However, the ownership and receive privilege may be passed to other processes

through appropriate system calls. Of course, this provision could result in multiple

receivers for each mailbox.

4.5.3 Synchronization

Communication between processes takes place by calls to send and receive

primitives. There are different design options for implementing each primitive.

Message passing may be either blocking or nonblocking-also known as

synchronous and asynchronous.

 Blocking send: The sending process is blocked until the message is received

by the receiving process or by the mailbox.

Operating system

15

 Nonblocking send: The sending process sends the message and resumes

operation.

 Blocking receive: The receiver blocks until a message is available.

 Nonblocking receive: The receiver retrieves either a valid message or a null.

Different combinations of send and receive are possible.

4.5.4 Buffering

Whether the communication is direct or indirect, messages exchanged by

communicating processes reside in a temporary queue. Basically, such a queue can

be implemented in three ways:

 Zero capacity: The queue has maximum length 0; thus, the link cannot have

any messages waiting in it. In this case, the sender must block until the

recipient receives the message.

 Bounded capacity: The queue has finite length n; thus, at most n messages

can reside in it. If the queue is not full when a new message is sent, the latter

is placed in the queue (either the message is copied or a pointer to the

message is kept), and the sender can continue execution without waiting.

The link has a finite capacity, however. If the link is full, the sender must

block until space is available in the queue.

 Unbounded capacity: The queue has potentially infinite length; thus, any

number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no

buffering; the other cases are referred to as automatic buffering.

Operating system

16

CPU SCHEDULING

CPU scheduling is the basis of multiprogrammed operating systems. By

switching the CPU among processes, the operating system can make the computer

more productive.

6.1 Basic Concepts

The objective of multiprogramming is to have some process running at all

times, in order to maximize CPU utilization. In a uniprocessor system, only one

process may run at a time; any other processes must wait until the CPU is free and

can be rescheduled.

The idea of multiprogramming is relatively simple. A process is executed until it

must wait, typically for the completion of some I/O request. In a simple computer

system, the CPU would then sit idle; all this waiting time is wasted. With

multiprogramming, we try to use this time productively. Several processes are kept

in memory at one time. When one process has to wait, the operating system takes

the CPU away from that process and gives the CPU to another process. This

pattern continues.

Scheduling is a fundamental operating-system function. Almost all computer

resources are scheduled before use. The CPU is, of course, one of the primary

computer resources. Thus, its scheduling is central to operating-system design.

6.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on the following observed property

of processes: Process execution consists of a cycle of CPU execution and I/O wait.

Processes alternate between these two states. Process execution begins with a CPU

Operating system

17

burst. That is followed by an I/O burst, then another CPU burst, then another I/O

burst, and so on. Eventually, the last CPU burst will end with a system request to

terminate execution, rather than with another I/O burst (Figure 6.1). The durations

of these CPU bursts have been extensively measured. Although they vary greatly

by process and by computer. This distribution can help us select an appropriate

CPU-scheduling algorithm.

6.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the

processes in the ready queue to be executed. The selection process is carried out by

Operating system

18

the short-term scheduler (or CPU scheduler). The scheduler selects from among

the processes in memory that are ready to execute, and allocates the CPU to one of

them.

The ready queue is not necessarily a first-in, first-out (FIFO) queue. A ready queue

may be implemented as a FIFO queue, a priority queue, a tree, or simply an

unordered linked list. Conceptually, however, all the processes in the ready queue

are lined up waiting for a chance to run on the CPU. The records in the queues are

generally process control blocks (PCBs) of the processes.

6.1.3 Preemptive Scheduling

CPU scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for

example, I/O request, or invocation of wait for the termination of one of the child

processes)

2. When a process switches from the running state to the ready state (for example,

when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example,

completion of I/O)

4. When a process terminates

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process

(if one exists in the ready queue) must be selected for execution. There

is a choice, however, in circumstances 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say the

scheduling scheme is nonpreemptive; otherwise, the scheduling scheme is

Operating system

19

preemptive. Under nonpreemptive scheduling, once the CPU has been allocated to

a process, the process keeps the CPU until it releases the CPU either

by terminating or by switching to the waiting state. This scheduling method is used

by the Microsoft Windows 3.1 and by the Apple Macintosh operating systems. It is

the only method that can be used on certain hardware platforms,because it does not

require the special hardware (for example, a timer) needed for preemptive

scheduling.

