First course

Lectured One

1- Number Svstems Operation:

1- Decimal Numbers.

2- Bmary Numbers.

3 - Hexadecimal Numbers.

1- Decimal Numbers: In the decimal number system each of the ten
digits (10digits), O through 9 (0, 1, 2,3,4,5,6, 7, 8, and 9).
Decimal weight ... ...10*10° 10*10'10°. 107" 107 107 ....
Example (1): (345);
300+40+5=10*%3+10"%4+10"%5=345= (345) ,,

b

3 45
Example (2): 23.5=(23.5);

2¢10" + 3%10°+5%107 = 20+3+0.5=23.5

Where 10° =1

2- Binary Numbers: The binary number system its two digits a base-

two system. The two bmary digits (bits) are 1 and 0 (1,0).

Binary weight 2° 2> 2' 2°

Weight value 8 4 2 1

A- Binary — to — Decimal Conversion:

*Binary number 1101101 where 2°=1
1 1 0 1 1 0 1
20025 20 20 22 2' 20=20 w14 2% 142t 042 1427+ 1421 0+2"+1
= 64+32+0+8+4+0+1=96+13=109 =»(109),,




*The fractional binary number 0.1011
0.1 0 1 1
271 27 27 2 =12 02 2 R =
0.5+0+0.125+0.0625=0.6875 =» (0.6875),0

B- Decimal — to — Binary Conversion:

1- Convert a decimal whole number to binary using the repeated
division — by — 2 method.
2- Convert a decimal fraction to binary using the repeated
Multiplication — by — 2 method.
Example (1):
Number (58);p =====2(111010),

2 58 mod LSB
2 29 ==>0 *
2 14 =—==>1
2 7 ===20 ========9 (111010),
2 3 ==21
2 1 ===>1
0 ==>1
MSB
Example (2):
Number (0.3125),y =======2(0101),
MSB carry
0.3125*2
0 | 0.6250%2
1| 0.2500*2
0 | 0.5000%2
! 1| 0.0000
LSB

(0101),



4- Hexadecimal Numbers: The hexadecimal number system has a

base of sixteen; it 1s composed of 16 digits and alphabetic characters.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
S 0101 S
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F




Lecture (2)

A- Binary — to — Hexadecimal conversion:

4-bit groups, starting at the right-most bit.
Example: (1100101001010111), ======="=2 (CAS57)16

1100 1010 0101 0111

L4

C
B- Hexadecimal — to — Binary Conversion:
Example: (10A4),; ====—======9 (1000010100100),
1 0 A 4

0001 0000 1010 0100

C- Hexadecimal — to —Decimal Conversion: By to method

* First method:
Example:  (A85);s ===="2 (2693)y
1- Convert to binary number.
2- Convert from binary number to decimal number.
A 8 5
1010 1000 0101 =
21 142100427 142550427 % 14250427042 %0+ 27 *0+27* 142"+ 042" 1=
2'42° 427425 42°=2048+512+128+4+1=2693= (2693),0
* Second method:
Example:  (ES);s ========"2 (229)y
(E5)16=E*16'+5%16"=14*16+5%1=224+5=229= (229),,



D- Decimal — to — Hexadecimal Conversion:

Example: Convert the decimal number 650 to hexadecimal by repeated
division by 16.
(650),9 ====="2 (28A);
Mod  LSD
A

16 650

16 40 ====—=DA

16 2 ==————=38 MSD 28A LSD =(28A)s
0 ======2

MSD



2-Binarv Arithmetic:

1- Binary Addition.

2- Binary Subtraction.

3- Binary Multiplication.

4- Binary Division.

1- Binary Addition: The four basic rules for adding binary digits

(bits) are as follows.

0+0=0 Sum of 0 with a carry 0
0+1=1 Sum of 1 with a carry 0
1+0=1 Sum of 1 with a carry 0

1+1=1 0  Sum of 0 with a carry 1

Examples:
110 6 111 7
+ 100 +4 +011 +3
1010 10 1010 10
1111 15
+ 1100 +12
11011 27

2- Binary Subtraction: The four basic rules for subtracting are as

follows.
0-0=0
1-1=0
1-0=1
0-1=1 0-1 with a borrow of 1



Examples:

11 3 11 3

- 01 -1 -10 -2
10 2 01 1

110 6 101101
- 101 -5 -001110
001 1 011111

101 5
- 011 -3
010 2
45
4
31
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3-1's And 2's Complement of Binary Number:

The 1's complement and the 2's complement of binary number are

important because they permit the representation of negative numbers.

