
Programming Language

In computer programming, a programming Language serves as a means

of communication between the person with a problem and the computer used

to help solve it. An effective programming language enhances both the

development and the expression of computer programs. It must bridge the

gap between the often unstructured nature of human thought and precision

required for computer execution.

A hierarchy of programming languages based on increasing machine

independence includes the following:

1. Machine – Level Languages.

2. Assembly Languages.

3. High – level Language.

4. Problem – Oriented Languages.

1) Machine – Level Languages:- is the lowest form of computer language.

Each instruction in a program is represented by a numeric code, and

numerical addresses are used throughout the program to refer to memory

locations in the computer’s memory.

2) Assembly Languages:- is essentially a symbolic version of a machine-

level language. Each operation code is given a symbolic code such as

ADD for addition and MUL for multiplication.

 Assembly-language systems offer certain diagnostic and debugging

assistance that is normally not available at the machine level.

3) High level language:- such as FORTRAN, PASCAL, C++, …,etc. it

offers most of the features of an assembly language. While some facilities

for accessing system-level features may not be provided, a high-level

language offers a more enriched set of language features such as

structured control constructs, nested statements, blocks, and procedures.

4) A problem-oriented language:- treating problems in a specific

application or problem area. Such as (SQL) for database retrieval

applications and COGO for civil engineering applications.

Programming language (high level language) can be depicted as

notations for describing computation to people and to machine. The

world as we know it depends on programming languages, because all the

software running on all the computers was written in some programming

language. But, before a program can be run, it first must be translated

into a form in which it can be executed by a computer. The software to

do this translation is called Compiler.

Translator
A translator is program that takes as input a program written in a given

programming language (the source program) and produce as output program

in another language (the object or target program). As an important part of

this translation process, the compiler reports to its user the presence of errors

in the source program.

If the source language being translated is assembly language, and the

object program is machine language, the translator is called Assembler.

 A translator, which transforms a high level language such as C in to a

particular computers machine or assembly language, called Compiler. A

compiler translates (or compiles) a program written in a high-level

programming language that is suitable for human programmers into the low-

level machine language that is required by computers. During this process,

the compiler will also attempt to spot and report obvious programmer

mistakes.

If the target program is an executable machine – language program, it

can then be called by the user to process inputs and produce outputs.

Compiler Target program Source Program

High level language

Error Messages

Low level language or

Machine language program

Target program Output Input

Another common kind of translator (language processors) called an

Interpreter, in this kind, instead of producing a target program as a

translation, an interpreter appears to directly execute the operations specified

in the source program on inputs supplied by the user, Figure below shows

the role of interpreter

The machine language target program produced by a compiler is

usually faster than an interpreter at mapping inputs to outputs. An

interpreter, however, can usually give better error diagnostics than a

compiler, because it executes the source program statement by statement.

Note :- The execution of a program written in a high level language is

basically take two steps:-

1- The source program must first be compiled (translated into the object

program)

2- The object program is loaded into memory to be executed.

The time used to compile the program called Compile time and time

that used to run the object program is called Run time.

In addition to a compiler, several other programs may be required to

create an executable target program, as shown in figure below. A source

program may be divided into modules stored in separate files. The task of

collecting the source program is sometimes entrusted to a separate program,

called a preprocessor.

Source Program

Interpreter Output

Input

The modified source program is then fed to a compiler. The compiler

may produce an assembly-language program as its output, because assembly

language is easier to produce as output and is easier to debug. The assembly

language is then processed by a program called an assembler that produces

relocatable machine code as its output.

 Large programs are often compiled in pieces, so the relocatable

machine code may have to be linked together with other relocatable object

files and library files into the code that actually runs on the machine. The

linker resolves external memory addresses, where the code in one file may

refer to a location in another file. The loader then puts together all of the

executable object files into memory for execution.

Source Program

Preprocessor

modified source program

Compiler

target assembly program

Assembler

relocatable machine code

Linker/ Loader

Target machine code

The Structure of Compiler

The Compiler consists of two parts:

1. Analysis.

2. Synthesis.

The analysis part breaks up the source program into constituent pieces

and imposes a grammatical structure on them. It then uses this structure to

create an intermediate representation of the source program. If the analysis

part detects that the source program is either syntactically ill formed or

semantically unsound, then it must provide informative messages, so the

user can take corrective action. The analysis part also collects information

about the source program and stores it in a data structure called a symbol

table, which is passed along with the intermediate representation to the

synthesis part.

The synthesis part constructs the desired target program from the

intermediate representation and the information in the symbol table. The

analysis part is often called the front end of the compiler; the synthesis part

is the back end. If we examine the compilation process in more detail, we

see that it operates as a sequence of phases, each of which transforms one

representation of the source program to another. A typical decomposition of

a compiler into phases is shown in the following Figure. In practice, several

phases may be grouped together, and the intermediate representations

between the grouped phases need not be constructed explicitly. The symbol

table, which stores information about the entire source program, is used by

all phases of the compiler. Some compilers have a machine-independent

optimization phase between the front end and the back end. The purpose of

this optimization phase is to perform transformations on the intermediate

representation, so that the back end can produce a better target program than

it would have otherwise produced from an unoptimized intermediate

representation. Since optimization is optional, one or the other of the two

optimization phases shown in Fig. 1.6 may be missing.