Preemptive scheduling incurs a cost. Consider the case of two processes sharing

data. One may be in the midst of updating the data when it is preempted and the

second process is run. The second process may try to read the data, which are

currently in an inconsistent state. New mechanisms thus are needed to coordinate

access to shared data.

Preemption also has an effect on the design of the operating-system kernel. During

the processing of a system call, the kernel may be busy with an activity on behalf

of a process. Such activities may involve changing important kernel data (for

instance, I/O queues). What happens if the process is preempted in the middle of

these changes, and the kernel (or the device driver) needs to read or modify the

same structure? Chaos could ensue. Some operating systems, including most

versions of UNIX, deal with this problem by waiting either for a

system call to complete, or for an I/O block to take place, before doing a context

switch. This scheme ensures that the kernel structure is simple, since the kernel

will not preempt a process while the kernel data structures are in an inconsistent

state. Unfortunately, this kernel-execution model is a poor one for supporting real-

time computing and multiprocessing.

6.1.4 Dispatcher

Operating system

20

Another component involved in the CPU scheduling function is the dispatcher. The

dispatcher is the module that gives control of the CPU to the process selected by

the short-term scheduler. This function involves:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, given that it is invoked during every

process switch. The time it takes for the dispatcher to stop one process and start

another running is known as the dispatch latency.

6.2 . Scheduling Criteria

Different CPU-scheduling algorithms have different properties and may favor one

class of processes over another. In choosing which algorithm to use in a particular

situation, we must consider the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algorithms. The

characteristics used for comparison can make a substantial difference in the

determination of the best algorithm. The criteria include the following:

CPU utilization: We want to keep the CPU as busy as possible. CPU utilization

may range from 0 to 100 percent. In a real system, it should range from 40 percent

(for a lightly loaded system) to 90 percent (for a heavily used system).

Throughput: If the CPU is busy executing processes, then work is being done.

One measure of work is the number of processes completed per time unit, called

throughput. For long processes, this rate may be 1 process per hour; for short

transactions, throughput might be 10 processes per second.

Operating system

21

a Turnaround time: From the point of view of a particular process, the important

criterion is how long it takes to execute that process. The interval from the time of

submission of a process to the time of completion is the turnaround time.

Turnaround time is the sum of the periods spent waiting to get into memory,

waiting in the ready queue, executing on the CPU, and doing I/O.

Waiting time: The CPU-scheduling algorithm does not affect the amount of time

during which a process executes or does I/O; it affects only the amount of time that

a process spends waiting in the ready queue. Waiting time is the sum of the periods

spent waiting in the ready queue.

a Response time: In an interactive system, turnaround time may not be the best

criterion. Often, a process can produce some output fairly early, and can continue

computing new results while previous results are being output to the user. Thus,

another measure is the time from the submission of a request until the first

response is produced. This measure, called response time, is the amount of time it

takes to start responding, but not the time that it takes to output that response. The

turnaround time is generally limited by the speed of the output device.

We want to maximize CPU utilization and throughput, and to minimize turnaround

time, waiting time, and response time. In most cases, we optimize the average

measure. However, in some circumstances we want to optimize the minimum or

maximum values, rather than the average. For example, to guarantee that all users

get good service, we may want to minimize the maximum response time.

For interactive systems (such as time-sharing systems), some analysts suggest that

minimizing the variance in the response time is more important than minimizing

the average response time. A system with reasonable and predictable response time

may be considered more desirable than a system that is faster on the average, but is

Operating system

22

highly variable. However, little work has been done on CPU-scheduling algorithms

to minimize variance.

Operating system

23

6.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated the CPU.

6.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served

(FCFS) scheduling algorithm. With this scheme, the process that requests the CPU

first is allocated the CPU first. The implementation of the FCFS policy is easily

managed with a FIFO queue. When a process enters the ready queue, its PCB is

linked onto the tail of the queue. When the CPU is free, it is allocated to the

process at the head of the queue. The running process is then removed from the

queue. The average waiting time under the FCFS policy, is often quite long.

Consider the following set of processes that arrive at time 0, with the length of the

CPU-burst time given in milliseconds:

 Process Burst Time

 P1 24

 P2 3

 P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,we get

the result shown in the following Gantt chart:

Operating system

24

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2,

and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 +

27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, Pl, however,

the results will be as shown in the following Gantt chart:

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is

substantial. Thus, the average waiting time under a FCFS policy is generally not

minimal, and may vary substantially if the process CPU-burst times vary greatly.

In addition, consider the performance of FCFS scheduling in a dynamic situation.