Binary Number 10110010 01
1'sComplement 01001101 0 V
10

2's Complement of a binary number is found by adding 1 to the LSB of the
1's Complement.

2's Complement= (1's Complement) +1

Binary number 10110010
1'scomplement 01001101
Add 1 + 1

2's complement 01001110

In decimal number complement such as:

0====119
T====[12
6====[13
O====[10
J====[15



Signed Numbers: Signed binary number consists of both sign and magnitude

information.
positive numbers
The sign bit

negative numbers

00011001
0 0011001
7 A

sign bit —magnitude bits

Example: Express the decimal number - 39 as an 8-bit number in the

sign-magnitude, 1's complement, and 2's complement forms.

Solution:
1- Write the 8-bit number for +39 00100111
2- 1's complement 11011000
3- Add 1 1

}mmm =-39

sign bit negative



4- Hexadecimal Addition & Subtraction:

Hexadecimal Addition:

2A7 2AB 2B
+ 317 +317 + 84
SBE 5C2 AF

Hexadecimal subtraction:
CA2 47C
- Al1B - 2BE

287 1BE




Lectured (4) Logic Gats: Set of Gats
Graphic Algebraic Truth

Name symbol function table
A B«
AND - ) C 0010
: B — 1=AB 0110
1 010
1 11
A B|x
A 0 00

x x=A+8B

1R B:D— 0 11
1 01

111

Alx

Inverter A D& X .r:.‘.i ol
1{0

Al x

Buffer A——D—x x=A




A B | x

=" 0 01

NAND ‘; 3)— » w=TABY £ T

1 011

1 110

A B2

0 011

NOR ;D—x x=(A+BYy 5 316

1 00

1 11]0

A B | «x

Exclusive-OR A o RS ABE 0 010

(XOR) B or ' o 111

x=AB+AB Lol

1 110

A B | «x

Exclusive-NOR A jDD' _ox=iA & B) 0 01

or equivalence B - or o 11lo
x=AB + AB

1 0]0

1 1 1

2- Half — Adder: The basic digital arithmetic circuit is the addition of
two binary digits. Input variables of a half-adder call augends &
addend bits. The output variables the sum & carry.

X Y C S
- 0 0 0 0
==ni
¥ y 0 1 0 1
1 0 0 1
D__ c 1 1 1 0
Figure (1-a) Logic diagram for half adder Figure (1-b) Truth table for half adder

Half- Adder questions:

S=XY+XY
S=X ()Y
C=X*Y



3-Full-Adder: A full - adder is a combinational circuit that forms the
arithmetic sum of three input bits. It consists of three inputs &two
outputs.

x—_—._ﬁ—\ . \t—\
y § 7_/ = ' / S
; it
\ C
e
Figure (2-a) Logic diagram for full adder (Logic Diagram)
X7 Fa
Yy c
z — ™ T
Figure (2-b) Block diagram for full adder
Inputs Out puts
X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure (2-¢) Truth table for full adder



Full - Adder guestions:

S=x(H)y(+)z
C=XY+ (XZ (+) YZ)
C=X*Y+(XH)Y) Z
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Boolean Algebra &Logic Simplification:

1-Rules of Boolean algebra:

1- A+0=A
2- A+l1=1
3- A*0=0
4- A*1=A
5- A+A=A
6- A+A=1
7- A*A=A
8- A*A=0

10- A+BA=A

=» Demoragan's theorems

11- A+AB=A+B
12- (A+B)(A+C)=A+BC

2- Examples:

Determine the truth table and logic diagram

Example 1:

F=X+VZ
X Y Z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Figure (3-a) Truth table

figure (3-b) Logic diagram



Example 2:

AB+ A (B+C)+ B(B+C)
1- AB+AB+AC+BB+BC
2- AB+AB+AC+B+BC
3- AB+AC+B+BC
4- AB+AC+B
5- B+AC

AB +AB+ C)+ B(B+ ()