Figure () shows the phases of compilers

The Compiler Phases

1. Lexical analysis

The first phase of a compiler is called lexical analysis or Scanning or

Lexer. The lexical analyzer reads the stream of characters making up the

source program and groups the characters into meaningful sequences called

lexemes. From each lexeme, the lexical analyzer produces as output a token

of the form

<token – name, attribute – value>

that it passes on to the subsequent phase, syntax analysis. In the token,

the first component token-name is an abstract symbol that is used during

syntax analysis, and the second component attribute-value points to an entry

in the symbol table for this token. Information from the symbol-table entry

Is needed for semantic analysis and code generation.

For example, suppose a source program contains the assignment

statement

position = initial + rate * 60

 The characters in this assignment could be grouped into the following

lexemes and mapped into the following tokens passed on to the syntax

analyzer:

Lexems Token

position <id,1>,

= <=>

initial <id,2>

+ <+>

rate <id,3>

* <*>

60 <60>

Note) Blanks separating the lexemes would be discarded by the lexical

analyzer.

id is an abstract symbol

standing for identifier

symbol-table entry for

initial

2. Syntax Analysis

The syntax analyzer groups the tokens together into syntactic structures.

This phase is called syntax analysis or parsing. The parser uses the first

components of the tokens produced by the lexical analyzer to create a tree-

like intermediate representation that depicts the grammatical structure

of the token stream. A typical representation is a syntax tree in which each

interior node represents an operation and the children of the node represent

the arguments of the operation.

The subsequent phases of the compiler use the grammatical structure to

help analyze the source program and generate the target program.

3. .Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the

symbol table to check the source program for semantic consistency with the

language definition. It also gathers type information and saves it in either the

syntax tree or the symbol table, for subsequent use during intermediate-code

generation.

An important part of semantic analysis is type checking, where the

compiler checks that each operator has matching operands. For example,

many programming language definitions require an array index to be an

integer; the compiler must report an error if a floating-point number is used

to index an array. The language specification may permit some type

conversions called coercions. For example, a binary arithmetic operator may

be applied to either a pair of integers or to a pair of floating-point numbers.

If the operator is applied to a floating-point number and an integer, the

compiler may convert or coerce the integer into a floating-point number

4. Intermediate Code Generation

In this process of translating a source program into target code, a

compiler may construct one or more intermediate representations, which can

have a variety of forms. Syntax trees are a form of intermediate

representation; they are commonly used during syntax and semantic

analysis.

After syntax and semantic analysis of the source program, many

compilers generate an explicit low – level or machine – like intermediate

representation, which we can think of as a program for an abstract machine.

This intermediate representation should have two important properties: it

should be easy to produce and it should be easy to translate into the target

machine.

5. Code optimization

This is optional phase designed to improve the intermediate code so

that better target code will result. Usually better means faster, but other

objectives may be desired, such as shorter code, or target code that

consumes less power. For example, a straightforward algorithm generates

the intermediate code Figure using an instruction for each operator in the

tree representation that comes from the semantic analyzer. A simple

intermediate code generation algorithm followed by code optimization is a

reasonable way to generate good target code.

6. Code Generation

The code generator takes as input an intermediate representation of the

source and maps it into the target language. If the target language is machine

code, registers or memory locations are selected for each of the variables

used by the program. Then, the intermediate instructions are translated into

sequences of machine instructions that perform the same task. A crucial

aspect of code generation is the judicious assignment of registers to hold

variables. Designing a code generator that produces truly efficient object

programs is one of the most difficult parts of compiler design.

Error Handling

One of the most important functions of a compiler is the detection and

reporting of errors in the source program.

Types of Errors

• Lexical errors:- the first phase can detect errors where characters

remaining in the input don’t form any token of language, few errors

are discernible at the lexical level alone, because a lexical analyzer

has a very localized view of the source program. For example, For

instance, if the string fi is encountered for the first time in a C

program in the context:

fi (a == f (x)) . ..

 a lexical analyzer cannot tell whether fi is a misspelling of the

keyword if or an undeclared function identifier. Since fi is a valid

lexeme for the token id, the lexical analyzer must return the token id

to the parser and let some other phase of the compiler — probably

the parser in this case.

• Syntactic errors:- the syntax phase can detect errors where the token

stream violates the structure rules(syntax) of the language.

• Semantic errors:- during semantic analysis phase the compiler tries

to detect constructs that have the right syntactic structure but no

meaning to the operation involved (e.g., if we try to add two

identifiers, one which is the name of an array and the other is the

name of procedure.

• A runtime error:- means an error which happens, while the program

is running.

t

Lexical Analyzer

Syntax Analyzer

Code Optimizer

Intermediate Code Generator

Semantic Analyzer

position = initial +rate * 60

<id,1> <=> <id2,2> <+><id3,3><*><60>

=

<id,1> +

* <id,2>

<id,3> 60

<id,1> +

* <id,2>

<id,3> inttofloat

=

60

t1= inttofloat(60)

t2= id3* t1

t3=id2+ t2

id1= t3

t1= id3* 60.0

id1= id2+ t1

Symbol Table

position . . .

initial . . .

rate . . .

