Vector space

In the following lectures we study the vector space, subspace, study the linear Independence, basis and the rank of a matrix.

Definition:

Areal vector space is a set V of elements with two operations⊕ and ⊙ defined with the following properties.

(a) If X and Y are any elements in V . then X⊕Y is in V (that is closed under the operation \oplus).

- $1 X \oplus Y = Y \oplus X$ for all X, Y in V.
- 2- $X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z$ for all X, Y, Z in V
- 3- There is a unique element 0 in V such that $X \oplus 0 = 0 \oplus X = X$ for every X in V.
- 4- For each X in V there exists a unique -X in V such that $X \oplus -X = 0$
 - (b) If X is any element in V and c is any realnumber then $c \circ X$ is in V.

 $5-c\odot(X\oplus Y)=c\odot X\oplus c\odot Y$ for any X, Y in V, and any real number c.

 $6-(c+d) \odot X = c \odot X \oplus d \odot Y$ for any X in v and any real numbers c and d .

 $7-c\odot(d\odot X) = (cd)\odot X$ for any X in v and real numbers c and d.

 (V, \oplus, \odot) is vector space. The operation \oplus is called vector addition.

The operation ⊙ is called scalar multiplication.

The vector 0 is called Zero vector.

Example 1:

Let R" be the set of ordered n- tuples
$$(a_1, a_2, \ldots, a_n)$$
 where we define \oplus by $(a_1, a_2, \ldots, a_n) \oplus (b_1, b_2, \ldots, b_n)$ = $(a_1 + b_1, a_2 + b_2, \ldots, a_n)$ and \odot by $co(a_1, a_2, \ldots, a_n)$ = $(ca_1, ca_2, \ldots, ca_n)$ R" is a vector space.

Example 2:

Let V be the set of ordered triples of real number (a_1 , a_2 , 0) where we define \oplus by $(a_1, a_2, 0) \oplus (b_1, b_2, 0)$

= $(a_1 + b_1, a_2 + b_2, 0)$ and o by $co(a_1, a_2, 0) = (ca_1, ca_2, 0)$ V is a vector space.

Example 3:

Let V be the set of ordered triples of real number (x, y, z) where we define \oplus by $(x, y, z) \oplus (x', y', z')$

$$=(x+x', y+y', z+z'))$$
 and \odot by $c\odot(x, y, z)=(cx, y, z)$

V is not vector space the property $(c+d) \odot X = c \odot X \oplus d \odot X$ fails to hold thus $(c+d) \odot (x, y, z)=((c+d)x, y, z)$,

On other hand
$$c \odot (x, y, z) \oplus d \odot (x, y, z) = (cx, y, z) \oplus (dx, y, z) = (cx+dx, y+y, z+z) = ((c+d)x, 2y, 2z).$$

Example 3:

Let V be the set of 2×3 matrices under usual operation of matrix addition and scalar multiplication V is vector space c.h.

Example 4:

V is vector space <u>c.h.</u>

Example 5:

Let p_n be the set of all real polynomials of degree $\le n$ with zero polynomial .if $p(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n$ and $q(t) = b_0 t^n + b_1 t^{n-1} + \dots + b_{n-1} t + b_n$ are in V we define $p(t) \oplus q(t)$ by $p(t) \oplus q(t) = (a_0 + b_0)t^n + (a_1 + b_1)t^{n-1} + \dots + (a_{n-1} + b_{n-1})t + (a_n + b_n)$ and if c is a scalar define cop(t) by $cop(t) = (ca_0)t^n + (ca_1)t^{n-1} + \dots + ca_{n-1}t + ca_n$

the above definition show that the degree of $p(t) \oplus q(t)$ and $c \odot p(t) \le n$

$$-p(t) = -a_0 t'' - a_1 t''^{-1} + \dots - a_{n-1} t - a_n \quad \text{is negative of} \quad p(t) \text{ and since}$$

$$a_1 + b_1 = b_1 + a_1 \quad \text{then} \quad p(t) \oplus q(t) = q(t) + p(t)$$
And

$$(c+d) \odot p(t) = (c+d) a_0 t'' + (c+d) a_1 t''^{-1} + \dots + (c+d) a_{n-1} t + (c+d) a_n$$

$$= c(a_0 t'' + a_1 t''^{-1} + \dots + a_{n-1} t + a_n) + d(a_0 t'' + a_1 t''^{-1} + \dots + a_{n-1} t + a_n)$$

 $= c \odot p(t) \oplus d \odot p(t)$ V is vector space of

V is vector space <u>c.h.</u>

Theorem:

If V is a vector space then.

1-
$$0 \odot X = 0$$
 for any vector X in V

$$2 - c \odot 0 = 0$$
 for any scalar c

3- If
$$c \circ X = 0$$
 then either $c = 0$ or $X = 0$

4- (-1)
$$\odot X = -X$$
 for any X in V.