A
c

T—'”'IL‘\L' wo circunts are L‘L]l!l\dlL‘l\l ——T

Figure (4)
Example 3:
F=ABC+ABC+AC
F= AB(C+C) +AC
F= AB+AC

Note: More laws of Boolean algebra
1-Commutative Law: () A+ B=B + A (b)AB=BA
2-Associate Law: () (A+B)+C=A+B+C) MABC=ABO
3-Distributive Law: () A(B+C)=AB+AC
DA+BOCO=A+B)(A+0C)
3-De Morgan's Theorem: (a) (A+B)'=A'B’ (b) (AB)=A+ B’
5- Absorption: (a)A+AB-=A b)AA+B)=A
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Example 4:

Simplify the following Boolean expression:

Solution  Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

AB + AC + ABC
Apply DeMorgan’s theorem to the first term.
(AB)(AC) + ABC
Apply DeMorgan’s theorem to each term in parentheses.
(A+B)A+ C) +ABC
Apply the distributive law to the two terms in parentheses.
AA+AC + AB + BC + ABC
Apply rule 7 (Z_Z_= A) to the first term, and apply rule 10 [AB + ABC =
AB(1 + C) = AB] to the third and last terms.

A+AC +AB + BC
Apply rule 10 [Z + AC = Z(l + E’) = Z] to the first and second terms.
A+ AB + BC
Applyrule 10 [A + AB = A(l + B) = Al to the first and seco}ld terms.

A+BC

3- Demorgan's theorems:

8 Inputs | Output
X0 = 4
Y Y :3:>7 i
NAND Negative-OR

Inputs | Output
XY |X+Y Xy

S e

+¥ =

Y Yﬂ”
NOR

Negative-AND

Figure (5) Demorgan's theorems



Example 1:

a- (A+B)+C = (A+B) C = (A+B)C

b- (A+B) +CD = (A+B) CD =(A B) (C+D)=A B (C+D)

c- (A+B) C D+E+ F= (A+B) C D) (E+ F)_

= (A B+C+D) (E F)



5- Sum — Of — Products (SOP):
X=AB+BCD+AC

Figure (4) SOP

Examples:
a- AB+B(CD+EF)=AB+BCD+BEF
b- (A+B)(B+C+D)=AB+AC+AD+BB+BC+BD

c- (A+B)+C=(A+B)*C =(A+B)C=AC+BC




6- Product — Of — Sum(POS):
(A+B)(B+C+D)(A+C)

Figure (5) POS



L_ecture (7)

Karnaugh map

The Karnaugh map also known as Veitch diagram or simply as K map is a two dimensional form of
the truth table,

drawn in such a way that the simplification of Boolean expression can be immediately be seen from
the location of 1°s

in the map. The map is a diagram made up of squares , each sqare represent one minterm. Since any

Boolean function

can be expressed as a sum of minterms, it follows that a Boolean function is recognised graphically in
the map from the

area enclosed by those squares whose minterms are included in the function.

A two variable Boolean function can be represented as follow

A
N ,,
B
A’B’ AB’
0
A'B AB
B 1

A three variable function can be represented as follow

A
AB
00 01 11 10
AJ BJ Cl A-’BC’ ABCI AB} C}
A’'B’C A'BC ABC AB'C




A four variable Boolean function can be represented in the map bellow

A
AB
00 01 11 10
CD
ABCD | ABCD’ | ABCD AB'C'D’
00
A'B'CD | ABCD ABC'D AB'C'D
01
D
A’B'CD A’BCD ABCD AB'CD
11
C
A'B'CD’ | ABCD' ABCD' AB'CD’
10

B
A four variable Boolean function can be represented in the map bellow

A
AB
00 01 11 10
CD
ABCD | ABCD | ABCD AB'C'D’
00
AB'CD | ABCD ABC'D AB'C'D
01
D
A'B'CD A’BCD ABCD AB'CD
11
C
ABCD’ | ABCDY ABCD’ AB'CD’
10

B

To simplify a Boolean function using karnaugh map, the first step is to plot all ones in the function
truth table on the



map. The next step is to combine adjacent 1’s into a group of one, two, four, eight, sixteen. The group
of minterm

should be as large as possible. A single group of four minterm yields a simpler expression than two
groups of two

minterms.

In a four variable karnaugh map

variable product term is obtained if 8 adjacent squares are covered

2 variable product term is obtained if 4 adjacent squares are covered

3 variable product term is obtained if 2 adjacent squares are covered

A square having a 1 may belong to more than one term in the sum of product expression

The final stage is reached when each of the group of minterms are ORded together to form the
implified sum of product expression The karnaugh map is not a square or rectangle as it may appear
in the diagram. The top edge is adjacent to the bottom edge and the left hand edge adjacent to the right
hand edge. Consequent, two squares in karnaugh map are said to be adjacent if they differ by only one
variable.