Code Generator

MOVF id3, R2

MULF #60.0,R2

MOVF id2, R1

ADDF R2,R1

MOVF R1 ,id1

Lexical Analysis

It is the first phase of a compiler, the main task of the lexical analyzer

is to read the input characters of the source program, group them into

lexemes, and produce as output a sequence of tokens for each lexeme in

the source program. The stream of tokens is sent to the parser for syntax

analysis. The lexical analyzer interacts with the symbol table. When the

lexical analyzer discovers a lexeme constituting an identifier, it needs to

enter that lexeme into the symbol table.

In some cases, information regarding the kind of identifier may be read

from the symbol table by the lexical analyzer to assist it in determining the

proper token it must pass to the parser. These interactions are suggested in

the figure below. Commonly, the interaction is implemented by having the

parser call the lexical analyzer. The call, suggested by the getNextToken

command, causes the lexical analyzer to read characters from its input until

it can identify the next lexeme and produce for it the next token, which it

returns to the parser.

Interactions between the lexical analyzer and the parser

Lexical Analyzer Parser

Symbol Table

token

getNextToken

source

program

Other tasks may perform by the lexical analyzer:

1) stripping out the comments and whitespace(blank, newline, tab, and

others).

2) correlating error messages generated by the compiler with source

program.

Sometimes, lexical analyzers are divided into a cascade of two processes:

a) Scanning consists of the simple processes that do not require tokenization

of the input, such as deletion of comments and compaction of consecutive

whitespace characters into one.

b) Lexical analysis proper is the more complex portion, where the scanner

produces the sequence of tokens as output.

Issues in Lexical Analysis

There are several reason for separating analysis portion of compiler

into Lexical and Parsing, some of these reasons are:

1. Simpler design is the most important consideration. This separation

allows us to simplify at least one of these tasks. For example

removing white space in the lexical analysis make it easer from

dealing with it as syntactic units in parser.

2. Compiler efficiency is improved. A separate lexical analyzer allows

us to apply specialized techniques that serve only the lexical task, not

the job of parsing. In addition, specialized buffering techniques for

reading input characters can speed up the compiler significantly.

3. Compiler portability is enhanced. Input – device – specific

peculiarities can be restricted to the lexical analyzer.

Tokens, Patterns, and Lexemes

When discussing lexical analysis, we use three related but distinct

terms:

• A token is a pair consisting of a token name and an optional attribute

value. The token name is an abstract symbol representing a kind of lexical

unit, e.g., a particular keyword, or a sequence of input characters denoting an

identifier. The token names are the input symbols that the parser processes

• A pattern is a description of the form that the lexemes of a token may take.

In the case of a keyword as a token, the pattern is just the sequence of

characters that form the keyword. For identifiers and some other tokens, the

pattern is a more complex structure that is matched by many strings.

 • A lexeme is a sequence of characters in the source program that matches

the pattern for a token and is identified by the lexical analyzer as an instance

of that token.

Token Informal description Lexeme

if Characters i, f if

else Characters e, l, s, e else

comparison < or > or <= or >= or == or!=or

id Letter followed by letter of

digits

pi, score, D2

literal anything but ",surrounded by "

's

"the first"

Examples of token

The lexical analyzer returns to parser a representation for the token it

has found. This representation is:

• an integer code if there is a simple construct such as a left parenthesis,

comma or colon .

• or a pair consisting of an integer code and a pointer to a table if the token is

more complex element such as an identifier or constant.

Symbol Table

Symbol tables are data structures that are used by compilers to hold

information about source-program constructs. The information is collected

incrementally by the analysis phases of a compiler and used by the synthesis

phases to generate the target code. Entries in the symbol table contain

information about an identifier such as its character string (or lexeme), its

type, its position in storage, and any other relevant information. Symbol

tables typically need to support multiple declarations of the same identifier

within a program.

The symbol table must be able to do

1. Determine if a given name is in the table, the symbol table

routines are concerned with saving and retrieving tokens.

 insert(s, t) : this function is to add a new name to the table.

 Lookup(s) : returns index of the entry for string s, or 0 if s is not

found.

2. Access the information associated with a given name, and add

new information for a given name.

3. Delete a name or group of names from the tables.

Attributes of Token

When more than one lexeme can match a pattern, the lexical analyzer

must provide the subsequent compiler phases additional information about

the particular lexeme that matched. For example, the pattern for token

number matches both 0 and 1, but it is extremely important for the code

generator to know which lexeme was found in the source program. Thus, in

many cases the lexical analyzer returns to the parser not only a token name,

but an attribute value that describes the lexeme represented by the token; the

token name influences parsing decisions, while the attribute value influences

translation of tokens after the parse.

We shall assume that tokens have at most one associated attribute,

although this attribute may have a structure that combines several pieces of

information. The most important example is the token id, where we need to

associate with the token a great deal of information. Normally, information

about an identifier — e.g., its lexeme, its type, and the location at which it is

first found (in case an error message about that identifier must be issued) —

is kept in the symbol table. Thus, the appropriate attribute value for an

identifier is a pointer to the symbol-table entry for that identifier.

Example : The token names and associated attribute values for the

Fortran statement

E = M * C ** 2

are written below as a sequence of pairs.