Proof:

1)
$$0X = (0+0)X = 0X + 0X$$
 by (6) of def. adding $-0X$ $0 = 0X + (-0X) = (0X + 0X) + (-0X)$ $= 0X + [0X + (-0X)]$

Example 4:

Let V be the set of all real –valued function on R .if f and g are in V we define $f \oplus g$ by $(f \oplus g)(t) = f(t) \oplus g(t)$ and if f and c is a scalar define $c \odot f$ by $c \odot f = c f(t)$. V is vector space c.h.

Example 5:

Let p_n be the set of all real polynomials of degree $\le n$ with zero polynomial .if $p(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n$ and $q(t) = b_0 t^n + b_1 t^{n-1} + \dots + b_{n-1} t + b_n$ are in V we define $p(t) \oplus q(t)$ by $p(t) \oplus q(t) = (a_0 + b_0) t^n + (a_1 + b_1) t^{n-1} + \dots + (a_{n-1} + b_{n-1}) t + (a_n + b_n)$ and if c is a scalar define $c \ominus p(t)$ by $c \ominus p(t) = (ca_0) t^n + (ca_1) t^{n-1} + \dots + ca_{n-1} t + ca_n$ the above definition show that the degree of $p(t) \oplus q(t)$ and $c \ominus p(t) \le n$ $-p(t) = -a_0 t^n - a_1 t^{n-1} + \dots - a_{n-1} t - a_n$ is negative of p(t) and since $a_n + b_n = b_n + a_n$ then $p(t) \oplus q(t) = q(t) + p(t)$ And $(c+d) \ominus p(t) = (c+d) a_0 t^n + (c+d) a_1 t^{n-1} + \dots + (c+d) a_{n-1} t + (c+d) a_n = c(a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n) + d(a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n)$

 $= c \odot p(t) \oplus d \odot p(t)$

V is vector space <u>c.h.</u>

Theorem:

If V is a vector space then.

- 1- $0 \odot X = 0$ for any vector X in V
- $2 c \odot 0 = 0$ for any scalar c
- 3- If $c \circ X = 0$ then either c = 0 or X = 0
- 4- (-1) $\odot X = -X$ for any X in V.

Proof:

1)
$$0X = (0+0)X = 0X + 0X$$
 by (6) of def. adding $-0X$ $0 = 0X + (-0X) = (0X + 0X) + (-0X)$ $= 0X + [0X + (-0X)]$

$$=0X+0=0X.$$

2)
$$c.0 = c.(0+0) = c.0+c.0$$

 $c.0-c.0=c.0+c.0-c.0$
 $0 = c.0$

3)suppose
$$cX=0$$
 and $c \neq 0$ then

$$0 = (\frac{1}{c}).0 = (\frac{1}{c})(cx) = [(\frac{1}{c})c]X = 1.X$$

4)
$$(-1)X + X = (-1)X + (1)X = (-1+1)X = 0X = 0$$
 so that $(-1)X = -X$

Definition:

Let V be a vector space and W a nonempty subset of V if W is a vector space with respect to the same operations as these in V, then W is called a subspace of V.

Example :If(V, \oplus, \odot) is vector space then $\{0\} \subseteq V, V \subseteq V$ are two subspaces.

Example:

Let W be the set of ordered triples of real number (a_1 , a_2 , 0) where we define \oplus by (a_1 , a_2 , 0) \oplus (b_1 , b_2 , 0)

=(
$$a_1+b_1$$
, a_2+b_2 ,0) and o by $co(a_1, a_2, 0)=(ca_1, ca_2, 0)$

Then (W, \oplus, \odot) is subspace of (R^3, \oplus, \odot) .

Theorem:

Let (V, \oplus, \odot) be a vector space and let W be a nonempty subset of V.W is a subspace of V if and only if the following condition hold

- 1- If X, Y are any vectors in W then X \oplus Y is in W
- 2- If c is any real number and X is any vector in W then $c \circ X$ is in W.

Example:

Let W be the set of all 2×3 matrices of form

W=
$$\left\{\begin{bmatrix} a & b & 0 \\ 0 & c & d \end{bmatrix}, a, b, c \in R\right\}$$
, W is subset of vector space V of all

 2×3 matrices under usual operations of matrices addition and scalar multiplication then W is subspace of V.

Solution:

Consider
$$X = \begin{bmatrix} a_1 & b_1 & 0 \\ 0 & c_1 & d_1 \end{bmatrix}$$
 and $Y = \begin{bmatrix} a_2 & b_2 & 0 \\ 0 & c_2 & d_2 \end{bmatrix}$ in W then

$$X+Y = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 & 0\\ 0 & c_1 + c_2 & d_1 + d_2 \end{bmatrix} \text{ is in } W \text{ also } let r \in \mathbb{R}$$

$$rX = \begin{bmatrix} ra_1 & rb_1 & 0 \\ 0 & rc_1 & rd_1 \end{bmatrix}$$
 is in W, W is subspace of V.