Minimization of Boolean expressions using Karnaugh maps.
Given the following truth table for the majority function.

a | b | C | M(output)
0[0]0 |0
0(0]|1]0
0[1]01]0
O(1]1]1
110[0 |0
1101 |1
1]1]0 1
1111

The Boolean algebraic expression 1s

m = a’be + ab’c + abc’ + abe.

the mimimization using algebraic manipulation can be done as follows.
m = a'’bc + abe + ab’c + abc + abe’ + abe

= (a' +a)bc + a(b’ + b)c + ab(c’ +¢)

=bc +ac +ab

The abc term was replicated and combined with the other terms.

To use a Karnaugh map we draw the following map which has a position (square) corresponding to
each of the 8

possible combinations of the 3 Boolean variables. The upper left position corresponds to the 000 row
of the truth table,

the lower right position corresponds to 101.



ab
00 01 11 10
C
1
0
1 1 1
c 1
b

The 1s are in the same places as they were in the original truth table. The 1 in the first row is at
position 110 (a=1,b =

1,¢c=0).

The minimization is done by drawing circles around sets of adjacent 1s. Adjacency is horizontal,
vertical, or both. The

circles must always contain 2n 1s where n is an integer.

d
ab
00 01 11 10
C
1
0
1 1 1
c |1

b

We have circled two 1s. The fact that the circle spans the two possible values of a

(0 and 1) means that the a term is eliminated from the Boolean expression corresponding to this
circle.

Now we have drawn circles around all the 1s. Thus the expression reduces to

bc +ac + ab

as we saw before.

What is happening? What does adjacency and grouping the 1s together have to do with minimization?
Notice that the 1

at position 111 was used by all 3 circles. This 1 corresponds to the abc term that was replicated in the
original algebraic

minimization. Adjacency of 2 1s means that the terms corresponding to those 1s differ in one variable
only. In one case



that variable is negated and in the other it is not.

The map is easier than algebraic minimization because we just have to recognize patterns of 1s in the
map instead of

using the algebraic manipulations. Adjacency also applies to the edges of the map.

Now for 4 Boolean variables. The Karnaugh map is drawn as shown below.

A
AB
00 01 11 10
CD
1
00
1 1
01 D
1 1 1
11
C
1 1
10




The following corresponds to the Boolean expression
Q=A'BCD+ A'BCD + ABC'D' + ABC'D + ABCD + ABCD' + AB'CD + AB'CD’

RULE: Minimization is achieved by drawing the smallest possible number of circles, each containing the largest
possible number of 1s.

Grouping the 1s together results in the following.

A
AB
00 01 11 10
CD —
1
00
1 1
01 D
1 1 1
11
C
1_ 1
10

The expression for the groupings above 1s

Q=BD+AC + AB

Other examples

1. F=A'B+AB
A
A
\ 0 7
B — R —
0

2. FFA'B'C'+A'B'C+A'BC+ABC'+ABC



00 01 11 10

3. F=AB+A'BC'D+A'BCD+AB’'C'D’

A
AB
00 01 11 10
CD
1 1
00
1 1
01
1 1
11
C
1
10
B

4. F=AC'D'+A'B'C+A'C'D+AB'D

A
AB
00 01 11 10
CD
1 1
00
1 1| 1
01 |
1 1
11
1
10

=A’B’+BC’+AB

D =BD+AB+AC'D’

D =B’'D+AC'D’+A’C'D+A’B’C



Lecture (8)
Combinational Logic:

1-The NAND Gate as a Universal Logic Element:

A~ Ya 2 —>o—i

(a) A NAND gate used as an inverter

= AB _ "
)—E AB = AB AB
B — B —

(b) Two NAND gates used as an AND gate

A
DA
- A
D—- AB=A+8 % :D— AvB
_E . [g
(c) Three NAND gates used as an OR gate
4‘5 G, AB=A+B
Gy )D{BO_ A+B - :DO— A+B

(d) Four NAND gates used as a NOR gate

Figure (9) NAND Gates



2-The NOR Gate as a Universal Logic Element:

(a) A NOR gate used as an inverter

A A+B

. A+HB

(b) Two NOR gates used as an OR gate

A+B=.8

(d) Four NOR gates used as a NAND gate

Figure (10) NOR Gates

!