<id, pointer to symbol-table entry for E>

<assign_op>

<id, pointer to symbol-table entry for M>

<mult_op>

<id, pointer to symbol-table entry for C>

<exp_op>

<number, integer value 2>

Note that in certain pairs, especially operators, punctuation, and

keywords, there is no need for an attribute value. In this example, the token

number has been given an integer-valued attribute. In practice, a typical

compiler would instead store a character string representing the constant and

use as an attribute value for number a pointer to that string.

Transition Diagrams

In the construction of lexical analyzer to convert patterns into stylized

flowcharts, called "transition diagrams". Transition diagrams have a

collection of nodes or circles, called states. Each state represents a

condition that could occur during the process of scanning the input looking

for a lexeme that matches one of several patterns. We may think of a state as

summarizing all we need to know about what characters we have seen

between the lexemeBegin pointer and the forward pointer (as in the situation

of Fig. 3.3).

Edges are directed from one state of the transition diagram to another. Each

edge is labeled by a symbol or set of symbols(represent input string to move

from one state to another). We shall assume that all our transition diagrams

are deterministic, meaning that there is never more than one edge out of a

given state with a given symbol among its labels.

One state is designated the start state, or initial state; it is indicated by

an edge, labeled "start," entering from nowhere. The transition diagram

always begins in the start state before any input symbols have been read.

The final(accepting) state. Representing by a double circle. These

states indicate that a lexeme has been found.

Example1) Figure below represent the transition diagram of identifier.

Transition diagram for indentifier

Example2) Transition diagram that represent RELOP

Transition Diagram for RELOP

Note) The * in the transition diagram represent that the forward pointer must

retract position.

Exercises)1. draw the transition diagram for the constant

3. draw the transition diagram for the "Begin" keyword.

Syntax Definition

The "context-free grammar," or "grammar" used to specify the syntax

of a language. A grammar naturally describes the hierarchical structure of

most programming language constructs. For example, an if-else statement in

Java can have the form

if (expression) statement else statement

That is, an if-else statement is the concatenation of the keyword if, an

opening parenthesis, an expression, a closing parenthesis, a statement, the

keyword else, and another statement. Using the variable expr to denote an

expression and the variable stmt to denote a statement, this structuring rule

can be

expressed as

stmt → if (expr) stmt else stmt

in which the arrow may be read as "can have the form." Such a rule is

called a production. In a production, lexical elements like the keyword if and

the parentheses are called terminals. Variables like expr and stmt represent

sequences of terminals and are called nonterminals.

Context Free Grammars

1. A set of terminal symbols, sometimes referred to as "tokens." The

terminals are the elementary symbols of the language defined by the

grammar.

2. A set of nonterminals, sometimes called "syntactic variables." Each

nonterminal represents a set of strings of terminals. Nonterminals

impose a hierarchical structure on the language that is key to syntax

analysis and translation.

3. A set of productions, where each production consists of a

nonterminal, called the head or left side of the production, an arrow,

and a sequence of terminals and/or nonterminals, called the body or

right side of the production. The intuitive intent of a production is to

specify one of the written forms of a construct; if the head nonterminal

represents a construct, then the body represents a written form of the

construct.

4. A designation of one of the nonterminals as the start symbol.

We specify grammars by listing their productions, with the productions

for the start symbol listed first. We assume that digits, signs such as < and

<=, and boldface strings such as while are terminals. An italicized name is a

nonterminal, and any nonitalicized name or symbol may be assumed to be a

terminal. For notational convenience, productions with the same nonterminal

as the head can have their bodies grouped, with the alternative bodies

separated by the symbol |, which we read as "or."

Example: if we have the strings 9-5+2, 3-1, or 7. Since a plus or minus sign

must appear between two digits, we refer to such expressions as "lists of

digits separated by plus or minus signs." The following grammar describes

the syntax of these expressions. The productions are:

list list + digit …(1)

list list - digit …(2)

list digit …(3)

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 …(4)

Derivations

A grammar derives strings by beginning with the start symbol and

repeatedly replacing a nonterminal by the body of a production for that

nonterminal. The terminal strings that can be derived from the start symbol

form the language defined by the grammar.

1. In leftmost derivations, the leftmost nonterminal in each sentential is

always chosen. If α → β is a step in which the leftmost nonterminal in

α is replaced, we write α
lm β

2. In rightmost derivations, the right most nonterminal is always chosen;

we write α
rm β

Parse Trees

A parse tree pictorially shows how the start symbol of a grammar

derives a

string in the language. If nonterminal A has a production A → XYZ, then a

parse tree may have an interior node labeled A with three children labeled X,

Y, and Z, from left to right:

Formally, given a context-free grammar, a parse tree according to the

grammar is a tree with the following properties:

1. The root is labeled by the start symbol.

A

X Y Z

2. Each leaf is labeled by a terminal or by ɛ.

3. Each interior node is labeled by a nonterminal.

4. If A is the nonterminal labeling some interior node and X1, X2, … , Xn are

the labels of the children of that node from left to right, then there must be

a production A→ X1X2 … Xn. Here, X1, X2, … , Xn each stand for a symbol

that is either a terminal or a nonterminal. As a special case, if A → ɛ is a

production, then a node labeled A may have a single child labeled ɛ.