Example:

Let W be the sub set of (R^{3}, \oplus, \odot) .

W is ordered triples of real number (a, b, 1),

let
$$X=(a_1, a_2, 1), Y=(b_1, b_2, 1)$$

$$X+Y = (a_1+b_1, a_2+b_2, 2)$$
 Then W is not subspace of (R^3, \oplus, \odot) .

Example 5:

Let W be the set of all real polynomials of degree exactly=2 W is subset of p_2 but not subspace of p_2 since

2t²+3t+1 and -2t²+t+2 is polynomial of degree 1 is not in W.

Exercises:

- 1- Let $W = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, a = 2c + 1 \right\}$ W is subset of vector space V of all 2×3 matrices under usual operations of matrices addition and scalar multiplication is W is subspace of V.
- 2- Let $W = \{(a,b,c), b = 2a+1\}$ subset of vector space R^3 is W is subspace?

Definition(1-7)

Let X_1 , X_2 ,, X_n be vectors in a vectors space V. A vector X in V is called linear combination of this vectorsif it can written as X = $c_1X_1+c_2X_2$,+ c_nX_n for some real number where c_1 , c_2 c_n are scalers.

Example: Consider the vector space R^4 . let $X_1 = (1,2,1,-1)$, $X_2 = (1,0,2,-3)$, $X_3 = (1,1,0,-2)$ the vector X = (2,1,5,-5) is linear combination of X_1, X_2, X_3 if we find c_1, c_2, c_3 s.t..

$$X = c_1 X_1 + c_2 X_2 + c_1 X_1$$

$$(2,1,5,-5)=c_1(1,2,1,-1)+c_2(1,0,2,-3)+c_3(1,1,0,-2)$$

$$(2,1,5,-5)=(c_1,2c_1,c_1,-c_1)+(c_2,0,2c_2,-3c_2)+(c_3,c_3,0,-2c_3)$$

$$c_1 + c_2 + c_3 = 2$$

$$2c_1+c_3=1$$

$$c_1 + 2c_2 = 5$$

$$-c_1$$
 $-3c_2$ $-2c_3$ = -5

solving this linear system by Gauss-Jordan we obtain $c_1=1$, $c_2=2$, $c_3=-1$ then X is linear combination of X_1, X_2, X_3

Example: Consider the vector space R^3 . let $X_1=(1,2,-1)$, $X_2=(1,0,-1)$, is the vector X=(1,0,2) is linear combination of X_1,X_2 if we find c_1 , c_2 s.t..

$$X = c_1 X_1 + c_2 X_2$$

$$(1,0,2) = c_1(1,2,-1) + c_2(1,0,-1)$$

$$c_1 + c_2 = 1$$

$$2c_1 = 0$$

$$-c_1 - 2c_2 = 2$$

Which has no solution then X is not linear combination of X_1, X_2 .

Example: Consider the vector space R^3 . let $X_1=(1,0,1)$, $X_2=(-1,1,0)$, $X_3=(0,0,1)$ is the vector X=(1,1,1) is linear combination of X_1,X_2,X_3 if we find c_1,c_2,c_3 s.t..

$$X = c_1 X_1 + c_2 X_2 + c_3 X_3$$

$$(1,1,1)=c_1(1,0,1)+c_2(-1,1,0)+c_3(0,0,1)$$

 $c_1-c_2=1$
 $c_2=1$

$$c_1 + c_2 = a$$

 $2c_1 = b$
 $c_1 + 2c_2 = c$
we obtain

$$\begin{bmatrix} 1 & 1 & : & a \\ 2 & 0 & : & b \\ 1 & 2 & : & c \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & : & 2a - c \\ 0 & 1 & : & c - a \\ 0 & 0 & : & b - 4a + 2c \end{bmatrix}$$

If b-4a +2c \neq 0 then there is no solution to this system hence S does not span P₂.

