
Programming Language  

In computer programming, a programming Language serves as a means 

of communication between the person with a problem and the computer used 

to help solve it. An effective programming language enhances both the 

development and the expression of computer programs. It must bridge the 

gap between the often unstructured nature of human thought and precision 

required for computer execution. 

A hierarchy of programming languages based on increasing machine 

independence includes the following: 

1. Machine – Level Languages. 

2. Assembly Languages. 

3. High – level Language. 

4. Problem – Oriented Languages. 

 

1)  Machine – Level Languages:- is the lowest form of computer language. 

Each instruction in a program is represented by a numeric code, and 

numerical addresses are used throughout the program to refer to memory 

locations in the computer’s memory.  

2) Assembly Languages:- is essentially a symbolic version of a machine-

level language. Each operation code is given a symbolic code such as 

ADD for addition and MUL for multiplication.  

         Assembly-language systems offer certain diagnostic and debugging 

assistance that is normally not available at the machine level. 

3)  High level language:- such as FORTRAN, PASCAL, C++, …,etc. it 

offers most of the features of an assembly language. While some facilities 

for accessing system-level features may not be provided, a high-level 

language offers a more enriched set of language features such as 

structured control constructs, nested statements, blocks, and procedures. 

4)  A problem-oriented language:- treating problems in a specific 

application or problem area. Such as (SQL) for database retrieval 

applications and COGO for civil engineering applications. 

 

Programming language (high level language) can be depicted as 

notations for describing computation to people and to machine. The 

world as we know it depends on programming languages, because all the 

software running on all the computers was written in some programming 

language. But, before a program can be run, it first must be translated 

into a form in which it can be executed by a computer. The software to 

do this translation is called Compiler. 

 



Translator  
A translator is program that takes as input a program written in a given 

programming language (the source program) and produce as output program 

in another language (the object or target program). As an important part of 

this translation process, the compiler reports to its user the presence of errors 

in the source program. 

If the source language being translated is assembly language, and the 

object program is machine language, the translator is called Assembler. 

 
     A translator, which transforms a high level language such as C in to a 

particular computers machine or assembly language, called Compiler. A 

compiler translates (or compiles) a program written in a high-level 

programming language that is suitable for human programmers into the low-

level machine language that is required by computers. During this process, 

the compiler will also attempt to spot and report obvious programmer 

mistakes. 

 
If the target program is an executable machine – language program, it 

can then be called by the user to process inputs and produce outputs.  
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Another common kind of translator (language processors) called an 

Interpreter, in this kind, instead of producing a target program as a 

translation, an interpreter appears to directly execute the operations specified 

in the source program on inputs supplied by the user, Figure below shows 

the role of interpreter 

 
 

The machine language target program produced by a compiler is 

usually faster than an interpreter at mapping inputs to outputs. An 

interpreter, however, can usually give better error diagnostics than a 

compiler, because it executes the source program statement by statement. 

 
 

Note :- The execution of a program written in a high level language is 

basically take two steps:-  

1- The source program must first be compiled (translated into the object 

program) 

2- The object program is loaded into memory to be executed. 

 
 

The time used to compile the program called Compile time and time 

that used to run the object program is called Run time. 

 

In addition to a compiler, several other programs may be required to 

create an executable target program, as shown in figure below. A source 

program may be divided into modules stored in separate files. The task of 

collecting the source program is sometimes entrusted to a separate program, 

called a preprocessor.  
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The modified source program is then fed to a compiler. The compiler 

may produce an assembly-language program as its output, because assembly 

language is easier to produce as output and is easier to debug. The assembly 

language is then processed by a program called an assembler that produces 

relocatable machine code as its output. 

 Large programs are often compiled in pieces, so the relocatable 

machine code may have to be linked together with other relocatable object 

files and library files into the code that actually runs on the machine. The 

linker resolves external memory addresses, where the code in one file may 

refer to a location in another file. The loader then puts together all of the 

executable object files into memory for execution. 
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The Structure of Compiler 

The Compiler consists of two parts:  

1. Analysis.  

2. Synthesis. 

The analysis part breaks up the source program into constituent pieces 

and imposes a grammatical structure on them. It then uses this structure to 

create an intermediate representation of the source program. If the analysis 

part  detects that the source program is either syntactically ill formed or 

semantically unsound, then it must provide informative messages, so the 

user can take corrective action. The analysis part also collects information 

about the source program and stores it in a data structure called a symbol 

table, which is passed along with the intermediate representation to the 

synthesis part. 

 

The synthesis part constructs the desired target program from the 

intermediate representation and the information in the symbol table. The 

analysis part is often called the front end of the compiler; the synthesis part 

is the back end. If we examine the compilation process in more detail, we 

see that it operates as a sequence of phases, each of which transforms one 

representation of the source program to another. A typical decomposition of 

a compiler into phases is shown in the following Figure. In practice, several 

phases may be grouped together, and the intermediate representations 

between the grouped phases need not be constructed explicitly. The symbol 

table, which stores information about the  entire source program, is used by 

all phases of the compiler. Some compilers have a machine-independent 

optimization phase between the front end and the back end. The purpose of 

this optimization phase is to perform transformations on the intermediate 

representation, so that the back end can produce a better target program than 

it would have otherwise produced from an unoptimized intermediate 

representation. Since optimization is optional, one or the other of the two 

optimization phases shown in Fig. 1.6 may be missing. 