Assume we have one CPU-bound process and many I/O-bound processes. The

CPU-bound process will get the CPU and hold it. During this time, all the other

processes will finish their I/O and move into the ready queue, waiting for the CPU.

While the processes wait in the ready queue, the I/O devices are idle. Eventually,

the CPU-bound process finishes its CPU burst and moves to an I/O device. All the

I/O-bound processes, which have very short CPU bursts, execute quickly and move

back to the I/O queues. At this point, the CPU sits idle. The CPU-bound process

will then move back to the ready queue and be allocated the CPU. Again, all the

I/O processes end up waiting in the ready queue until the CPU-bound process is

done. the other processes wait for the one big process to get off the CPU. This

effect results in lower CPU and device utilization than might be possible if the

shorter processes were allowed to go first.

Operating system

25

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been

allocated to a process, that process keeps the CPU until it releases the CPU, either

by terminating or by requesting I/O. The FCFS algorithm is particularly

troublesome for time-sharing systems, where each user needs to get a share of the

CPU at regular intervals. It would be disastrous to allow one process to keep the

CPU for an extended period.

6.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling

algorithm. This algorithm associates with each process the length of the latter's

next CPU burst. When the CPU is available, it is assigned to the process that has

the smallest next CPU burst. If two processes have the same length next CPU

burst, FCFS scheduling is used to break the tie. As an example, consider the

following set of processes, with the length of the CPU-burst time given in

milliseconds:

Process Burst Time

 P1 6

 P2 8

 p3 7

 p4 3

Using SJF scheduling, we would schedule these processes according to the

following Gantt chart:

Operating system

26

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2,9

milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average

waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using the FCFS

scheduling scheme, then the average waiting time would be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the minimum

average waiting time for a given set of processes. By moving a short process

before a long one, the waiting time of the short process decreases more than it

increases the waiting time of the long process. Consequently, the average waiting

time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next CPU

request. For long-term (or job) scheduling in a batch system, we can use as the

length the process time limit that a user specifies when he submits the job. SJF

scheduling is used frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level of

short-term CPU scheduling. There is no way to know the length of the next CPU

burst. One approach is to try to approximate SJF scheduling. We may not know the

length of the next CPU burst, but we may be able to predict its value.

We expect that the next CPU burst will be similar in length to the previous ones.

Thus, by computing an approximation of the length of the next CPU burst, we

can pick the process with the shortest predicted CPU burst.

The SJF algorithm may be either preemptive or nonpreemptive. The choice arises

when a new process arrives at the ready queue while a previous process is

executing. The new process may have a shorter next CPU burst than what is left

of the currently executing process. A preemptive SJF algorithm will preempt the

Operating system

27

currently executing process, whereas a nonpreemptive SJF algorithm will allow

the currently running process to finish its CPU burst. Preemptive SJF scheduling

is sometimes called shortest-remaining-time-first scheduling.

As an example, consider the following four processes, with the length of the CPU-

burst time given in milliseconds:

Process Arrival Time Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 p4 3 5

If the processes arrive at the ready queue at the times shown and need the indicated

burst times, then the resulting preemptive SJF schedule is as depicted in the

following Gantt chart:

Process P1 is started at time 0, since it is the only process in the queue. Process

P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is larger

than the time required by process P2 (4 milliseconds), so process P1 is preempted,

and process P2 is scheduled. The average waiting time for this example is ((10 - 1)

+ (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds. A nonpreemptive SJF

scheduling would result in an average waiting time of 7.75 milliseconds.

Operating system

28

6.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority-scheduling algorithm.

A priority is associated with each process, and the CPU is allocated to the process

with the highest priority. Equal-priority processes are scheduled in FCFS order.

An SJF algorithm is simply a priority algorithm where the priority (p) is the

inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the

priority, and vice versa.

Priorities are generally some fixed range of numbers, such as 0 to 7, or 0 to 4,095.

However, there is no general agreement on whether 0 is the highest or lowest

priority. Some systems use low numbers to represent low priority; others use low

numbers for high priority. This difference can lead to confusion. In this text, we

use low numbers to represent high priority.

As an example, consider the following set of processes, assumed to have arrived at

time 0, in the order P1, P2, ..., Pn, with the length of the CPU-burst time given in

milliseconds:

Process Burst Time Priority

 P1 10 3

 p2 1 1

 p3 2 4

 P4 1 5

 P5 5 2

Using priority scheduling, we would schedule these processes according to the

following Gantt chart:

Operating system

29

The average waiting time is 8.2 milliseconds.