Linear independence

Definition: Let $S = \{X_1, X_2, \dots, X_n\}$ be the set of vectors in a vectors space V. then S is said to be linearly dependent if there exist constants c_1, c_2, \dots, c_n not all zero, such that $c_1X_1+c_2X_2, \dots, +c_nX_n=0$, other wise. S is called linearly independent That is S is linearly independent if the equation $c_1X_1+c_2X_2, \dots, +c_nX_n=0$ hold only if $c_1=c_2=\dots, -c_n=0$

Example:Consider the vector space R^4 . let $X_1=(1,0,1,2)$, $X_2=(0,1,1,2)$, $X_3=(1,1,1,3)$ is $S=\{X_1,X_2, X_3\}$ is linearly independent S01;

$$c_1(1,0,1,2), +c_2(0,1,1,2)+c_3(1,1,1,3)=(0,0,0,0)$$

 $(c_1,0,c_1,2c_1), +(0,c_2,c_2,2c_2)+(c_3,c_3,c_3,3c_3)=(0,0,0,0)$

$$c_1 + c_3 = 0$$

$$c_2 + c_3 = 0$$

$$c_1 + c_2 + c_3 = 0$$

$$2c_1 + 2c_2 + 3c_3 = 0$$

we obtain $c_1=0$, $c_2=0$, $c_3=0$ then S is linearly independent.

Example:

Let V be the vector space R^3 . letS={X₁,X₂, X₃,X₄} set of vectors where $X_2=(1,-2,1)$, $X_3=(-3,2,-1)$, $X_4=(2,0,0)$ is the set S $X_1 = (1,2,-1),$ linearly independent?

SOL.:

Let
$$c_1X_1+c_2X_2+c_3X_3+c_4X_4=0$$

$$c_1(1,2,-1)+c_2(1,-2,1)+c_3(-3,2,-1)+c_4(2,0,0)=0$$

$$c_1 + c_2 - 3c_3 + 2c_4 = 0$$

 $2c_1 - 2c_2 + 2c_3 = 0$
 $-c_1 + c_2 - c_3 = 0$

There are infinitely many solution like $c_1=1$, $c_2=2$, $c_3=1$, $c_4=0$, then S is linearly dependent.

Example:

Let V be the vector space R^3 . $S=\{i,j,k\}$ is linearly independent.

Since

$$(0,0,0)=(c_1,0,0)+(0,c_2,0)+(0,0,c_3)$$

Then
$$c_1=0$$
, $c_2=0$, $c_3=0$

In fact E_1, E_2, \dots, E_n are linearly independent in R^n .

Basis and Dimension

Definition:

A set of vectors $S = \{X_1, X_2, \dots, X_n\}$ in a vector space V is . called a basis for V if S spans V and S is linearly independent.

Example:

In Rⁿ the unit vector are

$$E_1=(1,0,0,...,0)$$
, $E_2=(0,1,0,...,0)$, ..., $E_n=(0,0,...,1)$

Form a basis forRⁿ

Example; Let V be the vector space R 4 .let S={ X_1, X_2, X_3, X_4 } set of vectors where

$$X_1 = (1,0,1,0), \quad X_2 = (0,1,-1,2), \quad X_3 = (0,2,2,1), \quad X_4 = (1,0,0,1)$$
 is the set S basis for V?

SOL.:

Let
$$c_1X_1 + c_2X_2 + c_3 X_3 + c_4 X_4 = 0$$

$$c_1 + c_4 = 0$$

 $c_2 + 2c_3 = 0$

$$c_1 - c_2 + 2c_3 = 0$$

$$2c_2 + c_3 + c_4 = 0$$

Only solution $c_1 = c_2 = c_3 = c_4 = 0$

, then S is linearly independent to show S spans R $^{\uparrow}$ let X=(a,b,c,d,) be

any vector in R^4 let $c_1X_1 + c_2X_2 + c_3 X_3 + c_4 X_4 = X$ we can find a solution for c_1 , c_2 , c_3 , c_4 by a,b, c,d .then S spans R^4 then S is a basis for R^4 .

Example:

The set $S = \{t^n, t^{n-1}, \dots, t, 1\}$ spans p_n , since every polynomials of the form $p(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n$ which is linear combination of elements in S.

S is linearly independent since

$$c_1t^n + c_2t^{n-1} + \dots + c_nt + c_{n+1} = 0 \dots (1)$$

holds for every real number t is root of

$$p(t) = c_1 t'' + c_2 t''^{-1} + \dots + c_n t + c_{n+1}$$
.

but nonzero polynomials have only a finite number of roots that (1) only if $c_1 = c_{2} = \dots = c_n = c_{n+1} = 0$

then S is a basis for p_n

Example: The set $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for V of all

2×2 matrices to show S is linearly independent

$$c_{1}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_{2}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_{3}\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_{4}\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

then
$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 then $c_1 = c_2 = c_3 = c_4 = 0$

hence S is linearly independent . to show S spans V

Let
$$c_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then $c_1 = a$, $c_2 = b$, $c_3 = c$, $c_4 = d$ then S is a basis for V

Theorem 1:If $S = \{X_1, X_2, \dots, X_n\}$ is a basis for a vector space V then every vector in V can be written in one and only one way as a linear combination of the vector in S.

Proof:-

First every vector X in V can be written as a linear combination of the vectors in S because S spans V.