 

 
Figure () shows the phases of compilers 

 

 

 

 

 



The Compiler Phases 

1. Lexical analysis 

The first phase of a compiler is called lexical analysis or Scanning or 

Lexer. The lexical analyzer reads the stream of characters making up the 

source program and groups the characters into meaningful sequences called 

lexemes. From each lexeme, the lexical analyzer produces as output a token 

of the form  

<token – name, attribute – value> 

that it passes on to the subsequent phase, syntax analysis. In the token, 

the first component token-name is an abstract symbol that is used during 

syntax analysis, and the second component attribute-value points to an entry 

in the symbol table for this token. Information from the symbol-table entry 

Is needed for semantic analysis and code generation.  

For example, suppose a source program contains the assignment 

statement  

position = initial + rate * 60  

 The characters in this assignment could be grouped into the following 

lexemes and mapped into the following tokens passed on to the syntax 

analyzer: 

 

Lexems Token 

position <id,1>,  

= <=> 

initial  <id,2> 

+ <+> 

rate  <id,3> 

* <*> 

60 <60> 

 

Note ) Blanks separating the lexemes would be discarded by the lexical 

analyzer.  

 

id is an abstract symbol 

standing for identifier 

symbol-table entry for 

initial 



2. Syntax Analysis 

The syntax analyzer groups the tokens together into syntactic structures. 

This phase is called  syntax analysis or parsing. The parser uses the first 

components of the tokens produced by the lexical analyzer to create a tree-

like intermediate representation that depicts the grammatical structure 

of the token stream. A typical representation is a syntax tree in which each 

interior node represents an operation and the children of the node represent 

the arguments of the operation.  

The subsequent phases of the compiler use the grammatical structure to 

help analyze the source program and generate the target program. 
 

3. .Semantic Analysis 

The semantic analyzer uses the syntax tree and the information in the 

symbol table to check the source program for semantic consistency with the 

language definition. It also gathers type information and saves it in either the 

syntax tree or the symbol table, for subsequent use during intermediate-code 

generation.  

An important part of semantic analysis is type checking, where the 

compiler checks that each operator has matching operands. For example, 

many programming language definitions require an array index to be an 

integer; the compiler must report an error if a floating-point number is used 

to index an array. The language specification may permit some type 

conversions called coercions. For example, a binary arithmetic operator may 

be applied to either a pair of integers or to a pair of floating-point numbers. 

If the operator is applied to a floating-point number and an integer, the 

compiler may convert or coerce the integer into a floating-point number 

 

4. Intermediate Code Generation  

In this process of translating a source program into target code, a 

compiler may construct one or more intermediate representations, which can 

have a variety of forms. Syntax trees are a form of intermediate 

representation; they are commonly used during syntax and semantic 

analysis. 

After syntax and semantic analysis of the source program, many 

compilers generate an explicit low – level or machine – like intermediate 

representation, which we can think of as a program for an abstract machine. 

This intermediate representation should have two important properties: it 



should be easy to produce and it should be easy to translate into the target 

machine. 

   

5. Code optimization  

This is optional phase designed to improve the intermediate code so 

that better target code will result. Usually better means faster, but other 

objectives may be desired, such as shorter code, or target code that 

consumes less power. For example, a straightforward algorithm generates 

the intermediate code Figure  using an instruction for each operator in the 

tree representation that comes from the semantic analyzer. A simple 

intermediate code generation algorithm followed by code optimization is a 

reasonable way to generate good target code. 

6. Code Generation 

The code generator takes as input an intermediate representation of the 

source and maps it into the target language. If the target language is machine 

code, registers or memory locations are selected for each of the variables 

used by the program. Then, the intermediate instructions are translated into 

sequences of machine instructions that perform the same task. A crucial 

aspect of code generation is the judicious assignment of registers to hold 

variables. Designing a code generator that produces truly efficient object 

programs is one of the most difficult parts of compiler design. 

 

Error Handling  

One of the most important functions of a compiler is the detection and 

reporting of errors in the source program.  

Types of Errors  

• Lexical errors:- the first phase can detect errors where characters 

remaining in the input don’t form any token of language, few errors 

are discernible at the lexical level alone, because a lexical analyzer 

has a very localized view of the source program.  For example, For 

instance, if the string fi is encountered for the first time in a C 

program in the context: 

fi ( a == f ( x ) ) . ..  



  a lexical analyzer cannot tell whether fi is a misspelling of the 

keyword if or an undeclared function identifier. Since fi is a valid 

lexeme for the token id, the lexical analyzer must return the token id 

to the parser and let some other phase of the compiler — probably 

the parser in this case. 

• Syntactic errors:- the syntax phase can detect errors where the token 

stream violates the structure rules(syntax) of the language. 

• Semantic errors:- during semantic analysis phase the compiler tries 

to detect constructs that have the right syntactic structure but no 

meaning to the operation involved (e.g., if we try to add two 

identifiers, one which is the name of an array and the other is the 

name of procedure. 

•  A runtime error:- means an error which happens, while the program 

is running. 
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Lexical Analyzer 

Syntax Analyzer 

Code Optimizer 

Intermediate Code  Generator 

Semantic Analyzer 

position = initial +rate * 60 

<id,1> <=> <id2,2> <+><id3,3><*><60> 

= 

<id,1> + 

* <id,2> 

<id,3> 60 

<id,1> + 

* <id,2> 

<id,3> inttofloat 

= 

60 

t1= inttofloat(60) 

t2= id3* t1 

t3=id2+ t2 

id1= t3 

t1= id3* 60.0 

id1= id2+  t1 

Symbol Table 

position              . . . 

initial                  . . .  
 

rate                      . . . 

Code Generator 

MOVF id3, R2 

MULF #60.0,R2 

MOVF id2, R1 

ADDF R2,R1 

MOVF R1 ,id1  

 



Lexical Analysis 

It is the first phase of a compiler, the main task of the lexical analyzer 

is to read the input characters of the source program, group them into 

lexemes, and produce as output a sequence of tokens for each lexeme in 

the source program. The stream of tokens is sent to the parser for syntax 

analysis. The  lexical analyzer interacts with the symbol table. When the 

lexical analyzer discovers a lexeme constituting an identifier, it needs to 

enter that lexeme into the symbol table.  