Priority scheduling can be either preemptive or nonpreemptive. When a process

arrives at the ready queue, its priority is compared with the priority of the

currently running process. A preemptive priority-scheduling algorithm will

preempt the CPU if the priority of the newly arrived process is higher than the

priority of the currently running process. A nonpreemptive priority-scheduling

algorithm will simply put the new process at the head of the ready queue.

A major problem with priority-scheduling algorithms is indefinite blocking (or

starvation). A process that is ready to run but lacking the CPU can be considered

blocked-waiting for the CPU. A priority-scheduling algorithm can leave some low-

priority processes waiting indefinitely for the CPU. In a heavily loaded computer

system, a steady stream of higher-priority processes can prevent a low-priority

process from ever getting the CPU. Generally, one of two things will happen.

Either the process will eventually be run, or the computer system will eventually

crash and lose all unfinished low-priority processes.

A solution to the problem of indefinite blockage of low-priority processes is aging.

Aging is a technique of gradually increasing the priority of processes that wait in

the system for a long time. For example, if priorities range from 127 (low) to 0

(high), we could decrement the priority of a waiting process by 1 every 15 minutes.

Eventually, even a process with an initial priority of 127 would have the highest

Operating system

30

priority in the system and would be executed. In fact, it would take no more than

32 hours for a priority 127 process to age to a priority 0 process.

6.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for timesharing

systems. It is similar to FCFS scheduling, but preemption is added to switch

between processes. A small unit of time, called a time quantum (or time slice), is

defined. A time quantum is generally from 10 to 100 milliseconds. The ready

queue is treated as a circular queue. The CPU scheduler goes around the ready

queue, allocating the CPU to each process for a time interval of up to 1 time

quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of

processes. New processes are added to the tail of the ready queue. The CPU

scheduler picks the first process from the ready queue, sets a timer to interrupt after

1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less

than 1 time quantum. In this case, the process itself will release the CPU

voluntarily. The scheduler will then proceed to the next process in the ready queue.

Otherwise, if the CPU burst of the currently running process is longer than 1 time

quantum, the timer will go off and will cause an interrupt to the operating system.

A context switch will be executed, and the process will be put at the tail of the

ready queue. The CPU scheduler will then select the next process in the ready

queue.

The average waiting time under the RR policy, however, is often quite long.

Consider the following set of processes that arrive at time 0, with the length of

Operating system

31

the CPU-burst time given in milliseconds:

Process Burst Time

 P1 24

 P2 3

 P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4

milliseconds. Since it requires another 20 milliseconds, it is preempted after the

first time quantum, and the CPU is given to the next process in the queue, process

P2. Since process P2 does not need 4 milliseconds, it quits before its time quantum

expires. The CPU is then given to the next process, process P3. Once each process

has received 1 time quantum, the CPU is returned to process P1 for an additional

time quantum. The resulting RR schedule is

In the RR scheduling algorithm, no process is allocated the CPU for more than 1

time quantum in a row. If a process' CPU burst exceeds 1 time quantum, that

process is preempted and is put back in the ready queue. The RR scheduling

algorithm is preemptive.

If there are n processes in the ready queue and the time quantum is q, then each

process gets l/n of the CPU time in chunks of at most q time units. Each process

must wait no longer than (n - 1) x q time units until its next time quantum. For

example, if there are five processes, with a time quantum of 20 milliseconds, then

each process will get up to 20 milliseconds every 100 milliseconds.

Operating system

32

The performance of the RR algorithm depends heavily on the size of the time

quantum. At one extreme, if the time quantum is very large (infinite), the RR

policy is the same as the FCFS policy. If the time quantum is very small (say 1

microsecond), the RR approach is called processor sharing, and appears to the

users as though each of n processes has its own processor running at l/n the speed

of the real processor.

In software, however, we need also to consider the effect of context switching on

the performance of RR scheduling. Let us assume that we have only one process of

10 time units. If the quantum is 12 time units, the process finishes in less than 1

time quantum, with no overhead. If the quantum is 6 time units, however, the

process requires 2 quantam, resulting in 1 context switch. If the time quantum is 1

time unit, then 9 context switches will occur, slowing the execution of the process

accordingly .Thus, we want the time quantum to be large with respect to the

context switch time. If the context-switch time is approximately 10 percent of the

time quantum, then about 10 percent of the CPU time will be spent in context

switch.