Now let

Now let
$$X = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$
 and $X = b_1 X_1 + b_2 X_2 + \dots + b_n X_n$ we must show that $a_i = b_i$ for $i = 1, 2, \dots, n$ we have $0 = (a_1 - b_1) X_1 + (a_2 - b_2) X_2 + \dots + (a_n - b_n) X_n$ Since S is linearly independent, we conclude that $a_i - b_i = 0$ for $i = 1, 2, \dots, n$. So that $a_i = b_i$

Theorem 2:Let $S = \{X_1, X_2, \dots, X_n\}$ set of non-Zero vectors and let W=spans S then some subset of S is basis for W.

Proof: Ex. (like example)

Example: Let V be the vector space R 4 . let S={ X_1 , X_2 , X_3 , X_4 } set of vectors where

 $X_1 = (1,2,-2,1), X_2 = (-3,0,-4,3), X_3 = (2,1,1,-1), X_4 = (-3,3,-9,6)$ Find a subset of S that is basis for W.

SOL.:

observe that every vector X in W is of the form $aX_1 + bX_2 + cX_3 + dX_4$(1)

to find a basis for W we first determine the set $S=\{X_1, X_2, X_3, X_4\}$ is linearly independent or not .if S linearly independent then S is basis for W. but S is not linearly independent (ch.)

$$X_1 - X_2 - 2 X_3 + 0 X_4 = 0....(2)$$

then

$$X_2 = X_1 - 2 X_3$$
(3)

Substituting (3) in (1) every vector X in W is of the form

$$(a+b) X_1+(c-2b) X_3+dX_4$$
(4)

Thus W spanned by X_1 , X_3 , X_4 we check the set

 $S=\{X_1, X_3, X_4\}$ is linearly independent or not.

We find that X_1, X_2, X_4 is linearly dependent and

$$-3 X_1 + 3 X_3 + X_4 = 0$$
Then $X_4 = 3 X_1 - 3 X_3 + \dots$ (5)

Substituting (5) in (4)) every vector X in W is linear combination of X_1 , X_3 then W spanned by X_1 , X_3

we check the set

 $\{X_1, X_3\}$ is linearly independent or not.

 $\{X_1, X_3\}$ is linearly independent and is basis for W.

Linear transformation

Definition:

Let V and W be vector spaces. A linear transformation L of V in to W is a function $L:V \longrightarrow W$ assigning a unique vector L(x) in W to each x in V such that .

a -
$$L(x + y) = L(x) + L(y)$$
. for every x and y in V b- $L(cx) = cL(x)$, for every x in V and every scalar c

Not:

If V=W the linear transformation $L:V \longrightarrow W$ is also called a linear operator on V.

Example: Let L:
$$R^3 \longrightarrow R^2$$
 be defined by L (x, y, z) = (x, y).

To verify that L is linear transformation we let

$$X = (x_1, y_1, z_1) \quad \text{and} \quad y = (x_2, y_2, z_2)$$
Than
$$L(x + y) = L((x_1, y_1, z_1) + (x_2, y_2, z_2))$$

$$= L(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (x_1 + x_2, y_1 + y_2)$$

$$= (x_1, y_1) + (x_2, y_2) = L(x) + L(y)$$

Also if c is a real number.

Then

Then
$$L(cx) = L(cx_1, cy_1, cz_1) = (cx_1, cy_1) = c(x_1, y_1)$$

$$= c L(x)$$

Example: Let L: $R^3 \longrightarrow R^3$ defined by

L(x, y, z) = (x+1, 2y, z). To determine whether L is linear transformation or not

we let
$$X = (x_1, y_1, z_1)$$
 and $Y = (x_2, y_2, z_2)$
Than $L(X + Y) = L((x_1, y_1, z_1) + (x_2, y_2, z_2))$
 $= L(x_1+x_2, y_1+y_2, z_1+z_2)$
 $= ((x_1+x_2)+1, 2(y_1+y_2), z_1+z_2)$

On other hand

$$L(x) + L(y) == (x_1+1, 2y_1, z_1) + (x_2+1, 2y_2, z_2)$$

= $((x_1+x_2)+2, 2(y_1+y_2), z_1+z_2)$

Thus L(x + y) \neq L(x) + L(y) L is not linear transformation

Example: Let L: $R^3 \longrightarrow R^3$ be defined by

L(x) = rx, r is real number. To determine whether L is linear transformation or not

we let
$$X = (x_1, y_1, z_1)$$
 and $y = (x_2, y_2, z_2)$
Than $L(X + Y) = L((x_1, y_1, z_1) + (x_2, y_2, z_2))$
 $= L(x_1+x_2, y_1+y_2, z_1+z_2)$
 $= (r(x_1+x_2), r(y_1+y_2), r(z_1+z_2))$
 $= (r(x_1, ry_1, rz_1) + (r(x_2, ry_2, rz_2))$
 $= rL(x) + rL(Y)$ L is linear transformation

Example: Let L: $R^2 \longrightarrow R^3$ be defined by

$$L\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 L is linear transformation since

$$X = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \quad Y = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \text{ Than } L(x+y) = L(\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$$

$$L(x) + L(y) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

Example: V = C[0,1] set of all real -valued function that are continuous function is vector space let W=R and $L:V \longrightarrow W$ is

$$L(f) = \int_{0}^{1} f(x)dx$$
, L is linear transformation Ch?