Example) the parse tree for 9-5+2

Parse Trees and Derivations

For example if we have the following grammar E→ E+E | -E | E*E |

(E)|id, the parse tree for - (id + id) in Figure below

E → - E → - (E) → - (E + E) → - (id +E) → - (id + id)

This method for driving word called top-down method type left most

derivation.

There is another way for top down derivation that is right most derivation as

follows for the same Grammar above

E → - E → - (E) → - (E + E) → - (E + id) → - (id + id)

Syntax Analysis

Every programming language has precise rules that prescribe the

syntactic structure of well-formed programs. The syntax of programming

language constructs can be specified by Context – Free Grammars or BNF

(Backus-Naur Form) notation, Grammars offer significant benefits for both

language designers and compiler writers.

1. A grammar gives a precise, yet easy-to-understand, syntactic

specification of a programming language.

2. From certain classes of grammars, we can construct automatically an

efficient parser that determines the syntactic structure of source

program. As a side benefit, the parser-construction process can reveal

syntactic ambiguities and trouble spots that might have slipped

through the initial design phase of a language.

3. The structure imparted to a language by a properly designed grammar

is useful for translating source programs into correct object code and

for detecting errors.

4. A grammar allows a language to be evolved or developed iteratively,

by adding new constructs to perform new tasks. These new constructs

can be integrated more easily into an implementation that follows the

grammatical structure of the language.
The role of parser

The parser obtains a string of tokens from the lexical analyzer, as

shown in Figure bellow, and verifies that the string of token names can be

generated by the grammar for the source language. We expect the parser to

report any syntax errors in an intelligible fashion and to recover from

commonly occurring errors to continue processing the remainder of the

program. Conceptually, for well-formed programs, the parser constructs a

parse tree and passes it to the rest of the compiler for further processing.

The methods commonly used in compilers can be classified as being either

top-down or bottom-up. As implied by their names, top-down methods build

parse trees from the top (root) to the bottom (leaves), while bottom-up

methods start from the leaves and work their way up to the root. In either

case, the input to the parser is scanned from left to right, one symbol at a

time.

Problems of Grammar

1) Ambiguity

A grammar that produces more than one parse tree for some sentence is

said to be ambiguous. An ambiguous grammar is one that produces more

than one leftmost derivation or more than one rightmost derivation for the

same sentence.

Since a string with more than one parse tree usually has more than one

meaning, we need to design unambiguous grammars for compiling

applications, or to use ambiguous grammars with additional rules to resolve

the ambiguities.

The arithmetic expression grammar (E→ E+E | -E | E*E | (E)|id)

permits two distinct leftmost derivations for the sentence id + id * id :-

For most parsers, it is desirable that the grammar be made

unambiguous, for if it is not, we cannot uniquely determine which parse tree

to select for a sentence. In other cases, it is convenient to use carefully

chosen ambiguous grammars, together with disambiguating rules that

"throw away" undesirable parse trees, leaving only one tree for each

sentence.

Eliminating Ambiguity

Sometimes an ambiguous grammar can be rewritten to eliminate the

ambiguity. As an example, we shall eliminate the ambiguity from the

following "dangling-else" grammar:

Here "other" stands for any other statement. This grammar is

ambiguous since the string

In all programming languages with conditional statements of this form,

the first parse tree is preferred. The general rule is, "Match each else with the

closest unmatched then". This disambiguating rule can theoretically be

incorporated directly into a grammar, but in practice it is rarely built into the

productions.

The unambiguous grammar of dangle if then else statement can be take

the following form.

2) Elimination of Left – Recursive

A grammar is left recursive if it has a nonterminal A such that there is a

derivation A
Aα for some string α. Top-down parsing methods cannot

handle left-recursive grammars, so a transformation is needed to eliminate

left recursion. If we have the production A→ Aα\ β then can be replaced by

the non recursive production

A→ βA'

A'→ αA' | ε

without changing the strings derivable from A.

Example:

Immediate left recursion can be eliminated by the following technique,

which works for any number of A-productions. First, group the productions

as

where no βi begins with an A. Then, replace the A-productions by

The nonterminal A generates the same strings as before but is no longer

left recursive. This procedure eliminates all left recursion from the A and A'

productions (provided no is e), but it does not eliminate left recursion

involving derivations of two or more steps. For example, consider the

grammar

The nonterminal S is left recursive because S→ Aa → Sda, but it is not

immediately left recursive.

3) Left Factoring:-

Left factoring is a grammar transformation that is useful for producing

a grammar suitable for predictive, or top-down, parsing. When the choice

between two alternative A-productions is not clear, we may be able to

rewrite the productions to defer the decision until enough of the input has

been seen that we can make the right choice.

stmt → if expr then stmt else stmt

stmt → if expr then stmt

on seeing the input token if, we cannot immediately tell which

production to choose to expand stmt. In general, if A → α β1| α β2 are two

A- productions, and the input begins with a non-empty string derived from α

,we do not know whether to expand A to α β1 or to α β2. However, we may

defer the decision by expanding A to αA', then after seeing the input derived

from α, we expand A' to β1 or to β2. that is, left factored, the original

production become:

A →αA'

A' →β1| β2

Parsing

Top Down Parsing

Top-down parsing can be viewed as the problem of constructing a

parse tree for the input string, it can be viewed as finding a leftmost

derivation for an input string. The top-down construction of a parse tree is

done by starting from the root and creating the nodes of the parse tree in

preorder. For example consider the grammar

Example : The sequence of parse trees in Figure below for the input

id + id*id is a top-down parse according to the grammar:

At each step of a top-down parse, the key problem is that of

determining the production to be applied for a nonterminal, say A. Once an

A-production is chosen, the rest of the parsing process consists of

"matching" the terminal symbols in the production body with the input

string.

