
Chapter 1- System Analysis and Design

قسم / المعلوماتالحاسوب وتكنولوجيا كلية علوم / جامعة القادسية

 الثانيةالمرحلة / نظم المعلومات الحاسوبية

 اعـــداد
 رافـــد نبيــــل جعفر. م.أ

Introduction to System Analysis and Design:

• System Definition: interrelated components functioning together to

achieve an outcome, or It is a group of elements and components that

are related and interact with each other and that work together Within

specific environmental conditions to achieve a specific goal.

• System components are:

- The group of objects (elements) to form the system.

- A set of logical and physical relationships between the components of

the system.

- Its system working environment.

Introduction to System Analysis and Design:

• Then System components represents

- Input: all the variables that affect the system and include:

 * Basic Inputs: Which the system depends on in producing the

 outputs.

 * Resources necessary for the continued operation of the system and

 for it to perform its functions.

 * Environmental system inputs: the environmental influences that

affect the system and are not included in the treatment processes and

have an impact External to the behavior of the system and the

performance of its operations.

Introduction to System Analysis and Design:

- Processes: are the set of interactions between the components of

the system, representing the behavior of the internal system.

- Outputs: It is what results from the operations of the system and

the outputs are related to the goal of the system and include:

 * Key Outputs: What the system primarily produces.

 * Backup output: An output that is entered again to another system

 or system for reprocessing.

Fig(1): Basic System components

Introduction to System Analysis and Design:

• Systems Analysis: activities that enable a person to understand and

specify what the new system should accomplish.

• Importance of System Analysis:
 Enable the system developer to understand the user's requirements.
 Without a good analysis of the user's needs and requirements the
 new system will be inadequate in its solution or erroneous in its
 implementation.

• Systems Design: describes “how” the system will work. It specifies

in detail all the components of the system and how they work
together to provide the desired solution.

Chapter 2- System Analysis and Design

قسم / المعلوماتالحاسوب وتكنولوجيا كلية علوم / جامعة القادسية

 الثانيةالمرحلة / نظم المعلومات الحاسوبية

 اعــــداد
 رافــــد نبيـــــل جعفر. م.أ

Need for System Analysis and Design:

• Installing a system without proper planning leads to great user dissatisfaction and

frequently causes the system to fall into disuse.

• Lends structure to the analysis and design of information systems.

• A series of processes systematically undertaken to improve a business through the

use of computerized information systems

Roles of the System Analyst:

• The analyst plays a key role in information systems development projects.

• Must understand how to apply technology to solve business problems.

• Analyst may serve as change agents who identify the organizational improvement.

How can the system analyst starting the analysis?

• Computer systems analysts start their work by asking people what they need their

computers to do.

• After analysts understand what the system needs to do, they break down the task

into small steps.

• They draw diagrams and charts to show how information will get into the

computers, how that information will be processed, and how it will get to the people

who need it. For example, analysts might decide how sales information will get into

a store's computers and how the computer will add up the information in a way that

makes it useful for store managers.

• Analysts experiment with different computer system plans. They try various tools

and steps until they find the system that is fastest, easiest, and costs the least.

• Next, analysts decide which computers, software, and tools to buy. They also tell

computer programmers how to make any new software that is needed. They give the

programmers step-by-step instructions.

• The main job for some systems analysts is getting computers to work together. They

connect them into a network. Analysts decide how to get information from one

computer to another. Many help people get data from the Internet.

• After planning a system, analysts test it to make sure it works. They check to make

sure that information is processed quickly and without mistakes. They also watch to

see if the system is easy to use. Often, they have to change their plans to make the

systems better.

The analyst's approach to problem solving:

• Research and understand the problem.

• Verify that the benefits of solving the problem outweigh the costs.

• Define the requirement for solving the problem.

• Develop a set of solutions (alternatives).

• Decide which solution is best, and make a recommendation.

• Define the details of the chosen solution.

• Implement the solution.

• Monitor to make sure that you obtain the desired results.

An analyst should have fundamental technology

knowledge of:
• Computers / peripheral devices (hardware).

• Communication networks and connectivity.

• Database and database management systems (DBMS).

• Programming languages (for example: VB.NET or Java).

• Operating systems and utilities.

There are four main skills of a system analysts:

• Analytical Skills ability to see things as systems, identify, analyze, and solve

problems in an optimal way for a specific organization.

• Technical Skills ability to understand how computers, data networks, databases,

operating systems, etc. work together, as well as their potentials and limitations.