Theorem:

Let L:V \longrightarrow W be linear trans formation then $L(c_1X_1+c_2X_2, \ldots, +c_nX_n)=c_1L(X_1)+c_2L(X_2), \ldots, +c_nL(X_n)$ For any vectors X_1, X_2, \ldots, X_n and scalars c_1, c_2, \ldots, c_n .

Proof:

$$L(c_1X_1 + c_2X_2, \dots + c_nX_n) = L(c_1X_1) + L(c_2X_2) \dots + L(c_nX_n)$$

= $c_1L(X_1) + c_2L(X_2), \dots + c_nL(X_n)$

Theorem:

Let $L:V \longrightarrow W$ be linear trans formation then

- (i) L(0v) = 0w
- (ii)L(X-Y) = L(X) L(Y) for X,Y in V Proof :-
- (i) We have 0v = 0v + 0v, so L(0v + 0v)

$$L(0v) + L(0v) = L(0v)$$
 .if

We subtract L(0v) from both sides we obtain L(0v) = 0w

$$(ii)L(X-Y) = L(X+(-Y)) = L(X) + L(-Y)$$

$$= L(X) - L(Y)$$

Theorem:

Let L:V \longrightarrow W be linear transformation of an n-dimensional vector space V into a vector space W. Also let $S = \{X_1, X_2, \ldots, X_n\}$ be a basis for V. if X is any vector in V then L(X) is completely determined by $\{L(X_1),L(X_2),\ldots,L(X_n)\}$

Proof:-

Since X is in V, we can write $X = c_1X_1 + c_2X_2$,+ c_nX_n

Where c_1 , c_2 ,, c_n are real number

Then

$$L(c_1X_1 + c_2X_2, \dots + c_nX_n) = L(c_1X_1) + L(c_2X_2) \dots + L(c_nX_n)$$

$$= c_1L(X_1) + c_2L(X_2), \dots + c_nL(X_n)$$

Exercises:

Q1) Is L linear transformation where
$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x + y \\ y \\ x - z \end{bmatrix}$$
?

Q2) Let L:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 linear transformation and $\mathbb{L}(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$

And
$$L(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 What is $L(\begin{bmatrix} 3 \\ -2 \end{bmatrix})$? What is $L(\begin{bmatrix} a \\ b \end{bmatrix})$?

Q3)Let
$$P_2 \longrightarrow P_3$$
 linear transformation and L(1)=1,

$$L(t)=t^2$$
, $L(t^2)=t^3+t$

Find
$$L(2t^2-5t+3)$$
, $L(at^2+bt+c)$

The Kernel and Range of linear transformation:

Definition: A Linear trans formation L:V \longrightarrow W is said to be one- to -one if for all X_1 , X_2 in V. $X_1 \neq X_2$ implies $L(X_1) \neq L(X_2)$. An equivalent statement is that L is one –to-one if for all X_1 , X_2 in V, $L(X_1) = L(X_2)$ implies that $X_1 = X_2$.

Example:

Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be defined by

$$L(x,y) = (x+y, x-y)$$

to determine whether L is one -one, we let

$$X_1 = (x_1, y_1)$$
 and $X_2 = (x_2, y_2)$

then if

$$L(x_1) = L(x_2)$$

$$x_1 + y_1 = x_2 + y_2$$

$$x_1 - y_1 = x_2 - y_2$$

adding these equation, we obtain $2x_1 = 2x_2$ or $x_1 = x_2$ which implies that $y_1 = y_2$ Hence $x_1 = x_2$ and L is one -to -one.

Example: Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by

$$L(x, y, z) = (x, y)$$

Since $(1,3,3) \neq (1,3,-2)$ but

$$L(1,3,3) = L(1,3,-2) = (1,3)$$

We conclude that L is not one-to-one.

Definition:

Let L:V \longrightarrow W A linear transformation. The kernel of L denoted by ker (L). is the subset of V consisting of all vectors X such L(X)=0 Ker L= $\{X \in V / L(X) = 0\}$.