In some cases, information regarding the kind of identifier may be read 

from the symbol table by the lexical analyzer to assist it in determining the 

proper token it must pass to the parser. These interactions are suggested in 

the figure below. Commonly, the interaction is implemented by having the 

parser call the lexical analyzer. The call, suggested by the getNextToken 

command, causes the lexical analyzer to read characters from its input until 

it can identify the next lexeme and produce for it the next token, which it 

returns to the parser.  

 

Interactions between the lexical analyzer and the parser 

 

Lexical Analyzer Parser 

Symbol Table 

token 

getNextToken 

source  

program 



Other tasks may perform by the lexical analyzer: 

1) stripping out the comments and whitespace(blank, newline, tab, and 

others). 

2) correlating error messages generated by the compiler with source 

program. 

 

Sometimes, lexical analyzers are divided into a cascade of two processes:  

a) Scanning consists of the simple processes that do not require tokenization 

of the input, such as deletion of comments and compaction of consecutive 

whitespace characters into one. 

b) Lexical analysis proper is the more complex portion, where the scanner 

produces the sequence of tokens as output. 

Issues in Lexical Analysis 

There are several reason for separating analysis portion of compiler 

into Lexical and Parsing, some of these reasons are: 

1. Simpler design is the most important consideration. This separation 

allows us to simplify at least one of these tasks. For example 

removing white space in the lexical analysis make it easer from 

dealing with it as syntactic units in parser.  

2. Compiler efficiency is improved.  A separate lexical analyzer allows 

us to apply specialized techniques that serve only the lexical task, not 

the job of parsing. In addition, specialized buffering techniques for 

reading input characters can speed up the compiler significantly. 

3. Compiler portability is enhanced. Input – device – specific 

peculiarities can be restricted to the lexical analyzer. 

 



Tokens, Patterns, and Lexemes 

When discussing lexical analysis, we use three related but distinct 

terms: 

• A token is a pair consisting of a token name and an optional attribute  

value. The token name is an abstract symbol representing a kind of  lexical 

unit, e.g., a particular keyword, or a sequence of input characters denoting an 

identifier. The token names are the input symbols that the parser processes 

• A pattern is a description of the form that the lexemes of a token may take. 

In the case of a keyword as a token, the pattern is just the sequence of 

characters that form the keyword. For identifiers and some other tokens, the 

pattern is a more complex structure that is matched by many strings. 

 • A lexeme is a sequence of characters in the source program that matches 

the pattern for a token and is identified by the lexical analyzer as an instance 

of that token.  

Token Informal description Lexeme 

if Characters i, f if 

else Characters e, l, s, e else 

comparison < or > or <= or >= or == or!=or   

id Letter followed by letter of 

digits 

pi, score, D2 

literal  anything but ",surrounded by " 

's 

"the first" 

Examples of token 

The lexical analyzer returns to parser a representation for the token it 

has found. This representation is: 



• an integer code if there is a simple construct such as a left parenthesis, 

comma or colon . 

• or a pair consisting of an integer code and a pointer to a table if the token is 

more complex element such as an identifier or constant. 

Symbol Table 

Symbol tables are data structures that are used by compilers to hold 

information about source-program constructs. The information is collected 

incrementally by the analysis phases of a compiler and used by the synthesis 

phases to generate the target code. Entries in the symbol table contain 

information about an identifier such as its character string (or lexeme), its 

type, its position in storage, and any other relevant information. Symbol 

tables typically need to support multiple declarations of the same identifier 

within a program.  

The symbol table must be able to do  

1. Determine if a given name is in the table, the symbol table 

routines are concerned with saving and retrieving tokens. 

 insert(s, t) : this function is to add a new name to the table. 

 Lookup(s) : returns index of the entry for string s, or 0 if s is not 

found. 

2. Access the information associated with a given name, and add 

new information for a given name. 

3. Delete a name or group of names from the tables. 

Attributes of Token 

When more than one lexeme can match a pattern, the lexical analyzer 

must provide the subsequent compiler phases additional information about 

the particular lexeme that matched. For example, the pattern for token 



number matches both 0 and 1, but it is extremely important for the code 

generator to know which lexeme was found in the source program. Thus, in 

many cases the lexical analyzer returns to the parser not only a token name, 

but an attribute  value that describes the lexeme represented by the token; the 

token name influences parsing decisions, while the attribute value influences 

translation of tokens after the parse. 

We shall assume that tokens have at most one associated attribute, 

although this attribute may have a structure that combines several pieces of 

information. The most important example is the token id, where we need to 

associate with the token a great deal of information. Normally, information 

about an identifier — e.g., its lexeme, its type, and the location at which it is 

first found (in case an error message about that identifier must be issued) — 

is kept in the symbol table. Thus, the appropriate attribute value for an 

identifier is a pointer to the symbol-table entry for that identifier. 

Example : The token names and associated attribute values for the 

Fortran statement 

E = M * C ** 2  

are written below as a sequence of pairs. 

<id, pointer to symbol-table entry for E> 

<assign_op> 

<id, pointer to symbol-table entry for M> 

<mult_op> 

<id, pointer to symbol-table entry for C> 

<exp_op> 

<number, integer value 2> 

Note that in certain pairs, especially operators, punctuation, and 

keywords, there is no need for an attribute value. In this example, the token 



number has been given an integer-valued attribute. In practice, a typical 

compiler would instead store a character string representing the constant and 

use as an  attribute value for number a pointer to that string. 