• Management Skills include organization’s recourse management, project

management (people and money), risk management, and change management.

• Communication Skills include effective interpersonal communication (written,

verbal, face-to-face conversations, presentations in front of groups), listening.

Kinds of technical skills are needed for systems

analysts:

• Computers (PCs, mini, mainframes, etc.)

• Computer networks (LAN, WAN, administration, security, etc.)

• Operating systems (UNIX, Windows)

• Data Exchange Protocols (FTP, HTTP, etc.)

• Programming languages (C++, Java, XML, etc.)

• Software applications (Office, project managements, etc.)

• Information systems (databases, MISs, decision support systems)

• System development tools and environments (such as report generators).

Kinds of managerial skills are needed for systems

analysts:

• Resource management effectively managing the project’s resources, including time,

equipment, hardware, software, people, money, etc.

• Project management determining the tasks and resources needed for a project and

how they are related to each other,

• Risk management identifying and minimizing risks,

• Change management managing the system’s (organization's) transition from one

state to another

Kinds of communication skills are needed for

systems analysts:

• Clear and effective interpersonal communication, whether written, verbal, from

writing reports to face–to–face conversations, to presentations in front of groups.

• Listening (accepting opinions and ideas from other project team members).

• Group facilitation or formal technical reviews (FTR) skills:

 a. Setting an agenda.

 b. Leading discussions.

 c. Involving all parties in the discussion.

 d. Summarizing ideas.

 e. Keeping discussions on the agenda.

Interpersonal and communication skills are

crucial to:

• Obtaining information

• Motivating people

• Getting cooperation

• Understanding the complexity and workings of an organization in order to provide

necessary support

Stakeholders:

• A stakeholder is any person, group, or organization affected by the proposed system

or system changes. Or any person that is relate to system by direct or indirect

• Stakeholders include:

 Project manager, Sales manager, Accounting manager, Customers, Users, Suppliers,

 Software engineer, consultants…

Chapter 3- System Analysis and

Design

كلية علوم الحاسوب / جامعة القادسية

قسم نظم المعلومات / وتكنولوجيا المعلومات

 الثانيةالمرحلة / الحاسوبية

SYSTEMS DEVELOPMENT LIFE CYCLE

(SDLC):

• Typically the SDLC has 7 steps in the development and improvement of a computer

system, may extend or reduce according to the system.

IDENTIFYING PROBLEMS, OPPORTUNITIES,

AND OBJECTIVES:

 - Activity:

 Interviewing user management

 Summarizing the knowledge obtained

 Estimating the scope of the project

 Documenting the results

 - Output:

 Feasibility report containing problem definition and objective summaries from

 which management can make a decision on whether to proceed with the proposed

 project.

DETERMINING REQUIREMENTS:

 - Activity:

 Interviewing

 Sampling and investing hard data

 Questionnaires

 Observe the decision maker’s behavior and environment

 Prototyping

 Learn the who, what, where, when, how, and why of the current system

 - Output:

 Analyst understands how users accomplish their work when interacting with a

 computer; and begin to know how to make the new system more useful and

 usable. The analyst should also know the business functions and have complete

 information on the people, goals, data and procedure involved.

 ANALYZING SYSTEM:

 - Activity:

 Create data flow diagrams.

 Complete the data dictionary.

 Analyze the structured decisions made.

 Prepare and present the system proposal.

 - Output:

 Recommendation on what, if anything, should be done.

DESIGNING THE SYSTEM:

 - Activity:

 Design procedures for data entry

 Design the human-computer interface

 Design system controls

 Design files and/or database

 Design backup procedures

 - Output:

 Model of the actual system

 DEVELOPING AND DOCUMENTING

 SOFTWARE (Coding):

 - Activity:
 System analyst works with programmers to develop any original software

 Works with users to develop effective documentation

 Programmers design, code, and remove syntactical errors from computer

 programs

 Document software with help files, procedure manuals, and Web sites with

 Frequently Asked Questions

 - Output:

 Computer programs

 System documentation

TESTING AND MAINTAINING THE SYSTEM:

 - Activity:

 Test the information system

 System maintenance

 Maintenance documentation

 - Output:

 Problems, if any.

 Updated programs.

 Documentation.

IMPLEMENTING AND EVALUATING THE

SYSTEM:

 - Activity:

 Train users

 Analyst plans smooth conversion from old system to new system

 Review and evaluate system

 - Output:

 Trained personnel

 Installed system

 THE IMPACT OF MAINTENANCE (Change):

 - Maintenance is performed for two reasons:

 Removing software errors.