Example:

Let L:
$$R^3 \longrightarrow R^2$$
 defined by L(x, y,z) = (x, y)

The vector (0,0,2) is in ker L, since L(0,0,2) = (0,0)However the vector (2,-3,9) is not ker L, since L(2,-3,9)=(2,-3) to find kerL, we must determine all X in R^3 So that L(x) = 0 that, However $L(x) = (x_1,x_2)$ thus $(x_1,x_2) = (0,0)$ So $x_1 = 0$, $x_2 = 0$ and x_3 can be any real number. it is clear that ker $L=\{(0,0,r), r \text{ is real number}\}$ Consists of the Z-axis in x,y,z three–dimensional space R^3

Example:

Let L:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 be defined by

$$L(x,y) = (x+y, x-y)$$

Then ker L Consists of of all vectors x in R² such that

L(x) = 0 thus we must solve the linear system

$$x+y=0$$

$$x-y=0$$

for x and y . the only solution is x = 0 So ker $L = \{ 0 \}$

Example:

Let L:
$$\mathbb{R}^4 \longrightarrow \mathbb{R}^2$$
 be defined by

$$L(x,y,z,w) = \begin{bmatrix} x+y \\ z+w \end{bmatrix}$$

Then ker $L = \{ x \text{ in } \mathbb{R}^2 : L(x) = 0 \}$ ker L Consists of all vectors in the

form
$$\begin{bmatrix} r \\ -r \\ s \\ -s \end{bmatrix}$$
 where r,s any real numbers.

Theorem: If L:V ---- W is linear trans formation . then Ker L is a subspace of V.

Proof:

First . observe that Ker L is not an empty set since 0v is in ker L . Also . let x and y be in Ker L . Then since L is linear transformation .

L(x+y) = L(x) + L(y) = 0w + 0w = 0w So x+y is in Ker L. Also, if c is a scalar. Then since L is linear transformation

L(cx) = c L(x) = c0w = 0w, So cx is in Ker L. hence Ker L is subspace of V

Example:

Let L: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be defined by L(X,Y) = (X+Y, X-Y)Then $\operatorname{Ker} L = \{0\}, \dim(\operatorname{Ker} L) = 0.$

Example:

Let L:R³ \longrightarrow R² defined by L(x,y,z) = (x,y)

Ker L= { $X \in \mathbb{R}^2 / L(X) = 0$ } ={(0,0,r): $r \in \mathbb{R}$ } . ,dim(KerL)=1

Example:

Let $L: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ be defined by

$$L(x,y,z,w) = \begin{bmatrix} x+y \\ z+w \end{bmatrix}, \text{ The basis for KerL is } \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \text{ thus}$$

 $\dim(KerL)=2$.

Theorem:If L:V \longrightarrow W is linear transformation . then L(X) is one –one if and only if Ker L= $\{0_{\nu}\}$.

Let $X \in \text{Ker } L \text{ then } L(X)=0_w \text{ also } L(0_v)=0_w \text{ Thus } L(X)=L(0_v)$ Since L(X) is one –one, hence $X=0_{\nu}$ Then Ker L= $\{0_{\nu}\}$

Example: Let L:
$$R^2 \longrightarrow R^3$$
 be defined by
$$L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x+y \\ x-y \\ 2x+3y \end{bmatrix}$$
 L is linear transformation since

If
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 is any vector in \mathbb{R}^3 then $\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ so that

$$L(X) = L(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix})$$

$$= x L(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) + y L(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = x \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Coordinate vectors:

Let L:V \longrightarrow W be n-dimensional vector space V with basis $S = \{X_1, X_2, \dots, X_n\}$ if $X = a_1X_1 + a_2X_2 + \dots + a_nX_n$ Is any vector in V then the vector

The entropy vector in V then the vector

$$[X]_{S} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix}$$
in R'' is called the coordinate vector of X with

respect to the basis S. The components of $[X]_s$ called the coordinates of X with respect to S

Example: Let $S=\{X_1, X_2, X_3\}$ be basis for R^3 where

$$X_{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad X_{2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad X_{3} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

If
$$X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 then to find $[X]_S$, we must find c_1 , c_2 , c_3 such that

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = c_1 X_1 + c_2 X_2 + c_3 X_3 \quad \text{thus} \quad \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

The solution is
$$c_1 = 2, c_2 = 3$$
, $c_3 = -1$

Then
$$[X]_s = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

Example: Let $S = \{X_1, X_2, \dots, X_n\}$ be a basis be n-dimensional vector space V then since

$$X_1 = 1X_1 + 0X_2 + \dots + 0X_n$$
, $[X_j]_s = E_j$

Where $\{E_1, E_2, \dots, E_n\}$ a basis for R"