 

 

Transition Diagrams 

In the construction of lexical analyzer to convert patterns into stylized 

flowcharts, called "transition diagrams".  Transition diagrams have a 

collection of nodes or circles, called states. Each state represents a 

condition that could occur during the process of scanning the input looking 

for a lexeme that matches one of several patterns. We may think of a state as 

summarizing all we need to know about what characters we have seen 

between the lexemeBegin pointer and the forward pointer (as in the situation 

of Fig. 3.3). 

Edges are directed from one state of the transition diagram to another. Each 

edge is labeled by a symbol or set of symbols(represent input string to move 

from one state to another). We shall assume that all our transition diagrams 

are deterministic, meaning that there is never more than one edge out of a 

given state with a given symbol among its labels.  

One state is designated the start state, or initial state; it is indicated by 

an edge, labeled "start," entering from nowhere. The transition diagram 

always begins in the start state before any input symbols have been read. 

The  final(accepting) state. Representing by a double circle. These 

states indicate that a lexeme has been found.  

Example1) Figure below represent the transition diagram of identifier. 

 



 

Transition diagram for indentifier 

Example2) Transition diagram that represent RELOP  

 

Transition Diagram for RELOP 

Note) The * in the transition diagram represent that the forward pointer must 

retract position. 

Exercises )1. draw the transition diagram for the constant 

3. draw the transition diagram for the "Begin" keyword.  

 



Syntax Definition 

The "context-free grammar," or "grammar" used to specify the syntax 

of a language. A grammar naturally describes the hierarchical structure of 

most programming language constructs. For example, an if-else statement in 

Java can have the form 

if ( expression ) statement else statement 

That is, an if-else statement is the concatenation of the keyword if, an 

opening parenthesis, an expression, a closing parenthesis, a statement, the 

keyword else, and another statement. Using the variable expr to denote an 

expression and the variable stmt to denote a statement, this structuring rule 

can be 

expressed as 

stmt → if ( expr ) stmt else stmt 

in which the arrow may be read as "can have the form." Such a rule is 

called a production. In a production, lexical elements like the keyword if and 

the parentheses are called terminals. Variables like expr and stmt represent 

sequences of terminals and are called nonterminals. 

 

Context Free Grammars  

1. A set of terminal symbols, sometimes referred to as "tokens." The 

terminals are the elementary symbols of the language defined by the 

grammar. 

2. A set of nonterminals, sometimes called "syntactic variables." Each 

nonterminal represents a set of strings of terminals. Nonterminals 

impose a hierarchical structure on the language that is key to syntax 

analysis and translation. 



3. A set of productions, where each production consists of a 

nonterminal, called the head or left side of the production, an arrow, 

and a sequence of  terminals and/or nonterminals, called the body or 

right side of the production. The intuitive intent of a production is to 

specify one of the written forms of a construct; if the head nonterminal 

represents a construct, then the body represents a written form of the 

construct.  

4. A designation of one of the nonterminals as the start symbol.  

We specify grammars by listing their productions, with the productions 

for the start symbol listed first. We assume that digits, signs such as < and 

<=, and boldface strings such as while are terminals. An italicized name is a 

nonterminal, and any nonitalicized name or symbol may be assumed to be a 

terminal. For notational convenience, productions with the same nonterminal 

as the head can have their bodies grouped, with the alternative bodies 

separated by the symbol |, which we read as "or." 

 

Example: if we have the strings 9-5+2, 3-1, or 7. Since a plus or minus sign 

must appear between two digits, we refer to such expressions as "lists of 

digits separated by plus or minus signs." The following grammar describes 

the syntax of these expressions. The productions are:  

list                   list + digit     …(1) 

list                  list - digit        …(2) 

list                  digit                  …(3) 

digit                 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9   …(4)  

 

 



Derivations 

A grammar derives strings by beginning with the start symbol and 

repeatedly replacing a nonterminal by the body of a production for that 

nonterminal. The terminal strings that can be derived from the start symbol 

form the language defined by the grammar. 

1. In leftmost derivations, the leftmost nonterminal in each sentential is 

always chosen. If α → β is a step in which the leftmost nonterminal in 

α is replaced, we write  α 
lm  β 

2. In rightmost derivations, the right most nonterminal is always chosen; 

we write α 
rm  β 

 

Parse Trees 

A parse tree pictorially shows how the start symbol of a grammar 

derives a 

string in the language. If nonterminal A has a production A → XYZ, then a 

parse tree may have an interior node labeled A with three children labeled X, 

Y, and Z, from left to right: 

 

 

Formally, given a context-free grammar, a parse tree according to the 

grammar is a tree with the following properties: 

1. The root is labeled by the start symbol. 

A 

X Y Z 



2. Each leaf is labeled by a terminal or by ɛ. 

3. Each interior node is labeled by a nonterminal. 

4. If A is the nonterminal labeling some interior node and X1, X2, … , Xn are 

the labels of the children of that node from left to right, then there must be 

a production A→ X1X2 … Xn. Here, X1, X2, … , Xn each stand for a symbol 

that is either a terminal or a nonterminal. As a special case, if A → ɛ is a 

production, then a node labeled A may have a single child labeled ɛ. 

 

 

Example) the parse tree for   9-5+2   

 

Parse Trees and Derivations 

For example if we have the following grammar  E→ E+E | -E | E*E | 

(E)|id, the parse tree for - ( id + id) in Figure below 

E → - E → - ( E ) → - ( E + E ) → - (id +E) → - ( id + id ) 



 

This method for driving word called top-down method type left most 

derivation. 