 Enhancing existing software.

 FEASIBILITY ANALYSES:

 - Feasibility Study to decide the cost of the system and payback. There are three

 types of System Feasibility,

 Technical Feasibility: can we build it?

 Economic Feasibility: should we build it?

 Organizational Feasibility: if we build it, will they come?

 TECHNICAL FEASIBILITY:

 Familiarity with application: less familiarity more risk.

 Familiarity with technology: less familiarity generates more risk.

 Project size: large projects have more risk.

 Compatibility: the hard it is so integrate the systems with the company’s existing

 technology, the higher the risk will be.

 ECONOMIC FEASIBILITY:

 Development Costs.

 Annual operating costs.

 Annual benefits (cost saving and revenues).

 Intangible costs and benefits.

 ORGANIZATIONAL FEASIBILITY:

 Project manager.

 Senior management.

 Users.

 Other stakeholders.

 Is the project strategically aligned with the business.

Chapter 4- System Analysis and

Design

كلية علوم الحاسوب / جامعة القادسية

قسم نظم المعلومات / وتكنولوجيا المعلومات

 الثانيةالمرحلة / الحاسوبية

Data Flow Diagram (DFD):

• A data flow diagram is a graphical depiction of flow of data through intended

software system and is used as 1st step to create an overview of system. It’s

really useful as it provides overview of data as well as functionality to software

designers.

Components of DFD: Entity

• External Entities:

 - They could be a person (facebook users), another software(like facebook) or a

 hardware (sensors) which provide to or consume information from the intended

 software.

 - Represented by rectangle:

 Must be named

 No direct data flow between two entities ever.

User

Components of DFD: Process

• A circle (sometimes called a bubble) represents a process or transform that is

applied to data and changes it in some way.

• The basic rules:

 It must be properly labeled

 It must not be repeated in a diagram

Ticket

Booking

Components of DFD: Data Flow

• The basic rules:

- Data flows can’t be

bidirectional, i.e the input

data flow and the output

data flow for a process, data

store or for an entity should

always be different.

- The data flows should

 always be labeled

- The labels should be

 precise and informative

- You can join two similar

 input data flows(join) or

 two similar output data

 flows (fork)

Login info User

Login Login status

Login info User

Login Login status

WRONG

=

Join

Fork

RIGHT

 Components of DFD: Data Store

• Data stores are places where data may be stored. This information may

be stored either temporarily or permanently by the user.

• They are internal to the system.

• The basic rules:

 Never shown in context level diagram

 No direct data flows between two data sources

 Symbol:

User info Order info

 DFD General rules:

• Basic rules that apply to all DFDs:

 - No internal logic should be shown like

 loops, if-else, this is not a flow chart

 -In order to keep the diagram uncluttered,

 you can repeat data stores and external

 entities.

-No process can have only output data flows

 (a miracle).

-No process can have only input data flows

 (black hole).

-Data cannot be moved directly from one store to

 another without a process.

-Data cannot move directly from an external entity

 to a data store without a process.

-Data stores can’t be sink(only input data flows) or

 source (only output data flows) in level 1 DFD

Miracle BlackHole

Sink Source

 Context Level Diagram – Level 0

• A level 0 DFD, also called a fundamental system

model or a context model.

• It represents the entire software element as a single

process with input and output data.

• All the external entities should be identified and

shown.

• Rule:

 Only one process

 Data flows should be labeled.

 No data store can be shown in context diagram as

they are internal to the system only.

 Course Registration System:

• Context Diagram for Course Registration System

Registration
Process

Faculty Students

Class list

Courses & other info.

Class schedule

Registrar

 Level 1 DFD :

• The level 1 DFD we construct is a
more refined version of the context
diagram.

• It covers the entire system, all the
main processes are shown

• The DFD should be balanced with
respect to context diagram

 No new external entities
should be there

 The data flows from context
diagrams should be visible

• Rules:

 It should consists of 5-9
processes(bubbles).

 Repetition of data sources is
allowed.

 Process can not be repeated.

 DFD: Course Registration System

• Level 1 DFD:

• Note: External entity Students is replicated to avoid crossing lines..

1. Enroll
Students

2. Compile &
Distribute

Information

Students

Faculty Students

Courses &
Other info.