Example: Let $S = \{t, 1\}$ be a basis for P_1 if P(t) = 5t-2

Then

$$[P(t)]_s = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

If $T = \{t+1, t-1\}$ be a basis for P_1

Then
$$5t - 2 = \frac{3}{2}(t+1) + \frac{7}{2}(t-1)$$

Which implies that $[P(t)]_T = \begin{bmatrix} \frac{3}{2} \\ \frac{7}{2} \end{bmatrix}$

Theorem: Let L:V \longrightarrow W be n-dimensional vector space V into an m-dimensional vector space w(n $\neq 0$, m $\neq 0$) and let S= $\{X_1, X_2, \ldots, X_n\}$ and = $\{Y_1, Y_2, Y_3, \ldots, Y_m\}$ be bases for V and W, respectively. then the matrix A whose j th column is the coordinate vector $[X_j]_r$ of L(X_j) with respect to T is associated with L and has the following property:

Eigen values And Eigenvectors

pefinition: Let A be an $n \times n$ matrix. The real number λ is is called an

Eigen value

 $AX = \lambda X$ wery nonzero vector X satisfying (1) is called an eigenvectors fA associated with the Eigen values λ .

X=0 always satisfies Equation(1), but we insist that an eigenvector X be a nonzero vector.

Example 1:if A is identity matrix $\ln t$, then the only eigenvalue is $\lambda = 1$; and every nonzero vector in Rⁿ is an eigenvector of A associated with the eigenvalue $\lambda = 1$: n X=1X.

Example 2: Let $A = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$

$$A\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

So that $X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of **A** associated with the eigenvalue $\lambda_1 = \frac{1}{2}$

Also,
$$A\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{-1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

So that $X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of A associated with the eigenvalue $\lambda_2 = \frac{-1}{2}$

Figure 5.1 shows that X_1 and AX_2 are parallel, and X_2 and AX_3 are parallel also, this illustrates the fact that if X is an eigenvector of A, then X and AX are parallel. In figure 5.2 we show X and AX for the cases $\lambda > 1,0 < \lambda < 1$, and $\lambda < 0$.

cample 3: let
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Then
$$A\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 0 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} = 0 \begin{bmatrix} 1\\0 \end{bmatrix}$$

So that $X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector of A associated with the eigenvalue

$$\lambda_1 = 0.also$$
,

$$X_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 is an eigenvector of A associated with the eigenvalue $\lambda_2 = 1$

Example 3: points out the fact that although the zero vector, by definition, cannot be an eigenvector, the number zero can be eigenvalue.

 $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$ Example 4: let

We wish to find the eigenvalue of A and their associated eigenvectors.

Thus we wish to find all real numbers λ and all nonzero vectors $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ satisfying(1),that is

$$\begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \dots (2)$$

Equation (2) becomes

$$x_1 + x_2 = \lambda x_1$$

$$-2x_1 + 4x_2 = \lambda x_2$$
or

$$(\lambda - 1)x_1 - x_2 = 0$$

 $2x_1 + (\lambda - 4)x_2 = 0$

The homogeneous system of two equations in two unknowns. the homogeneous system in (3) has nontrivial solution if and only if the determinant of its coefficient matrix is zero: thus if and

$$\begin{vmatrix} \lambda - 1 & -1 \\ 2 & \lambda - 4 \end{vmatrix} = 0$$

This means that

$$(\lambda - 1)(\lambda - 4) + 2 = 0$$

pefinition: let $A = [a_{ij}]$ be an $n \times n$ matrix. the determinant

$$f(\lambda) = |\lambda I_n - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ -a_{n1} & -a_{n2} & \dots & \lambda - a_{nn} \end{vmatrix}$$
 (2)

Is called the characteristic polynomial of A. the equation

$$f(\lambda) = |\lambda I_n - A| = 0$$

is called the characteristic equation of A.

Example 5: let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

The characteristic polynomial of A is (verify)

$$f(\lambda) = |\lambda I_3 - A| = \begin{vmatrix} \lambda - 1 & -2 & -1 \\ -1 & \lambda - 0 & 1 \\ -4 & 4 & \lambda - 5 \end{vmatrix} = \lambda^3 - 6\lambda^2 + 11\lambda - 6$$

Theorem: The eigenvalue of A are the real roots of the characteristic polynomial of A

Let λ be an eigenvalue of A with associated eigenvector X. then

Which can be rewritten as

$$AX = (\lambda I_{\parallel})X$$

Or
$$(\lambda I_n - A)X = 0$$
 (3)

A homogeneous system of n equations in n unknowns. This system has a nontrivial solution if and only if the determinant of its coefficient matrix is zero that

Conversely, if λ is a real root of the characteristic polynomial of A, then $|\lambda I_n - A| = 0$, so the homogeneous system (3) has nontrivial solution X. Hence λ is the eigenvalue of A nomogeneous system values of a given matrix A, we must find the real roots of its characteristic polynomial $f(\lambda)$.