 

There is another way for top down derivation that is right most derivation as 

follows for the same Grammar above 

 

E → - E → - ( E ) → - ( E + E ) → - ( E + id ) → - ( id + id ) 

 

 

 



Syntax Analysis 

Every programming language has precise rules that prescribe the 

syntactic structure of well-formed programs. The syntax of programming 

language constructs can be specified by Context – Free Grammars or BNF 

(Backus-Naur Form) notation, Grammars offer significant benefits for both 

language designers and compiler writers. 

1. A grammar gives a precise, yet easy-to-understand, syntactic 

specification of a programming language. 

2. From certain classes of grammars, we can construct automatically an 

efficient parser that determines the syntactic structure of   source 

program. As a side benefit, the parser-construction process can reveal 

syntactic ambiguities and trouble spots that might have slipped 

through the initial design phase of a language. 

3. The structure imparted to a language by a properly designed grammar 

is useful for translating source programs into correct object code and 

for detecting errors. 

4. A grammar allows a language to be evolved or developed iteratively, 

by adding new constructs to perform new tasks. These  new constructs 

can be integrated more easily into an implementation that follows the 

grammatical structure of the language. 
The role of parser 

The parser obtains a string of tokens from the lexical analyzer, as 

shown in Figure bellow, and verifies that the string of token names can be 

generated by the grammar for the source language. We expect the parser to 

report any syntax errors in an intelligible fashion and to recover from 

commonly occurring errors to continue processing the remainder of the 



program. Conceptually, for well-formed programs, the parser constructs a 

parse tree and passes it to the rest of the compiler for further processing. 

 

 

The methods commonly used in compilers can be classified as being either 

top-down or bottom-up. As implied by their names, top-down methods build 

parse trees from the top (root) to the bottom (leaves), while bottom-up 

methods  start from the leaves and work their way up to the root. In either 

case, the input to the parser is scanned from left to right, one symbol at a 

time. 

 

 

 

 

 

 

 

Problems of Grammar  

1) Ambiguity  

A grammar that produces more than one parse tree for some sentence is 

said to be ambiguous. An ambiguous grammar is one that produces more 



than one leftmost derivation or more than one rightmost derivation for the 

same sentence.  

Since a string with more than one parse tree usually has more than one 

meaning, we need to design unambiguous grammars for compiling 

applications, or to use ambiguous grammars with additional rules to resolve 

the ambiguities.  

The arithmetic expression grammar (E→ E+E | -E | E*E | (E)|id)  

permits two distinct leftmost derivations for the sentence  id + id * id :- 

 

 

 

For most parsers, it is desirable that the grammar be made 

unambiguous, for if it is not, we cannot uniquely determine which parse tree 



to select for a sentence. In other cases, it is convenient to use carefully 

chosen ambiguous grammars, together with disambiguating rules that 

"throw away" undesirable parse trees, leaving only one tree for each 

sentence. 

 

Eliminating Ambiguity 

Sometimes an ambiguous grammar can be rewritten to eliminate the 

ambiguity. As an example, we shall eliminate the ambiguity from the 

following "dangling-else" grammar: 

 

Here "other" stands for any other statement. This grammar is 

ambiguous since the string 



 

In all programming languages with conditional statements of this form, 

the first parse tree is preferred. The general rule is, "Match each else with the 

closest unmatched then". This disambiguating rule can theoretically be 

incorporated directly into a grammar, but in practice it is rarely built into the 

productions. 

The unambiguous grammar of dangle if then else statement can be take 

the following form. 

 



 

2) Elimination of Left – Recursive  

A grammar is left recursive if it has a nonterminal A such that there is a 

derivation A 
Aα for some string α. Top-down parsing methods cannot 

handle left-recursive grammars, so a transformation is needed to eliminate 

left recursion. If we have the production A→ Aα\ β then can be replaced by 

the non recursive production  

A→ βA' 

A'→ αA' | ε 

without changing the strings derivable from A. 

Example:  

 

Immediate left recursion can be eliminated by the following technique, 

which works for any number of A-productions. First, group the productions 

as 

 

where no βi begins with an A. Then, replace the A-productions by 



 

The nonterminal A generates the same strings as before but is no longer 

left recursive. This procedure eliminates all left recursion from the A and A' 

productions (provided no is e), but it does not eliminate left recursion 

involving derivations of two or more steps. For example, consider the 

grammar 

 

The nonterminal S is left recursive because S→ Aa → Sda, but it is not 

immediately left recursive.  

3) Left Factoring:- 

Left factoring is a grammar transformation that is useful for producing 

a grammar suitable for predictive, or top-down, parsing. When the choice 

between two alternative A-productions is not clear, we may be able to 

rewrite the productions to defer the decision until enough of the input has 

been seen that we can make the right choice. 

stmt → if expr then stmt else stmt  

stmt → if expr then stmt 

on seeing the input token if, we cannot immediately tell which 

production to choose to expand stmt. In general, if A → α β1| α β2 are two 

A- productions, and the input begins with a non-empty string derived from α 

,we do not know whether to expand A to α β1 or to α β2. However, we may 

defer the decision by expanding A to αA', then after seeing the input derived 

from α, we expand A' to β1 or to β2. that is, left factored, the original 

production become: 

A →αA' 



A' →β1| β2 

 

Parsing  

 

Top Down Parsing  

Top-down parsing can be viewed as the problem of constructing a 

parse tree for the input string, it can be viewed as finding a leftmost 

derivation for an input string. The top-down construction of a parse tree is 

done by starting from the root and creating the nodes of the parse tree in 

preorder. For example consider the grammar  

Example : The sequence of parse trees in Figure below for the input          

id + id*id  is a top-down parse according to the grammar: 

 

At each step of a top-down parse, the key problem is that of 

determining  the production to be applied for a nonterminal, say A. Once an 

A-production is chosen, the rest of the parsing process consists of 



"matching" the terminal symbols in the production body with the input 

string. 