Turnaround time also depends on the size of the time quantum. The average

turnaround time of a set of processes does not necessarily improve as the time-

quantum size increases. In general, the average turnaround time can be improved if

most processes finish their next CPU burst in a single time quantum.

Operating system

33

Deadlocks

In a multiprogramming environment, several processes may compete for a finite

number of resources. A process requests resources; if the resources are not

available at that time, the process enters a wait state. Waiting processes may never

again change state, because the resources they have requested are held by other

waiting processes. This situation is called a deadlock.

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously

in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode;

that is, only one process at a time can use the resource. If another process requests

that resource, the requesting process must be delayed until the resource has been

released.

2. Hold and wait: A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has completed

its task.

4. Circular wait: A set {P0, P1, ..., Pn) of waiting processes must exist such that P0

is waiting for a resource that is held by P1, P1 is waiting for a resource that is held

by P2, ..., Pn-1 is waiting for a resource that is held by Pn,, and Pn, is waiting for a

resource that is held by P0.

Operating system

34

We emphasize that all four conditions must hold for a deadlock to occur. The

circular-wait condition implies the hold-and-wait condition, so the four conditions

are not completely independent.

Deadlock Prevention

The deadlock to occur, each of the four necessary conditions must hold. By

ensuring that at least one of these conditions cannot hold, we can prevent the

occurrence of a deadlock.

Mutual Exclusion

The mutual-exclusion condition must hold for non sharable resources. For

example, a printer cannot be simultaneously shared by several processes. Sharable

resources, on the other hand, do not require mutually exclusive access, and thus

cannot be involved in a deadlock. Read-only files are a good example of a sharable

resource. If several processes attempt to open a read-only file at the same time,

they can be granted simultaneous access to the file. A process never needs to wait

for a sharable resource. In general, however, we cannot prevent deadlocks by

denying the mutual-exclusion condition: Some resources are nonsharable.

hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must

guarantee that, whenever a process requests a resource, it does not hold any other

resources. One protocol that can be used requires each process to request and be

allocated all its resources before it begins execution. We can implement this

provision by requiring that system calls requesting resources for a process precede

all other system calls.

An alternative protocol allows a process to request resources only when the

process has none. A process may request some resources and use them. Before it

Operating system

35

can request any additional resources, however, it must release all the resources that

it is currently allocated.

To illustrate the difference between these two protocols, we consider a process that

copies data from a tape drive to a disk file, sorts the disk file, and then prints the

results to a printer. If all resources must be requested at the beginning of the

process, then the process must initially request the tape drive, disk file, and printer.

It will hold the printer for its entire execution, even though it needs the printer only

at the end.

The second method allows the process to request initially only the tape drive and

disk file. It copies from the tape drive to the disk, and then releases both the tape

drive and the disk file. The process must then again request the disk file and the

printer. After copying the disk file to the printer, it releases these two resources and

terminates.

These protocols have two main disadvantages. First, resource utilization may be

low, since many of the resources may be allocated but unused for a long period. In

the example given, for instance, we can release the tape drive and disk file, and

then again request the disk file and printer, only if we can be sure that our data will

remain on the disk file. If we cannot be assured that they will, then we must

request all resources at the beginning for both protocols. Second, starvation is

possible. A process that needs several popular resources may have to wait

indefinitely, because at least one of the resources that it needs is always allocated

to some other process.

Operating system

36

No Preemption

The third necessary condition is that there be no preemption of resources that have

already been allocated. To ensure that this condition does not hold, we can use the

following protocol. If a process is holding some resources and requests another

resource that cannot be immediately allocated to it (that is, the process must wait),

then all resources currently being held are preempted. In other words, these

resources are implicitly released. The preempted resources are added to the list of

resources for which the process is waiting. The process will be restarted only when

it can regain its old resources, as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether they are

available. If they are, we allocate them. If they are not available, we check whether

they are allocated to some other process that is waiting for additional resources. If

so, we preempt the desired resources from the waiting process and allocate them to

the requesting process. If the resources are not either available or held by a waiting

process, the requesting process must wait.

While it is waiting, some of its resources may be preempted, but only if another

process requests them. A process can be restarted only when it is allocated the new

resources it is requesting and recovers any resources that were preempted while it

was waiting.

This protocol is often applied to resources whose state can be easily saved and

restored later, such as CPU registers and memory space. It cannot generally be

applied to such resources as printers and tape drives.

Operating system

37

Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition. One

way to ensure that this condition never holds is to impose a total ordering of all

resource types, and to require that each process requests resources in an increasing

order of enumeration.