A general form of top-down parsing, called recursive-descent parsing, which

may require backtracking to find the correct A- production to be applied.

The Top down parsing divided into two parts:-

A backtracking parser will try different production rules to find the

match for the input string by backtracking each time. The backtracking is

powerful than predictive parsing. But this technique is slower and it requires

exponential time in general. Hence backtracking is not preferred for practical

compilers.

As the name suggests the predictive parser tries to predict the next

construction using one or more lookahead symbols from input string. There

are two types of predictive parsers:-

1. Recursive Descent

2. LL(1) Parser

FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by

two functions, FIRST and FOLLOW, associated with a grammar G. During

top-down parsing, FIRST and FOLLOW allow us to choose which

production to apply, based on the next input symbol.

FIRST

Define FIRST(α), as a set of terminal symbols that are first symbols

appear at right side in derivation α

1. If X is a terminal, then FIRST(X) = {X}.

2. If X→ ε is a production, then add ε to FIRST(X).

3. if X a nonterminal and X → YlY2 …Yk is a production for some k1, then

place α in FIRST(X) if for some i, a is in FIRST(Yi), and r is in all of

FIRST(Y1),…, FIRST(Yi-1); that is, Y1 …Yi-1 * ε. If ε is in FIRST(Yj)

for all j = 1,2, . . . , k, then add ε to FIRST(X). For example, everything in

FIRST(Y1) is surely in FIRST(X). If Y1 does not derive ε, then we add

nothing more to FIRST(X), but if Yl * ε, then we add F1RST(Y2), and

so on.

FOLLOW

Define FOLLOW(A) as the set of terminal Symbols that appear

immediately to the right of A in other words:-

FOLLOW(A) = {a | S * α Aa β , where α and β are some grammar

symbols may be terminal or nonterminal }

To compute FOLLOW(A) for all nonterminals A, apply the following

rules until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input

right endmarker.

2. If there is a production A→ αBβ, then everything in FIRST(β) except ε is

in FOLLOW(B).

3. If there is a production A→ αB , or a production A→ αBβ, where

FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW (B).

Example 1)

Compute the FIRST and FOLLOW for the following grammar:-

Symbol FIRST FOLLOW

E {(, id} {$,)}

E' {+, ε } {$,)}

T {(, id } {+,$,)}

T' {*, ε } {+,$,)}

F {(, id} {+,*,$,)}

Example2)

Compute the FIRST and FOLLOW for the following grammar

S→ABCDE

A→ a|ε

B→ b|ε

C→ c

D→ d|ε

E→ e|ε

Symbol FIRST FOLLOW

S {a,b,c} {$}

A {a,ε} {b,c}

B {b,ε} {c}

C {c} {d,e,$}

D {d,ε} {e,$}

E {e,ε} {$}

Example3)

Compute the FIRST and FOLLOW for the following grammar

S→ aABC

A→ a|bb

B→ a|ε

C→ b|ε

Symbol FIRST FOLLOW

S {a} {$}

A {a,b} {a,b,$}

B {a,ε} {b,$}

C {b,ε} {$}

Example4)

Compute the FIRST and FOLLOW for the following grammar

S→ Bb|Cd

B→ aB| ε

C→ cC| ε

Symbol FIRST FOLLOW

S {a,b,c,d} {$}

B {a,ε} {b}

C {c,ε} {d}

Example5)

Compute the FIRST and FOLLOW for the following grammar

S→ ABC|CbB|Ba

A→ da| BC

B→ g| ε

C→ h| ε

Symbol FIRST FOLLOW

S {d,g,h,b,a,ε} {$}

A {d,g,h, ε } {$,g,h}

B {g,ε} {$,a,h,g}

C {h,ε} {$,b,h,g}

Example6)

Compute the FIRST and FOLLOW for the following grammar

S→ aABb

A→ c| ε

B→ d| ε

Symbol FIRST FOLLOW

S {a} {$}

A {c,ε } {d,b}

B {d,ε} {b}

Example7)

Compute the FIRST and FOLLOW for the following grammar

S→ aBDh

B→ cC

C→ bC| ε

D→ EF

E→ g|ε

F→ f| ε

Symbol FIRST FOLLOW

S {a} {$}

B {c} {g,f,h}

C {b.ε} {g,f,h}

D {g,f,ε} {h}

E {g,ε} {f,h}

F {f,ε} {h}

Example8)

Compute the FIRST and FOLLOW for the following grammar

S → aSb │X

X → cXb │b

X → bXZ

Z → n

Symbol FIRST FOLLOW

S {a,c,b} {$,b}

X {c,b} {$,b,n}

Z {n} {$,b,n}

Example9)