B




3- 4- Bit Parallel Adder (Ripple carry adder)
A group of four bits is a ripple. A basic 4-bit parallel adder

implementation with four full adder stages.

,’14 1’}4 /1} [)’\ Az B:
A B G, A B G A B G
(MSB)
C[Jul X C{)ul 2 Cou! 2
(.14 ¥ g (“; , (2 |
2y ¥ X,
Figure (11) 4-bit parallel adder
2
4 1) -
Binary —1 2 - 3 ‘ L
nunber A 3 7 3
\ 4 \ 4
e 1
Binary 2 lp
number B 3
[nput ;
P — G
Ldl‘r},’

Figure (12) Symbol Logic

A B
— Gy
A B G,
(LSB)
Cou[ )
0 |
L
|
i} 4-bit
SN
J
£l Output
carry



4- Example:

Draw the 4-bit parallel adder, find the sum and output carry
for the addition of the following two 4-bit numbers if the input
carry (C,,) is 0:

A4A3A2A1=1010 and B4B3B2B1=1011
Solution:
For n=1
Al=0, B1=1, C, ;=0
> =1, and C1=0
For n=2
A2=1, B2=1, C, =0
>=0, and C2=1
For n=3
A3=0, B3=0, C, =
>=1, and C3=0
For n=4
A4=1,B4=1,C =0
> =0, and C4=1



Binary subtraction using adders

We know from the section on binary arithmetic how to negate a number by
mverting all the bits and adding 1. Thus, we can compute the expression as x +
inv(y) + 1. It suffices to invert all the mputs of the second operand before they
reach the adder, but how do we add the 1. That seems to require another adder just
tfor that. Luckily, we have an unused carry-in signal to position 0 that we can use.
Giving a | on this input in eftect adds one to the result. The complete circuit with
addition and subtraction looks like this:

¥7 ¥E ¥ ¥e ¥ ¥i ¥l ¥yo
! | | | | | | | o
# E fi.} %/ i/ g ix" :L.#"
=7 |/ 13 »5 »d »= =2 »1 =0
Y x Y * Y ® Y x Y x Y x Y ® Y *
o

|='_n—|_ _n—l_ G:in—l_ ﬁ:in—l_ ﬁ:i.n—l_ ﬁ:i:n—|_ a:in—l_ o in
~ =—out =—out ——out =—out c—out c—out c—out c—out

-] ] -] T ] 2 Ed z

(LX) (13 L1 g4 83

[

8l a0

Medium Scale integration component

The purpose of circuit minimization is to obtain an algebraic expression that, when
mplemented results in a low cost circuit. Digital circuit are constructed with
mtegrated circuit(IC). An IC 1s a small silicon semiconductor crystal called chip
contamning the electronic component for digital gates. The various gates are
mterconnected inside the chip to form the required circuit. Digital IC are
categorized according to their circuit complexity as measured by the number of
logic gates in a single packages.

- Small scale integration (SSI). SSi devices contain fewer than 10 gates. The input
and output of the gates are connected directly to the pins in the package.

- Medium Scale Integration. MSI devices have the complexity of approximately 10
to 100 gates 1n a single package

- Large Scale Integration (LSI). LSI devices contain between 100 and a few
thousand gates in a single package

- Very Large Scale Integration(VLSI). VLSI devices contain thousand of gates
within a single package.
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Flip-Flop:

The storage elements employed in clocked sequential circuits are called
flipflops.

A flip -flops is a binary cell capable of storing one bit of information. It
has two outputs, one for the normal value and one for the complement
value

of the bit stored in it. Type of flip-flops:

1- S-R flip-flops.

2- D flip-flops.

3- J-K flip-flops.

R-S flip flop

The most foundational flip-flop is called Reset-Set (R-S )flip-flop, the (R-S)
flip-flop has three inputs and two outputs, one of the input is denoted by C
and is normally a clock input. The two output are always in opposite states
from each other and denoted Q and Q’ because the R and S input are both
ANDed with the clock (enable), they have no effect on the state of the flip
flop

while the clock is 0, the following figure (14) is (a) logical diagram and (b)
logical symbol of R-S flip-flop and figure (15) illustrate truth table for R-S
flip_flop.