Let R = {R1, R2, ..., Rm) be the set of resource types. We assign to each resource

type a unique integer number, which allows us to compare two resources and to

determine whether one precedes another in our ordering. Formally, we define a

one-to-one function F: R + N, where N is the set of natural numbers. For example,

if the set of resource types R includes tape drives, disk drives, and printers, then

the function F might be defined as follows:

F(tape drive) = 1,

F(disk drive) = 5,

F(printer) = 12.

We can now consider the following protocol to prevent deadlocks: Each process

can request resources only in an increasing order of enumeration. That is, a process

can initially request any number of instances of a resource type,

say Ri. After that, the process can request instances of resource type Ri if and only

if F(Rj) > F(Ri). If several instances of the same resource type are needed, a single

request for all of them must be issued. For example, using the function defined

previously, a process that wants to use the tape drive and printer at the same time

must first request the tape drive and then request the printer.

Alternatively, we can require that, whenever a process requests an instance of

resource type Rj, it has released any resources Ri such that F(Ri) >= F(Rj).

If these two protocols are used, then the circular-wait condition cannot hold.

Operating system

38

Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a graph.

This graph consists of a set of vertices V and a set of edges E. The set of vertices V is

partitioned into two different types of nodes: P == { P1, P2, ... , Pn}, the set consisting of

all the active processes in the system, and R == {R1, R2, ... , Rm}, the set consisting of all

resource types in the system.

 A directed edge from process Pi to resource type Rj is denoted by Pi Rj; it signifies

that process Pi has requested an instance of resource type Rj and is currently waiting for

that resource. A directed edge from resource type Rj to process Pi is denoted by Rj Pi

; it signifies that an instance of resource type R1 has been allocated to process Pi. A

directed edge Pi Rj is called a request edge; a directed edge Rj Pi is called an

assignment edge.

 Pictorially we represent each process P; as a circle and each resource type Rj as a

rectangle. Since resource type Ri may have more than one instance, we represent each

such instance as a dot within the rectangle. Note that a request edge points to only the

rectangle R1, whereas an assignment edge must also designate one of the dots in the

rectangle.

When process P; requests an instance of resource type Ri, a request edge is inserted in

the resource-allocation graph. When this request can be fulfilled, the request edge is

instantaneously transformed to an assignment edge. When the process no longer needs

access to the resource, it releases the resource; as a result, the assignment edge is

deleted. The resource-allocation graph shown in Figure below depicts the following

situation.

The sets P, K and E:

 P == {P1, P2, P3}

R== {R1, R2, R3, R4}

Operating system

39

Resource instances:

 One instance of resource type R1

 Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource type R4

Figure (8.1): Resource Allocation Graph

Process states:

 Process P1 is holding an instance of resource type R2 and is waiting for an

instance of resource type R1.

Operating system

40

 Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an

instance of R3.

 Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if the graph

contains no cycles, then no process in the system is deadlocked. If the graph does

contain a cycle, then a deadlock may exist. If each resource type has exactly one

instance, then a cycle implies that a deadlock has occurred. If the cycle involves only a

set of resource types, each of which has only a single instance, then a deadlock has

occurred. Each process involved in the cycle is deadlocked. In this case, a cycle in the

graph is both a necessary and a sufficient condition for the existence of deadlock. If each

resource type has several instances, then a cycle does not necessarily imply that a

deadlock has occurred. In this case, a cycle in. the graph is a necessary but not a

sufficient condition for the existence of deadlock. To illustrate this concept, we return to

the resource-allocation graph depicted in Figure 8.1 . Suppose that process P3 requests

an instance of resource type R2. Since no resource instance is currently available, a

request edge P3 R2 is added to the graph (Figure 8.2). At this point, two minimal

cycles exist in the system:

Operating system

41

e

Figure 8.2 Resource allocation Graph with a deadlock

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3,

which is held by process P3. Process P3 is waiting for either process P1 or process

P2 to release resource R2. In addition, process P1 is waiting for process .P2 to

release resource R1. Now consider the resource-allocation graph in Figure 8.3. In

this example, we also have a cycle:

Operating system

42

However, there is no deadlock. Observe that process P4 may release its instance of

resource type R2. That resource can then be allocated to P3, breaking the cycle. In

summary, if a resource-allocation graph does not have a cycle, then the system is not in

a deadlocked state. If there is a cycle, then the system may or may not be in a

deadlocked state.

Figure 8.3 Resource-allocation graph with a cycle but no deadlock