Compute the first and follow for the following grammar

S→ bXY

X→ b|c

Y→ b|ε

Symbol FIRST FOLLOW

S {b} {$}

X {b,c} {$,b}

Y {b,ε} {$}

Example10)

 Compute the first and follow for the following grammar

S → ABb │bc

A → ε │abAB

B → bc │cBS

Symbol FIRST FOLLOW

S {a,b,c } {$,b,c,a}

A {a,ε} {b,c}

B {b,c} {b,c,a}

Example11)

 Compute the first and follow for the following grammar

X → ABC │ nX

A → bA │ bb │ ε

B → bA │CA

C → ccC │CA │ cc

Symbol FIRST FOLLOW

X {b,c,n} {$}

A {b,ε} {b,c,$}

B {b,c} {c}

C {c} {$,b}

Predictive Parsing LL(1).

This top down parsing algorithm is of non recursive type. In this type of

parsing a table is built. For LL(1)- the first L means the input is scanned

from left to right, the second L means it uses leftmost derivation for input

string. And the number 1 in the input symbol means it uses only one input

symbol (lookahead) to predict the parsing process.

The predictive parsing has an input, a stack, a parsing table, and an

output. The input contains the string to be parsed, followed by $, the right

endmarker. The stack contains a sequence of grammar symbols, preceded by

$, the bottom – of – stack marker. Initially, the stack contains the start

symbol of the grammar preceded by $. The parsing table is a two

dimensional array M[A, a], where A is a nonterminal, and a is a terminal or

the symbol $.

The parser is controlled by a program that behaves as follows. The

program determines X, the symbol on top of the stack, and a, the current

input symbol. These two symbols determine the action of the parser. There

are three possibilities.

1. If X =a=$, the parser halts and announces successful completion of

parsing.

2. If X = a ≠$, the parser pops X off the stack and advances the input

pointer to the next input symbol.

3. If X is a nonterminal, the program consults entry M[X ,a] of the

parsing table M. this entry will be either an X- production of the

grammar or an error entry. If M[X, a] = {X→ UVW}, the parser

replaces X on top of the stack by UVW(with U on top). As output, the

grammar does the semantic action associated with this production,

which, for the time being, we shall assume is just printing the

production used. If M[X ,a] =error, the parser calls an error recovery

routine.

Example) parse the input id*id+id in the grammar.

Symbol FIRST FOLLOW

E {(, id} {$,)}

E' {+, ε } {$,)}

T {(, id } {+,$,)}

T' {*, ε } {+,$,)}

F {(, id} {+,*,$,)}

Semantic Analysis

 The semantic analysis phase checks the source program for semantic

errors and gathers type information for the subsequent code-generation

phase.

 It uses the parse tree to identify the operators and operands of expressions

and statements, see the figure below

 An important component is type checking.

 Here the compiler checks that each operator has operands that are

permitted by the source language specification.

 Static semantic checks are performed at compile time

 Type checking

 Every variable is declared before used

 Identifiers are used in appropriate contexts

 Check subroutine call arguments

 Dynamic semantic check are performed at run time, and the compiler

produces code that performs these checks

 Array subscript values are within bounds

 Arithmetic errors, e.g. division by zero

 A variable is used but hasn't been initialized

 When a check fails at run time, an exception is raised

Type checking

A type checker verifies that the type of a construct matches that

expected by its context. For example, the –in arithmetic operator mod in

Pascal requires integer operands, so a type checker must verify that the

operands of mod have type integer.

Intermediate Code Generation

Introduction

In the analysis – synthesis model of a compiler, the front end translates

a source program into an intermediate representation from which the back

end generates target code. Details of the target language are confined to the

back end, as far as possible. Although a source program can be translated

directly into the target language. Some benefits of using a machine –

independent intermediate form are:-

1. Retargeting is facilitated: a compiler for a different machine can be

created by attaching a back end for the new machine to an existing

front end.

2. A machine – independent code optimizer can be applied to the

intermediate representation.

The role of intermediate code generator in compiler is depicted as follow:-

The tasks of intermediate representation is

Translate from abstract-syntax trees to intermediate codes.

Generating a low-level intermediate representation with two properties:

 It should be easy to produce

 It should be easy to translate into the target machine

One of the popular intermediate code is three-address code. A three address

code:

 Each statement contains at most 3 operands; in addition to ―: =‖, i.e.,

assignment, at most one operator.

 An‖ easy‖ and ―universal‖ format that can be translated into most

assembly languages.

Some of the basic operations which in the source program, to change in

the Assembly language:

The operation which change H.L.L to assembly language, is called the

intermediate code generation and there is the division operation come with it,

which mean every statement have a single operation.

Ex

T1 = B * C

T2 = T1 / D

T3 = Y * N

T4 = A + T2

T5 = T4 - T3

Ex2

T1 = A * B

T2 = cos T1

T3 = Y * P

T4 = C / N

T5 = T2 + T4

T6 = T5 – T3

There are three representation for Three Address Code (Quadruples, Triples,

Indirect triples)

1. Triple form

Ex: X = A + B * C / (- N)

Ex: Y = A + C * X / B [i]

Ex: X[i] = N * C / Y[i]

Ex: X = A + B * (c / d) - y

Ex: A = C * X [i,j]

2. Quadruple form

Ex: X = A * C / N + P

Ex: A = N[i] * C / N

Ex: A = C * y / X[i,j]

Code Optimization

Compilers should produce target code that is as good as can be written

by hand. The code produced by straightforward compiling algorithms can

often be made to run faster or take less space, or both. This improvement is

achieved by program transformations that are traditionally called

Optimizations.