A general form of top-down parsing, called recursive-descent parsing, which 

may require backtracking to find the correct A- production to be applied.  

 

 

The Top down parsing divided into two parts:-  



 

 

A backtracking parser will try different production rules to find the 

match for the input string by backtracking each time. The backtracking is 

powerful than predictive parsing. But this technique is slower and it requires 

exponential time in general. Hence backtracking is not preferred for practical 

compilers. 

As the name suggests the predictive parser tries to predict the next 

construction using one or more lookahead symbols from input string. There 

are two types of predictive parsers:- 

1. Recursive Descent  

2. LL(1) Parser 

 

FIRST and FOLLOW   

The construction of both top-down and bottom-up parsers is aided by 

two functions, FIRST and FOLLOW, associated with a grammar G. During 

top-down parsing, FIRST and FOLLOW allow us to choose which 

production to apply, based on the next input symbol.  

FIRST 

Define FIRST(α), as a set of terminal symbols that are first symbols 

appear at right side in derivation α 



 

1. If X is a terminal, then FIRST(X) = {X}. 

2. If X→ ε is a production, then add ε to FIRST(X). 

3. if X a nonterminal and  X → YlY2 …Yk is a production for some k1, then 

place α in FIRST(X) if for some i, a is in FIRST(Yi), and r is in all of 

FIRST(Y1),…, FIRST(Yi-1); that is, Y1 …Yi-1 *  ε. If ε is in FIRST(Yj) 

for all j = 1,2, . . . , k, then add ε to FIRST(X). For example, everything in 

FIRST(Y1) is surely in FIRST(X). If Y1 does not derive ε, then we add 

nothing more to FIRST(X), but if Yl * ε, then we add F1RST(Y2), and 

so on. 

 

 

 

FOLLOW 

Define FOLLOW(A) as the set of terminal Symbols that appear 

immediately to the right of A in other words:-  

FOLLOW(A) = {a | S *  α Aa β , where α  and β are some grammar 

symbols may be terminal or nonterminal } 

To compute FOLLOW(A) for all nonterminals A, apply the following 

rules until nothing can be added to any FOLLOW set. 

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input 

right endmarker.  

2. If there is a production A→ αBβ, then everything in FIRST(β) except ε is 

in FOLLOW(B). 

3. If there is a production A→ αB , or a production A→ αBβ, where 

FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW (B). 

 



Example 1) 

Compute the FIRST and FOLLOW for the following grammar:- 

 

 

 

 



 

 

 



 

 

 
 

Symbol FIRST FOLLOW 

E {(, id} {$, )} 

E' {+, ε } {$, )} 

T {(, id } {+,$, )} 

T' {*, ε } {+,$, )} 

F {(, id} {+,*,$, )} 

 

 



 

Example2) 

Compute the FIRST and FOLLOW for the following grammar  

S→ABCDE 

A→ a|ε 

B→ b|ε 

C→ c 

D→ d|ε 

E→ e|ε 
 

Symbol FIRST FOLLOW 

S {a,b,c} {$} 

A {a,ε} {b,c} 

B {b,ε} {c} 

C {c} {d,e,$} 

D {d,ε} {e,$} 

E {e,ε} {$} 
 

Example3)  

Compute the FIRST and FOLLOW for the following grammar  

S→ aABC 

A→ a|bb 

B→ a|ε 

C→ b|ε  

Symbol FIRST FOLLOW 

S {a} {$} 

A {a,b} {a,b,$} 

B {a,ε} {b,$} 

C {b,ε} {$} 

 

Example4)  

Compute the FIRST and FOLLOW for the following grammar  

S→ Bb|Cd  

B→ aB| ε 

C→ cC| ε 

Symbol FIRST FOLLOW 



S {a,b,c,d} {$} 

B {a,ε} {b} 

C {c,ε} {d} 

 

Example5)  

Compute the FIRST and FOLLOW for the following grammar  

S→ ABC|CbB|Ba  

A→ da| BC 

B→ g| ε 

C→ h| ε 

Symbol FIRST FOLLOW 

S {d,g,h,b,a,ε} {$} 

A {d,g,h, ε } {$,g,h} 

B {g,ε} {$,a,h,g} 

C {h,ε} {$,b,h,g} 

 

Example6) 

Compute the FIRST and FOLLOW for the following grammar  

S→ aABb 

A→ c| ε 

B→ d| ε 

Symbol FIRST FOLLOW 

S {a} {$} 

A {c,ε } {d,b} 

B {d,ε} {b} 

 

Example7) 

Compute the FIRST and FOLLOW for the following grammar  

S→ aBDh 

B→ cC 

C→ bC| ε 

D→ EF 

E→ g|ε  

F→ f| ε 

 



Symbol FIRST FOLLOW 

S {a} {$} 

B {c} {g,f,h} 

C {b.ε} {g,f,h} 

D {g,f,ε} {h} 

E {g,ε} {f,h} 

F {f,ε} {h} 

 

Example8) 

Compute the FIRST and FOLLOW for the following grammar  

S → aSb │X 

X → cXb │b 

X → bXZ 

Z → n 

Symbol FIRST FOLLOW 

S {a,c,b} {$,b} 

X {c,b} {$,b,n} 

Z {n} {$,b,n} 

 

Example9) 

Compute the first and follow for the following grammar  

S→ bXY 

X→ b|c 

Y→ b|ε 

Symbol FIRST FOLLOW 

S {b} {$} 

X {b,c} {$,b} 

Y {b,ε} {$} 

 

Example10) 

    Compute the first and follow for the following grammar  

S → ABb │bc 

A → ε │abAB 

B → bc │cBS 



Symbol FIRST FOLLOW 

S {a,b,c } {$,b,c,a} 

A {a,ε} {b,c} 

B {b,c} {b,c,a} 

 

Example11) 

    Compute the first and follow for the following grammar  

X → ABC │ nX 

A → bA │ bb │ ε 

B → bA │CA 

C → ccC │CA │ cc 

Symbol FIRST FOLLOW 

X {b,c,n} {$} 

A {b,ε} {b,c,$} 

B {b,c} {c} 

C {c} {$,b} 

 

 

 

 

 

 

Predictive Parsing LL(1).  