— — L —.g
|\.\ /__‘_,
s :

- EN
l/’f \\\
)
d | —
7 .
a- Logic diagram b-Logic symbol

Figure (14) : R-S flip-flop



S |[R | Q, |Qu | Comments
0O [0 |0 0 No change
0 (0 |1 1

0O (1 |0 0 Reset

0 |1 |1 0

1 [0 |0 1 Set

1 |0 |1 1

1 |1 |0 unknown

1 |1 |1

‘igure (15): truth table for R-S flip flop

D flip-flop

A data flip-flop (D flip-flop) is one with two inputs, a clock input and input
labeled D. It is easily constructed from R-S flip flop by letting D be the S and
connecting R to D through an inverter, a logical diagram and logical symbol
are following figure (16), and figure (17) illustrated truth table for D flip-flop.

[Dhe— e s ey
2 e ==—=uEN
CI > o— 0
(a) Logic diagram (b) Logic symbol

Figure(16): D flip-flop

D Qn Qn+l
0 0 0
0 1 0
1 0 1
1 1 1

Figure(17):truth table for D flip-flop



J-K flip- flop

A J-K flip flop is an R-S flip flop that has been modified by feeding the
outputs back and ANDing them with the inputs. The deference is that the J-K
flip-flop has no unknown state as does the S-R flip-flop as show in following
figure (18), and figure (19) illustrated a truth table for J-K flip flop.

J
Pulse
CLK — transition
detector
K
Figure (18): J-K flip flop
S IR |Q, |Qui | Comments
0O (0 |0 0 No change
0 [0 |1 1
0 |1 |0 0 Reset
0 [1 |1 1}
1 |0 |0 1 Set
1 (0 |1 1
1 1 |0 1
1 (2 |1 0

Figure(19):truth table for J-K flip-flop
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Shift Register: A register is a digital circuit with two basic functions:
1- data storage, 2- data movement.

The storage capability of a register makes it an important type of
memory device. The concept of storingalorOinaD flip flop. Alis
applied to the data input, and clock puls is applied that stores the 1 by
setting the flip-flop when the 1 on the input is removed, the flip-flop
remains in the set state, there by storing the 1. A similar procedure applies
to the storage of a 0 by resetting the flip-flop.

Type of shift register:

1- Serial in\ Serial out shift right.

2- Serial in\ Serial out shift left.

3- Parallel in\Serial out.

4- Serial in\Parallel out.

5-Parallel in\ Parallel out.

6 Rotate right.

7- Rotate left.

SR

(2) Senal in/shift right/serial out (b) Serial in/shift left/serial out (c) Parallel in/serial out

(d) Serial in/parallel out (e) Parallel in/parallel out (f) Rotate right () Rotate left

Figure (20) Type of shift register



1- Serial in \ Serial out shift Register:

FFO FF1 FF2 FF3
Serial 0 o Os O,
duta ——p D D D Serial data outpul
input
> C > C > C > C
O:
[O——— Serial data ourpan
CLK —& ® ®
Figure (21) shift register 4-bit
Example: 1
Shift Register 4-bit
FFO FF1 FF2 FF3
‘Dala D 4] U D 0 D 0 04
input
= C ——B C [>C > C
Register iitially
CLEAR
CLK b -
Ist data bit =0 ———1 D L s 9 D L D -2 (e}
> C > C > C > C
Afer CLKI
cekr _f1 . .
Inddatabit=1 ——p l D 9 D 0 D ’_Q_‘ 0y
> C >~ C > C > C
Ahter CLK2
axz 1

Figure (22) 4-bit shift register



Irddmabit=0——p L n ! D ey 4 D 0 0
iﬁ After CLK3

cakd _fL

tth data bit = | —— D i@ |_JD ,“_"D 1NN | U ~0;

> C > C >C > C Alter CLK4, the 4-but
number is completely
stored in regisler.

Figure (23) 4-bit shift register
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Example: 2

Draw S-bit shift register and write wave form?

FHO FF1 FF2 FI3 Fr4

-y (_’v ) (}| ( }_‘ (-) ! r;}’. Ikﬂ
-Ddld D D D i D D ]
nput output

> ¢ ¢ > - e

CLK

Figure (24) S-bit shift register
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Decoders & encoders:

1- Decoder:

A decoders is combinational circuit that converts binary
information form the n coded inputs to a maximum of 2n unique
outputs.