Function- Preserving Transformations

There are a number of ways in which a compiler can improve a

program without changing the function it computes. Various function

preserving transformations are,

1. Common subexpression elimination.

2. Copy propagation.

3. Dead – code elimination.

4. Constant folding.

1. Common subexpression elimination.

An expression E is called a common subexpression if it was previously

computed, and the values of variables in E have not changed since the

previous computation.

In common subexpression elimination we have to avoid re-computing

of the expression if it's value is already been computed.

Ex1: X = A + C * N – M

Y = B + C * N * e

Sol: Q = C * N

X = A + Q – M

Y = B + Q * e

Note: The value of the variable which are optimize will not be change.

2. Copy Propagation

Copy propagation means use of one variable instead of another. For

instance: if "x := y" is a statement which is called copy statement, then copy

propagation is a kind of transformation in which use y for x wherever

possible after copy statement x:= y.

Although this is not an improvement but it will definitely help in

eliminating assignment to n.

3. Dead Code Elimination

A variable is said to be live in the program if its value can be used

subsequently, otherwise it is dead at that point.

The dead code is basically an useless code. An optimization can be

performed by eliminating such a dead code.

For example

i= j;

…

…

x=i+10;

…

The dead- code elimination can be done by eliminating the assignment

statement i =j. This assignment statement is called dead assignment.

Another example

i= 0;

if (i==1)

{

 a= x+5;

}

Here if statement is a dead – code as this condition never gets satisfied.

Hence if we remove if statement, optimization can be done. One advantage

of copy propagation is that it often turns the copy statement into dead –

code. Hence after copy propagation if dead –code elimination is done, then

the useless statements can be removed.

Loop Optimization

The code optimization can be significantly done in loops of the program.

Specially inner loops is a place where program spend large amount of time.

Hence if number of instructions are less in inner loop the running time of the

program will get decreased to a large extent (i.e. The running time of a

program may be improved if we decrease the number of instructions in an

inner loop). The loop optimization is carried out by following three

methods:-

1. Code Motion

2. Induction Variable

3. Reduction in Strength

1. Code Motion

Code motion is a technique which moves the code outside the loop.

Hence is the name. If there lies some expression in the loop whose result

remains unchanged even after executing the loop for several times, then such

an expression should be placed just before the loop (i.e. outside the loop).

Here before the loop means at the entry of the loop

For example

The above code can be optimized by removing the computation of

Max -1 outside the loop. Hence the optimized code can be

2. Induction Variable

A variable x is called an induction variable of loop L if the value of

variable gets changed every time. It is either decremented or incremented by

some constant

For example, consider the block of code given below

In above code the values of I and t1 are in locked state. That is, when

value of i gets incremented by 1 then t1 gets incremented by 4. Hence I and t

t1 are induction variable.

When there are two or more induction variables in a loop, it may be

possible to get rid of all but one.

3. Reduction in Strength

The strength of certain operators is higher than others.

For example: Strength of * is higher than +. In strength reduction

technique the higher strength operators can be replaced by lower strength

operators.

For example

For (i =0 ; i<=50; i++)

{

 ...

 count =i*7;

 ...

}

Here we get values of count as 7, 14, 21 and so on up to 50.

This code can be replaced by using strength reduction as follows.

temp = 7;

For (i =0 ; i<=50; i++)

{

 ...

 count =temp;

 temp = temp +7;

}

The replacement of multiplication by addition will speed up the object

code. Thus the strength of operation is reduced without changing the

meaning of above code.

Code Generation

The final phase in compiler is the code generator. It takes as input an

intermediate representation of the source program and produces as output an

equivalent target program, as indicated in Figure below

Code generation takes a linear sequence of 3-address intermediate code

instructions, and translates each instruction into one or more instructions.

The big issues in code generation are:

● Instruction selection

● Register allocation and assignment

Instruction selection: for each type of three-address statement, we can

design a code skeleton that outlines the target code to be generated for that

construct.

Example: every three address statement of the form X = Y + Z, where X,Y

and Z are statically allocated, can be translated into the code sequence

Mov Y , R0 /* load Y into register R0 */

Add Z , R0 /* add Z to R0 */

Mov R0 , X /* store R0 into X */

Register allocation and assignment

The efficient utilization of registers involving operands is particularly

important in generating good code. The use of registers is often subdivided

into two sub problems:

Register allocation: selecting the set of variables that will reside in registers

at each point in the program.

Resister assignment: selecting specific register that a variable reside in, the

goal of these operations is generally to minimize the total number of

memory accesses required by the program.

Ex:

Consider the statement d =(a + b)+(a - c)+(a - c)

This may be translated into the following three address code

T = a + b

U = a - c

V = t + u

D = v + u

● The code

Mov R0,a

Mov R1,b

Add R1,R0

Mov R2,c

Sub R0,R2

Add R1 , R0

Add R0 , R1

Mov d, R0