This top down parsing algorithm is of non recursive type. In this type of 

parsing a table is built. For LL(1)- the first L means the input is scanned 

from left to right, the second L means it uses leftmost derivation for input 

string. And the number 1 in the input symbol means it uses only one input 

symbol (lookahead) to predict the parsing process. 

The predictive parsing has an input, a stack, a parsing table, and an 

output. The input contains the string to be parsed, followed by $, the right 



endmarker. The stack contains a sequence of grammar symbols, preceded by 

$, the bottom – of – stack marker. Initially, the stack contains the start 

symbol of the grammar preceded by $. The parsing table is a two 

dimensional array M[A, a], where A is a nonterminal, and a is a terminal or 

the symbol $. 

 

The parser is controlled by a program that behaves as follows. The 

program determines X, the symbol on top of the stack, and a, the current 

input symbol. These two symbols determine the action of the parser. There 

are three possibilities.  

1. If X =a=$, the parser halts and announces successful completion of 

parsing. 

2. If X = a ≠$, the parser pops X off the stack and advances the input 

pointer to the next input symbol. 

3. If X is a nonterminal, the program consults entry M[X ,a] of the 

parsing table M. this entry will be either an X- production of the 



grammar or an error entry. If M[X, a] = {X→ UVW}, the parser 

replaces X on top of the stack by UVW(with U on top). As output, the 

grammar does the semantic action associated with this production, 

which, for the time being, we shall assume is just printing the 

production used. If M[X ,a] =error, the parser calls an error recovery 

routine.  

Example) parse the input id*id+id in the grammar. 

 

Symbol FIRST FOLLOW 

E {(, id} {$, )} 

E' {+, ε } {$, )} 

T {(, id } {+,$, )} 

T' {*, ε } {+,$, )} 

F {(, id} {+,*,$, )} 

 

 



 

 

 

 



Semantic Analysis 

 The semantic analysis phase checks the source program for semantic 

errors and gathers type information for the subsequent code-generation 

phase. 

 It uses the parse tree to identify the operators and operands of expressions 

and statements, see the figure below 

 An important component is type checking. 

 Here the compiler checks that each operator has operands that are 

permitted by the source language specification. 

 Static semantic checks are performed at compile time 

 Type checking 

 Every variable is declared before used 

 Identifiers are used in appropriate contexts 

 Check subroutine call arguments 

 Dynamic semantic check are performed at run time, and the compiler 

produces code that performs these checks 

 Array subscript values are within bounds 

 Arithmetic errors, e.g. division by zero 

 A variable is used but hasn't been initialized 

 When a check fails at run time, an exception is raised 

 



Type checking 

A type checker verifies that the type of a construct matches that 

expected by its context. For example, the –in arithmetic operator mod in 

Pascal requires integer operands, so a type checker must verify that the 

operands of mod have type integer. 

 

Intermediate Code Generation 

Introduction  

In the analysis – synthesis model of a compiler, the front end translates 

a source program into an intermediate representation from which the back 

end generates target code. Details of the target language are confined to the 

back end, as far as possible. Although a source program can be translated 

directly into the target language. Some benefits of using a machine – 

independent intermediate form are:- 

1. Retargeting is facilitated: a compiler for a different machine can be 

created by attaching a back end for the new machine to an existing 

front end. 

2. A machine – independent code optimizer can be applied to the 

intermediate representation.   

The role of intermediate code generator in compiler is depicted as follow:- 

 

The  tasks of intermediate representation is  

Translate from abstract-syntax trees to intermediate codes. 



Generating a low-level intermediate representation with two properties: 

 It should be easy to produce 

 It should be easy to translate into the target machine 

One of the popular intermediate code is three-address code. A three address 

code: 

 Each statement contains at most 3 operands; in addition to ―: =‖, i.e., 

assignment, at most one operator. 

 An‖ easy‖ and ―universal‖ format that can be translated into most 

assembly languages. 

 

Some of the basic operations which in the source program, to change in 

the Assembly language: 

 



The operation which change H.L.L to assembly language, is called the 

intermediate code generation and there is the division operation come with it, 

which mean every statement have a single operation. 

Ex 

 

T1 = B * C 

T2 = T1 / D 

T3 = Y * N 

T4 = A + T2 

T5 = T4 - T3 

 

Ex2 

 

T1 = A * B 

T2 = cos T1 

T3 = Y * P 

T4 = C / N 

T5 = T2 + T4 

T6 = T5 – T3 

 



There are three representation for Three Address Code (Quadruples, Triples, 

Indirect triples) 

 

1. Triple form 

Ex: X = A + B * C / ( - N ) 

 

 

Ex: Y = A + C * X / B [i] 

 

Ex: X[i] = N * C / Y[i] 

 

Ex: X = A + B * ( c / d ) - y 



 

Ex: A = C * X [i,j] 

 

2. Quadruple form 

Ex: X = A * C / N + P 

 

Ex: A = N[i] * C / N 

 

Ex: A = C * y / X[i,j] 



 

 

 

 

 

 

 

 



Code Optimization 

 

Compilers should produce target code that is as good as can be written 

by hand. The code produced by straightforward compiling algorithms can 

often be made to run faster or take less space, or both. This improvement is 

achieved by program transformations that are traditionally called 

Optimizations. 