Individual Course
Registration
Information

Schedules
Class Lists

Registrar

 DFD: Course Registration System

• Level 2 DFD:

 Only those processes that merit being expanded need to have level 2 DFDs .

 Level 2 DFD completely describes any one process from the level 1 DFD.

 Rules:

- All the data flows into and out of selected process on the level 1 DFD also

 appear on the level 2 DFD

 - Repetition of data sources is allowed.

- A Data store can appear as a sink or source within level 2 DFD

 DFD: Course Registration System:

• Level 2 DFD:

1.1 Obtain
Student

Preferences

1.2 Check
Eligibility

Student Records Course Prereqs

1.3 Enroll Students
in Classes

Courses &
Other info.

List of
Preferences

Eligible Students

Individual course registration
information

Example on Data Flow Diagram
Online Library System

Library system

Log in

Sign up

Search for

book

Show sales

Buy a book

Confirm

Library system

Log in

Modify
books

Put the

sales

Customer Admin

The Structure of Online Library System

Customer

Online
Library
System

Admin

register

logging

error

Result search

confirm

accept

logging

Customer reg.

report

respond

Context Diagram- 0

Admin

Customer

Sign Up

Log in
Put the

Sales

Show
sales

Search
for a
book

Confirm
Buy a
book

Customer info

Books

Modify
Books

register

save

logging

search

respond

error

confirm

Customer reg.

accept

req
u

e
st

sales

modify

logging

result
adapt

checking

Admin info checking

DFD- Level 1

Example on Data Flow Diagram

Student Attendance System

Context Diagram 0

Teacher

Student
Attendance

Admin

Head

Principal

College
Report

Software setting

Reports

Read information

Attendance data

Department
rules

Department
 report

Level-1

Teacher

Attendance

Admin

Head

Principal

Authentication Manage User

Manage Head

Log In

Attendance

Status

C
o

n
se

n
t

User

Department

1

Chapter 5- Introduction to System Analysis
 and Design

/ كلية علوم الحاسوب وتكنولوجيا المعلومات/ جامعة القادسية

المرحلة الثانية/ قسم نظم المعلومات الحاسوبية

2

Requirements Analysis
 Five areas of effort

• Problem recognition

• Evaluation and solution synthesis

• Modeling

• Specification

• Review

 The Analysis Process

the problem
1.

requirements
elicitation

3.
build a

prototype

2.
create

analysis
models

4.
develop

Specification

5.
Review

3

1. Requirements Elicitation

Context-Free Questions

Focuses on the customer, the overall goals, and
benefits:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful
solution?

• Is there another source for the solution that you
need?

4

 Enable the analyst to gain a better understanding of the problem

and the customer to voice his or her perceptions about a

solution:

• How would you characterize “good output that would be

generated by a successful solution?

• What problem(s) will this solution address?

• Can you show me the environment in which the solution will

be used?

• Will special performance issues or constraints affect the way

the solution is approached?

5

 Focuses on the effectiveness of the meeting:

• Are you the right person to answer these questions? Are your

answers “official”?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

6

Facilitated Application Specification
Techniques (FAST)

A meeting is conducted at a neutral site and
attended by both software engineers and
customers.

Rules for preparation and participation are
established.

An agenda is suggested that is formal enough to
cover all important points but informal enough
to encourage the free flow of ideas.

A “facilitator” controls the meeting.

A “definition mechanism” is used

….

7

Quantity Function Deployment
(QFD)

QFD is a quality management technique
that translates the needs of the customer
into technical requirements for software.

Three types of requirements

• Normal requirement

• Expected requirement

• Exciting requirement

8

Use-Cases

 A collection of scenarios that describe the thread of
usage of a system

 Each scenario is described from the point-of-view of an
“actor”—a person or device that interacts with the
software in some way

 Each scenario answers the following questions:

• What are the main tasks of functions performed by
the actor?

• What system information will the actor acquire,
produce or change?

• Will the actor inform the system about environmental
changes?

• What information does the actor require of the
system?

• Does the actor wish to be informed about unexpected
changes

9

Use Cases

 The details of each use case should also be documented by a use case

description: E.g.,

• Print receipt – A customer has paid for an item via a valid payment

method. The till should print a receipt indicating the current date and

time, the price, the payment type and the member of staff who dealt

with the sale.

 [Alternate Case] – No print paper available – Print out “Please

enter new till paper” to the cashier’s terminal. Try to print again

after 10 seconds.

An alternate case here is something that could potentially go wrong and
denotes a different course of action.