That decoders are called n-to-m line decoders where m <=2n.
The logic diagram of a 3-to-8 line decoder is three data inputs,
A0, Al, and A2 are decoded into eight out puts, each out puts
representing one of the combinations of the three binary input
variables.

This decoder is a binary — to — octal conversion.
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Figure (14-a) 3-to-8 line decoder (Logic Diagram)
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Figure (14-b)Truth table for 3-to-8 line decoder
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‘igure (15-a) 2-to-4 line decoder (Logic Diagram)

Enable Inputs Outputs
E Al A0 DO D1 D2 D3
0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
0 X X 1 1 1 1

Figure (15-b)Truth table for 2-to-4 line decoder



2- Encoder:

An encoder is a digit circuit that performs the inverse operation
of a decoder. An encoder has 2n (or less) input lines and n output
lines. An encoder is the octal — to — binary encoder.

It has eight inputs, one for each of the octal digits, and three
outputs that generate the corresponding binary number,

A0 =D1+D3+D5+D7
Al =D2+D3+D6+D7
A2 =D4+D5+D6+D7
(Implementation in three OR gates)

Inputs Outputs
D7 D6 D5 D4 D3 D2 D1 DO A2 Al A0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

Figure (16-a) Truth table for octal — to — binary encoder
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Encoder Octal - to - Binary

Figure (16-b) 8 — to — 3 lines Encoder (Logic Diagram)

3- Multiplexers:

A multiplexer is a combinational circuit that receiver binary
information form one of 2n input data lines and directs it to a
single out put line.

The selection of a particular input data line for the output is

determined by a set of selection inputs. A 2n- to- 1, A 4-to-1.

Multiplexer is called Data Selector.
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Figure (17-a) 4-to-1 line multiplexer (Logic Diagram)

Inputs Outputs
SO S1 Y
0 0 Y1
0 1 Y2
1 0 Y3
1 1 Y4

Figure (17-b) Truth table for 4-to-1 multiplexer
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4-Demultiplexers:

A demultiplexer (DEMUX) basically reverses the
multiplexing function. It takes digital information from one
line and distributes it to a given number of output lines. For
this reason, the demultiplexer is also known as a data
distributor. As you will learn, decoders can also be used as
demultiplexers.

A 1 to 4 lines demultiplexer (DEMUX) circuit. The data input
line goes to all of the AND gates. The two data select lines
enable only one gate at a time, and the data appearing on the
data input line will pass through the selected gate to the
associated data output line.
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Figure (18-a) Demultiplexer 1 to 4 lines (Logic Diagram)

Data
QOutput
Lines

Inputs Outputs
Data SO S1 | D4 D3 D2 D1
0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Figure (18-b) Truth table for 4-to-1 Demultiplexer
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Binary Counter: The binary counter is consist two types.

1- Asynchronous counter operation.

2- Synchronous counter operation.

1- Asynchronous counter operation:

In figure (25-a, b, ¢) shows a 2-bit counter connected for asynchronous
operation. Notice that the clock (CLK) is applied to the clock input (C)
of only the first flip-flop, FFO, which is always the least significant bit
(LSB). The second flip-flop, FF1, is triggered by the QO output of FFO.
FFO changes state at the positive-going edge of each clock pulse, but
FF1 changes only when triggered by a positive-going transition of the
QO output of FFO. Because of the inherent propagation delay time
through a flip-flop, a transition of the input clock pulse (CLK) and
transition of the output of FFO can never occur at exactly the same
time. Therefore, the two flip-flops are never simultaneously triggered,
so the counter operation is asynchronous.

HIGH — -
FFO FFI

J, = —]J EE

> C 7 [——:—:> C

Figure (25-a) 2-Bit Asynchronous Binary Counter

2- Synchronous counter operation:

The term synchronous refers to events that have a fixed
time relationship with each other. A synchronous counter is
one in which all the flip-flops in the counter are clocked at
the same time by a common clock pulse.

A 3-bit synchronous binary counter is shown in figure
(26-a) and timing diagram is shown (26-b) you can
understand this counter operation by examining its
sequence of states as shown in truth table (26-c).
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Figure (26-a) 3-Bit Synchronous Binary Counter

ax [Tl [FL_fL_[5L_fel L[5l
¥ Ty Ny N
3 O o e O | sy e S
N e e

Figure (26-b) Time diagram 3-Bit Synchronous Binary Counter
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Figure (26-c¢) truth table for 3-Bit Synchronous Binary Counter