 

Function- Preserving Transformations 

There are a number of ways in which a compiler can improve a 

program without changing the function it computes. Various function 

preserving transformations are, 

1. Common subexpression elimination. 

2. Copy propagation. 

3. Dead – code elimination. 

4. Constant folding. 

 

1. Common subexpression elimination. 

An expression E is called a common subexpression if it was previously 

computed, and the values of variables in E have not changed since the 

previous computation.  

In common subexpression elimination we have to avoid re-computing 

of the expression if it's value is already been computed. 

Ex1: X = A + C * N – M 

Y = B + C * N * e 

Sol: Q = C * N 

X = A + Q – M 



Y = B + Q * e 

 

Note: The value of the variable which are optimize will not be change. 

 

2. Copy Propagation  

Copy propagation means use of one variable instead of another. For 

instance: if  "x := y" is a statement which is called copy statement, then copy 

propagation is a kind of transformation in which use y for x wherever 

possible after copy statement x:= y. 

 

Although this is not an improvement but it will definitely help in 

eliminating assignment to n. 

 

3. Dead Code Elimination 

A variable is said to be live in the program if its value can be used 

subsequently, otherwise it is dead at that point. 



The dead code is basically an useless code. An optimization can be 

performed by eliminating such a dead code.  

For example  

i= j; 

… 

… 

x=i+10; 

… 

The dead- code elimination can be done by eliminating the assignment 

statement i =j. This assignment statement is called dead assignment.  

Another example  

i= 0; 

if (i==1) 

{  

   a= x+5; 

} 

 

Here if statement is a dead – code as this condition never gets satisfied. 

Hence if we remove if statement, optimization can be done. One advantage 

of copy propagation is that it often turns the copy statement into dead – 

code. Hence after copy propagation if dead –code elimination is done, then 

the useless statements can be removed. 

Loop Optimization  

The code optimization can be significantly done in loops of the program. 

Specially inner loops is a place where program spend large amount of time. 

Hence if number of instructions are less in inner loop the running time of the 

program will get decreased to a large extent (i.e. The running time of a 

program may be improved if we decrease the number of instructions in an 

inner loop). The loop optimization is carried out by following three 

methods:- 



1. Code Motion  

2. Induction Variable 

3. Reduction in Strength 

1. Code Motion 

Code motion is a technique which moves the code outside the loop. 

Hence is the name. If there lies some expression in the loop whose result 

remains unchanged even after executing the loop for several times, then such 

an expression should be placed just before the loop (i.e. outside the loop). 

Here before the loop means at the entry of the loop  

For example 

 

The  above code can be optimized by removing the computation of 

Max -1 outside the loop. Hence the optimized code can be  

 

2. Induction Variable 

A variable x is called an induction variable of loop L if the value of 

variable gets changed every time. It is either decremented or incremented by 

some constant  

For example, consider the block of code given below 



 

In above code the values of I and t1 are in locked state. That is, when 

value of i gets incremented by 1 then t1 gets incremented by 4. Hence I and t 

t1 are induction variable. 

When there are two or more induction variables in a loop, it may be 

possible to get rid of all but one. 

 

3. Reduction in Strength   

The strength of certain operators is higher than others. 

For example: Strength of * is higher than +. In strength reduction 

technique the higher strength operators can be replaced by lower strength 

operators. 

For example  

For (i =0 ; i<=50; i++) 

{ 

    ... 

    count =i*7; 

    ... 

} 

Here we get values of count as 7, 14, 21 and so on up to 50. 

This code can be replaced by using strength reduction as follows. 

temp = 7; 

For (i =0 ; i<=50; i++) 

{ 

    ... 

    count =temp; 

    temp = temp +7; 

} 



The replacement of multiplication by addition will speed up the object 

code. Thus the strength of operation is reduced without changing the 

meaning of above code. 

 

Code Generation 

The final phase in compiler is the code generator. It takes as input an 

intermediate representation of the source program and produces as output an 

equivalent target program, as indicated in Figure below  

 

 

Code generation takes a linear sequence of 3-address intermediate code 

instructions, and translates each instruction into one or more instructions. 

The big issues in code generation are: 

● Instruction selection 

● Register allocation and assignment 

 

Instruction selection: for each type of three-address statement, we can 

design a code skeleton that outlines the target code to be generated for that 

construct. 

 



Example: every three address statement of the form X = Y + Z, where X,Y 

and Z are statically allocated, can be translated into the code sequence 

Mov Y , R0   /* load Y into register R0 */ 

Add Z , R0   /* add Z to R0 */ 

Mov R0 , X   /* store R0 into X */ 

Register allocation and assignment 

The efficient utilization of registers involving operands is particularly 

important in generating good code. The use of registers is often subdivided 

into two sub problems: 

 

Register allocation: selecting the set of variables that will reside in registers 

at each point in the program. 

Resister assignment: selecting specific register that a variable reside in, the 

goal of these operations is generally to minimize the total number of 

memory accesses required by the program. 

Ex: 

Consider the statement  d =(a + b)+(a - c)+(a - c) 

This may be translated into the following three address code 

T = a + b 

U = a - c 

V = t + u 

D = v + u 

● The code 

Mov R0,a 

Mov R1,b 

Add R1,R0 



Mov R2,c 

Sub R0,R2 

Add R1 , R0 

Add R0 , R1 

Mov d, R0 

 

 

 

 

 

 

 

 