10

Example - Article Printing Use-Case

Actor Use case

11

ATM machine
 Actors

• Customers

• Bank staff

• ATM service engineer

 Use cases

• Withdraw cash

• Check balance

• Add cash to machine

Example - ATM Use Case Diagram

12

Advanced Use Case Diagrams
 We can draw a box (with a label) around a set of use cases to denote the

system boundary, as on the previous slide (“library system”).

 Inheritance can be used between actors to show that all use cases of one
actor are available to the other:

 If several use cases include, as part of their functionality, another use
case, we have a special way to show this in a use-case diagram with an
<<include>>

 relation.

Bank Staff Customer

Include Relations

13

Extend Relations
 If a use-case has two or more significantly different outcomes, we can

show this by extending the use case to a main use case and one or
more subsidiary cases.

In summary
 Include

• When the other use case is always part of the main use case

 Extend

• When the other use case, sometime is needed

14

2. Analysis Model

Data Model

Behavioral
Model

Functional
Model

15

Analysis Principles
1. The information domain of a problem must be represented and

understood. (Encompasses all data objects that contain numbers, text,

images, audio, or video. Information content or data model (shows the

relationships among the data and control objects that make up the system),

Information flow (represents the manner in which data and control objects

change as each moves through the system), Information structure

(representations of the internal organizations of various data and control

items).

2. The functions that the software is to perform must be defined.

3. The behavior of the software must be represented.

4. The models that depict information, function, and behavior must be

 partitioned in a manner that uncovers detail in a layered fashion.

5. The analysis process should move from essential information toward

 implementation detail.

16

Analysis Guiding Principle

 Understand the problem before you begin to create the

analysis model.

 Develop prototypes that enable a user to understand

how human/machine interaction will occur.

 Record the origin of and the reason for ever

requirement.

 Use multiple views of requirements.

 Rank requirements.

 Work to eliminate ambiguity.

17

Analysis Principle I
Model the Data Domain

 Define data objects

 Describe data attributes

 Establish data relationships

Data Modeling:
 Entity Relationship Diagram - (ERD)

 Questions Answered
 What are the primary data objects to be processed by the system?
 What is the composition of each data object and what attributes describe the

object?
 Where do the the objects currently reside?
 What are the relationships between each object and other objects?
 What are the relationships between the objects and the processes that transform

them?
 Components
 Data object - any person, organization, device, or software product that produces

or consumes information, e.g. report, event, place, structure
 Attributes - name a data object instance, describe its characteristics, or make

reference to another data object

18

19

 Relationships - indicate the manner in which data objects are connected to one
another

 Data Dictionary –(DD): indicate the description of all data objects.

20

Analysis Principle II
Model Function

 Identify functions that transform data objects

 Indicate how data flow through the system

 Represent producers and consumers of data

Analysis Principle III
Model Behavior

 Indicate different states of the system

 Specify events that cause the system to change
state

21

 Behavioral Modeling:

o The behavioral model indicates how software will respond to external events to create

the model, the analyst must perform the following steps:

o Evaluate all use-cases to fully understand the sequence of interaction within the

system.

o Identify events that drive the interaction sequence and understand how these

events relate to specific objects.

o Create a sequence for each use-case.

o Build a state diagram for the system.

o Review the behavioral model to verify accuracy and consistency.

 In the context of behavioral modeling, two different characterizations of states must

be considered:

the state of each class as the system performs its function and, the state of the system

as observed from the outside as the system performs its function
o State Transition Diagrams represent the system states and events that trigger state

transitions
 state— a set of observable circum-stances that characterizes the behavior of a system

at a given time
 state transition— the movement from one state to another
 event— an occurrence that causes the system to exhibit some predictable form of

behavior
 action— process that occurs as a consequence of making a transition
o STD's indicate actions (e.g. process activation) taken as a consequence of a particular

event
o A state is any observable mode of behavior

22

Analysis Principle IV
Partition the Models

 refine each model to represent lower levels of abstraction

• refine data objects

• create a functional hierarchy

• represent behavior at different levels of detail

Example of State Transition Diagram for Photocopier Software.

23

Partitioning
 Horizontally moving – decomposing problem

 Vertically moving – increasing detail

 Prototyping Methods and Tools:

 Fourth generation techniques - 4GT tools allow software engineer to generate

executable code quickly

 Reusable software components - assembling prototype from a set of existing

software components

 Formal specification and prototyping environments - can interactively create

executable programs from software specification models

